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Abstract. Multiple damped complex exponentials are of great practical
importance as they are useful for describing many technological situa-
tions. Several estimators have been developed for the parameters of these
complex exponentials. In this paper, we apply the MiniMax affine esti-
mator to this problem in order to obtain a better performance (in terms
of the mean squared error) than other unbiased estimators. Through sim-
ulations, this estimator is shown to have a reduced mean squared error,
especially for the adverse case of lower signal-to-noise ratio. Additionally,
a closed form expression for the MiniMax affine estimator is presented.
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1 Introduction

Multiple Damped Complex Exponentials are used to describe a myriad of techno-
logical applications. In particular, they arise in problems related to linear system
identification [1,2], speech analysis [3], analysis of data obtained through a nu-
clear magnetic resonance [4] and photoacoustic beam profiling of pulsed lasers
[5].

The general model will be described as

R(k) =

q∑
i=1

xi(k) +N(k) (1)

where
xi(k) = ciej βi e(αi+j ωi)k (2)

with αi < 0, ci > 0, ωi ∈ [0, 2π), βi ∈ [0, 2π) for every i = 1, . . . , q and j2 = −1.
Also, {N(k)} is a discrete-time, circularly-symmetric [6], zero-mean, complex
additive white gaussian noise (AWGN), with E[N(k)N∗(k+m)] = σ2δ(m), with
σ2 known. The SNR is defined as SNR =

∑q
i=1 c

2
i /σ

2. A sample of size n is
available, {R(k)}n−1k=0 , and the deterministic parameter vector to be estimated is
? This work was partially supported by the University of Buenos Aires and by CON-
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θ =
[
θT1 . . . θTq

]T ∈ R4q where θi =
[
αi ci ωi βi

]T ∈ R4, i = 1, . . . , q. Further-
more, it is assumed that the number of damped complex exponentials is known.
Otherwise, there are different methods for determining the value of q [7,8].

Many different approaches have been adopted to estimate the parameter θ
of model (1) [9,10,11,12,13]. In particular, the attention will be focused on the
estimator developed by Umesh and Tufts [4]. This estimator is called the Fast
Maximum Likelihood (FML) estimator and is Cramér-Rao efficient for moder-
ately high values of SNR ([4], p. 2249).

The FML estimator is an unbiased estimator. However, it was shown that in
many situations there are biased estimators that have a lower MSE than the
unbiased ones [14]. Hence, work has been carried out to obtain better biased
estimators [15,16,17]. One particular idea for these transformations, developed
by Y. C. Eldar [18,19,20], consists in obtaining a biased estimator through an
affine transformation of an unbiased one.

Let h{R(k)} be the unbiased FML estimator [4] for the parameter θ ∈ R4q

based on sample {R(k)}n−1k=0 , then an affine estimator can be obtained,

hB{R(k)} = Ah{R(k)}+ b (3)

where A ∈ R4q×4q and b ∈ R4q. It is evident that the affine estimator hB{R(k)}
is biased and that its bias is an affine function of the paramater θ. Additionally,
the parameter is supposed to belong to a known bounded region V ⊆ R4q that is
called validation-region. This restriction is particularly useful for problems where
the parameter is bounded or there exists some previous information about where
it lies.

The objective of any affine estimator, then, is to find the values of A and b
that make the biased estimator dominant, this is

MSE(hB{R(k)}) ≤MSE(h{R(k)}) , ∀θ ∈ V (4)

with strict inequality for at least one value of θ ∈ V and whereMSE(h{R(k)}) =
E[‖h{R(k)} − θ‖2] with ‖y‖2 = yTy, y ∈ R4q. There are many possible values
of A and b that achieve (4) [21]. The strategy to be used here is the MiniMax
approach developed by Y. C. Eldar [20]. Furthermore, a closed form expression
for this estimator will be presented.

The main objective of this paper is to improve the estimation of the param-
eters of multiple damped complex exponentials through the use of the minimax
affine estimator applied to the unbiased FML estimator.

In section 2 the Cramér-Rao Lower Bound (CRLB) for the parameters of a
single damped complex exponential will be obtained and the general CRLB will
be shown, in section 3 the Fast Maximum Likelihood Estimator is presented and
in section 4 a closed-form expression for the MiniMax Affine Estimator is given.
In section 5 a simulated example is used to show the better performance of the
MiniMax affine estimator and finally, in section 6, some conclusions of this work
are stated.
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2 The Cramér-Rao Lower Bound

In this section, the Cramér-Rao Lower Bound (CRLB) for any unbiased esti-
mator of the parameters of a single damped complex exponential, θi ∈ R4,
i = 1, . . . , q is obtained. This will be used as a motivation for presenting the
CRLB for unbiased estimators of all the parameters of multiple damped complex
exponentials, θ ∈ R4q, as obtained in [22]. The inverse of the Fisher Informa-
tion Matrix will be used as the covariance matrix of the FML estimator as it is
considered efficient for moderately high values of SNR ([4], p. 2249).

For the unbiased FML estimator, h{R(k)}, the CRLB is, by definition [23,24],

MSE (h{R(k)}) = Var (h{R(k)}) ≥ tr
(
J−1

)
(5)

where J is the Fisher Information Matrix (FIM) [25],

J = [Jij ]
4q
i,j=1 (6)

Jij = E
[
∂

∂θi

(
ln
(
p{R(k)}({r(k)};θ)

)) ∂

∂θj

(
ln
(
p{R(k)}({r(k)};θ)

))]
= −E

[
∂2

∂θi∂θj

(
ln
(
p{R(k)}({r(k)};θ)

))]
where J = [Jij ]

4q
i,j=1 is a matrix of size 4q × 4q whose elements are Jij , the

likelihood function for the sample {R(k)}n−1k=0 is p{R(k)}({r(k)};θ), {r(k)}n−1k=0 is
a realization of the sample and θi, i = 1, . . . , 4q are the elements of the vector θ.

In the case when a single complex damped sinusoid is considered, q = 1, and
model (1) turns into

R(k) = x0(k) +N(k) ; x0(k) = c0ej β0 e(α0+j ω0)k (7)

with θ0 =
[
α0 c0 ω0 β0

]T ∈ R4 and where N(k) is discrete-time, circularly
symmetric AWGN, with E[N(k)N∗(k + m)] = σ2

0δ(m), with σ2
0 known. The

probability density function (pdf) for a sample of size n is given by [26]

p{R(k)}({r(k)};θ0) =
1

(πσ2
0)
n
exp

(
− 1

σ2
0

n−1∑
k=0

∣∣∣r(k)− c0ej β0 e(α0+j ω0)k
∣∣∣2) (8)

Applying logarithm to (8), evaluating it in the sample {R(k)}n−1k=0 considering
that R(k) = RRe(k)+ j RIm(k) and discarding the terms that do not depend on
the paramater θ0,

u({R(k)},θ0) = −
c20
σ2
0

n−1∑
k=0

e2α0k (9)

+
2c0
σ2
0

n−1∑
k=0

eα0k (RRe(k) cos(ω0k + β0) +RIm(k) sin(ω0k + β0))
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is obtained. Then, differentiating twice with respect to each parameter and
taking the opposite of the expected value, using the fact that E[RRe(k)] =
c0eα0k cos(ω0k + β0) and E[RIm(k)] = c0eα0k sin(ω0k + β0), the elements of the
Fisher Information Matrix (FIM) are

−E
[
∂2 u

∂α2
0

]
= 2

c20
σ2
0

n−1∑
k=0

k2e2α0k

−E
[

∂2 u

∂α0 ∂c0

]
= 2

c0
σ2
0

n−1∑
k=0

ke2α0k

−E
[
∂2 u

∂c20

]
=

2

σ2
0

n−1∑
k=0

e2α0k

E
[

∂2 u

∂α0 ∂ω0

]
= E

[
∂2 u

∂α0 ∂β0

]
= E

[
∂2 u

∂c0 ∂ω0

]
= E

[
∂2 u

∂c0 ∂β0

]
= 0

−E
[
∂2 u

∂ω2
0

]
= 2

c20
σ2
0

n−1∑
k=0

k2e2α0k

−E
[

∂2 u

∂ω0 ∂β0

]
= 2

c20
σ2
0

n−1∑
k=0

ke2α0k

−E
[
∂2 u

∂β2
0

]
= 2

c20
σ2
0

n−1∑
k=0

e2α0k

Therefore, the FIM is

J =



2c20
σ2
0

n−1∑
k=0

k2e2α0k
2c0
σ2
0

n−1∑
k=0

ke2α0k 0 0

2c0
σ2
0

n−1∑
k=0

ke2α0k
2

σ2
0

n−1∑
k=0

e2α0k 0 0

0 0
2c20
σ2
0

n−1∑
k=0

k2e2α0k
2c20
σ2
0

n−1∑
k=0

ke2α0k

0 0
2c20
σ2
0

n−1∑
k=0

ke2α0k
2c20
σ2
0

n−1∑
k=0

e2α0k


(10)

and the CRLB can be readily obtained as CRLB = tr(J−1).
It is interesting to observe that the absolute parameters of x0(k) (i.e. the

parameters that appear in the absolute value of x(k), α0 and c0) are not related
to the argument parameters in the CRLB, ω0 and β0. This feature will be further
exploited in the simulations. Another feature of the CRLB = tr(J−1) is that it
is directly proportional to the noise variance, σ2

0 and it decreseas as c0 increases.
An important practical problem stems from (10). The FIM (and, conse-

quently, the CRLB) depends on the damping factor α0 and the amplitude of
the signal c0 which are unknown parameters. In order to overcome this diffi-
culty, in practice, the estimated values of the parameters will be used instead.
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To close this section, the inverse of the FIM for the general model (1) is
presented. The proof of this result can be found in [22], p. 879.

J−1 = σ2S−1Q̃S−1 (11)

where

Q̃ =
(
2Re{ZZH}

)−1 ∈ R4q×4q

S = diag
[
Λ I Λ Λ

]
∈ R4q×4q

where the superscript H denotes complex conjugate, and where

Λ = diag
[
c1 . . . cq

]
∈ Rq×q

Z =


−ΘZ′N
ΘZN
jΘZ′N
jΘZN

 ∈ C4q×n

with

Θ = diag
[
ej β1 . . . ej βq

]
∈ Cq×q

ZN =

1 e(α1+jω1) . . . e(α1+jω1)(n−1)

...
...

. . .
...

1 e(αq+jωq) . . . e(αq+jωq)(n−1)

 ∈ Cq×n

Z′N =

0 e(α1+jω1) . . . (n− 1)e(α1+jω1)(n−1)

...
...

. . .
...

0 e(αq+jωq) . . . (n− 1)e(αq+jωq)(n−1)

 ∈ Cq×n

3 The Fast Maximum Likelihood Estimator

The Fast Maximum Likelihood (FML) estimator was developed by S. Umesh
and D. W. Tufts and will be used as an unbiased, efficient estimator [4] of
the parameters of model (1). The most relevant aspect of this work is that,
by exploiting the particular ridge format of the compressed likelihood function
(CLF), the search for the maximum value is reduced to 1−D searches that are
computationally more efficient than higher dimensional searches [4].

In order to obtain the algorithm that leads to the FML estimator h{R(k)},
equation (1) has to be rewritten in matrix notation,

r = X(α,ω)a+ n (12)

where r =
[
R(0) . . . R(n− 1)

]T , α =
[
α1 . . . αq

]T , ω =
[
ω1 . . . ωq

]T ,
X(α,ω) =


1 1 . . . 1

eα1+j ω1 eα2+j ω2 . . . eαq+j ωq

...
...

. . .
...

e(α1+j ω1)(n−1) e(α2+j ω2)(n−1) . . . e(αq+j ωq)(n−1)

 , (13)



14th Argentine Symposium on Technology, AST 2013

42 JAIIO - AST 2013 - ISSN 1850-2806 - Page 86

a =
[
c1ej β1 . . . cqej βq

]T and n =
[
N(0) . . . N(n− 1)

]T .
It is observed that, while parameters α and ω appear as a nonlinear function

in X, parameters of complex amplitude a are linear, so that if the maximum
likelihood estimators (MLE) of α and ω are available (α̂, ω̂), then

â =
(
XH(α̂, ω̂)X(α̂, ω̂)

)−1
XH(α̂, ω̂) r (14)

because it is the solution of a least squares problem ([27], chap. 11, p. 483) and
because of the invariance property of the MLE ([28], theo. 7.2, p. 176). This
reduces the CLF ([29], p. 234) to

L(α,ω) = rH X
(
XHX

)−1
XH r (15)

and therefore, the maximum likelihood estimates (α̂, ω̂) are obtained as ([4], p.
2246)

(α̂, ω̂) = argmax
α,ω

L(α,ω) = argmax
α,ω

rH X
(
XHX

)−1
XH r (16)

By analizing the noiseless single damped complex exponential case, the au-
thors realized that the CLF has a ridge structure that allows for two 1 − D
searches, separately for α and for ω instead of carrying out a 2−D search in the
(α, ω) plane ([4], sec. II, p. 2246). The authors observed that the CLF for this
particular case (7), has a ridge that runs through the true value of ω indepen-
dently of the value of α. Therefore, for any fixed initial value of α,

(α̂, ω̂) = argmax
α,ω

L1(α, ω) = argmax
α,ω

rHx(α, ω)
(
xH(α, ω)x(α, ω)

)−1
xH(α, ω)r

(17)
can be maximized with respect to ω and, after that, it can be maximized for α
([4], p. 2248), obtaining (α̂, ω̂). In (17), x(α, ω) =

[
1 eα+j ω . . . e(α+j ω)(n−1)

]T .
Because this ridge structure of the CLF is useful only for the single damped

complex exponential case, the authors proposed a modified Costas’ residual sig-
nal analysis (RSA) [30] algorithm to separate the different damped complex
exponentials and apply the corresponding single case search to each one of them.

Succinctly, the algorithm can be described as follows (for a mathematically
detailed description, see [4], sec. III, p. 2249). First, for the initialization, the
whole signal r (12) is considered as a single damped complex exponential so that
the estimates (α̂1, ω̂1) of the strongest signal are obtained using (17). With these
estimates, an initial value of â1 is obtained by using (14). With all these four
parameters, the strongest signal is reconstructed and then, substracted from the
original signal r. This allows for the second strongest component to reveal itself
as the maximum. A new search is performed so that (α̂2, ω̂2) is obtained and
then, these estimates together with the previous ones (α̂1, ω̂1) are used to obtain
â2 and refine â1. Now, both the strongest components are reconstructed and
substracted from r. This continues until the parameters of the weakest signal θq
are estimated.
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Once all the initial estimates of the parameters are obtained, the iterative
improvement begins. All the previously estimated parameters are used to re-
construct all the components. These components are substracted from r with
the exception of the first component. Then, a signal that is composed only of
the first component is obtained, and the values of (α̂1, ω̂1) are obtained through
the use of (17). These two new estimates, together with all the other estimates
are used in (14) to obtain a new estimate of â1. Then, all the components are
reconstructed and substracted from r with the exception of the second compo-
nent. The parameters (α, ω) of the second component are estimated and, after
that, new estimates for ai are obtained. Later, the reconstruction of all signals is
carried out and substracted from r with the exception of the third component.
This proceedure goes on for every component of the signal r. All of this stage
(the refinement of the q parameters θi, i = 1, . . . , q) is repeated until a certain
stop criteria is met (typically, the number of iterations).

The result of this algorithm yields the unbiased FML estimator h{R(k)}.

4 The MiniMax Affine Estimator

In continuation to an earlier work [31], the affine estimation of parameters is
expanded to the multidimensional case in order to apply it to the estimation of
multiple damped complex exponentials parameters. In this section, the closed
form expression of the MiniMax affine estimator is presented and some consid-
erations about it are developed.

Let h{R(k)} ∈ R4q be an unbiased estimator of parameter θ ∈ R4q based
on sample {R(k)}. Let E[(h{R(k)} − θ)(h{R(k)} − θ)T ] = Σh ∈ R4q×4q be the
constant symmetric positive-definite (s.p.d.) covariance matrix of the unbiased
estimator and let the validation region V be an ellipsoid described by

V =
{
θ ∈ R4q : (θ − θc)T F (θ − θc) ≤ 1

}
(18)

which is called the validation-ellipsoid. Matrix F ∈ R4q×4q is s.p.d. and describes
the dimensions of the ellipsoid and θc ∈ R4q is its center. Both quantities are
known and summarize the previous information on the parameters.

The affine estimator hB{R(k)} is given by equation (3)

hB{R(k)} = Ah{R(k)}+ b

and, as stated in the introduction, the objective is to find the values of A and
b such that hB{R(k)} is dominant over h{R(k)} for all the values of θ in the
region V (4)

MSE(hB{R(k)}) ≤MSE(h{R(k)}) , ∀θ ∈ V

with strict inequality for at least one value of θ ∈ V.
The MiniMax strategy for choosing the optimal values of A and b is [20]

minimize
A,b

max
θ∈V
{MSE(hB{R(k)})−MSE(h{R(k)})} (19)
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The closed form expression of the optimal solution is

I−A? =
tr
(
(ΣhFΣh)

1
2

)
1 + tr (ΣhF)

(ΣhFΣh)
1
2 Σ−1h

(20)
b? = (I−A?)θc

provided that

F ≤ I

tr (Σh)
(21)

where the matrix inequality represents that I
tr(Σh)

−F is symmetric non-negative
definite (s.n.n.d.).

From a practical standpoint, if condition (21) fails, then it would be the
situation when the measurement errors (given by Σh) are greater than the ac-
curacy of the previous information given by the validation ellipsoid, therefore, it
would make no practical sense to take the measurements as there is no possible
improvement to the previous information.

Solution (20) is proved optimal because it satisfies the KKT conditions in
([20], eq. 58, p. 3831) which are necessary and sufficient optimality conditions
as the problem (19) is convex [32].

5 Examples

In this section, two simulations are carried out in order to show the performance
of the MiniMax affine estimator (20) when compared to the FML estimator
(section 3). Both of these simulations involve the exact same parameters as
those that appear in [4] so as to achieve a better comparison.

A sample of size n = 25 of q = 2 damped complex exponentials is considered.
The unknown parameters of each component are α1 = −0.1, c1 = 1, ω1 =
2π 0, 52, β1 = 0 and α2 = −0.2, c2 = 1, ω2 = 2π 0, 42, β2 = 0 ([4], p. 2253).

As observed in section 2, the CRLB for parameters βi and ωi, i = 1, 2 and the
CRLB for the real parameters ci and αi, i = 1, 2 have no influence on each other.
Also, because of their circular nature, both the frecuency and phase parameters
are inherently restricted to the range [−π, π) making them excellent choices for
the application of the affine estimator. Therefore, the affine estimator in these
examples will be applied to the frequency and phase unbiased estimators and
the improvement on the mean squared error will be compared with respect to
these four parameters ω1, β1, ω2, β2. In other words, the MSE is obtained as
MSE = E[‖θ̃ − h̃{R(k)}‖2] where θ̃ =

[
β1 ω1 β2 ω2

]T ∈ R4 and h̃{R(k)} is the
FML estimator for these four parameters. The MSE for the affine estimator is
calculated analogously.
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The validation-ellipsoid (18) for the parameter vector is given by

F =


2.0507 1.9493 0 0
1.9493 2.0507 0 0

0 0 2.0507 1.9493
0 0 1.9493 2.0507

 , θc =


0

0.5252
0.0100
0.4158


The covariance matrix of the unbiased estimator is considered to be the

inverse of the FIM for the phase and frequency, that is Σh ≈ J−1. The values
of α1, α2, c1 and c2 used in J−1 are the unbiased estimates obtained from the
FML estimator. The iterative improvement of the FML algorithm consists of 15
iterations, the same as in [4].

For the simulations, the value of the SNR is varied from 0 dB to 30 dB with
steps of 5dB. For each value of SNR, 500 simulations are averaged in order to
obtain estimates of the MSE as in [4].

The results are shown in figure 1. It is observed, from the simulations (fig. 1)

0 5 10 15 20 25 3010−4

10−2

100

102

SNR (dB)

M
SE

 

 

FML
MiniMax
CRLB

Fig. 1. MSE for frequency and phase estimates of both damped complex exponentials
as a function of SNR for a sample of size n = 25.

that the MiniMax affine estimator results in a better performance when estimat-
ing frequency and phase. It has to be taken into consideration that for values of
SNR ≤ 10 dB, the matrix F does not meet condition (21), so that the estimator
is unreliable. Still, it performs better than the FML estimator.

For the second simulation, the same two damped complex exponentials are
considered with the exception that for this case, the damping factors are quite
different, making one exponential slowly decaying while the other decays faster.
For this second simulation, α1 = −0.07 and α2 = −0.4 ([4], p. 2254). All the
other values of the simulation remain the same. Results are shown in figure 2.
It is observed that, for this case too, the MiniMax affine estimator performs
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Fig. 2. MSE as a function of SNR for a sample of size n = 25 for two differently
decaying exponentials.

better than the FML estimator. Also, taking into account that for SNR ≤ 10 dB
condition (21) is not met, the affine estimator is better in all the range of values
of SNR considered.

6 Conclusions

In this paper, the MiniMax affine estimator was used to improve the parameter
estimation (frequency and phase) of multiple damped complex exponentials in
AWGN. Also, a closed form expression for the MiniMax Affine Estimator was
presented.

It was shown, through simulation, that the MiniMax affine estimator per-
forms better than the FML, especially for low values of SNR, making it an
excellent choice when the situation is adverse (in terms of SNR).
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