
Service Oriented Architecture for Undo Functionality

Hernán Merlino, Oscar Dieste, Patricia Pesado, Ramón García-Martínez

PhD Program on Computer Sc. School of Computer Sc. National University of La Plata
Empirical Software Eng. Group. School of Computer Sc. Madrid Polytechnic University
Instituto de Investigaciones en Informática LIDI. Facultad de Informática. UNLP - CIC
Information Systems Research Group. Productive & Technologic Development Dept.

National University o Lanús
hmerlino@gmail.com, odieste@fi.upm.es, ppesado@lidi.info.unlp.edu.ar, rgarcia@.unla.edu.ar

Abstract. This paper proposes a highly automated mechanism to build an undo
facility into a new or existing system easily encapsulated into a service. Our
proposal is based on the observation that for a large set of operators it is not
necessary to store in-memory object states or executed system commands to
undo an action; the storage of input data is instead enough. The use of services
strategy simplifies greatly the design of the undo process and encapsulates most
of the functionalities required in a framework structure similar to the many
object-oriented programming frameworks. We present a proof of concept
illustrating the simplicity and reusability of the proposed framework under
alignments of Software as a Service.

Keywords. Undo Framework; Services Oriented Architecture; and Usability
component.

1. Introduction

It is hard to build usability into a system. One of the main reasons is that this is
usually done at an advanced stage of system development [1], when there is little time
left and the key designed decisions have already been taken. Usability patterns were
conceived with the aim of making usable software development simpler and more
predictable [2]. Usability patterns can be defined as mechanisms that could be used
during system design to provide the software with a specific usability feature [1].
Some usability patterns defined in the literature are: Feedback, Undo/Cancel,
Form/Field Validation, Wizard, User profile and Help [3]. The main stumbling block
for applying these patterns is that there are no frameworks or even architectural or
designed patterns associated with the usability patterns. This means that the pattern
has to be implemented ad hoc in each system. Ultimately, this implies that (1) either
the cost of system development will increase as a result of the heavier workload
caused by the design and implementation of the usability features or, more likely; (2)
many of these usability features (Undo, Wizard, etc.) will be left out in an attempt to
reduce the development effort.

The goal of this paper is to develop a framework and a service for one of the above
usability patterns, namely, the undo pattern. The undo pattern provides the

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

2 Hernán Merlino, Oscar Dieste, Patricia Pesado, Ramón García-Martínez

functionality necessary to undo actions taken by system users. Undo is a common
usability features in the literature [4]. This is more than enough justification for
dealing with this pattern first. There are other, more technical grounds to support the
decision to tackle undo in first place. One of the most important is undoubtedly that
undo shares much of its infrastructure (design, code) with other patterns. Redo and
cancel are obvious cases, but it also applies to apparently unrelated patterns, like
feedback and wizard.

Several authors have proposed alternatives of undo pattern, these alternatives focus
on particular applications, notably document editors [5][6] although the underlying
concepts are easily exportable to other domains. However, these proposals are defined
at high level, without an implementation (or design) reusable in different types of
systems. These proposals therefore do not solve the problem of introduction of
usability features in software

In this paper, we present a new approach for the implementation of Undo pattern.
Our proposal solves a subset of cases (stateless operations) in a highly efficiently
manner. The importance of having an automated solution of those is that they are the
most frequents operations occur in information systems.

The use of services for building applications is a very efficient way to reduce
complexity and development time, creating an Undo service is a valid alternative to
be taken into account by software engineering. We have implemented the framework
using Software as a Service (SaaS). For this class of development we have developed
a framework similar to other such as Spring [7] or Hibernante [8] that allows to build
the undo easy into a system (that we term “host application”). Furthermore, in host
application, it’s only need to include a few modifications in code, and this creates a
lower propensity to introduce bugs in the code and allows inclusion of it in a more
simple developed system.

This article is structured as follows. Section 2 describes the state of the art
regarding the implementation of undo. Section 3 presents the undo infrastructure,
whereas Section 4 describes undo infrastructure. Section 5 shows a proof of concept
of the proposed framework. Finally, Section 6 briefly discusses and presents the main
contributions of our work.

2. Background

Undo is a very widespread feature, and is prominent across the whole range of
graphical or textual editors, like, for example, word processors, spreadsheets, graphics
editors, etc. Not unnaturally a lot of the undo-related work to date has focused on one
or other of the above applications. For example, [6] and Baker and Storisteanu [9]
have patented two methods for implementing undo in document editors within single-
user environments.

There are specific solutions for group text editors that support undo functionality
such as in Sun [10] y Chen and Sun [11] and Yang [12]. The most likely reason for
the boom of work on undo in the context of document editors is its relative simplicity.
Conceptually speaking, an editor is a container accommodating objects with certain
properties (shape, position, etc.). Consequently, undo is relatively easy to implement,

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

Service Oriented Architecture for Undo Functionality 3

as basically it involves storing the state of the container in time units i, i+1, …, i + n.
Then when the undo command is received, the container runs in reverse i + n, i + n-1,
i.

A derivation of the proposed solutions for text editors is an alternative
implementation of undo for email systems like Brown and Patterson [13], these
solutions are only for text editors and email systems and applications that are built
considering undo functionality from the design.

The problems of undo in multi-user environments have also attracted significant
attention. Abrams and Oppenheim [14] have proposed mechanisms for using undo in
distributed environments, and Abowd and Dix [4] proposed a formal framework for
this field.

 In distributed environments, the solution has to deal with the complexity of
updates to shared data (basically, a history file of changes) [15].

Several papers have provided insight on the internal aspects of undo, such Mancini
[16], who attempted to describe the undo process features. Likewise, Berlage [17]
proposed the construction of an undo method in command-based graphical
environments, Burke [18] created an undo infrastructure, and Korenshtein [19]
defined a selective undo.

There has been work done on multi-level models for Undo where each action for
a system is defined as a discreet group of commands performed, where each
command represents a requested action by the user, this is a really valid
approximation because defined as a discreet group of commands, the system could be
reverted to any previous stage, only performing the actions the other way round; here
a difference can be found between the theory and the practice, regarding the first one
it is true that is possible to go back to any previous stage of the system if there is the
necessary infrastructure for the Undo, but actually the combination of certain
procedures performed by the user or a group of them could be impossible to be solved
related to expected response time. For this reason the implementation of the Undo
process must complete these possible alternatives with regards to the command
combinations performed by the user or users.

Another important aspect which has been worked out is the method of
representation of the actions performed by the users in Washizaki and Fukazawa [20],
a dynamic structure of commands is presented and it represents the history of
commands implemented.

The Undo model representation through graphs has been widely developed in
Berlage [17] present a distinction between the linear and nonlinear undo, the
nonlinear approach is represented by a tree graph, where you can open different
branches according to user actions. Edwards [21] also presented a graph structure
where unlike Berlage [17] these branches can be back together as the actions taken.
Dix [22] showed a cube-shaped graph to represent history of actions taken. Edwards
[23] actions are represented in parallel. It has also used the concept of Milestoning
and Rollback [24] to manage the log where actions temporarily stored. Milestoning is
a logical process which makes a particular state of the artifacts stored in the log; and
rollback is process of returning back the log to one of the points of Milestoning. All
these alternative representation of the commands executed by users are valid, but this
implementation is not a simple task, because create a new branch and join two
existing branches is not a trivial action, because you must know all possible ways that

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

4 Hernán Merlino, Oscar Dieste, Patricia Pesado, Ramón García-Martínez

users can take; by this it may be more advisable to generate a linear structure, that can
be shared by several users, ordered by time, this structure can be a queue, which is
easy to deploy and manage.

Historically frameworks that have been used to represent the Undo only have used
the pattern Command Processor [25], Fayad, Shumidt [26] and Meshorer [27]. This
serves to keep a list of commands executed by the user, but it is not enough to create a
framework that is easy to add to existing systems, As detailed below using service
model allows greater flexibility for the undo process integration in an application, this
approach allow a greater degree of complexity in the process of allowing Undo handle
different configurations.

Undo processes has been associated to exception mechanisms to reverse the
function failed [28] these are only invoked before the request fails and the user, these
are associated with a particular set of applications.

Patents, like the method for building an undo and redo process into a system, have
been registered [29]. Interestingly, this paper presents the opposite of an undo
process, namely redo, which does again what the undo previously reverted. Other
authors address the complexities of undo/redo as well. Thus, for example, Nakajima
and Wash [30] define a mechanism for managing a multi-level undo/redo system, Li
[31] describes an undo and redo algorithm and Martinez and Rhan [32] present a
method for graphically administering undo and redo, based primarily on the undo
method graphical interface.

The biggest problem with the above works is that, again, they are hard to adopt in
software development processes outside the document editor domain. The only
noteworthy exception to this is a design-level mechanism called Memento [33]. This
pattern restores an object to a previous state and provides an implementation-
independent mechanism that can be easily integrated into a system. The downside is
that this pattern is not easy to build into an existing system. Additionally, Memento
only restores an object to a previous state; it does not consider any of the other
options that an undo pattern should include.

Uses of Services in the enterprise build architecture models that are directly
dependent upon the business strategy [34]. Service oriented architecture has the
following characteristics [35]: (a) services are self-contained and modular (b)
services support interoperability, (c) services are loosely coupled, (d) services are
location-transparent, (e) services are composite modules, comprised of components.

This paper is based on work done by same team in [36] and [37]. The solutions
presented are optimized for particular cases and are difficult to apply to other
domains; on the other hand, it is necessary to include a lot of code associated with
Undo in host application.

3. Theoretical Justification of Undo Framework

Before describing proposed Undo Framework, and its implementation as SaaS,
theoretical foundations that demonstrate the correctness of our approach. This will be
done in two steps; first we will describe how to undo operations that do not depend on

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

Service Oriented Architecture for Undo Functionality 5

its state, the procedure to undo these operations consist in reinjection input data at
time t-1, second we prove that reinjection input always produces correct results.

3.1. Initial Description

The most commonly used option for developing an undo process is to save the
states of objects that are liable to undergo an undo process before they are put through
any operation; this is the command that changes the value of any of their attributes.
This method has an evident advantage; the system can revert without having to enact
a special-purpose process; it is only necessary to remove and replace the current in-
memory objects with objects saved previously saved.

This approach is a simple mechanism for implementing the undo process, although
it has some weaknesses. On one hand, saving all the objects generates quite a heavy
system workload. On the other hand, developer’s need to create explicitly commands
for all operations systems. Finally, the system interfaces (mainly the user interface)
have to be synchronized with the application objects to enact an undo process. This is
by no means easy to do in monolithic systems, but, in modern distributed computer
systems, where applications are composed of multiple components all running in
parallel (for example, J2EE technology-based EJB), the complications increase
exponentially.

There is a second option for implementing an undo process. This is to store the
operations performed by the system instead of the changes made to the objects by
these operations. In this case, the undo would execute the inverse operations in
reverse order. However, this strategy is seldom used for two reasons. On one hand,
except for a few exceptions like the above word processing or spreadsheet software,
applications are seldom designed as a set of operations. On the other hand, some
operations do not have a well-defined inverse (imagine calculating the square of a
table cell; the inverse square could be both a positive and a negative number).

The approach that we propose is based on this last strategy, albeit with a more
simplified complexity. The key is that, in any software system whatsoever, the only
commands processed that are relevant to the undo process are the ones that update the
model data (for example, a data entry in a field of a form that updates an object
attribute, the entry of a backspace character that deletes a letter of a document object,
etc.). In most cases, such updates are idempotent, that is, the effects of the entry do
not depend on the state history. This applies to the form in the above example (but
not, for example, to the word processor). When the updates are idempotent, neither
states of the objects in the model or executed operations has to be stored, and the list
of system inputs is only required. In other words, executing an undo at time t is
equivalent to entering via the respective interface (usually the user interface) the data
item entered in the system at time t-2. Figure 1 shows an example of this approach. At
time t, the user realizes that he has made a mistake updating the name field in the
form, which should contain the value John not Sam. As a result, he wants to revert to
the value of the field that the form had at time t-1. To do this, it is necessary (and
enough) to re-enter the value previously entered at time t-2 in the name field.

Unless the updates are idempotent, this strategy is not valid (as in the case of the
word processor, for example), and the original strategy has to be used (that is, store

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

6 Hernán Merlino, Oscar Dieste, Patricia Pesado, Ramón García-Martínez

the command and apply its inverse to execute the undo). However, the overwhelming
majority of cases executed by a system are idempotent, whereas the others are more
of an exception.

Figure 1. Undo sequence.

Consequently, the approach that we propose has several benefits: (1) the actual
data inputs can be processed fully automatically and transparently of the host
application; (2) it avoids having to deal with the complexity of in-memory objects; (3)
the required knowledge of system logic is confined to commands, and (4), finally,
through this approach, it is possible to design an undo framework that is independent
of the application and, therefore, highly reusable.

3.2. Formal Description

The following definitions and propositions are used to proof (in an algebraic way)
that UNDO process (UNDO transformation) may be built under certain process
(transformation) domain constrains.

Definition 1. Let = { / is a data structure} be the set of all data structures.

Definition 2. Let be the instance of data structure belonging to

Definition 3. Let { / is an instance of the structure } be the set of all
the possible instances of data structure .

Definition 4. Let be a transformation which verifies : and ()
=

Definition 5. Let be a constrain of defined as { / is an instance of
the data structure which verifies () = }

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

Service Oriented Architecture for Undo Functionality 7

Proposition 1. If : then is bijective.
Proof: es injective by definition 4, is surjective by definition 5,
then is bijective for being injective and surjective. QED.

Proposition 2. If : then has inverse.
Proof: Let be bijective by proposition 1, then by usual algebraic
properties has inverse. QED.

Definition 6. Let be the set of al transformations

Definition 7. Let be the operation of composition defined as usual composition of
algebraic transformations.

Definition 8. Let be the service defined by structure < , > where C
and C .

Definition 9. Let = ... be a composition of transformations
which verifies : for all i:1...n. By algebraic construction

: .

Proposition 3. The composition of transformations X has inverse and is bijective.
Proof: Let be = For all i:1...n verifies
has inverse by proposition 2. Let []-1 be the inverse transformation
of , by usual algebraic properties []-1 is bijective. Then it is
possible to compose a transformation X-1 = []-1 []-1 ...

[]-1. The transformation X-1 is bijective by being composition of
bijective transformations. Then transformation X-1 : exists and
is the inverse of X. QED.

Definition 10. Let UNDO be the X-1 transformation of X.

4. Structure of Undo Framework

In this section, we will describe our proposal for designing the undo pattern using
SaaS to implement the replay of data.

4.1. Undo Service Architecture

Figure 2 represents the service Undo infrastructure, a high-level abstraction of the
architecture. Undo service has 3 modules, (a) service management, (b) updater data
and (c) data recovery.

Management service is responsible for creating, maintaining and deleting
applications that will access the undo service. An application that could access to
service must execute following steps: (a) creating application unique identifier, this
should be attached to each message that is sent to the service, (b) creation of user
profile identifier, this must be attached to each message that is sent to the service,
once defined two identifiers, host application may immediately use undo service

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

8 Hernán Merlino, Oscar Dieste, Patricia Pesado, Ramón García-Martínez

All these added to the header data set that can be invoked by the user for later
retrieval, enable the service to handle different applications at the same time, within
an application users can manage their own recovery without interfering lists, plus
each user can manage their own separate lists per interface; the service giving
maximum flexibility for every application.

Figure 2. Undo infrastructure

Once modified the host application, Send Data Function can receive all data sent
by host application; this header is made up all detailed message specified above
together with the data to be retrieved. This function includes a set of processes which
are: (a) validation session, (b) application and user validation, (c) interface validation
and (d) data update. This process is essential for data reinjection, as this is where we
will store the data.

Last function is Undo Get Data, which is responsible for data recovery. Host
application sends a header with session and service interface and service could
retrieve the stored data, previous validating session and profile, associated with the
current session.

4.2. Operation of Undo Framework

Figure 3 details process which undo receives data service from external system, at
this point is where you start the process that ended with the injection of data re be
invoked by the external system. In the External Layer, the user application generates
an event that triggers an action likely to be overturned, this creates an Undo Service
invocation, this is received by the service interface that is plotted on the Undo
Abstract Layer, and this action fires a set of processes:

(i) Check current user session, this start with Validate Session and Profile, this
process communicates with the Undo Application Layer, with function that
processes Validate Undo Service Session and Profile. This service is based on two
components responsible for validation and maintenance of active user sessions and
profile´s user, Session component is responsible for validating whether the session
with which you access the service is active, component Profile is responsible for

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

Service Oriented Architecture for Undo Functionality 9

validating invocation of the temporary storage. Both components communicate
with lower-level layer called Layer Undo Technology; this is basic infrastructure
for Undo service, which consists of a processing unit and data storage.

(ii) After that, the validation process begins to check if host application has access to
temporary storage, this process communicates with Validate Undo Data process,
and it is responsible for validating the data to be stored, first validates that host
application is active, if so, host application obtains credentials to use. If the
process is successful the user is returned a successful update code, if an error
occurs, it returns an error code also asynchronously, and with external system
code decides if it generates exception or continues with the normal flow.

Fig. 3. Undo receives data service

Figure 4 shows process which undo data service return stored temporarily to
external system, this is where it describes the beginning of re injection data by the
external system for the service provided. In the same way explained above, Layer
External triggers an event that generates a request for data stored, this process is
divided into two stages:

(i) Charge of the validation of the application, which has the same activities as
described in the process of Undo Send Data,

(ii) Retrieve all values that have been stored for the tuple, application and interface.
Return of this process to External Layer is the list sorted in reverse with all values
stored, service provide option to request only the last value stored. External
application receives an asynchronously error code if event failure occurs.

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

10 Hernán Merlino, Oscar Dieste, Patricia Pesado, Ramón García-Martínez

Fig. 4. Get Data Process.

5. Proof of Concept

To demonstrate the feasibility of the proposed undo service, has implemented a
simplified version of Web service has been implemented as well as host application.
Currently, the Web service is hosted on server www.usabilityframework.com.ar/
regUndoDataWithSrv.php, publicly available to experiment. Figure 5 shows the
interface manager component, this component enables host application access to
service, you can add applications, user profiles, among others.

Fig. 5. Administration console screenshot.

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

Service Oriented Architecture for Undo Functionality 11

Figure 6 shows host applications, this application inserts, deletes and updates

functionality. This application is representative to demonstrate main Service´s
characteristics.

Fig. 6. Application screenshot.

This is an application built in PHP and JavaScript using simple processes to meet
client-side. After that we describe the way to include of Undo services. The service
performs the following tasks, manages applications that access to service, maintains a
temporary list of undo data, and returns a list to the host application, while host
application (the application that has to provide undo functionality) performs two
tasks, sends and extracts data from Undo service. First steps add a filter to intercept
information to be sent to service. The details of the code are shown in Figure 7.

Fig. 7. Add Intercept Method

Explained in section 3, to undo an operation and return to t-1, it’s needed reinject
information at time t-2. For this reason, the input data (t-2) must be stored before host
application changes it (t-1). Replicate undo candidate field assignment with service
field (Fig. 8).

Fig. 8. Add Mirror Field.

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

12 Hernán Merlino, Oscar Dieste, Patricia Pesado, Ramón García-Martínez

This step is essential to include a service of Undo in an application “Web Enable”,
detailed has explained in section 3; this action intercept user Submit action, in this
way, when user submits data to application server, undo service get the values. Third
step is inclusion at the end of the HTML page scripts to manage service invocations by
the user (Fig. 9).

Fig. 9. Add Interface Reference.

The final result is the Figure 10 where you can view the application with addition
of service and their invocations, the format is a standard model and it can be adapted to
others.

Fig. 10. Service Included.

6. Conclusions

In this paper we have proposed the design of an undo framework to build the undo
functionality into any software application whatsoever through a service. The most
salient feature of this framework is the type of information it stores to be able to undo
the user operations: input data instead of in-memory object states or commands
executed by the system. This lessens the impact of building the framework into the
target application a great deal.

Building an Undo Service has some significant advantages with respect to Undo
models presented, first of all the simplicity of inclusion in a host application under
construction or existing, you can see in the proof of concept. Second the
independence of service in relation to the host application allows the same
architectural model to provide answers to different applications in different domains.
Construction of a service allows to Undo be a complex application, with possibility of
include analysis for process improvement, as described in the next paragraph it is
possible to detect patterns of invocation of Undo in different applications.

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

Service Oriented Architecture for Undo Functionality 13

Further work is going to bring: (a) creation of a pre-compiler, (b) automatic
detection of fields to store, (c) extends the framework to other platforms, (d) open
service to community.

7. Acknowledgements

The research reported in this paper has been partially funded by grants UNLa-SCyT-
33A105 and UNLa-SCyT-33B06 of the National University of Lanus (Argentine)
and by grants TIN2008-00555 and HD2008-00046 of the Spanish Ministry of Science
and Innovation (Spain).

8. References

1. Ferre, X., Juristo, N., Moreno, A., Sanchez, I. 2003. A Software Architectural View of
Usability Patterns. 2nd Workshop on Software and Usability Cross-Pollination (at
INTERACT'03) Zurich (Switzerland)

2. Ferre, X; Juristo, N; and Moreno, A. 2004. Framework for Integrating Usability Practices
into the Software Process. Madrid Polit. University.

3. Juristo, N; Moreno, A; Sanchez-Segura, M; Davis, A. 2005. Gathering Usability
Information through Elicitation Patterns.

4. Abowd, G.; Dix, A. 1991. Giving UNDO attention. University of York.
5. Qin, X. y Sun, C. 2001. Efficient Recovery algorithm in Real-Time and Fault-Tolerant

Collaborative Editing Systems. School of computing and Information Technology Griffith
University Australia.

6. Bates, C. and Ryan, M. 2000. Method and system for UNDOing edits with selected portion
of electronic documents. PN: 6.108.668 US.

7. Spring framework. http://www.springsource.org/.
8. Hibernate framework. http://www.hibernate.org/.
9. Baker, B. and Storisteanu, A. 2001. Text edit system with enhanced UNDO user interface.

PN: 6.185.591 US.
10. Sun, C. 2000. Undo any operation at time in group editors. School of Computing and

Information Technology, Griffith University Australia.
11. Chen, D; Sun, C. 2001. Undoing Any Operation in Collaborative Graphics Editing

Systems. School of Computing and Information Technology, Griffith University Australia.
12. Yang, J; Gu, N; Wu, X. 2004. A Documento mark Based Method Supporting Group Undo.

Department of Computing and Information Technology. Fudan University.
13. Brown, A; Patterson, D, 2003. Undo for Operators: Building an Undoable E-mail Store.

University of California, Berkeley. EECS Computer Science Division.
14. Abrams, S. and Oppenheim, D. 2001. Method and apparatus for combining UNDO and

redo contexts in a distributed access environment. PN: 6.192.378 US.
15. Berlage, T; Genau, A. 1993. From Undo to Multi-User Applications. German National

Research Center for Computer Science.
16. Mancini, R., Dix, A., Levialdi, S. 1996. Reflections on UNDO. University of Rome.
17. Berlage. T. 1994. A selective UNDO Mechanism for Graphical User Interfaces Based On

command Objects. German National Research Center for Computer Sc.
18. Burke, S. 2007. UNDO infrastructure. PN: 7.207.034 US.
19. Korenshtein, R. 2003. Selective UNDO. PN: 6.523.134 US.

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

14 Hernán Merlino, Oscar Dieste, Patricia Pesado, Ramón García-Martínez

20. Washizaki, H; Fukazawa, Y. 2002. Dynamic Hierarchical Undo Facility in a Fine-Grained
Component Environment. Department of InformaTION AND Computer Science, Waswda
University. Japan.

21. Edwards, W; Mynatt, E. 1998. Timewarp: Techniques for Autonomous Collaboration.
Xerox Palo Alto Research Center.

22. Dix, A; Mancini, R; Levialdi, S. 1997. The cube – extending systems for undo. School of
Computing, Staffordshire University. UK.

23. Edwards, W: Igarashi, T; La Marca, Anthony; Mynatt, E. 2000. A Temporal Model for
Multi-Level Undo and Redo.

24. O´Brain, J; Shapiro, M. 2004. Undo for anyone, anywhere, anytime. Microsoft Res..
25. Buschmann, F; Meunier, R; Rohnert, H; Sommerlad, P; Stal, M. 1996. Pattern-Oriented

Software Architecture: A System Of Patterns. John Wiley & Sons.
26. Fayad, M.; Shumidt, D. 1997. Object Oriented Application Frameworks. Comunications of

the ACM, 40(10) pp 32-38.
27. Meshorer, T. 1998. Add an undo/redo function to you Java app with Swing. JavaWord,

June, IDG Communications.
28. Shinnar, A; Tarditi, D; Plesko, M; Steensgaard, B. 2004. Integrating support for undo with

exception handling. Microsoft Research.
29. Keane, P. and Mitchell, K. 1996. Method of and system for providing application programs

with an UNDO/redo function. PN:5.481.710 US.
30. Nakajima, S., Wash, B. 1997. Multiple level UNDO/redo mechanism. PN: 5.659.747 US.
31. Li, C. 2006. UNDO/redo algorithm for a computer program. PN: 7.003.695 US.
32. Martinez, A. and Rhan, M. 2000. Figureical UNDO/redo manager and method. PN:

6.111.575 US.
33. Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1994. Design Patterns: Elements of

Reusable Object-Oriented Software, Addison- Wesley.
34. Binildas, CA; Malhar, Barai; Vincenzo, Caselli. 2008. Service Oriented Architecture with

Java. Packt Publishing, BIRMINGHAM – MUMBAI.
35. Endrei, M; Ang, J; Arsanjani, A; Chua, S; Comte, P; Krogdahl, P; Luo, L; Newling, T.

2004. Patterns: Service-Oriented Architecture and Web Services. IBM, Redbooks.
36. Merlino, H; Dieste, O; Pesado, P; García-Martínez, R. 2009. Design of an UNDO

Framework. Proceedings XV Congreso Argentino de Ciencias de la Computación
Workshop de Ingeniería de Software. Págs. 870-879. ISBN 978-897-24068-4-1.

37. Merlino, H; Dieste, O; Pesado, P; García-Martínez, R. 2012. Software as a Service: Undo.
The 24th International Conference on Software Engineering and Knowledge Engineering.
SEKE 2012.

Merlino, H., Dieste, O., Pesado, P., Garcia-Martinez, R. 2012.Service Oriented Architecture for Undo Functionality
6th International Conference on Research and Practical Issues of Enterprise Information Systems

September 19-21. Ghent, Belgica
http://www.confenis2012.be/documenten/17MerlinoDiestePesadoRGM.pdf

