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Abstract

Inclusive charged hadron production, e+e− → e+e−h±X, is studied using 414 pb−1 of data collected at LEP with the L3
detector at centre-of-mass energies between 189 and 202 GeV. Single particle inclusive differential cross sections are measured
as a function of the particle transverse momentum, pt , and pseudo-rapidity, η. For pt 6 1.5 GeV, the data are well described by
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an exponential, typical of soft hadronic processes. For higher pt , the onset of perturbative QCD processes is observed. The π±
production cross section for pt > 5 GeV is much higher than the NLO QCD predictions.
 2003 Elsevier Science B.V.

1. Introduction

Two-photon collisions are the main source of had-
ron production in the high-energy regime of LEP via
the process e+e− → e+e−γ ∗γ ∗ → e+e− hadrons. In
the Vector Dominance Model (VDM), each photon
can transform into a vector meson with the same
quantum numbers, thus initiating a strong interaction
process with characteristics similar to hadron–hadron
interactions. This process dominates in the “soft” in-
teraction region, where hadrons are produced with a
low transverse momentum, pt , with respect to the
beam direction. Hadrons with high pt are produced
by the direct QED process γ ∗γ ∗ → qq̄ or by QCD
processes originating from the partonic content of the
photon. QCD calculations are available for single par-
ticle inclusive production in two-photon interactions at
next-to-leading order (NLO) precision [1,2].

The L3 Collaboration recently published results on
inclusive π0 and K0

S production [3]. The π0 differ-
ential cross section measured as a function of pt ex-
hibits a clear excess over QCD calculations. A com-
parison of these results with other single particle in-
clusive production at high pt is therefore important.
In this Letter, the inclusive charged hadron produc-
tion is studied for a centre-of-mass energy of the two
interacting photons, Wγγ , greater than 5 GeV. The
hadrons are measured in the transverse momentum
range 0.4 GeV 6 pt 6 20 GeV and in the pseudo-

1 Supported by the German Bundesministerium für Bildung,
Wissenschaft, Forschung und Technologie.

2 Supported by the Hungarian OTKA fund under contract
numbers T019181, F023259 and T037350.

3 Also supported by the Hungarian OTKA fund under contract
number T026178.

4 Supported also by the Comisión Interministerial de Ciencia y
Tecnología.

5 Also supported by CONICET and Universidad Nacional de La
Plata, CC 67, 1900 La Plata, Argentina.

6 Supported by the National Natural Science Foundation of
China.

rapidity7 interval |η| 6 1. The contributions from π±
and K± are also derived.

The data used for this analysis were collected by
the L3 detector [4] at centre-of-mass energies

√
s =

189–202 GeV, with a luminosity weighted average
value of

√
s = 194 GeV, for an integrated luminosity

of 414 pb−1. Results on inclusive charged hadron
production for a smaller data sample at lower

√
s were

previously reported [5].
The process e+e− → e+e− hadrons is modelled

with the PYTHIA [6] event generator for an event
sample three times larger than the data. In this gen-
erator, each photon can interact as a point-like par-
ticle, as a vector meson or as a resolved photon,
leading to six classes of events. The fragmenta-
tion is simulated with JETSET. Predictions from the
PHOJET Monte Carlo program [7] are also com-
pared with the data. The following Monte Carlo
generators are used to simulate the relevant back-
ground processes: KK2f [8] for e+e− → qq̄(γ ); KO-
RALZ [9] for e+e− → τ+τ−(γ ); KORALW [10]
for e+e− → W+W− and DIAG36 [11] for e+e− →
e+e−τ+τ−. Events are simulated in the L3 detector
using the GEANT [12] and GHEISHA [13] programs
and passed through the same reconstruction program
as the data. Time-dependent detector inefficiencies,
as monitored during each data taking period, are also
simulated.

2. Event and charged hadron selection

Two-photon events are collected predominantly by
the track triggers [14] with a low pt threshold of about
150 MeV. The selection of e+e− → e+e− hadrons
events [15] consists of:

• A multiplicity cut. To select hadronic final states,
at least six objects must be detected, where an

7 η = − ln tan(θ/2), where θ is the polar angle of the particle
relative to the beam axis.
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object can be a track or a calorimetric cluster with
no associated track.

• Energy cuts. The total energy deposited in the
calorimeters must be less than 0.4

√
s, in order to

exclude e+e− annihilation events. The total en-
ergy in the electromagnetic calorimeter is required
to be greater than 500 MeV, to suppress beam-gas
and beam-wall backgrounds.

• An anti-tag condition. Events with a cluster in the
luminosity monitor with an energy greater than
30 GeV and an electromagnetic shower shape are
excluded.

• A mass cut. The visible mass of the event must be
greater than 5 GeV.

About 2 million hadronic events are selected by
these criteria. The overall background level is less
than 1% and is mainly due to the e+e− → qq̄(γ ) and
e+e− → e+e−τ+τ− processes.

Charged hadrons are measured with high quality
tracks in the inner tracking detector. These tracks have
a transverse momentum greater than 400 MeV and a

distance of closest approach to the primary vertex in
the transverse plane less than 4 mm. The number of
hits must be greater than 80% of that expected from
the track length. Tracks are analysed in the |η| < 1
and pt < 20 GeV range where the detector resolution
is optimal. A resolution σpt /pt ' (0.015 GeV−1)pt is
achieved.

3. Differential cross section

The differential cross sections of inclusive charged
hadron production as a function of pt are measured
for an effective mass of the γ γ system Wγγ > 5 GeV,
with a mean value of hWγγ i ' 30 GeV, a photon vir-
tuality Q2 6 8 GeV2 and an average photon virtuality
hQ2i ' 0.2 GeV2. This phase space is defined by cuts
at the Monte Carlo generator level. Results are pre-
sented in 12 pt bins between 0.4 and 20 GeV.

The distribution of the detected charged hadrons in
these pt bins is presented in Fig. 1(a). The background
remains very low over the whole pt range. Events

Fig. 1. (a) Number of selected tracks per GeV in each pt bin and main sources of background. (b) Inclusive charged hadron differential cross
section dσ/dpt fitted with an exponential and power-law functions. Monte Carlo predictions are also presented. Statistical and systematic
uncertainties are shown. The average pt value of each bin, hpt i, is used.
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Table 1
Transverse momentum range and average value from the data with the corresponding overall efficiency and differential cross section for
inclusive charged hadron production for Wγγ > 5 GeV and |η| < 1. The uncertainty on the efficiency is systematic. The first uncertainty on the
cross section is statistical and the second systematic

pt hpt i Efficiency dσ/dpt

[GeV] [GeV] [%] [pb/GeV]

0.4 – 0.6 0.48 62.4 ± 7.7 (23.4 ± 0.1 ± 3.7) × 103

0.6 – 0.8 0.68 64.5 ± 6.9 (10.9 ± 0.1 ± 1.5) × 103

0.8 – 1.0 0.88 67.7 ± 6.0 (48.0 ± 0.1 ± 5.9) × 102

1.0 – 1.5 1.14 72.4 ± 4.8 (14.1 ± 0.1 ± 1.4) × 102

1.5 – 2.0 1.68 77.4 ± 3.7 (28.5 ± 0.1 ± 2.2) × 10
2.0 – 3.0 2.31 77.2 ± 4.3 (60.9 ± 0.5 ± 4.4)

3.0 – 4.0 3.36 75.0 ± 5.2 (13.1 ± 0.2 ± 1.0)

4.0 – 5.0 4.39 69.5 ± 5.8 (48.7 ± 1.3 ± 4.2)×10−1

5.0 – 7.5 5.79 68.1 ± 6.8 (15.3 ± 0.4 ± 1.6)×10−1

7.5 – 10.0 8.46 65.2 ± 8.7 (50.9 ± 2.5 ± 7.0)×10−2

10.0 – 15.0 11.98 61.9 ±11.0 (21.0 ± 1.2 ± 3.8)×10−2

15.0 – 20.0 17.36 59.8 ±14.7 (97.1 ± 8.4 ±24.3)×10−3

Table 2
Systematic uncertainty on the charged hadron cross section due to trigger efficiency, background subtraction, selection procedure and Monte
Carlo modeling

pt Trigger Background Selection Monte Carlo
[GeV] efficiency [%] subtraction [%] procedure [%] modeling [%]

0.4 – 0.6 0.1 < 0.1 10.1 12.4
0.6 – 0.8 0.1 < 0.1 9.2 10.6
0.8 – 1.0 0.2 < 0.1 8.4 8.9
1.0 – 1.5 0.2 < 0.1 7.5 6.6
1.5 – 2.0 0.4 < 0.1 5.9 4.8
2.0 – 3.0 0.5 0.1 4.5 5.6
3.0 – 4.0 0.9 0.4 3.1 6.9
4.0 – 5.0 1.2 0.9 2.3 8.2
5.0 – 7.5 1.2 1.3 1.6 10.0
7.5 – 10.0 1.2 2.5 1.2 13.3

10.0 – 15.0 1.2 3.1 1.1 17.8
15.0 – 20.0 1.2 4.2 1.1 24.6

from the e+e− → e+e−τ+τ− process dominate the
background at low pt while annihilation events dom-
inate it at high pt . To measure the cross section, the
background is subtracted bin-by-bin and the data are
corrected for the selection efficiency, including accep-
tance, calculated bin-by-bin with PYTHIA. This se-
lection efficiency varies from 62% to 84%. At low pt ,
the efficiency decreases due to the effect of the mass
and energy cuts. At high pt , it decreases because of
the multiplicity cut, since high pt particles are mainly
produced in low multiplicity events.

The level 1 trigger efficiency is obtained by com-
paring the number of events accepted by the inde-
pendent track and calorimetric energy [16] triggers. It

varies from 95% to 98%. The efficiency of higher level
triggers is about 95% and is measured using prescaled
events. The overall efficiency, taking into account se-
lection and trigger efficiencies is given in Table 1.

Sources of systematic uncertainties on the cross
section measurements are the trigger efficiency esti-
mation, the background subtraction, the selection pro-
cedure and the Monte Carlo modeling. Their contribu-
tions are shown in Table 2. The uncertainty on the trig-
ger efficiency and on the background subtraction are of
a statistical nature. The uncertainty due to the selec-
tion procedure is evaluated by repeating the analysis
with different selection criteria: the multiplicity cut is
moved from 5 to 7 objects, the energy cut is moved to



L3 Collaboration / Physics Letters B 554 (2003) 105–114 111

0.35
√

s and the number of hits of the tracks is moved
to 70% of that expected. The sum in quadrature of the
differences between these and the reference results is
listed in Table 2. Varying other criteria give negligi-
ble contributions. To evaluate the uncertainty on the
Monte Carlo modeling, the selection efficiency is de-
termined using only one of the PYTHIA subprocesses:
VDM–VDM, direct–direct or resolved–resolved. The
systematic uncertainty is assigned as the average dif-
ference between these values and the reference Monte
Carlo. The larger contribution comes from the differ-
ence between direct and other processes.

The differential cross section of charged hadron
production as a function of pt is presented in Fig. 1(b)
and in Table 1. The migration due to the pt resolution
does not affect these results. This was verified by
performing a one-step Bayesian unfolding [17] of the
track pt distribution which give results compatible,
within errors, with those obtained using the bin-by-bin
correction.

The steep decrease of dσ/dpt in the range 0.4 <

pt < 1.5 GeV is described by an exponential of
the form A exp(−pt/hpt i) with a mean value of
hpt i ' 232 MeV. This behaviour is characteristic of
hadrons produced by soft interactions and is similar
to that obtained in hadron–hadron and photon–hadron
collisions [18]. At higher pt the differential cross
section is better represented by power law functions
Ap−B

t , as expected by the onset of QCD processes.
For 1.5 GeV < pt < 5 GeV, B ' 4.2 and for 5 GeV <

pt < 20 GeV, B ' 2.6. The results of the fits are
drawn on Fig. 1(b) where the data are also compared
to Monte Carlo predictions. PYTHIA is slightly above
the data, whereas PHOJET is too low by more than
one order of magnitude. These results are consistent
with our findings in inclusive π0 production [3].

4. Charged pions and charged kaons

Assuming the fragmentation function implemented
in JETSET are correct, the π± and the K± inclusive

Fig. 2. (a) Differential cross section dσ/dpt for inclusive pion and kaon production. The π± data are compared to the inclusive π0

measurement [3] scaled by a factor 4. The K± data are compared to the inclusive K0
S measurement [3] scaled by a factor 4/3. (b) Cross

section ratios for pions and kaons. Good agreement is found with the expected values (horizontal lines). Statistical and systematic uncertainties
are shown. The average pt value of each bin, hpt i, is used.
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Table 3
Differential cross section as a function of pt for inclusive π± and K± production for Wγγ > 5 GeV and |η| < 1. The first uncertainty on the
cross section is statistical and the second systematic

hpt i dσ/dpt for pions dσ/dpt for kaons
[GeV] [pb/GeV] [pb/GeV]

0.48 (20.3 ± 0.1 ± 3.3) × 103 (23.7 ± 0.1 ± 5.1) × 102

0.68 (88.1 ± 0.1 ±12.5) × 102 (15.3 ± 0.1 ± 3.1) × 102

0.88 (36.5 ± 0.1 ± 4.5) × 102 (80.7 ± 0.2 ±15.3) × 10
1.14 (10.2 ± 0.1 ± 1.0) × 102 (26.4 ± 0.1 ± 4.7) × 10
1.68 (20.5 ± 0.1 ± 1.6) × 10 (54.3 ± 0.4 ± 9.2)

2.31 (44.7 ± 0.3 ± 3.5) (10.9 ± 0.1 ± 1.9)

3.36 (10.0 ± 0.2 ± 0.9) (21.3 ± 0.4 ± 3.8)×10−1

4.39 (37.8 ± 1.0 ± 3.6)×10−1 (71.3 ± 2.4 ±13.4)×10−2

5.79 (12.3 ± 0.4 ± 1.4)×10−1 (20.6 ± 0.8 ± 4.2)×10−2

8.46 (41.0 ± 2.1 ± 6.2)×10−2 (62.9 ± 4.1 ±14.8)×10−3

11.98 (16.9 ± 1.0 ± 3.4)×10−2 (27.7 ± 2.1 ± 7.7)×10−3

17.36 (81.3 ± 7.1 ±22.5)×10−3 (10.7 ± 1.4 ± 3.7)×10−3

cross sections are extracted from the charged hadron
cross section. Their ratios relative to charged hadrons
are estimated bin-by-bin from Monte Carlo. Above
5 GeV, they are almost constant. Their uncertainty is
calculated in the same way as the uncertainty on the
Monte Carlo modeling of the selection efficiency, by
using different subprocesses in PYTHIA. This gives
an additional systematic uncertainty of from 2% to
12% for pions and from 14% to 24% for kaons.

The differential cross sections for π± and K±
production as a function of pt are presented in Fig. 2
and in Table 3. The π± data are compared to the
previous π0 data [3] scaled up by a factor 4: a factor 2
to correct for the |η| < 0.5 interval used for the π0

measurement and a factor 2 to take into account
the isospin symmetry. A good agreement is found
between these two measurements as shown in Fig. 2.
The K± data are compared to the previous results
of K0

S data [3] scaled up by a factor 4/3: a factor
2/3 to correct for the |η| < 1.5 interval of the K0

S
measurement and a factor 2 to take into account
unobserved K0

L decays. Good agreement is found
between these two measurements as shown in Fig. 2.
These agreements show a good consistency with the
data of the fragmentation functions as implemented in
JETSET.

The differential cross section of π± production
as a function of |η| for pt > 1 GeV is shown in
Fig. 3 and in Table 5. The cross section is almost
constant in this η range. It agrees well with the π0

measurement [3]. For different pt cuts, Monte Carlo

Fig. 3. Inclusive π± differential cross section dσ/d|η| for
pt > 1 GeV compared to the inclusive π0 measurement [3] called
by a factor 2 and two Monte Carlo predictions. Statistical and sys-
tematic uncertainties are shown.

and QCD predictions describe well the uniform η

distribution, while the agreement in the absolute rate
depends on the pt range considered.
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Fig. 4. (a) Inclusive π± differential cross section dσ/dpt compared to NLO QCD calculations [19] for Wγγ > 5 GeV. The dashed-dotted line
corresponds to the direct subprocess. The dashed lines represent the scale uncertainty of the calculations. (b) Inclusive π± differential cross
section dσ/dpt with different Wγγ cuts. The average pt value of each bin, hpt i, is used.

Table 4
Differential cross section as a function of pt for inclusive π± production for |η| < 1 and different Wγγ cuts. The first uncertainty on the cross
section is statistical and the second systematic

hpt i dσ/dpt [pb/GeV] dσ/dpt [pb/GeV] dσ/dpt [pb/GeV]
[GeV] Wγγ > 10 GeV Wγγ > 30 GeV Wγγ > 50 GeV

0.48 (13.7 ± 0.1 ± 3.2) × 103 (56.2 ± 0.2 ±23.8) × 102 (30.1 ± 0.2 ±17.0) × 102

0.68 (60.6 ± 0.1 ±12.5) × 102 (25.3 ± 0.1 ± 9.9) × 102 (13.8 ± 0.1 ± 7.5) × 102

0.88 (25.7 ± 0.1 ± 4.5) × 102 (10.9 ± 0.1 ± 3.9) × 102 (59.3 ± 0.6 ±31.2) × 10
1.14 (74.3 ± 0.2 ±10.3) × 10 (33.5 ± 0.2 ±10.7) × 10 (18.9 ± 0.2 ± 9.5) × 10
1.68 (15.6 ± 0.1 ± 1.0) × 10 (73.5 ± 0.8 ± 9.4)

2.31 (36.4 ± 0.3 ± 2.2) (17.2 ± 0.3 ± 2.0) (96.1 ± 2.3 ±23.4)×10−1

3.36 (88.8 ± 1.5 ± 5.8)×10−1 (40.5 ± 1.1 ± 4.6)×10−1 (25.5 ± 1.1 ± 6.5)×10−1

4.39 (35.7 ± 1.0 ± 2.9)×10−1 (18.9 ± 0.8 ± 2.2)×10−1 (96.5 ± 6.0 ±26.0)×10−2

5.79 (11.7 ± 0.4 ± 1.2)×10−1 (60.4 ± 2.5 ± 7.2)×10−2 (36.5 ± 2.1 ±10.5)×10−2

8.46 (37.8 ± 2.0 ± 5.6)×10−2 (22.1 ± 1.5 ± 2.9)×10−2 (13.1 ± 1.2 ± 4.4)×10−2

11.98 (16.4 ± 1.0 ± 3.4)×10−2 (12.7 ± 0.9 ± 1.8)×10−2 (84.1 ± 7.4 ±31.5)×10−3

17.36 (78.9 ± 7.0 ±23.9)×10−3 (60.0 ± 6.3 ±10.1)×10−3 (61.3 ± 7.5 ±27.2)×10−3

In Fig. 4(a) the data are compared to analytical
NLO QCD predictions [2,19]. For this calculation,
the flux of quasi-real photons is obtained using the
Equivalent Photon Approximation [20], taking into ac-
count both transverse and longitudinal virtual photons.

The interacting particles can be point-like photons or
partons from the γ → qq̄ process, which evolve into
quarks and gluons. The NLO parton density functions
of Ref. [21] are used and all elementary 2 → 2 and
2 → 3 processes are considered. New NLO fragmen-
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Table 5
Differential cross section as a function of |η| for inclusive π±
production for Wγγ > 5 GeV and pt > 1 GeV. The first uncertainty
on the cross section is statistical and the second systematic

|η| dσ/d|η| [pb]

0.0–0.2 638 ± 3 ± 80
0.2–0.4 677 ± 3 ± 84
0.4–0.6 693 ± 4 ± 86
0.6–0.8 719 ± 4 ± 90
0.8–1.0 687 ± 4 ± 86

tation functions [22] are used. The renormalization,
factorisation and fragmentation scales are taken to be
equal: µ = M = MF = ξpt [2], with ξ = 1 for the
central value. The scale uncertainty in the NLO calcu-
lation is estimated by varying the value of ξ from 0.5
to 2.0. The agreement with the data is poor in the high-
pt range for any choice of scale.

To test NLO QCD calculations in regions where
non-perturbative subprocesses are better suppressed,
we have also measured differential cross sections of
π± production for Wγγ > 10, 30 and 50 GeV. The
results are shown in Table 4 and Fig. 4(b). The
discrepancy between the calculations and data at high
pt is not significantly reduced by these stringent more
Wγγ cuts.

Similar calculations were previously compared to
γ p reactions at HERA up to a pt of 12 GeV and to p̄p
collisions up to a pt of 20 GeV. Good agreement was
found [23]. In the γ γ channel, an excess of data with
respect to NLO QCD was observed in tagged events at
PETRA experiments [2]. No discrepancy is observed
with the OPAL data which explore a pt range up to
10 GeV. In this range, our data and the OPAL ones
are well in agreement within the quoted uncertainties.
A discrepancy with NLO QCD is revealed by our data
which extend the measurement to higher pt values.
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