Physics Letters B 715 (2012) 44-60

Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for scalar top quark pair production in natural gauge mediated supersymmetry models with the ATLAS detector in *pp* collisions at $\sqrt{s} = 7$ TeV*

ATLAS Collaboration*

ARTICLE INFO

Article history: Received 30 April 2012 Received in revised form 29 June 2012 Accepted 6 July 2012 Available online 13 July 2012 Editor: H. Weerts

ABSTRACT

The results of a search for pair production of the lighter scalar partners of top quarks (\bar{t}_1) in 2.05 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS experiment at the LHC are reported. Scalar top quarks are searched for in events with two same flavour opposite-sign leptons (e, μ) with invariant mass consistent with the Z boson mass, large missing transverse momentum and jets in the final state. At least one of the jets is identified as originating from a b-quark. No excess over Standard Model expectations is found. The results are interpreted in the framework of R-parity conserving, gauge mediated Supersymmetry breaking 'natural' scenarios, where the neutralino ($\bar{\chi}_1^0$) is the next-to-lightest supersymmetric particle. Scalar top quark masses up to 310 GeV are excluded for 115 GeV $< m_{\tilde{\chi}_1^0} < 230$ GeV at 95% confidence level, reaching an exclusion of $m_{\tilde{\chi}_1^0} > 30$ GeV for $m_{\tilde{\chi}_1^0} = 190$ GeV. Scalar top quark masses below 240 GeV are excluded for all values of $m_{\tilde{\chi}_1^0} > m_Z$.

© 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license

1. Introduction

Supersymmetry (SUSY) [1–9] provides an extension to the Standard Model (SM) which can resolve the hierarchy problem. For each known boson or fermion, SUSY introduces a particle (sparticle) with identical quantum numbers except for a difference of half a unit of spin. The non-observation of the sparticles implies that SUSY is broken and the superpartners are generally heavier than the SM partners. In the framework of a generic *R*-parity conserving minimal supersymmetric extension of the SM (MSSM) [10–14], SUSY particles are produced in pairs and the lightest supersymmetric particle (LSP) is stable.

The scalar partners of right-handed and left-handed quarks, \tilde{q}_R and \tilde{q}_L , can mix to form two mass eigenstates. In the case of the scalar top quark (\tilde{t} , stop), large mixing effects due to the Yukawa coupling, y_t , and the trilinear coupling, A_t , can lead to one stop mass eigenstate, \tilde{t}_1 , that is significantly lighter than other squarks. Consequently, the \tilde{t}_1 could be produced with large cross sections at the LHC via direct pair production.

Light stop masses are favoured by arguments of 'naturalness' of electroweak symmetry breaking [15], because of the possibly large coupling between the \tilde{t} and the Higgs boson, h. In particular, radiative corrections to the Higgs boson mass mainly arise from the stop-top loop diagrams including top Yukawa and three-point stop-stop-Higgs interactions.

0370-2693 © 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license. http://dx.doi.org/10.1016/j.physletb.2012.07.010

In gauge mediated SUSY breaking (GMSB) models [16–21], gauge interactions (messengers) are responsible for the appearance of soft supersymmetry breaking terms. If the characteristic scale of the masses of the messenger fields is about 10 TeV, an upper bound on $m_{\tilde{t}_1}$ of about 400 GeV is found when imposing the absence of significant (~ 10%) fine tuning [15].

In GMSB, the gravitino \bar{G} is the LSP (in general $m_{\tilde{C}} \ll 1$ keV). The experimental signatures are largely determined by the nature of the next-to-lightest SUSY particle (NLSP). For several GMSB models the NLSP is the lightest neutralino, $\tilde{\chi}_1^0$, promptly decaying to its lighter SM partner through gravitino emission. Neutralinos are mixtures of gaugino (\bar{B}, \bar{W}^0) and higgsino $(\bar{H}_u^0, \bar{H}_d^0)$ gauge-eigenstates, and therefore the lightest neutralino decays to either a γ , Z or Higgs boson. If the $\tilde{\chi}_1^0$ is higgsino-like, it decays either via $\tilde{\chi}_1^0 \rightarrow h\tilde{G}$ or $\tilde{\chi}_1^0 \rightarrow Z\tilde{G}$. Light higgsinos lead to a large higgsino component in $\tilde{\chi}_1^0$ and a small mass difference between $\tilde{\chi}_1^0$ and $\tilde{\chi}_1^{\pm}$. In particular, if the higgsino case), $\tilde{\chi}_1^0$ and $\tilde{\chi}_1^{\pm}$ are almost degenerate such that the (ff') system resulting from the chargino decay $\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 ff'$ is very soft.

In this Letter, a search for direct stop pair production is presented, assuming a GMSB model where the χ_1^0 is purely higgsinolike and is lighter than the \tilde{t}_1 [22]. The model parameters are

$$m_{\tilde{q}_3} = m_{\tilde{u}_3} = -A_t/2;$$
 $\tan \beta = 10,$ (1)

where $m_{\tilde{q}_3}$ and $m_{\tilde{u}_3}$ are the soft SUSY breaking masses for the left- and right-handed third-generation squarks, respectively, and tan β is the ratio of the vacuum expectation values of up-type and down-type Higgs field. In these scenarios, masses of first

 $[\]stackrel{\scriptscriptstyle \rm tr}{\scriptstyle =} \,$ © CERN for the benefit of the ATLAS Collaboration.

^{*} E-mail address: atlas.publications@cern.ch,

and second generation squarks and gluinos (superpartners of the gluons) are above 2 TeV, the \tilde{t} mass eigenstates are such that $m_{\tilde{t}_2} \gg m_{\tilde{t}_1}$ and only \tilde{t}_1 pair production is considered in what follows. Stops decay either via $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+$ or, if kinematically allowed, via $\tilde{t}_1 \rightarrow t \tilde{\chi}_{1(2)}^0$. For the scenarios considered, the subsequent decay $\tilde{\chi}_1^0 \rightarrow Z\tilde{G}$ has a branching ratio (BR) between 1 and 0.65 for $m_{\tilde{\chi}_1^0}$ between 100 GeV and 350 GeV [23]. Thus, the expected signal is characterised by the presence of two jets originating from the hadronisation of the *b*-quarks (*b*-jets), decay products of *Z* (or *h*) bosons and large missing transverse momentum — its magnitude is here referred to as $E_{\rm T}^{\rm miss}$ — resulting from the undetected gravitinos.

This search uses data recorded between March and August 2011 by the ATLAS detector at the LHC. After the application of beam, detector, and data quality requirements, the dataset corresponds to a total integrated luminosity of 2.05 ± 0.08 fb⁻¹ [24,25]. To enhance the sensitivity to the aforementioned SUSY scenarios, events are required to contain energetic jets, of which one must be identified as a *b*-jet, large E_{T}^{miss} and two opposite-sign, same flavour leptons ($\ell = e, \mu$) with invariant mass consistent with the Z boson mass, m_Z . This is the first search for scalar top quarks decaying via Z bosons in GMSB models. General searches for supersymmetric particles in events with a Z boson, energetic jets and missing transverse momentum have been reported by the CMS Collaboration [26]. Searches for direct stop pair production have been performed at the CDF and D0 experiments assuming different SUSY mass spectra and decay modes (see for example Refs. [27] and [28]).

2. The ATLAS detector

The ATLAS detector [29] consists of inner tracking devices surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer with a toroidal magnetic field.

The inner detector system, in combination with the 2 T field from the solenoid, provides precision tracking of charged particles for $|\eta| < 2.5$.¹ It consists of a silicon pixel detector, a silicon microstrip detector and a straw tube tracker that also provides transition radiation measurements for electron identification. The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. It is composed of sampling calorimeters with either liquid argon (LAr) or scintillating tiles as the active media. The muon spectrometer surrounds the calorimeters. It consists of a set of high-precision tracking chambers placed within a magnetic field generated by three large superconducting eight-coil toroids. The spectrometer, which has separate trigger chambers for $|\eta| < 2.4$, provides muon identification and measurement for $|\eta| < 2.7$.

3. Simulated event samples

Simulated event samples are used to aid in the description of the background, as well as to determine the detector acceptance, the reconstruction efficiencies and the expected event yields for the SUSY signal.

The signal samples are simulated with the HERWIG++ [30] v2.4.2 Monte Carlo (MC) program at fixed \tilde{t}_1 and $\tilde{\chi}_1^0$ masses, obtaining the desired values by varying the $m_{\tilde{q}_3}$ and $|\mu|$ parameters. The particle mass spectra and decay modes are determined using ISASUSY from the ISAJET [31] v7.80 program. The SUSY sample yields are normalised to the results of next-to-leading-order (NLO) calculations as obtained using PROSPINO [32] v2.1 including higher-order supersymmetric OCD corrections and the resummation of soft-gluon emission at next-to-leading-logarithmic (NLL) accuracy [33]. An envelope of cross-section predictions is defined using the 68% C.L. ranges of the CTEQ6.6M [34] (including α_s uncertainty) and MSTW2008 [35] parton distribution function (PDF) sets, together with variations of the factorisation and renormalisation scales, set to the stop mass. The nominal cross section is taken to be the midpoint of the envelope and the uncertainty assigned is half the full width of the envelope, following closely the PDF4LHC recommendations [36]. NLO + NLL cross sections vary between 80 pb and 0.1 pb for stop masses between 140 GeV and 450 GeV.

For the backgrounds the following SM processes are considered. Top quark pair and single top quark production are simulated with MC@NLO [37], setting the top quark mass to 172.5 GeV, and using the NLO PDF set CTEQ6.6 [38]. Additional samples generated with POWHEG [39] and ACERMC [40] are used to estimate the event generator systematic uncertainties. Samples of W + jets, Z/γ^* + jets with light- and heavy-flavour jets, and $t\bar{t}$ with additional *b*-jets, *ttbb*, are generated with ALPGEN [41] and the PDF set CTEQ6L1 [42]. The fragmentation and hadronisation for the ALPGEN and MC@NLO samples are performed with HERWIG [43], using JIMMY [44] for the underlying event. Samples of Ztt and Wtt are generated with MADGRAPH [45] interfaced to PYTHIA [46]. Diboson (WW, WZ, ZZ) samples are generated with HERWIG. For the comparison to data, all SM background cross sections are normalised to the results of higher-order calculations using the same values as Ref. [47].

The MC samples are produced using PYTHIA and HERWIG/ JIMMY parameters tuned as described in Ref. [48] and are processed through a detector simulation [49] based on GEANT4 [50]. Effects of multiple proton-proton interactions [48] are included in the simulation and MC events are re-weighted to reproduce the mean number of collisions per bunch crossing estimated from data.

4. Object reconstruction

Jet candidates are reconstructed using the anti- k_t jet clustering algorithm [51,52] with a radius parameter of 0.4. The inputs to the algorithm are three-dimensional calorimeter energy clusters [53] seeded by cells with energy calibrated at the electromagnetic energy scale significantly above the measured noise. The jet energy is corrected for inhomogeneities and for the non-compensating nature of the calorimeter using p_T - and η -dependent correction factors derived using simulated multi-jet events (following Ref. [54] and references therein). Only jet candidates with $p_T > 20$ GeV and $|\eta| < 2.8$ are retained.

A *b*-tagging algorithm [55] is used to identify jets containing a *b*-hadron decay. The algorithm is based on a multivariate technique based on properties of the secondary vertex, of tracks within the jet and of the jet itself. The nominal *b*-tagging efficiency, computed on $t\bar{t}$ MC events, is on average 60%, with a misidentification (mistag) rate for light-quark/gluon jets of less than 1%. These *b*-jets are identified within the nominal acceptance of the inner detector ($|\eta| < 2.5$) and are required to have $p_T > 50$ GeV.

Electron candidates are required to have $p_T > 20$ GeV and $|\eta| < 2.47$, and are selected to satisfy the 'tight' shower shape and track selection criteria of Ref. [56]. The candidate electron must be iso-

¹ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the *z*-axis coinciding with the axis of the beam pipe. The *x*-axis points from the IP to the centre of the LHC ring, and the *y*-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle ϕ as $\eta = -\ln \tan(\theta/2)$. The distance ΔR in the $\eta - \phi$ space is defined as $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

lated, such that the $p_{\rm T}$ sum of tracks ($\Sigma p_{\rm T}$, not including the electron track), within a cone in the (η, ϕ) plane of radius $\Delta R = 0.2$ around the candidate must be less than 10% of the electron $p_{\rm T}$.

Muons are reconstructed using an algorithm [57] which combines the inner detector and the muon spectrometer information (combined muons). A muon is selected for the analysis only if it has $p_T > 10$ GeV and $|\eta| < 2.4$, and the sum of the transverse momenta of tracks within a cone of $\Delta R = 0.2$ around it is less than 1.8 GeV. To reject cosmic rays, muons are required to have longitudinal and transverse impact parameters within 1 mm and 0.2 mm of the primary vertex, respectively.

Following the object reconstruction described above, overlaps between jet candidates and leptons are resolved. Any jet within a distance $\Delta R = 0.2$ of a candidate electron is discarded. Any remaining lepton within $\Delta R = 0.4$ of a jet is discarded.

The E_T^{miss} is calculated from the vectorial sum of the transverse momenta of jets (with $p_T > 20$ GeV and $|\eta| < 4.5$), electrons and muons — including non-isolated muons [58]. The four vectors of calorimeter clusters not belonging to other reconstructed objects are also included.

During 40% of the data-taking period, a localised electronics failure in the LAr barrel calorimeter created a dead region in the second and third calorimeter layers ($\Delta\eta \times \Delta\phi \simeq 1.4 \times 0.2$) in which, on average, 30% of the incident energy is not measured. If a jet with $p_{\rm T} > 50$ GeV or an electron candidate falls in this region, the event is rejected. The loss in signal acceptance is less than 10% for the models considered.

5. Event selection

The data are selected with a three-level trigger system based on the presence of leptons. Two trigger paths are considered: a single electron trigger, reaching a plateau efficiency for electrons with $p_T \ge 25$ GeV, and a combined muon + jet trigger, reaching a plateau efficiency for muons with $p_T \ge 20$ GeV and jets with $p_T \ge 60$ GeV.

Events must pass basic quality criteria against detector noise and non-collision backgrounds [54] are required to have a reconstructed primary vertex associated with five or more tracks; when more than one such vertex is found, the vertex with the largest summed p_T^2 of the associated tracks is chosen

The selections applied in this analysis are listed below:

- To ensure full efficiency of the trigger, events are selected if they contain at least one electron with $p_T > 25$ GeV or one muon with $p_T > 20$ GeV.
- Exactly two same flavour opposite-sign leptons (*ee*, $\mu\mu$) are required, such that their invariant mass $m_{\ell\ell}$ is within the *Z* mass range (86 GeV $< m_{\ell\ell} <$ 96 GeV). Events with additional electron or muon candidates are vetoed.
- Events must include at least one jet with p_T > 60 GeV and one additional jet with p_T > 50 GeV.
- At least one jet with $p_T > 50$ GeV and $|\eta| < 2.5$ is required to be *b*-tagged.

Two signal regions, referred to as SR1 and SR2, are defined using two different $E_{\rm T}^{\rm miss}$ threshold requirements in order to maximise the sensitivity across the $\tilde{t}_1 - \tilde{\chi}_1^0$ mass plane. For SR1, $E_{\rm T}^{\rm miss} >$ 50 GeV is required and it is chosen for models with $\Delta m = m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0}$ larger than 100 GeV or $m_{\tilde{t}_1} < 300$ GeV, where moderate missing transverse momentum is expected. SR2 is optimised for small Δm scenarios and events are required to have $E_{\rm miss}^{\rm miss} > 80$ GeV.

 Δm scenarios and events are required to have $E_{\rm T}^{\rm miss} > 80$ GeV. The signal efficiencies, which include the $Z \rightarrow ee, \mu\mu$ BR, acceptance and detector effects, vary across the $\tilde{t}_1 - \tilde{\chi}_1^0$ mass plane.

Fig. 1. The distribution of $m_{\ell\ell}$ in CR1 for the sum of *ee* and $\mu\mu$ channels. The dashed band shows the experimental systematic uncertainties including effects due to JES, *b*-taggingand lepton ID efficiency. The last $m_{\ell\ell}$ bin includes the number of overflow events for both data and SM expectation.

For SR1 (SR2) the efficiencies are found to lie between 0.03% and 2.1% (0.01% and 1.7%) as the stop mass increases from 140 GeV to 400 GeV, and between 0.6% and 2.0% (0.5% and 1.7%) for Δm between 300 GeV and 100 GeV at a stop mass of 400 GeV.

6. Background estimation

The main SM processes contributing to the background are, in order of importance, top quark pair and single top quark production, followed by the associated production of Z bosons and heavy-flavour jets – referred to as Z + hf.

The top background is evaluated using control regions (CRs) that are the same as the SRs with the exception of the $m_{\ell\ell}$ requirement (modified to 15 GeV $< m_{\ell\ell} < 81$ GeV or $m_{\ell\ell} > 101$ GeV). Depending on the corresponding signal region, CRs are labelled as CR1 and CR2. In both cases, negligible yields from the targeted SUSY signals are expected. The background estimation in each SR is obtained by multiplying the number of events observed in the corresponding CR – corrected using simulations for non-top backgrounds – by a transfer factor, defined as the ratio of the MC-predicted yield in the signal region to that in the control region:

$$N_{\rm SR}^{\rm top} = \frac{N_{\rm SR}^{\rm top, MC}}{N_{\rm CR}^{\rm top, MC}} \left(N_{\rm CR}^{\rm obs} - N_{\rm CR}^{\rm non-top, MC} \right) \tag{2}$$

where N_{CR}^{obs} denotes the observed yield in the CR. For each CR, the contribution from other SM processes accounts for less than 10% of the total. The estimate based on this approach benefits from a cancellation of systematic uncertainties that are correlated between SRs and CRs. The distribution of $m_{\ell\ell}$ for CR1 is shown in Fig. 1. The experimental uncertainties, described in Section 7, are displayed. They include effects due to jet energy scale and resolution [54] (JES), *b*-tagging [55] and lepton identification (ID) efficiencies [56, 57,59]. The number of expected events for 2.05 fb⁻¹ of integrated luminosity as predicted by the MC simulation is in good agreement with data for both CRs without introducing data/MC scaling factors.

The topology of Z + hf production events is similar to that of the signal, especially in low $\tilde{t}_1 - \tilde{\chi}_1^0$ mass scenarios. Therefore the background from the Z + hf process is estimated from MC simulation and validated in a control region where events passing all SR selection criteria except for a reversed E_T^{miss} cut ($E_T^{\text{miss}} < 50 \text{ GeV}$)

Fig. 2. The distribution of $E_{\rm T}^{\rm miss}$ for the *Z* + hf validation region for the sum of *ee* and $\mu\mu$ channels. By construction, only events with $E_{\rm T}^{\rm miss}$ below 50 GeV are displayed. The dashed band represents the experimental uncertainties including effects due to JES, *b*-taggingand lepton ID efficiency.

are considered. Possible signal contamination in the control region varies across the $\tilde{t}_1 - \tilde{\chi}_1^0$ mass range. As an example, for $m_{\tilde{\chi}_1^0} \simeq 100$ GeV, the contamination is 5% (80%) of the total predicted SM background for $m_{\tilde{t}_1} \simeq 350$ (150) GeV. In Fig. 2 the $E_{\rm T}^{\rm miss}$ distribution is shown in the range 0–50 GeV for $ee + \mu\mu$ final states. The number of events observed in data is in good agreement with the SM expected yields within experimental uncertainties.

Backgrounds from W + jets and multi-jet production, referred to as "fake-lepton" contributions, are subdominant. In this case, events passing the selection contain at least one misidentified or non-isolated lepton (collectively called "fakes"). The fake-lepton background estimate is obtained using the data-driven approach described in Ref. [60]. The probability of misidentifying a jet as a signal lepton is estimated in control regions dominated by multijet events where exactly one pre-selected lepton, at least one *b*-tagged jet and low $E_{\rm T}^{\rm miss}$ are required.

Finally, background contributions from diboson, $Zt\bar{t}$, $Wt\bar{t}$ and $t\bar{t}b\bar{b}$ events — referred to as 'Others' — are estimated from MC simulation. They account for less than 3% of the total SM background in either SR.

7. Systematic uncertainties

Various systematic uncertainties affecting the background rates and signal yields have been considered. The values quoted in the following refer to *ee* and $\mu\mu$ channels summed.

Systematic uncertainties on the top background expectations vary between 11% and 13% depending on the SR and are dominated by the residual uncertainties on the shape of the kinematic distributions of top quark events. The uncertainties are evaluated using additional MC samples. ACERMC [40] is used to evaluate the impact of initial and final state radiation parameters (varied as in Ref. [61]), PYTHIA for the choice of fragmentation model, POWHEG [39] for the choice of generator. Experimental uncertainties on the *b*-tagging efficiency, JES and lepton ID efficiency account for about 4% in either SR.

The dominant uncertainties on the Z + hf background estimates from simulation arise from the uncertainty on the production cross section used to normalise the MC yields. A \pm 55% uncertainty on the total production cross section is evaluated from the direct Z + hf inclusive measurement described in Ref. [62] and takes into account differences between data, MCFM [63] and ALPGEN

Table 1

Expected and measured number of events in SR1 and SR2 for *ee* and $\mu\mu$ channels (separately and summed) for an integrated luminosity of 2.05 fb⁻¹. Rows labelled as 'Others' correspond to the subdominant SM backgrounds estimated from MC simulation. The total systematic uncertainties are also displayed. At the bottom, model-independent observed and expected limits at 95% C.L. on the number of events and visible cross sections are shown summing the *ee* and $\mu\mu$ channels.

	SR1	SR2
ee channel		
Data	39	20
SM	36.2 ± 8.5	14.1 ± 3.0
Тор	23.8 ± 4.8	11.9 ± 2.8
Z + hf	9.4 ± 7.0	0.9 ± 0.8
Fake lepton	2.4 ± 0.9	1.1 ± 0.6
Others	0.5 ± 0.5	0.2 ± 0.2
$\mu\mu$ channel		
Data	47	23
SM	55 ± 12	26.6 ± 5.1
Тор	40.4 ± 6.2	22.9 ± 4.3
Z + hf	14.2 ± 9.9	3.3 ± 2.6
Fake lepton	0.00 ± 0.08	0.00 ± 0.07
Others	0.7 ± 0.7	0.3 ± 0.3
$ee + \mu\mu$		
Data	86	43
SM	92 ± 19	40.7 ± 6.0
Тор	64.3 ± 7.7	34.8 ± 5.0
Z + hf	24 ± 16	4.2 ± 3.2
Fake lepton	2.4 ± 0.9	1.1 ± 0.6
Others	1.2 ± 1.2	0.6 ± 0.6
95% C.L. upper limits: observed (expected)		
Events	37.2 (40.6)	19.8 (17.8)
Visible σ [fb]	18.2 (19.8)	9.7 (8.7)

predictions. The extrapolation to each following jet multiplicity in Z + hf + N jets events increases this uncertainty by an additional 24% [64]. Other uncertainties due to JES, *b*-tagging efficiency and lepton ID efficiency are found to be about 25% and 35% for SR1 and SR2, respectively.

The estimated fake-lepton background is affected by systematic uncertainties related to the determination of the lepton misidentification rate and to the subtraction of non-multi-jet contributions to the event yield in the multi-jet enhanced regions. The estimated uncertainty is 50% and 60% in SR1 and SR2, respectively. Finally, a conservative 100% uncertainty is taken into account on the contributions from 'Others'.

For the SUSY signal processes, uncertainties on the renormalisation and factorisation scales, on the PDF and on α_s affect the cross section predictions. PDF and α_s uncertainties are between 10% and 15% depending on $m_{\tilde{t}_1}$ for the mass range considered. The variation of renormalisation and factorisation scales by a factor of two changes the nominal signal cross section by 9–13% depending on the stop mass. The impact of detector-related uncertainties, such as JES, *b*-tagging and lepton ID efficiency, on the signal event yields varies between 10% and 25% and is dominated by the uncertainties on the JES.

8. Results and interpretation

The numbers of observed and expected SM background events in the two SRs are summarised in Table 1, for *ee* and $\mu\mu$ channels summed. The *ee* and $\mu\mu$ contributions are also shown separately for illustration. In all SRs, the SM expectation and observation agree within uncertainties.

In Fig. 3 the distributions of $E_{\rm T}^{\rm miss}$ in SR1 (full spectrum) and SR2 ($E_{\rm T}^{\rm miss}$ > 80 GeV), summing the *ee* and $\mu\mu$ channels, are

Fig. 3. The $ee + \mu\mu E_T^{miss}$ distribution for SR1 compared to the SM predictions, shown by the light (red) solid line, and SM + signal predictions, shown by the dark (black) solid and dashed lines. The dashed band represents the total systematic uncertainty. The last E_T^{miss} bin includes the number of overflow events for both data and SM expectation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 4. Expected and observed exclusion limits and $\pm 1\sigma$ variation on the expected limit in the $\bar{t}_1 - \tilde{\chi}_1^0$ mass plane. The reference points indicated on the plane correspond to the ($\bar{t}_1, \tilde{\chi}_1^0$) scenarios of (250, 100) GeV and (250, 220) GeV, respectively.

shown. For illustrative purposes, the distributions expected for two signal $(\tilde{t}_1, \tilde{\chi}_1^0)$ scenarios with masses of (250, 100) GeV and (250, 220) GeV, respectively, are added to the SM predictions.

The results are translated into 95% confidence level (C.L.) upper limits on contributions from new physics using the CL_s prescription [65]. The SR with the better expected sensitivity at each point in parameter space is adopted as the nominal result. Systematic uncertainties are treated as nuisance parameters and their correlations are taken into account. Fig. 4 shows the observed and expected exclusion limits at 95% C.L. in the $\tilde{t}_1 - \tilde{\chi}_1^0$ mass plane, assuming direct stop pair production in the framework of GMSB models with light higgsinos. The $\pm 1\sigma$ contours around the median expected limit are also shown. Stop masses up to 310 GeV are excluded for 115 GeV $< m_{\tilde{\chi}_1^0} < 230$ GeV. The exclusion extends to stop masses of 330 GeV for a neutralino mass of about 190 GeV. Stop masses below 240 GeV are excluded for $m_{\chi^0} > m_Z$. The two SRs are used to set limits on the number of events and the visible cross section, $\sigma_{\rm vis}$, of new physics models, without corrections for the effects of experimental resolution, acceptance and efficiency. The observed and expected excluded values at 95% C.L. are reported in Table 1.

9. Conclusions

In summary, results of a search for direct scalar top quark pair production in *pp* collisions at $\sqrt{s} = 7$ TeV, based on 2.05 fb⁻¹ of ATLAS data are reported. Scalar top quarks are searched for in events with two same flavour opposite-sign leptons (*e*, μ) with invariant mass consistent with the *Z* boson mass, large missing transverse momentum and jets in the final state, where at least one of the jets is identified as originating from a *b*-quark. The results are in agreement with the SM prediction and are interpreted in the framework of *R*-parity conserving 'natural' gauge mediated SUSY scenarios. Stop masses up to 310 GeV are excluded for 115 GeV $< m_{\tilde{\chi}_1^0} < 230$ GeV at 95% C.L., reaching an exclusion of $m_{\tilde{t}_1} < 330$ GeV for $m_{\tilde{\chi}_1^0} = 190$ GeV. Stop masses below 240 GeV are excluded for $m_{\tilde{\chi}_1^0} > m_Z$.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

- [1] H. Miyazawa, Prog. Theor. Phys. 36 (6) (1966) 1266.
- [2] P. Ramond, Phys. Rev. D 3 (1971) 2415.
- [3] Y.A. Golfand, E.P. Likhtman, JETP Lett. 13 (1971) 323;
- Y.A. Golfand, E.P. Likhtman, Pisma Zh. Eksp. Teor. Fiz. 13 (1971) 452.
- [4] A. Neveu, J.H. Schwarz, Nucl. Phys. B 31 (1971) 86.
- [5] A. Neveu, J.H. Schwarz, Phys. Rev. D 4 (1971) 1109.
- [6] J. Gervais, B. Sakita, Nucl. Phys. B 34 (1971) 632.
- [7] D.V. Volkov, V.P. Akulov, Phys. Lett. B 46 (1973) 109.
- [8] J. Wess, B. Zumino, Phys. Lett. B 49 (1974) 52.

- [9] J. Wess, B. Zumino, Nucl. Phys. B 70 (1974) 39.
- [10] P. Fayet, Phys. Lett. B 64 (1976) 159.
- [11] P. Fayet, Phys. Lett. B 69 (1977) 489.
- [12] G.R. Farrar, P. Fayet, Phys. Lett. B 76 (1978) 575.
- [13] P. Favet, Phys. Lett. B 84 (1979) 416.
- [14] S. Dimopoulos, H. Georgi, Nucl. Phys. B 193 (1981) 150.
- [15] R. Kitano, Y. Nomura, Phys. Rev. D 73 (2006) 095004.
- [16] M. Dine, W. Fischler, Phys. Lett. B 110 (1982) 227.
- [17] L. Alvarez-Gaume, et al., Nucl. Phys. B 207 (1982) 96.
- [18] C.R. Nappi, B.A. Ovrut, Phys. Lett. B 113 (1982) 175.
- [19] M. Dine, A.E. Nelson, Phys. Rev. D 48 (1993) 1277.
- [20] M. Dine, et al., Phys. Rev. D 51 (1995) 1362.
- [21] M. Dine, et al., Phys. Rev. D 53 (1996) 2658.
- [22] M. Asano, et al., JHEP 1012 (2010) 019.
- [23] S. Dimopoulos, Nucl. Phys. B 488 (1997) 39.
- [24] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630.
- [25] ATLAS Collaboration, ATLAS-CONF-2011-116, https://cdsweb.cern.ch/record/ 1376384 2011
- [26] CMS Collaboration, Phys. Lett. B, submitted for publication, arXiv:1204.3774 [hep-ex], 2012.
- [27] CDF Collaboration, Phys. Rev. Lett. 104 (2010) 251801.
- [28] D0 Collaboration, Phys. Lett. B 675 (2009) 289.
- [29] ATLAS Collaboration, JINST 3 (2008) S08003.
- [30] M. Bahr, et al., Eur. Phys. J. C 58 (2008) 639.
- [31] F.E. Paige, et al., arXiv:hep-ph/0312045, 2003.
- [32] W. Beenakker, et al., Nucl. Phys. B 515 (1998) 3.
- [33] W. Beenakker, et al., JHEP 1008 (2010) 098.
- [34] D. Stump, et al., JHEP 0310 (2003) 046.
- [35] A. Martin, et al., Eur. Phys. J. C 63 (2009) 189.
- [36] M. Botje, et al., arXiv:1101.0538 [hep-ex], 2011.
- [37] S. Frixione, B.R. Webber, arXiv:hep-ph/0601192, 2006.
- [38] P. Nadolsky, et al., Phys. Rev. D 78 (2008) 013004.

- [39] S. Frixione, et al., [HEP 0711 (2007) 070.
- [40] B. Kersevanm, E. Richter-Was, arXiv:hep-ph/0405247, 2004.
- [41] M. Mangano, et al., [HEP 0307 (2003) 001.
- [42] J. Pumplin, et al., JHEP 0207 (2002) 012.
- [43] G. Corcella, et al., JHEP 0101 (2001) 010.
- [44] J.M. Butterworth, et al., Z. Phys. C 72 (1996) 637.
- [45] J. Alwall, et al., JHEP 1106 (2011) 128.
- [46] T. Sjöstrand, S. Mrenna, P. Skands, JHEP 0605 (2006) 026.
- [47] ATLAS Collaboration, Phys. Rev. D 85 (2012) 112006.
- [48] ATLAS Collaboration, ATL-PHYS-PUB-2011-008, https://cdsweb.cern.ch/record/ 1345343. 2011.
- [49] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823.
- [50] GEANT4 Collaboration, Nucl. Inst. Meth. A 506 (2003) 250.
- [51] M. Cacciari, G. Salam, Phys. Lett. B 641 (2006) 57.
- [52] M. Cacciari, et al., [HEP 0804 (2008) 063.
- [53] W. Lampl, et al., ATL-LARG-PUB-2008-002, https://cdsweb.cern.ch/record/ 1099735, 2008.
- [54] ATLAS Collaboration, Eur. Phys. J. C, submitted for publication, arXiv:1112.6426 [hep-ex].
- [55] ATLAS Collaboration, ATLAS-CONF-2011-102 (2011).
- [56] ATLAS Collaboration, Eur. Phys. J. C 72 (2011) 1909.
- [57] ATLAS Collaboration, ATLAS-CONF-2011-063, https://cdsweb.cern.ch/record/ 1345743. 2011.
- [58] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1844.
- [59] ATLAS Collaboration, ATLAS-CONF-2011-021, https://cdsweb.cern.ch/record/ 1336750, 2011.
- [60] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1577.
- [61] ATLAS Collaboration, Phys. Lett. B 707 (2012) 459.
- [62] ATLAS Collaboration, Phys. Lett. B 706 (2012) 295.
- [63] I.M. Campbell, et al., Phys. Rev. D 69 (2004) 074021.
- [64] J. Alwall, et al., Eur. Phys. J. C 53 (2008) 474.
- [65] A.L. Read, J. Phys. G 28 (2002) 2693.

ATLAS Collaboration

G. Aad ⁴⁸, B. Abbott ¹¹¹, J. Abdallah ¹¹, S. Abdel Khalek ¹¹⁵, A.A. Abdelalim ⁴⁹, O. Abdinov ¹⁰, B. Abj ¹¹², M. Abolins ⁸⁸, O.S. AbouZeid ¹⁵⁸, H. Abramowicz ¹⁵³, H. Abreu ¹³⁶, E. Acerbi ^{89a,89b}, B.S. Acharya ^{164a,164b}, L. Adamczyk ³⁷, D.L. Adams ²⁴, T.N. Addy ⁵⁶, J. Adelman ¹⁷⁶, S. Adomeit ⁹⁸, P. Adragna ⁷⁵, T. Adye ¹²⁹, S. Aefsky ²², J.A. Aguilar-Saavedra ^{124b,a}, M. Aharrouche ⁸¹, S.P. Ahlen ²¹, F. Ahles ⁴⁸, A. Ahmad ¹⁴⁸, M. Ahsan ⁴⁰, G. Aielli ^{133a,133b}, T. Akdogan ^{18a}, T.P.A. Åkesson ⁷⁹, G. Akimoto ¹⁵⁵, A.V. Akimov ⁹⁴, A. Akiyama ⁶⁶, M.S. Alam ¹, M.A. Alam ⁷⁶, J. Albert ¹⁶⁹, S. Albrand ⁵⁵, M. Aleksa ²⁹, I.N. Aleksandrov ⁶⁴, F. Alessandria ^{89a}, C. Alexa ^{25a}, G. Alexander ¹⁵³, G. Alexandre ⁴⁹, T. Alexopoulos ⁹, M. Alhroob ^{164a,164c}, M. Aliev ¹⁵, G. Alimonti ^{89a}, J. Alison ¹²⁰, B.M.M. Allbrooke ¹⁷, P.P. Allport ⁷³, S.E. Allwood-Spiers ⁵³, J. Almond ⁸², A. Aloisio ^{102a,102b}, R. Alon ¹⁷², A. Alonso ⁷⁹, B. Alvarez Gonzalez ⁸⁸, M.G. Alviggi ^{102a,102b}, K. Amako ⁶⁵, C. Amelung ²², V.V. Ammosov ¹²⁸, A. Amorim ^{124a,b}, G. Amorós ¹⁶⁷, N. Amram ¹⁵³, C. Anastopoulos ²⁹, L.S. Ancu ¹⁶, N. Andari ¹¹⁵, T. Andeen ³⁴, C.F. Anders ²⁰, G. Anders ^{58a}, K.J. Anderson ³⁰, A. Andreazza ^{89a,89b}, V. Andrei ^{58a}, X.S. Anduaga ⁷⁰, A. Angerami ³⁴, F. Anghinolfi ²⁹, A. Anisenkov ¹⁰⁷, N. Anjos ^{124a}, A. Annovi ⁴⁷, A. Antonaki ⁸, M. Antonelli ⁴⁷, A. Antonov ⁹⁶, J. Antos ^{144b}, F. Anulli ^{132a}, S. Aoun ⁸³, L. Aperio Bella ⁴, R. Apolle ^{118,c}, G. Arabidze ⁸⁸, I. Aracena ¹⁴³, Y. Arai ⁶⁵, A.T.H. Arce ⁴⁴, S. Arfaoui ¹⁴⁸, J.-F. Arguin ¹⁴, E. Arik ^{18a,*}, M. Arik ^{18a}, A.J. Armbruster ⁸⁷, O. Arnaez ⁸¹, V. Arnal ⁸⁰, C. Arnault ¹¹⁵, A. Artamonov ⁹⁵, G. Artoni ^{132a,132b}, D. Arutinov ²⁰, S. Asai ¹⁵⁵, R. Asfandiyarov ¹⁷³, S. Ask ²⁷, B. Åsman ^{146a,146b}, L. Asquith ⁵, K. Assamagan ²⁴, A. Astbury ¹⁶⁹, B. Aubert ⁴, E. Auge ¹¹⁵, C. Arnault ¹¹⁹, A. Artamonov⁵⁵, G. Artoni ^{152a,1525}, D. Arutinov²⁶, S. Asal ¹⁵⁵, R. Asfandiyarov¹⁷⁵, S. Ask²⁷, B. Åsman ^{146a,146b}, L. Asquith⁵, K. Assamagan²⁴, A. Astbury¹⁶⁹, B. Aubert⁴, E. Auge¹¹⁵, K. Augsten¹²⁷, M. Aurousseau ^{145a}, G. Avolio¹⁶³, R. Avramidou⁹, D. Axen¹⁶⁸, G. Azuelos^{93,d}, Y. Azuma¹⁵⁵, M.A. Baak²⁹, G. Baccaglioni^{89a}, C. Bacci^{134a,134b}, A.M. Bach¹⁴, H. Bachacou¹³⁶, K. Bachas²⁹, M. Backes⁴⁹, M. Backhaus²⁰, E. Badescu^{25a}, P. Bagnaia^{132a,132b}, S. Bahinipati², Y. Bai^{32a}, D.C. Bailey¹⁵⁸, T. Bain¹⁵⁸, J.T. Baines¹²⁹, O.K. Baker¹⁷⁶, M.D. Baker²⁴, S. Baker⁷⁷, E. Banas³⁸, P. Banerjee⁹³, Sw. Banerjee¹⁷³, D. Banfi²⁹, A. Bangert¹⁵⁰, V. Bansal¹⁶⁹, H.S. Bansil¹⁷, L. Barak¹⁷², P. Baherjee T., Sw. Baherjee T., D. Bahin Y, A. Bangert Y, V. Bahsar Y, H.S. Bahsin Y, L. Barak Y, S.P. Baranov ⁹⁴, A. Barbaro Galtieri ¹⁴, T. Barber⁴⁸, E.L. Barberio ⁸⁶, D. Barberis ^{50a,50b}, M. Barbero ²⁰, D.Y. Bardin ⁶⁴, T. Barillari ⁹⁹, M. Barisonzi ¹⁷⁵, T. Barklow ¹⁴³, N. Barlow ²⁷, B.M. Barnett ¹²⁹, R.M. Barnett ¹⁴, A. Baroncelli ^{134a}, G. Barone ⁴⁹, A.J. Barr ¹¹⁸, F. Barreiro ⁸⁰, J. Barreiro ⁸⁰, J. Barreiro ¹⁴³, R. Barroldus ¹⁴³, A.E. Barton ⁷¹, V. Bartsch ¹⁴⁹, R.L. Bates ⁵³, Guimarães da Costa ⁵⁷, P. Barrillon ¹¹⁵, R. Bartoldus ¹⁴³, A.E. Barton ⁷¹, V. Bartsch ¹⁴⁹, R.L. Bates ⁵³, ¹⁴⁴ L. Batkova ^{144a}, J.R. Batley ²⁷, A. Battaglia ¹⁶, M. Battistin ²⁹, F. Bauer ¹³⁶, H.S. Bawa ^{143,e}, S. Beale ⁹⁸, T. Beau⁷⁸, P.H. Beauchemin¹⁶¹, R. Beccherle^{50a}, P. Bechtle²⁰, H.P. Beck¹⁶, S. Becker⁹⁸, M. Beckingham¹³⁸, K.H. Becks¹⁷⁵, A.J. Beddall^{18c}, A. Beddall^{18c}, S. Bedikian¹⁷⁶, V.A. Bednyakov⁶⁴,

C.P. Bee⁸³, M. Begel²⁴, S. Behar Harpaz¹⁵², P.K. Behera⁶², M. Beimforde⁹⁹, C. Belanger-Champagne⁸⁵, P.J. Bell⁴⁹, W.H. Bell⁴⁹, G. Bella¹⁵³, L. Bellagamba^{19a}, F. Bellina²⁹, M. Bellomo²⁹, A. Belloni⁵⁷, O. Beloborodova^{107, f}, K. Belotskiy⁹⁶, O. Beltramello²⁹, O. Benary¹⁵³, D. Benchekroun^{135a}, K. Bendtz^{146a, 146b}, N. Benekos¹⁶⁵, Y. Benhammou¹⁵³, E. Benhar Noccioli⁴⁹, J.A. Benitez Garcia^{159b}, D. Beloborodova ¹⁰⁷³, K. Belotskiy³⁹, O. Beltramello²⁹, O. Benary¹⁰³, D. Benchekroun¹⁵³⁴,
K. Bendtz ^{146a,146b}, N. Benekos¹⁶⁵, Y. Benhammou¹⁵³, E. Benhar Noccioli⁴⁹, J.A. Benitez Garcai^{159b},
D.P. Benjamin⁴⁴, M. Benoit¹¹⁵, J.R. Bensinger²², K. Benslama¹³⁰, S. Bentvelsen¹⁰⁵, D. Berge²⁹,
E. Bergeaas Kuutmann⁴¹, N. Berger⁴, F. Berghaus¹⁶⁹, E. Berglund¹⁰⁵, J. Beringer¹⁴, P. Bernat⁷⁷,
R. Bernhard⁴⁸, C. Bernius²⁴, T. Berry⁷⁶, C. Bertella⁸³, A. Bertin^{19a,19b}, F. Bertolucci^{122a,122b},
M.I. Besana^{89a,89b}, N. Besson¹³⁶, S. Bethke⁹⁹, W. Bhimji⁴⁵, R.M. Bianchi²⁹, M. Bianco^{72a,72b}, O. Biebel⁹⁸,
S.P. Bieniek⁷⁷, K. Bierwagen⁵⁴, J. Biesiada¹⁴, M. Biglietti^{134a}, H. Bilokon⁴⁷, M. Bindi^{19a,19b}, S. Binet¹¹⁵,
A. Bingul^{18c}, C. Bini^{132a,132b}, C. Biscarat¹⁷⁸, U. Bitenc⁴⁸, K.M. Black²¹, R.E. Blair⁵, J.-B. Blanchard¹³⁶,
G. Blanchot²⁹, T. Blazek^{144a}, C. Blocke²², J. Blocki³⁸, A. Blondel⁴⁹, W. Blum⁸¹, U. Blumenschein⁵⁴,
G.J. Bobbink¹⁰⁵, V.B. Bobrovnikov¹⁰⁷, S.S. Bocchetta⁷⁹, A. Boguch⁴⁰, K. Bodyl¹¹⁸, M. Boehler⁴¹,
J. Boek¹⁷⁵, N. Boelaert³⁵, J.A. Bogaerts²⁹, A. Bogdanchikov¹⁰⁷, A. Bogouch^{90,*}, C. Bohm^{146a}, J. Bohm¹²⁵,
V. Boisvert⁷⁶, T. Bold³⁷, V. Boltootto^{134a,134b}, K. Bos¹⁰⁵, D. Boscherini^{19a}, M. Bosman¹¹,
H. Boterenbrood¹⁰⁵, D. Botterill¹²⁹, J. Bouchami⁹³, J. Boudreau¹²³, E.V. Bouhova-Thacker⁷¹,
D. Boumediene³³, C. Bourdarios¹¹⁵, N. Bousson⁸³, A. Borelia¹⁵⁸, J. Bredie¹⁵⁸, J. Brende¹⁵⁸, J. Brende¹⁵⁸, I. Broydo⁶⁴, N.I. Bozhko¹²⁸,
I. Bozovic-Jelisavci^{12b}, J. Bracinik¹⁷, P. Branchini^{134a}, A. Brandt⁷, G. Brandt¹¹⁸, O. Brandt⁵⁴,
U. Bratzler¹⁶⁶, S. Bressler¹⁷², D. Britton⁵³, F. Bucch¹²⁷, B. Brelier¹⁵⁸, J. Bremer²⁹, K. Brendlinger¹²⁰,
R. Brenner¹⁶⁶, S. Bressler¹⁷², D. Britton⁵³, F. Bucch⁴⁴, E. Busato³³, P. Bussey⁵³, C.P. Buszello¹⁶⁶, B. Butler¹⁴³, J.M. Butler²¹, C.M. Buttar⁵³, J.M. Butterworth⁷⁷, W. Buttinger²⁷, S. Cabrera Urbán¹⁶⁷, D. Caforio^{19a,19b}, O. Cakir^{3a}, P. Calafiura¹⁴, G. Calderini⁷⁸, P. Calfayan⁹⁸, R. Calkins¹⁰⁶, L.P. Caloba^{23a}, R. Caloi^{132a,132b}, D. Calvet³³, S. Calvet³³, R. Camacho Toro³³, P. Camarri ^{133a,133b}, D. Cameron ¹¹⁷, L.M. Caminada ¹⁴, S. Campana ²⁹, M. Campanelli ⁷⁷, V. Canale ^{102a,102b}, F. Canelli ^{30,g}, A. Canepa ^{159a}, J. Cantero ⁸⁰, L. Capasso ^{102a,102b}, M.D.M. Capeans Garrido²⁹, I. Caprini^{25a}, M. Caprini^{25a}, D. Capriotti⁹⁹, M. Capua^{36a,36b}, R. Caputo⁸¹, R. Cardarelli^{133a}, T. Carli²⁹, G. Carlino^{102a}, L. Carminati^{89a,89b}, B. Caron⁸⁵, S. Caron¹⁰⁴, E. Carquin^{31b}, G.D. Carrillo Montoya¹⁷³, A.A. Carter⁷⁵, J.R. Carter²⁷, J. Carvalho^{124a,h}, D. Casadei¹⁰⁸, M.P. Casado¹¹, M. Cascella^{122a,122b}, C. Caso^{50a,50b,*}, A.M. Castaneda Hernandez¹⁷³, E. Castaneda-Miranda¹⁷³, V. Castillo M. Cascella ^{122a,122b}, C. Caso ^{50a,50b,*}, A.M. Castaneda Hernandez ¹⁷³, E. Castaneda-Miranda ¹⁷³, V. Casti Gimenez ¹⁶⁷, N.F. Castro ^{124a}, G. Cataldi ^{72a}, P. Catastini ⁵⁷, A. Catinaccio ²⁹, J.R. Catmore ²⁹, A. Cattai ²⁹, G. Cattani ^{133a,133b}, S. Caughron ⁸⁸, D. Cauz ^{164a,164c}, P. Cavalleri ⁷⁸, D. Cavalli ^{89a}, M. Cavalli-Sforza ¹¹, V. Cavasinni ^{122a,122b}, F. Ceradini ^{134a,134b}, A.S. Cerqueira ^{23b}, A. Cerri ²⁹, L. Cerrito ⁷⁵, F. Cerutti ⁴⁷, S.A. Cetin ^{18b}, A. Chafaq ^{135a}, D. Chakraborty ¹⁰⁶, I. Chalupkova ¹²⁶, K. Chan², B. Chapleau ⁸⁵, J.D. Chapman ²⁷, J.W. Chapman ⁸⁷, E. Chareyre ⁷⁸, D.G. Charlton ¹⁷, V. Chavda ⁸², C.A. Chavez Barajas ²⁹, S. Cheatham ⁸⁵, S. Chekanov ⁵, S.V. Chekulaev ^{159a}, G.A. Chelkov ⁶⁴, M.A. Chelstowska ¹⁰⁴, C. Chen ⁶³, H. Chen ²⁴, S. Chen ^{32c}, X. Chen ¹⁷³, A. Cheplakov ⁶⁴, R. Cherkaoui El Moursli ^{135e}, V. Chernyatin ²⁴, E. Cheu ⁶, S.L. Cheung ¹⁵⁸, L. Chevalier ¹³⁶, G. Chiefari ^{102a,102b}, L. Chikovani ^{51a}, J.T. Childers ²⁹, A. Chilingarov ⁷¹, G. Chiodini ^{72a}, A.S. Chisholm ¹⁷, R.T. Chislett ⁷⁷, M.V. Chizhov ⁶⁴, G. Choudalakis ³⁰, S. Chouridou ¹³⁷, I.A. Christidi ⁷⁷, A. Christov ⁴⁸, D. Chromek-Burckhart ²⁹, M.L. Chu ¹⁵¹, J. Chudoba ¹²⁵, G. Ciapetti ^{132a,132b}, A.K. Ciftci ^{3a}, R. Ciftci ^{3a}, D. Cinca ³³, V. Cindro ⁷⁴, C. Ciocca ^{19a,19b}, A. Ciocio ¹⁴, M. Cirilli ⁸⁷, M. Citterio ^{89a}, M. Ciubancan ^{25a}, A. Clark ⁴⁹, P.I. Clark ⁴⁵, W. Cleland ¹²³, I.C. Clemens ⁸³, G. Clapetti ¹⁰Ca, ¹⁰Ci, ¹⁰Cillel¹⁰, ¹⁰Cille¹⁰, ¹ B.D. Cooper ⁷⁷, A.M. Cooper-Sarkar ¹¹⁸, K. Copic ¹⁴, T. Cornelissen ¹⁷⁵, M. Corradi ^{19a}, F. Corriveau ^{85,j}

A. Cortes-Gonzalez ¹⁶⁵, G. Cortiana ⁹⁹, G. Costa ^{89a}, M.J. Costa ¹⁶⁷, D. Costanzo ¹³⁹, T. Costin ³⁰, D. Côté ²⁹, L. Courneyea ¹⁶⁹, G. Cowan ⁷⁶, C. Cowden ²⁷, B.E. Cox ⁸², K. Cranmer ¹⁰⁸, F. Crescioli ^{122a,122b}, M. Cristinziani ²⁰, G. Crosetti ^{36a,36b}, R. Crupi ^{72a,72b}, S. Crépé-Renaudin ⁵⁵, C.-M. Cuciuc ^{25a}, C. Cuenca Almenar ¹⁷⁶, T. Cuhadar Donszelmann ¹³⁹, M. Curatolo ⁴⁷, C.J. Curtis ¹⁷, C. Cuthbert ¹⁵⁰, P. Cwetanski ⁶⁰, H. Czirr ¹⁴¹, P. Czodrowski ⁴³, Z. Czyczula ¹⁷⁶, S. D'Auria ⁵³, M. D'Onofrio ⁷³, A. D'Orazio ^{132a,132b}, C. Da Via ⁸², W. Dabrowski ³⁷, A. Dafinca ¹¹⁸, T. Dai ⁸⁷, C. Dallapiccola ⁸⁴, M. Dam ³⁵, M. Dameri ^{50a,50b}, D.S. Damiani ¹³⁷, H.O. Danielsson ²⁹, V. Dao ⁴⁹, G. Darbo ^{50a}, G.L. Darlea ^{25b}, W. Davey ²⁰, T. Davidek ¹²⁶, N. Davidson ⁸⁶, R. Davidson ⁷¹, E. Davies ^{118,c}, M. Davies ⁹³, A.R. Davison ⁷⁷, Y. Davygora ^{58a}, E. Dawe ¹⁴², I. Dawson ¹³⁹, R.K. Daya-Ishmukhametova ²², K. De ⁷, R. de Asmundis ^{102a}, S. De Castro ^{19a,19b}, S. De Cecco ⁷⁸, J. de Graat ⁹⁸, N. De Groot ¹⁰⁴, P. de Jong ¹⁰⁵, C. De La Taille ¹¹⁵, H. De la Torre ⁸⁰, F. De Lorenzi ⁶³, B. De Lotto ^{164a,164c}, L. de Mora ⁷¹, L. De Nooij ¹⁰⁵, D. De Pedis ^{132a,132b}, W.I. Dearnalev ⁷¹, U. De Sanctis ^{164a,164c}, A. De Santo ¹⁴⁹, J.B. De Vivie De Regie ¹¹⁵, G. De Zorzi ^{132a,132b}, W.J. Dearnaley ⁷¹, R. Debbe ²⁴, C. Debenedetti ⁴⁵, B. Dechenaux ⁵⁵, D.V. Dedovich ⁶⁴, J. Degenhardt ¹²⁰, C. Del Papa ^{164a,164c}, J. Del Peso⁸⁰, T. Del Prete^{122a,122b}, T. Delemontex⁵⁵, M. Deliyergiyev⁷⁴, A. Dell'Acqua²⁹, L. Dell'Asta²¹, M. Della Pietra ^{102a,1}, D. della Volpe ^{102a,102b}, M. Delmastro⁴, P.A. Delsart ⁵⁵, C. Deluca ¹⁴⁸, S. Demers ¹⁷⁶, M. Della Pietra ^{102a,1}, D. della Volpe ^{102a,102b}, M. Delmastro⁴, P.A. Delsart ⁵⁵, C. Deluca ¹⁴⁸, S. Demers ¹⁷⁶, M. Demichev ⁶⁴, B. Demirkoz ^{11,k}, J. Deng ¹⁶³, S.P. Denisov ¹²⁸, D. Derendarz ³⁸, J.E. Derkaoui ^{135d}, F. Derue ⁷⁸, P. Dervan ⁷³, K. Desch ²⁰, E. Devetak ¹⁴⁸, P.O. Deviveiros ¹⁰⁵, A. Dewhurst ¹²⁹, B. DeWilde ¹⁴⁸, S. Dhaliwal ¹⁵⁸, R. Dhullipudi ^{24,1}, A. Di Ciaccio ^{133a,133b}, L. Di Ciaccio ⁴, A. Di Girolamo ²⁹, B. Di Girolamo ²⁹, S. Di Luise ^{134a,134b}, A. Di Mattia ¹⁷³, B. Di Micco ²⁹, R. Di Nardo ⁴⁷, A. Di Simone ^{133a,133b}, R. Di Sipio ^{19a,19b}, M.A. Diaz ^{31a}, F. Diblen ^{18c}, E.B. Diehl ⁸⁷, J. Dietrich ⁴¹, T.A. Dietzsch ^{58a}, S. Diglio ⁸⁶, K. Dindar Yagci ³⁹, J. Dingfelder ²⁰, C. Dionisi ^{132a,132b}, P. Dita ^{25a}, S. Dita ^{25a}, F. Dittus ²⁹, F. Djama ⁸³, T. Djobava ^{51b}, M.A.B. do Vale ^{23c}, A. Do Valle Wemans ^{124a}, T.K.O. Doan ⁴, M. Debbs ⁸⁵, P. Debinson ^{29,*}, D. Debes ²⁹, F. Debsen ^{29,m}, L. Dedd ³⁴, C. Deglioni ⁴⁹, T. Debertu ⁵³ M. Dobbs ⁸⁵, R. Dobinson ^{29,*}, D. Dobos ²⁹, E. Dobson ^{29,m}, J. Dodd ³⁴, C. Doglioni ⁴⁹, T. Doherty ⁵³, Y. Doi ^{65,*}, J. Dolejsi ¹²⁶, I. Dolenc ⁷⁴, Z. Dolezal ¹²⁶, B.A. Dolgoshein ^{96,*}, T. Dohmae ¹⁵⁵, M. Donadelli ^{23d}, M. Donega ¹²⁰, J. Donini ³³, J. Dopke ²⁹, A. Doria ^{102a}, A. Dos Anjos ¹⁷³, A. Dotti ^{122a,122b}, M.T. Dova ⁷⁰, A.D. Doxiadis ¹⁰⁵, A.T. Doyle ⁵³, M. Dris⁹, J. Dubbert ⁹⁹, S. Dube ¹⁴, E. Duchovni ¹⁷², G. Duckeck ⁹⁸, A.D. Doxiadis ¹⁰⁵, A.T. Doyle ⁵³, M. Dris ⁹, J. Dubbert ⁹⁹, S. Dube ¹⁴, E. Duchovni ¹⁷², G. Duckeck ⁹⁸,
A. Dudarev ²⁹, F. Dudziak ⁶³, M. Dührssen ²⁹, I.P. Duerdoth ⁸², L. Duflot ¹¹⁵, M.-A. Dufour ⁸⁵, M. Dunford ²⁹,
H. Duran Yildiz ^{3a}, R. Duxfield ¹³⁹, M. Dwuznik ³⁷, F. Dydak ²⁹, M. Düren ⁵², J. Ebke ⁹⁸, S. Eckweiler ⁸¹,
K. Edmonds ⁸¹, C.A. Edwards ⁷⁶, N.C. Edwards ⁵³, W. Ehrenfeld ⁴¹, T. Eifert ¹⁴³, G. Eigen ¹³, K. Einsweiler ¹⁴,
E. Eisenhandler ⁷⁵, T. Ekelof ¹⁶⁶, M. El Kacimi ^{135c}, M. Ellert ¹⁶⁶, S. Elles ⁴, F. Ellinghaus ⁸¹, K. Ellis ⁷⁵,
N. Ellis ²⁹, J. Elmsheuser ⁹⁸, M. Elsing ²⁹, D. Emeliyanov ¹²⁹, R. Engelmann ¹⁴⁸, A. Engl ⁹⁸, B. Epp ⁶¹,
A. Eppig ⁸⁷, J. Erdmann ⁵⁴, A. Ereditato ¹⁶, D. Eriksson ^{146a}, J. Ernst ¹, M. Ernst ²⁴, J. Ernwein ¹³⁶,
D. Errede ¹⁶⁵, S. Errede ¹⁶⁵, E. Ertel ⁸¹, M. Escalier ¹¹⁵, C. Escobar ¹²³, X. Espinal Curull ¹¹, B. Esposito ⁴⁷,
F. Etienne ⁸³, A.I. Etienvre ¹³⁶, E. Etzion ¹⁵³, D. Evangelakou ⁵⁴, H. Evans ⁶⁰, L. Fabbri ^{19a,19b}, C. Fabre ²⁹,
R.M. Fakhrutdinov ¹²⁸, S. Falciano ^{132a}, Y. Fang ¹⁷³, M. Fanti ^{89a,89b}, A. Farbin ⁷, A. Farilla ^{134a}, J. Farley ¹⁴⁸,
T. Farooque ¹⁵⁸, S. Farrell ¹⁶³, S.M. Farrington ¹¹⁸, P. Farthouat ²⁹, P. Fassnacht ²⁹, D. Fassouliotis ⁸,
B. Fatholahzadeh ¹⁵⁸, A. Favareto ^{89a,89b}, L. Fayard ¹¹⁵, S. Fazio ^{36a,36b}, R. Febbraro ³³, P. Federic ^{144a},
O.L. Fedin ¹²¹, W. Fedorko ⁸⁸, M. Fehling-Kaschek ⁴⁸, L. Feligioni ⁸³, D. Fellmann ⁵, C. Feng ^{32d}, E.I. Feng ³⁰, O.L. Fedin¹²¹, W. Fedorko⁸⁸, M. Fehling-Kaschek⁴⁸, L. Feligioni⁸³, D. Fellmann⁵, C. Feng^{32d}, E.J. Feng³⁰, A.B. Fenyuk¹²⁸, J. Ferencei^{144b}, W. Fernando⁵, S. Ferrag⁵³, J. Ferrando⁵³, V. Ferrara⁴¹, A. Ferrari¹⁶⁶, P. Ferrari¹⁰⁵, R. Ferrari^{119a}, D.E. Ferreira de Lima⁵³, A. Ferrer¹⁶⁷, D. Ferrere⁴⁹, C. Ferretti⁸⁷, A. Ferretto Parodi^{50a,50b}, M. Fiascaris³⁰, F. Fiedler⁸¹, A. Filipčič⁷⁴, F. Filthaut¹⁰⁴, M. Fincke-Keeler¹⁶⁹, M.C.N. Fiolhais^{124a,h}, L. Fiorini¹⁶⁷, A. Firan³⁹, G. Fischer⁴¹, M.J. Fisher¹⁰⁹, M. Flechl⁴⁸, I. Fleck¹⁴¹, J. Fleckner⁸¹, P. Fleischmann¹⁷⁴, S. Fleischmann¹⁷⁵, T. Flick¹⁷⁵, A. Floderus⁷⁹, L.R. Flores Castillo¹⁷³, M.J. Flowerdew⁹⁹, T. Fonseca Martin¹⁶, D.A. Forbush¹³⁸, A. Formica¹³⁶, A. Forti⁸², D. Fortin^{159a}, D. Fournier¹¹⁵, H. Fox⁷¹, P. Francavilla¹¹, S. Franchino^{119a,119b}, D. Francis²⁹, T. Frank¹⁷², M. Franklin⁵⁷, S. Franz²⁹, M. Fraternali^{119a, 119b}, S. Fratina¹²⁰, S.T. French²⁷, C. Friedrich⁴¹, F. Friedrich⁴³, R. Froeschl²⁹, S. Franz ²⁰, M. Fraternali ¹¹³⁴, ¹¹³⁵, S. Fratina ¹²⁵, S.I. French ²⁷, C. Friedrich ¹⁷, F. Friedrich ¹³, J. Frosen ¹⁴³, J. Fuster ¹⁶⁷, D. Froidevaux ²⁹, J.A. Frost ²⁷, C. Fukunaga ¹⁵⁶, E. Fullana Torregrosa ²⁹, B.G. Fulsom ¹⁴³, J. Fuster ¹⁶⁷, C. Gabaldon ²⁹, O. Gabizon ¹⁷², T. Gadfort ²⁴, S. Gadomski ⁴⁹, G. Gagliardi ^{50a,50b}, P. Gagnon ⁶⁰, C. Galea ⁹⁸, E.J. Gallas ¹¹⁸, V. Gallo ¹⁶, B.J. Gallop ¹²⁹, P. Gallus ¹²⁵, K.K. Gan ¹⁰⁹, Y.S. Gao ^{143,e}, A. Gaponenko ¹⁴, F. Garberson ¹⁷⁶, M. Garcia-Sciveres ¹⁴, C. García ¹⁶⁷, J.E. García Navarro ¹⁶⁷, R.W. Gardner ³⁰, N. Garelli ²⁹, H. Garitaonandia ¹⁰⁵, V. Garonne ²⁹, J. Garvey ¹⁷, C. Gatti ⁴⁷, G. Gaudio ^{119a}, B. Gaur ¹⁴¹, L. Gauthier ¹³⁶, P. Gauzzi ^{132a,132b}, I.L. Gavrilenko ⁹⁴, C. Gay ¹⁶⁸, G. Gaycken ²⁰, E.N. Gazis ⁹, P. Ge ^{32d}, Z. Gecse ¹⁶⁸,

C.N.P. Gee¹²⁹, D.A.A. Geerts¹⁰⁵, Ch. Geich-Gimbel²⁰, K. Gellerstedt^{146a,146b}, C. Gemme^{50a}, A. Gemmell⁵³, M.H. Genest⁵⁵, S. Gentile^{132a,132b}, M. George⁵⁴, S. George⁷⁶, P. Gerlach¹⁷⁵, A. Gershon¹⁵³, C. Geweniger^{58a}, H. Ghazlane^{135b}, N. Ghodbane³³, B. Giacobbe^{19a}, S. Giagu^{132a,132b}, V. Giakoumopoulou⁸, V. Giangiobbe¹¹, F. Gianotti²⁹, B. Gibbard²⁴, A. Gibson¹⁵⁸, S.M. Gibson²⁹, Cennell ¹⁵ M.H. Genes¹⁵ S. Gudin¹¹^{22,1120}, N. George¹⁵, S. George⁷⁸, P. Gerika, ¹⁷²
 A. Gershon ¹⁵, C. Geweniger⁵⁵ S. H. Glazdane ¹³⁵, N. Ghodbane ³¹, B. Giarobbe¹⁶, S. Giagi ¹³⁰, N. Gison ¹²⁹, U. Giakumopoulou⁴, V. Giargiobbe¹¹, F. Ganotti²⁵, B. Gibbard²⁴, A. Gilson ¹³⁵, S. M. Gison ¹²⁹, D. Gilbard²⁴, A. Gilson ¹³⁵, M. Gisora¹¹⁶, K. Giord¹⁵, P. Govannin⁴⁰, P. E. Giratul¹⁵, D. Gingu¹⁵, M. Giurta¹⁵⁵, P. Giusti¹⁰, B.K. Gjesten ¹¹⁷, G. Gorali, ¹¹⁷, C. Govannin⁴⁰, P. E. Giratul¹⁵, D. Gingu¹⁵, M. Giurta¹⁵⁵, C. Gisola¹¹⁸, J. R. Goddarl¹⁷, J. Godfiev¹⁴, J. Godfard¹⁴, S. Gonzaler¹⁷, S. Gonzilez¹⁷³, S. Guzvale¹⁷⁴, R. Gonzale¹⁷⁶, C. Gornel¹⁵, C. Gorshin⁴⁷, T. Golling¹⁷⁶, A. Gones^{1244,b}, L.S. Gonez Fajardo¹⁴, R. Gonçalo⁷⁶, J. Gordizev¹⁵¹, J. Gordizev¹⁵¹, S. Gonzilez¹⁷³, S. Gonzilez¹⁷³, G. Gorzalez Para ¹¹⁷, M.L. Gonzalez Silva²⁶, S. Gonzalet²⁷, S. Gonzalez Ota I a Hoz ¹⁷⁷, G. Gonzalez Para ¹¹⁷, M.L. Gonzalez Silva²⁶, S. Gonzalet²⁷, S. Gonzalez ¹²⁸, C. Gorshin¹⁵⁵, D. Gougida¹¹⁷⁵, A. Gorgue^{1161,150}, M. Gougihn¹⁵⁵, D. Gougida¹¹¹⁵⁸, M. Goujette¹⁶⁹, A.G. Goussion¹⁵⁰, C. Gorg⁴, S. Gorzalez ¹²⁷, J. Gorfielt¹⁵⁰, J. Gorguba¹⁵⁷, J. Gorguba¹⁵⁷, J. Gorguba¹⁵⁷, J. Gorguba¹⁵⁷, J. Grant¹⁵⁰, J. Grint¹⁵⁰, J. Grint¹⁵⁰, J. Gudin¹⁵⁸, D. Gougida¹¹¹⁵⁸, M. Goujette¹⁶⁹, A.G. Goussion¹⁵⁹, J. Gudin¹⁵⁹, J. Gudin¹⁵⁹, J. Gudin¹⁵⁰, J. Gudin¹⁵¹, J. Gudin¹⁵¹, J. Gudin¹⁵², J. Gudin¹⁵⁴, J. Gudin¹⁵⁴, J. Gudin¹⁵⁵, J. Gudin¹⁵⁴, J. Gudin¹⁵⁵, J. Gudin¹⁵⁴, J. Gudin¹⁵⁵, J. Gudin¹⁵⁴, J. Gudin¹⁵⁵, J. Gudin¹⁵⁵, J. Gudin¹⁵⁵, J. Gudin¹⁵⁷, J. Gudin¹⁵⁶, J. Gudin¹⁵⁸, J. Gudin¹⁵⁸, J. Gudin¹⁵⁹, J. Gudin¹⁵⁹

G. Jones ¹⁷⁰, R.W.L. Jones ⁷¹, T.J. Jones ⁷³, C. Joram ²⁹, P.M. Jorge ^{124a}, K.D. Joshi ⁸², J. Jovicevic ¹⁴⁷, T. Jovin ^{12b}, X. Ju ¹⁷³, C.A. Jung ⁴², R.M. Jungst ²⁹, V. Juranek ¹²⁵, P. Jussel ⁶¹, A. Juste Rozas ¹¹, S. Kabana ¹⁶, M. Kaci ¹⁶⁷, A. Kaczmarska ³⁸, P. Kadlecik ³⁵, M. Kado ¹¹⁵, H. Kagan ¹⁰⁹, M. Kagan ⁵⁷, E. Kajomovitz ¹⁵², S. Kalinin ¹⁷⁵, L.V. Kalinovskaya ⁶⁴, S. Kama ³⁹, N. Kanaya ¹⁵⁵, M. Kaneda ²⁹, S. Kaneti ²⁷, T. Kanno ¹⁵⁷, V.A. Kantserov ⁹⁶, J. Kanzaki ⁶⁵, B. Kaplan ¹⁷⁶, A. Kapliy ³⁰, J. Kaplon ²⁹, D. Kar ⁵³, M. Karagounis ²⁰, M. Karnevskiy ⁴¹, V. Kattvelishvili ⁷¹, A.N. Karyukhin ¹²⁸, L. Kashif ¹⁷³, G. Kasieczka ^{58b}, R.D. Kass ¹⁰⁹, A. Kastanas ¹³, M. Kataoka ⁴, Y. Kataoka ¹⁵⁵, E. Katsoufis ⁹, J. Katzy ⁴¹, V. Kaushik ⁶, K. Kawagoe ⁶⁹, T. Kawamoto ¹⁵⁵, G. Kawamura ⁸¹, M.S. Kayl ¹⁰⁵, V.A. Kazanin ¹⁰⁷, M.Y. Kazarinov ⁶⁴, R. Keeler ¹⁶⁹, R. Kehoe ³⁹, M. Keil ⁵⁴, G.D. Kekelidze ⁶⁴, J.S. Keller ¹³⁸, J. Kennedy ⁹⁸, M. Kenyon ⁵³, O. Kepka ¹²⁵, N. Kerschen ²⁹, B.P. Kerševan ⁷⁴, S. Kersten ¹⁷⁵, K. Kessoku ¹⁵⁵, J. Keung ¹⁵⁸, F. Khalil-zada ¹⁰, H. Khandanyan ¹⁶⁵, A. Khonov ¹¹², D. Kharchenko ⁶⁴, A. Khodinov ⁹⁶, A. Khomich ^{58a}, T.J. Khoo ²⁷, G. Khoriauli ²⁰, A. Khoroshilov ¹⁷⁵, V. Khovanskiy ⁹⁵, E. Khramov ⁶⁴, J. Khubua ^{51b}, H. Kim ^{146a, 146b}, M.S. Kim², S.H. Kim ¹⁶⁰, N. Kimura ¹⁷¹, O. Kind ¹⁵, B.T. King ⁷³, M. King ⁶⁶, R.S.B. King ¹¹⁸, J. Kirk ¹²⁹, A.E. Kiryunin ⁹⁹, T. Kishimoto ⁶⁶, D. Kisielewska ³⁷, T. Kittelmann ¹²³, A.M. Kiver ¹²⁸, F. Kladiva ^{144b}, M. Klein ⁷³, U. Klein ⁷³, K. Kleinknecht ⁸¹, M. Klemetti ⁸⁵, A. Klier ¹⁷², P. Klimek ^{146a, 146b}, A. Klimgenberg ⁴², J.A. Klinger ⁸², E.B. Klinkby ³⁵, T. Klioutchnikova ²⁹, P.F. Klok ¹⁰⁴, S. Klous ¹⁰⁵, E.-E. Kluge ^{58a}, T. Kluge ⁷³, P. Kluit ¹⁰⁵, S. Kluth ⁹⁹, N.S. Knecht ¹⁵⁸, E. Kneringer ⁶¹, E.B.F.G. Knoops ⁸³, A. Knue ⁵⁴, B.R. Ko⁴⁴, T. K A. Knue³⁴, B.K. Ko⁴⁴, I. Kobayashi¹⁵⁵, M. Kobel¹⁵, M. Koclan¹⁷⁵, P. Kodys¹²⁵, K. Koneke²⁵, A.C. König¹⁰⁴, S. Koenig⁸¹, L. Köpke⁸¹, F. Koetsveld¹⁰⁴, P. Koevesarki²⁰, T. Koffas²⁸, E. Koffeman¹⁰⁵, L.A. Kogan¹¹⁸, S. Kohlmann¹⁷⁵, F. Kohn⁵⁴, Z. Kohout¹²⁷, T. Kohriki⁶⁵, T. Koi¹⁴³, G.M. Kolachev¹⁰⁷, H. Kolanoski¹⁵, V. Kolesnikov⁶⁴, I. Koletsou^{89a}, J. Koll⁸⁸, M. Kollefrath⁴⁸, A.A. Komar⁹⁴, Y. Komori¹⁵⁵, T. Kondo⁶⁵, T. Kono^{41,q}, A.I. Kononov⁴⁸, R. Konoplich^{108,r}, N. Konstantinidis⁷⁷, A. Kootz¹⁷⁵, S. Koperny³⁷, K. Korcyl³⁸, K. Kordas¹⁵⁴, A. Korn¹¹⁸, A. Korol¹⁰⁷, I. Korolkov¹¹, E.V. Korolkova¹³⁹, V.A. Korotkov¹²⁸, O. Kortner⁹⁹, S. Kortner⁹⁹, V.V. Kostyukhin²⁰, S. Kotov⁹⁹, V.M. Kotov⁶⁴, A. Kotwal⁴⁴, C. Kourkoumelis⁸, V. Kouskoura¹⁵⁴, A. Koutsman^{159a}, R. Kowalewski¹⁶⁹, T.Z. Kowalski³⁷, C. Kourkoumelis⁸, V. Kouskoura¹⁵⁴, A. Koutsman^{159a}, R. Kowalewski¹⁶⁹, T.Z. Kowalski³⁷, W. Kozanecki¹³⁶, A.S. Kozhin¹²⁸, V. Kral¹²⁷, V.A. Kramarenko⁹⁷, G. Kramberger⁷⁴, M.W. Krasny⁷⁸, A. Krasznahorkay¹⁰⁸, J. Kraus⁸⁸, J.K. Kraus²⁰, F. Krejci¹²⁷, J. Kretzschmar⁷³, N. Krieger⁵⁴, P. Krieger¹⁵⁸, K. Kroeninger⁵⁴, H. Kroha⁹⁹, J. Kroll¹²⁰, J. Kroseberg²⁰, J. Krstic^{12a}, U. Kruchonak⁶⁴, H. Krüger²⁰, T. Kruker¹⁶, N. Krumnack⁶³, Z.V. Krumshteyn⁶⁴, A. Kruth²⁰, T. Kubota⁸⁶, S. Kuday^{3a}, S. Kuehn⁴⁸, A. Kugel^{58c}, T. Kuhl⁴¹, D. Kuhn⁶¹, V. Kukhtin⁶⁴, Y. Kulchitsky⁹⁰, S. Kuleshov^{31b}, C. Kummer⁹⁸, M. Kuna⁷⁸, J. Kunkle¹²⁰, A. Kupco¹²⁵, H. Kurashige⁶⁶, M. Kurata¹⁶⁰, Y.A. Kurochkin⁹⁰, V. Kus¹²⁵, E.S. Kuwertz¹⁴⁷, M. Kuze¹⁵⁷, J. Kvita¹⁴², R. Kwee¹⁵, A. La Rosa⁴⁹, L. La Rotonda^{36a,36b}, L. Labarga⁸⁰, J. Labbe⁴, S. Lablak^{135a}, C. Lacasta¹⁶⁷, F. Lacava^{132a,132b}, H. Lacker¹⁵, D. Lacour⁷⁸, V.R. Lacuesta¹⁶⁷, E. Ladygin⁶⁴, R. Lafaye⁴, B. Laforge⁷⁸, T. Lagouri⁸⁰, S. Lai⁴⁸, E. Laisne⁵⁵, M. Lamanna²⁹, L. Lambourne⁷⁷, C.L. Lampen⁶, W. Lampl⁶, E. Lancon¹³⁶, U. Landgraf⁴⁸, M.P.J. Landon⁷⁵, J.L. Lane⁸², C. Lange⁴¹, A.J. Lankford¹⁶³, F. Lanni²⁴, K. Lantzsch¹⁷⁵, S. Laplace⁷⁸, C. Lapoire²⁰, J.F. Laporte¹³⁶, T. Lari^{89a}, A. Larner¹¹⁸, M. Lassnig²⁹, P. Laurelli⁴⁷, V. Lavorini^{36a,36b}, W. Lavrijsen¹⁴, P. Laycock⁷³, O. Le Dortz⁷⁸, E. Le Guirriec⁸³, C. Le Maner¹⁵⁸, E. Le Menedeu¹¹, T. LeCompte⁵, F. Ledroit-Guillon⁵⁵, H. Lee¹⁰⁵, A. Larner ¹¹⁸, M. Lassnig ²⁹, P. Laurelli ⁴⁷, V. Lavorini ^{36a,36b}, W. Lavrijsen ¹⁴, P. Laycock ⁷³, O. Le Dortz ⁷⁸, E. Le Guirriec ⁸³, C. Le Maner ¹⁵⁸, E. Le Menedeu ¹¹, T. LeCompte ⁵, F. Ledroit-Guillon ⁵⁵, H. Lee ¹⁰⁵, J.S.H. Lee ¹¹⁶, S.C. Lee ¹⁵¹, L. Lee ¹⁷⁶, M. Lefebvre ¹⁶⁹, M. Legendre ¹³⁶, B.C. LeGeyt ¹²⁰, F. Legger ⁹⁸, C. Leggett ¹⁴, M. Lehmacher ²⁰, G. Lehmann Miotto ²⁹, X. Lei ⁶, M.A.L. Leite ^{23d}, R. Leitner ¹²⁶, D. Lellouch ¹⁷², B. Lemmer ⁵⁴, V. Lendermann ^{58a}, K.J.C. Leney ^{145b}, T. Lenz ¹⁰⁵, G. Lenzen ¹⁷⁵, B. Lenzi ²⁹, K. Leonhardt ⁴³, S. Leontsinis ⁹, F. Lepold ^{58a}, C. Leroy ⁹³, J.-R. Lessard ¹⁶⁹, C.G. Lester ²⁷, C.M. Lester ¹²⁰, J. Levêque ⁴, D. Levin ⁸⁷, L.J. Levinson ¹⁷², A. Lewis ¹¹⁸, G.H. Lewis ¹⁰⁸, A.M. Leyko ²⁰, M. Leyton ¹⁵, B. Li ⁸³, H. Li ^{173,s}, S. Li ^{32b,t}, X. Li ⁸⁷, Z. Liang ^{118,u}, H. Liao ³³, B. Liberti ^{133a}, P. Lichard ²⁹, M. Lichtnecker ⁹⁸, K. Lie ¹⁶⁵, W. Liebig ¹³, C. Limbach ²⁰, A. Limosani ⁸⁶, M. Limper ⁶², S.C. Lin ^{151,v}, F. Linde ¹⁰⁵, J.T. Linnemann ⁸⁸, E. Lipeles ¹²⁰, A. Lipniacka ¹³, T.M. Liss ¹⁶⁵, D. Lissauer ²⁴, A. Lister ⁴⁹, A.M. Litke ¹³⁷, C. Liu ²⁸, D. Liu ¹⁵¹, H. Liu ⁸⁷, J.B. Liu ⁸⁷, M. Liu ^{32b}, Y. Liu ^{32b}, M. Livan ^{119a,119b}, S.S.A. Livermore ¹¹⁸, A. Lleres ⁵⁵, J. Llorente Merino ⁸⁰, S.L. Lloyd ⁷⁵, E. Lobodzinska ⁴¹, P. Loch ⁶, W.S. Lockman ¹³⁷, T. Loddenkoetter ²⁰, F.K. Loebinger ⁸², A. Loginov ¹⁷⁶, C.W. Loh ¹⁶⁸, T. Lohse ¹⁵, K. Lohwasser ⁴⁸. T. Loddenkoetter ²⁰, F.K. Loebinger ⁸², A. Loginov ¹⁷⁶, C.W. Loh ¹⁶⁸, T. Lohse ¹⁵, K. Lohwasser ⁴⁸, M. Lokajicek ¹²⁵, V.P. Lombardo⁴, R.E. Long ⁷¹, L. Lopes ^{124a}, D. Lopez Mateos ⁵⁷, J. Lorenz ⁹⁸, N. Lorenzo Martinez ¹¹⁵, M. Losada ¹⁶², P. Loscutoff ¹⁴, F. Lo Sterzo ^{132a,132b}, M.J. Losty ^{159a}, X. Lou⁴⁰, A. Lounis ¹¹⁵, K.F. Loureiro ¹⁶², J. Love ²¹, P.A. Love ⁷¹, A.J. Lowe ^{143,e}, F. Lu ^{32a}, H.J. Lubatti ¹³⁸, C. Luci ^{132a,132b},

A. Lucotte ⁵⁵, A. Ludwig ⁴³, D. Ludwig ⁴¹, I. Ludwig ⁴⁸, J. Ludwig ⁴⁸, F. Luehring ⁶⁰, G. Luijckx ¹⁰⁵, W. Lukas ⁶¹, D. Lumb ⁴⁸, L. Luminari ^{132a}, E. Lund ¹¹⁷, B. Lund-Jensen ¹⁴⁷, B. Lundberg ⁷⁹, J. Lundberg ^{146a, 146b}, J. Lundquist ³⁵, M. Lungwitz ⁸¹, D. Lynn ²⁴, E. Lytken ⁷⁹, H. Ma ²⁴, L.L. Ma ¹⁷³, J.A. Macana Goia ⁹³, G. Maccarrone ⁴⁷, A. Macchiolo ⁹⁹, B. Maček ⁷⁴, J. Machado Miguens ^{124a}, R. Mackeprang ³⁵, R.J. Madaras ¹⁴, W.F. Mader ⁴³, R. Maenner ^{58c}, T. Maeno ²⁴, P. Mättig ¹⁷⁵, S. Mättig ⁴¹, L. Magnoni ²⁹, E. Magradze ⁵⁴, K. Mahboubi ⁴⁸, S. Mahmoud ⁷³, G. Mahout ¹⁷, C. Maiani ¹³⁶, L. Magnoni ²⁹, E. Magradze ⁵⁴, K. Mahboubi ⁴⁸, S. Mahmoud ⁷³, G. Mahout ¹⁷, C. Maiani ¹³⁶, C. Maidantchik ^{23a}, A. Maio ^{124a,b}, S. Majewski ²⁴, Y. Makida ⁶⁵, N. Makovec ¹¹⁵, P. Mal ¹³⁶, B. Malaescu ²⁹, Pa. Malecki ³⁸, P. Malecki ³⁸, V.P. Maleev ¹²¹, F. Malek ⁵⁵, U. Mallik ⁶², D. Malon ⁵, C. Malone ¹⁴³, S. Maltezos ⁹, V. Malyshev ¹⁰⁷, S. Malyukov ²⁹, R. Mameghani ⁹⁸, J. Mamuzic ^{12b}, A. Manabe ⁶⁵, L. Mandelli ^{89a}, I. Mandič ⁷⁴, R. Mandrysch ¹⁵, J. Maneira ^{124a}, P.S. Mangeard ⁸⁸, L. Manhaes de Andrade Filho ^{23a}, A. Mann ⁵⁴, P.M. Manning ¹³⁷, A. Manousakis-Katsikakis ⁸, B. Mansoulie ¹³⁶, A. Mapelli ²⁹, L. Mapelli ²⁹, L. March ⁸⁰, J.F. Marchand ²⁸, F. Marchese ^{133a,133b}, G. Marchiori ⁷⁸, M. Marcisovsky ¹²⁵, C.P. Marino ¹⁶⁹, F. Marroquim ^{23a}, Z. Marshall ²⁹, F.K. Martens ¹⁵⁸, S. Marti-Garcia ¹⁶⁷, B. Martin ²⁹, B. Martinez ¹¹, V. Martinez Outschoorn ⁵⁷, A.C. Martyniuk ¹⁶⁹, M. Marx ⁸², F. Marzano ^{132a}, A. Marzin ¹¹¹, L. Masetti ⁸¹, T. Mashimo ¹⁵⁵, R. Mashinistov ⁹⁴, J. Masik ⁸², A.L. Maslennikov ¹⁰⁷, I. Massa ^{19a,19b}, G. Massaro ¹⁰⁵, N. Massol ⁴, P. Mastrandrea ^{132a,132b}, A. Mastroberardino ^{36a,36b}, T. Masubuchi ¹⁵⁵, P. Matricon ¹¹⁵, H. Matsunaga ¹⁵⁵, T. Matsushita ⁶⁶, C. Mattravers ^{118,c}, J. Maurer ⁸³, S.J. Maxfield ⁷³, A. Mayne ¹³⁹, R. Mazini ¹⁵¹, M. Mazur ²⁰, L. Mazzaferro ^{133a,133b}, M. Mazzanti ^{89a}, S.P. Mc Kee ⁸⁷, A. McCarn ¹⁶⁵, R.L. McCarthy ¹⁴⁸, T.G. McCarthy ²⁸, N.A. McCubbin ¹²⁹, K.W. McFarlane ⁵⁶, J.A. Mcfayden ¹³⁹, H. McGlone ⁵³, G. Mchedlidze ^{51b}, T. Mclaughlan ¹⁷, S.J. McMahon ¹²⁹, R.A. McPherson ^{169,j}, A. Meade ⁸⁴, J. Mechnich ¹⁰⁵, M. Mechtel ¹⁷⁵, M. Medinnis ⁴¹, R. Meera-Lebbai ¹¹¹, T. Meguro ¹¹⁶, S. Mehlhase ³⁵, A. Mehta ⁷³, K. Meier ^{58a}, B. Meirose ⁷⁹, C. Melachrinos ³⁰, B.R. Mellado J.A. Mcfayden ¹³⁹, H. McGlone ⁵³, G. Mchedlidze ^{51b}, T. Mclaughlan ¹⁷, S.J. McMahon ¹²⁹, R.A. McPherson ^{169,J}, A. Meade ⁸⁴, J. Mechnich ¹⁰⁵, M. Mechtel ¹⁷⁵, M. Medinnis ⁴¹, R. Meera-Lebbai ¹¹¹, T. Meguro ¹¹⁶, S. Mehlhase ³⁵, A. Mehta ⁷³, K. Meier ^{58a}, B. Meirose ⁷⁹, C. Melachrinos ³⁰, B.R. Mellado Garcia ¹⁷³, F. Meloni ^{89a,89b}, L. Mendoza Navas ¹⁶², Z. Meng ^{151,s}, A. Mengarelli ^{19a,19b}, S. Menke ⁹⁹, E. Meoni ¹¹, K.M. Mercurio ⁵⁷, P. Mermod ⁴⁹, L. Merola ^{102a,102b}, C. Meroni ^{89a}, F.S. Merritt ³⁰, H. Merritt ¹⁰⁹, A. Messina ^{29,w}, J. Metcalfe ¹⁰³, A.S. Mete ⁶³, C. Meyer ⁸¹, C. Meyer ³⁰, J.-P. Meyer ¹³⁶, J. Meyer ¹⁷⁴, J. Meyer ⁵⁴, T.C. Meyer ²⁹, W.T. Meyer ⁶³, J. Miao ^{32d}, S. Michal ²⁹, L. Micu ^{25a}, R.P. Middleton ¹²⁹, S. Migas ⁷³, L. Mijović ⁴¹, G. Mikenberg ¹⁷², M. Mikestikova ¹²⁵, M. Mikuž ⁷⁴, D.W. Miller ³⁰, R.J. Miller ⁸⁸, W.J. Mills ¹⁶⁸, C. Mills ⁵⁷, A. Milov ¹⁷², D.A. Mistead ^{146a,146b}, D. Milstein ¹⁷², A.A. Minaenko ¹²⁸, M. Miñano Moya ¹⁶⁷, I.A. Minashvili ⁴⁴, A.I. Mircou ¹⁶⁷, S. Mitsui ⁶⁵, P.S. Miyagawa ¹³⁹, K. Miyazaki ⁶⁶, J.U. Mjörnmark ⁷⁹, T. Moa ^{146a,146b}, P. Mockert ¹³⁸, S. Moed ⁵⁷, V. Moeller ²⁷, K. Mönig ⁴¹, N. Möser ²⁰, S. Mohapatra ¹⁴⁸, W. Mohr ⁴⁸, R. Moles-Valls ¹⁶⁷, J. Morin ⁷⁵, A.K. Morley ²⁹, G. Morracki ²⁹, J.D. Mortis ⁷⁵, L. Morvaj ¹⁰¹, H.C. Moser ¹⁹, M. Mosidze ^{51b}, J. Moss ¹⁰⁹, R. Mourt ⁴³, E. Mountricha ^{9,x}, S.V. Mouraviev ⁹⁴, E.J.W. Moyse ⁸⁴, F. Mueller ^{58a}, J. Mueller ¹²³, K. Mueller ²⁰, T.A. Miller ⁹⁸, T. Mueller ⁸¹, D. Muenstermann ²⁹, Y. Nuxels ¹⁵⁵, W. Mataro ¹⁵⁵, J. Morin ⁷⁵, A.K. Morley ²⁹, G. Morracchi ²⁹, J.D. Morris ⁷⁵, L. Morvaj ¹⁰¹, H.C. Moser ¹⁹, M. Mosidze ^{51b}, J. Moss ¹⁰⁹, R. Mount ¹⁴³, F. Moulticha ^{9,x}, S.V. Mouraviev ⁹⁴, E.J.W. Moyse ⁸⁴, F. Mueller ^{55a}, J. Mueller ¹²³, K. Matano ¹¹⁰, G. Maayakov ¹²⁸, M. Myska ¹²⁵, J. Nadal ¹¹, K. Nagai ¹⁶⁰, K. Nagano I.M. Nugent ^{159a}, A.-E. Nuncio-Quiroz ²⁰, G. Nunes Hanninger ⁸⁶, T. Nunnemann ⁹⁸, E. Nurse ⁷⁷, B.J. O'Brien ⁴⁵, S.W. O'Neale ^{17,*}, D.C. O'Neil ¹⁴², V. O'Shea ⁵³, L.B. Oakes ⁹⁸, F.G. Oakham ^{28,d}, H. Oberlack ⁹⁹, J. Ocariz ⁷⁸, A. Ochi ⁶⁶, S. Oda ¹⁵⁵, S. Odaka ⁶⁵, J. Odier ⁸³, H. Ogren ⁶⁰, A. Oh ⁸², S.H. Oh ⁴⁴,

C.C. Ohm ^{146a, 146b}, T. Ohshima ¹⁰¹, S. Okada ⁶⁶, H. Okawa ¹⁶³, Y. Okumura ¹⁰¹, T. Okuyama ¹⁵⁵, A. Olariu ^{25a}, A.G. Olchevski ⁶⁴, S.A. Olivares Pino ^{31a}, M. Oliveira ^{124a,h}, D. Oliveira Damazio ²⁴, E. Oliver Garcia¹⁶⁷, D. Olivito¹²⁰, A. Olszewski³⁸, J. Olszowska³⁸, A. Onofre^{124a,z}, P.U.E. Onyisi³⁰, C.J. Oram^{159a}, M.J. Oreglia³⁰, Y. Oren¹⁵³, D. Orestano^{134a,134b}, N. Orlando^{72a,72b}, I. Orlov¹⁰⁷, C. Oropeza Barrera⁵³, R.S. Orr¹⁵⁸, B. Osculati ^{50a, 50b}, R. Ospanov ¹²⁰, C. Osuna¹¹, G. Otero y Garzon ²⁶, J.P. Ottersbach ¹⁰⁵, M. Ouchrif ^{135d}, E.A. Ouellette ¹⁶⁹, F. Ould-Saada ¹¹⁷, A. Ouraou ¹³⁶, Q. Ouyang ^{32a}, A. Ovcharova ¹⁴, M. Owen⁸², S. Owen¹³⁹, V.E. Ozcan^{18a}, N. Ozturk⁷, A. Pacheco Pages¹¹, C. Padilla Aranda¹¹, S. Pagan Griso¹⁴, E. Paganis¹³⁹, F. Paige²⁴, P. Pais⁸⁴, K. Pajchel¹¹⁷, G. Palacino^{159b}, C.P. Paleari⁶, S. Palestini²⁹, D. Pallin³³, A. Palma^{124a}, J.D. Palmer¹⁷, Y.B. Pan¹⁷³, E. Panagiotopoulou⁹, N. Panikashvili⁸⁷, S. Panitkin²⁴, D. Pantea^{25a}, A. Papadelis^{146a}, Th.D. Papadopoulou⁹, A. Paramonov⁵, D. Paredes Hernandez ³³, W. Park ^{24,aa}, M.A. Parker ²⁷, F. Parodi ^{50a,50b}, J.A. Parsons ³⁴, U. Parzefall ⁴⁸, S. Pashapour ⁵⁴, E. Pasqualucci ^{132a}, S. Passaggio ^{50a}, A. Passeri ^{134a}, F. Pastore ^{134a,134b}, Fr. Pastore ⁷⁶, G. Pásztor ^{49,ab}, S. Pataraia ¹⁷⁵, N. Patel ¹⁵⁰, J.R. Pater ⁸², S. Patricelli ^{102a,102b}, T. Pauly ²⁹, M. Pecsy ^{144a}, M.I. Pedraza Morales ¹⁷³, S.V. Peleganchuk ¹⁰⁷, D. Pelikan ¹⁶⁶, H. Peng ^{32b}, B. Penning ³⁰, A. Penson ³⁴, J. Penwell ⁶⁰, M. Perantoni ^{23a}, K. Perez ^{34,ac}, T. Perez Cavalcanti ⁴¹, E. Perez Codina ^{159a}, M.T. Pérez García-Estañ ¹⁶⁷, V. Perez Reale ³⁴, L. Perini ^{89a,89b}, H. Pernegger ²⁹, R. Perrino ^{72a}, P. Perrodo⁴, S. Persembe ^{3a}, V.D. Peshekhonov ⁶⁴, K. Peters ²⁹, B.A. Petersen ²⁹, J. Petersen ²⁹, T.C. Petersen ³⁵, E. Petit ⁴, A. Petridis ¹⁵⁴, C. Petridou ¹⁵⁴, E. Petrolo ^{132a}, F. Petrucci ^{134a,134b}, D. Petschull ⁴¹, M. Petteni ¹⁴², R. Pezoa ^{31b}, A. Phan ⁸⁶, P.W. Phillips ¹²⁹, G. Piacquadio ²⁹, A. Picazio ⁴⁹, E. Piccaro ⁷⁵, M. Piccinini ^{19a,19b}, S.M. Piec ⁴¹, R. Piegaia ²⁶, D.T. Pignotti ¹⁰⁹, J.E. Pilcher ³⁰, A.D. Pilkington ⁸², J. Pina ^{124a,b}, M. Pinamonti ^{164a,164c}, A. Pinder ¹¹⁸, J.L. Pinfold², B. Pinto^{124a}, C. Pizio^{89a,89b}, M. Plamondon¹⁶⁹, M.-A. Pleier²⁴, E. Plotnikova⁶⁴, A. Poblaguev²⁴, S. Poddar^{58a}, F. Podlyski³³, L. Poggioli¹¹⁵, T. Poghosyan²⁰, M. Pohl⁴⁹, F. Polci⁵⁵, G. Polesello^{119a}, A. Policicchio^{36a,36b}, A. Polini^{19a}, J. Poll⁷⁵, V. Polychronakos²⁴, D.M. Pomarede¹³⁶, D. Pomeroy²², K. Pommes²⁹, L. Pontecorvo^{132a}, B.G. Pope⁸⁸, G.A. Popeneciu^{25a}, D.S. Popovic^{12a}, A. Poppleton ²⁹, X. Portell Bueso ²⁹, G.E. Pospelov ⁹⁹, S. Pospisil ¹²⁷, I.N. Potrap ⁹⁹, C.J. Potter ¹⁴⁹, C.T. Potter ¹¹⁴, G. Poulard ²⁹, J. Poveda ¹⁷³, V. Pozdnyakov ⁶⁴, R. Prabhu ⁷⁷, P. Pralavorio ⁸³, A. Pranko ¹⁴, S. Prasad ²⁹, R. Pravahan ²⁴, S. Prell ⁶³, K. Pretzl ¹⁶, D. Price ⁶⁰, J. Price ⁷³, L.E. Price ⁵, D. Prieur ¹²³, M. Primavera ^{72a}, K. Prokofiev ¹⁰⁸, F. Prokoshin ^{31b}, S. Protopopescu ²⁴, J. Proudfoot ⁵, X. Prudent ⁴³, M. Przybycien ³⁷, H. Przysiezniak⁴, S. Psoroulas²⁰, E. Ptacek¹¹⁴, E. Pueschel⁸⁴, J. Purdham⁸⁷, M. Purohit^{24,aa}, P. Puzo¹¹⁵, Y. Pylypchenko⁶², J. Qian⁸⁷, Z. Qin⁴¹, A. Quadt⁵⁴, D.R. Quarrie¹⁴, W.B. Quayle¹⁷³, F. Quinonez^{31a}, M. Raas¹⁰⁴, V. Radescu⁴¹, P. Radloff¹¹⁴, T. Rador^{18a}, F. Ragusa^{89a,89b}, G. Rahal¹⁷⁸, A.M. Rahimi¹⁰⁹, D. Rahm²⁴, S. Rajagopalan²⁴, M. Rammensee⁴⁸, M. Rammes¹⁴¹, A.S. Randle-Conde³⁹, K. Randrianarivony²⁸, F. Rauscher⁹⁸, T.C. Rave⁴⁸, M. Raymond²⁹, A.L. Read¹¹⁷, D.M. Rebuzzi ^{119a,119b}, A. Redelbach ¹⁷⁴, G. Redlinger ²⁴, R. Reece ¹²⁰, K. Reeves ⁴⁰, E. Reinherz-Aronis ¹⁵³, A. Reinsch ¹¹⁴, I. Reisinger ⁴², C. Rembser ²⁹, Z.L. Ren ¹⁵¹, A. Renaud ¹¹⁵, M. Rescigno ^{132a}, S. Resconi ^{89a}, B. Resende ¹³⁶, P. Reznicek ⁹⁸, R. Rezvani ¹⁵⁸, R. Richter ⁹⁹, E. Richter-Was ^{4,ad}, M. Ridel ⁷⁸, M. Rijpstra ¹⁰⁵, M. Rijssenbeek ¹⁴⁸, A. Rimoldi ^{119a,119b}, L. Rinaldi ^{19a}, R.R. Rios ³⁹, I. Riu ¹¹, G. Rivoltella ^{89a,89b}, ¹¹² F. Rizatdinova¹¹², E. Rizvi⁷⁵, S.H. Robertson^{85,j}, A. Robichaud-Veronneau¹¹⁸, D. Robinson²⁷, J.E.M. Robinson⁷⁷, A. Robson⁵³, J.G. Rocha de Lima¹⁰⁶, C. Roda^{122a,122b}, D. Roda Dos Santos²⁹, D. Rodriguez¹⁶², A. Roe⁵⁴, S. Roe²⁹, O. Røhne¹¹⁷, S. Rolli¹⁶¹, A. Romaniouk⁹⁶, M. Romano^{19a,19b}, D. Rodriguez ¹⁶², A. Roe ⁵⁴, S. Roe ²⁹, O. Røhne ¹¹⁷, S. Rolli ¹⁶¹, A. Romaniouk ⁹⁶, M. Romano ^{19a,19b}, G. Romeo ²⁶, E. Romero Adam ¹⁶⁷, L. Roos ⁷⁸, E. Ros ¹⁶⁷, S. Rosati ^{132a}, K. Rosbach ⁴⁹, A. Rose ¹⁴⁹, M. Rose ⁷⁶, G.A. Rosenbaum ¹⁵⁸, E.I. Rosenberg ⁶³, P.L. Rosendahl ¹³, O. Rosenthal ¹⁴¹, L. Rosselet ⁴⁹, V. Rossetti ¹¹, E. Rossi ^{132a,132b}, L.P. Rossi ^{50a}, M. Rotaru ^{25a}, I. Roth ¹⁷², J. Rothberg ¹³⁸, D. Rousseau ¹¹⁵, C.R. Royon ¹³⁶, A. Rozanov ⁸³, Y. Rozen ¹⁵², X. Ruan ^{32a,ae}, F. Rubbo ¹¹, I. Rubinskiy ⁴¹, B. Ruckert ⁹⁸, N. Ruckstuhl ¹⁰⁵, V.I. Rud ⁹⁷, C. Rudolph ⁴³, G. Rudolph ⁶¹, F. Rühr ⁶, F. Ruggieri ^{134a,134b}, A. Ruiz-Martinez ⁶³, L. Rumyantsev ⁶⁴, K. Runge ⁴⁸, Z. Rurikova ⁴⁸, N.A. Rusakovich ⁶⁴, J.P. Rutherfoord ⁶, C. Ruwiedel ¹⁴, P. Ruzicka ¹²⁵, Y.F. Ryabov ¹²¹, P. Ryan ⁸⁸, M. Rybar ¹²⁶, G. Rybkin ¹¹⁵, N.C. Ryder ¹¹⁸, A.F. Saavedra ¹⁵⁰, I. Sadeh ¹⁵³, H.F.-W. Sadrozinski ¹³⁷, R. Sadykov ⁶⁴, F. Safai Tehrani ^{132a}, H. Sakamoto ¹⁵⁵, G. Salamanna ⁷⁵, A. Salamon ^{133a}, M. Saleem ¹¹¹, D. Salek ²⁹, D. Salihagic ⁹⁹, A. Salnikov ¹⁴³, J. Salt ¹⁶⁷, B.M. Salvachua Ferrando ⁵, D. Salvatore ^{36a,36b}, F. Salvatore ¹⁴⁹, A. Salzburger ²⁹ B.M. Salvachua Ferrando⁵, D. Salvatore^{36a,36b}, F. Salvatore¹⁴⁹, A. Salvucci¹⁰⁴, A. Salzburger²⁹, D. Sampsonidis¹⁵⁴, B.H. Samset¹¹⁷, A. Sanchez^{102a,102b}, V. Sanchez Martinez¹⁶⁷, H. Sandaker¹³ H.G. Sander⁸¹, M.P. Sanders⁹⁸, M. Sandhoff¹⁷⁵, T. Sandoval²⁷, C. Sandoval¹⁶², R. Sandstroem⁹⁹,

D.P.C. Sankey ¹²⁹, A. Sansoni ⁴⁷, C. Santamarina Rios ⁸⁵, C. Santoni ³³, R. Santonico ^{133a,133b}, H. Santos ^{124a}, J.G. Saraiva ^{124a}, T. Sarangi ¹⁷³, E. Sarkisyan-Grinbaum ⁷, F. Sarri ^{122a,122b}, G. Sartisohn ¹⁷⁵, O. Sasaki ⁶⁵, J.G. Saraiva ^{124a}, T. Sarangi ¹⁷³, E. Sarkisyan-Grinbaum ⁷, F. Sarri ^{122a}, ^{122b}, G. Sartisohn ¹⁷⁵, O. Sasaki ⁶⁵, N. Sasao ⁶⁷, I. Satsounkevitch ⁹⁰, G. Sauvage ⁴, E. Sauvan ⁴, J.B. Sauvan ¹¹⁵, P. Savard ^{158,d}, V. Savinov ¹²³, D.O. Savu ²⁹, L. Sawyer ^{24,l}, D.H. Saxon ⁵³, J. Saxon ¹²⁰, C. Sbarra ^{19a}, A. Sbrizzi ^{19a,19b}, O. Scallon ⁹³, D.A. Scannicchio ¹⁶³, M. Scarcella ¹⁵⁰, J. Schaarschmidt ¹¹⁵, P. Schacht ⁹⁹, D. Schaefer ¹²⁰, U. Schäfer ⁸¹, S. Schaepe ²⁰, S. Schaetzel ^{58b}, A.C. Schaffer ¹¹⁵, D. Schaile ⁹⁸, R.D. Schamberger ¹⁴⁸, A.G. Schamov ¹⁰⁷, V. Scharf ^{58a}, V.A. Schegelsky ¹²¹, D. Scheirich ⁸⁷, M. Schernau ¹⁶³, M.I. Scherzer ³⁴, C. Schiavi ^{50a,50b}, J. Schieck ⁹⁸, M. Schioppa ^{36a,36b}, S. Schlenker ²⁹, E. Schmidt ⁴⁸, K. Schmieden ²⁰, C. Schmitt ⁸¹, S. Schmitt ^{58b}, M. Schmitz ²⁰, A. Schöning ^{58b}, M. Schott ²⁹, D. Schouten ^{159a}, J. Schovancova ¹²⁵, M. Schram ⁸⁵, C. Schroeder ⁸¹, N. Schroer ^{58c}, M.J. Schultens ²⁰, J. Schultes ¹⁷⁵, H.-C. Schultz-Coulon ^{58a}, H. Schulz ¹⁵, J.W. Schumacher ²⁰, M. Schumacher ⁴⁸, B.A. Schumm ¹³⁷, Ph. Schune ¹³⁶, C. Schwanenberger ⁸², A. Schwartzman ¹⁴³, Ph. Schwemling ⁷⁸, R. Schwienhorst ⁸⁸, R. Schwierz ⁴³ C. Schwanenberger ⁸², A. Schwartzman ¹⁴³, Ph. Schwemling ⁷⁸, R. Schwienhorst ⁸⁸, R. Schwierz ⁴³, J. Schwindling ¹³⁶, T. Schwindt ²⁰, M. Schwoerer ⁴, G. Sciolla ²², W.G. Scott ¹²⁹, J. Searcy ¹¹⁴, G. Sedov ⁴¹, E. Sedykh ¹²¹, S.C. Seidel ¹⁰³, A. Seiden ¹³⁷, F. Seifert ⁴³, J.M. Seixas ^{23a}, G. Sekhniaidze ^{102a}, S.J. Sekula ³⁹, K.E. Selbach ⁴⁵, D.M. Seliverstov ¹²¹, B. Sellden ^{146a}, G. Sellers ⁷³, M. Seman ^{144b}, K.E. Selbach ⁴⁵, D.M. Seliverstov ¹²¹, B. Seliden ^{146a}, G. Sellers ⁷³, M. Seman ^{144b}, N. Semprini-Cesari ^{19a,19b}, C. Serfon ⁹⁸, L. Serin ¹¹⁵, L. Serkin ⁵⁴, R. Seuster ⁹⁹, H. Severini ¹¹¹, A. Sfyrla ²⁹, E. Shabalina ⁵⁴, M. Shamim ¹¹⁴, L.Y. Shan ^{32a}, J.T. Shank ²¹, Q.T. Shao ⁸⁶, M. Shapiro ¹⁴, P.B. Shatalov ⁹⁵, K. Shaw ^{164a,164c}, D. Sherman ¹⁷⁶, P. Sherwood ⁷⁷, A. Shibata ¹⁰⁸, H. Shichi ¹⁰¹, S. Shimizu ²⁹, M. Shimojima ¹⁰⁰, T. Shin ⁵⁶, M. Shiyakova ⁶⁴, A. Shmeleva ⁹⁴, M.J. Shochet ³⁰, D. Short ¹¹⁸, S. Shrestha ⁶³, E. Shulga ⁹⁶, M.A. Shupe ⁶, P. Sicho ¹²⁵, A. Sidoti ^{132a}, F. Siegert ⁴⁸, Dj. Sijacki ^{12a}, O. Silbert ¹⁷², J. Silva ^{124a}, Y. Silver ¹⁵³, D. Silverstein ¹⁴³, S.B. Silverstein ^{146a}, V. Simak ¹²⁷, O. Simard ¹³⁶, Lj. Simic ^{12a}, S. Simion ¹¹⁵, B. Simmons ⁷⁷, R. Simoniello ^{89a,89b}, M. Simonyan ³⁵, P. Sinervo ¹⁵⁸, N.B. Sinev ¹¹⁴, V. Sipica ¹⁴¹, G. Siragusa ¹⁷⁴, A. Sircar ²⁴, A.N. Sisakyan ⁶⁴, S.Yu. Sivoklokov ⁹⁷, J. Sjölin ^{146a,146b}, T.B. Sjursen ¹³, L.A. Skinnari ¹⁴, H.P. Skottowe ⁵⁷, K. Skovpen ¹⁰⁷, P. Skubic ¹¹¹, M. Slater ¹⁷, T. Slavicek ¹²⁷, K. Sliwa ¹⁶¹, V. Smakhtin ¹⁷², B.H. Smart ⁴⁵, S.Yu. Smirnov ⁹⁶, Y. Smirnov ⁹⁶, L.N. Smirnova ⁹⁷, O. Smirnova ⁷⁹, B.C. Smith ⁵⁷, D. Smith ¹⁴³, K.M. Smith ⁵³, M. Smizanska ⁷¹, K. Smolek ¹²⁷, A.A. Snesarev ⁹⁴, S.W. Snow ⁸², J. Snow ¹¹¹, S. Snyder ²⁴, R. Sobie ^{169,j}, J. Sodomka ¹²⁷, A. Soffer ¹⁵³, C.A. Solans ¹⁶⁷, M. Solar ¹²⁷, J. Solc ¹²⁷, E. Soldatov ⁹⁶, U. Soldevila ¹⁶⁷, E. Solfaroli Camillocci ^{132a,132b}, A.A. Solodkov ¹²⁸, O.V. Solovyanov ¹²⁸, N. Soni², V. Sopko ¹²⁷, B. Sopko ¹²⁷, M. Sosebee ⁷, R. Soualah ^{164a,164c}, A. Soukharev ¹⁰⁷, E. Soldatov ⁴⁷, O. Soldevila ⁴⁰, E. Sollaron Califord P. Starovoitov ⁴¹, A. Staude ⁹⁸, P. Stavina ^{144a}, G. Steele ⁵³, P. Steinbach ⁴³, P. Steinberg ²⁴, I. Stekl ¹²⁷, B. Stelzer ¹⁴², H.J. Stelzer ⁸⁸, O. Stelzer-Chilton ^{159a}, H. Stenzel ⁵², S. Stern ⁹⁹, G.A. Stewart ²⁹, J.A. Stillings ²⁰, M.C. Stockton ⁸⁵, K. Stoerig ⁴⁸, G. Stoicea ^{25a}, S. Stonjek ⁹⁹, P. Strachota ¹²⁶, A.R. Stradling ⁷, A. Straessner ⁴³, J. Strandberg ¹⁴⁷, S. Strandberg ^{146a,146b}, A. Strandlie ¹¹⁷, M. Strang ¹⁰⁹, E. Strauss ¹⁴³, M. Strauss ¹¹¹, P. Strizenec ^{144b}, R. Ströhmer ¹⁷⁴, D.M. Strom ¹¹⁴, J.A. Strong ^{76,*}, R. Stroynowski ³⁹, J. Strube ¹²⁹, B. Stugu ¹³, I. Stumer ^{24,*}, J. Stupak ¹⁴⁸, P. Sturm ¹⁷⁵, N.A. Styles ⁴¹, D.A. Soh ^{151,u}, D. Su ¹⁴³, HS. Subramania ², A. Succurro ¹¹, Y. Sugaya ¹¹⁶, C. Suhr ¹⁰⁶, K. Suita ⁶⁶, M. Suk ¹²⁶, V.V. Sulin ⁹⁴, S. Sultansoy ^{3d}, T. Sumida ⁶⁷, X. Sun ⁵⁵, J.E. Sundermann ⁴⁸, K. Suruliz ¹³⁹, G. Susinno ^{36a,36b}, M.R. Sutton ¹⁴⁹, Y. Suzuki ⁶⁵, Y. Suzuki ⁶⁶, M. Svatos ¹²⁵, S. Swedish ¹⁶⁸, I. Sykora ^{144a}, T. Sykora ¹²⁶, J. Sánchez ¹⁶⁷, D. Ta ¹⁰⁵, K. Tackmann ⁴¹, A. Taffard ¹⁶³, R. Tafirout ^{159a}, N. Taiblum ¹⁵³, Y. Takahashi ¹⁰¹, H. Takai ²⁴, R. Takashima ⁶⁸, H. Takeda ⁶⁶, T. Takeshita ¹⁴⁰, Y. Takubo ⁶⁵, M. Talby ⁸³, A. Talyshev ^{107, f}, M.C. Tamsett ²⁴, J. Tanaka ¹⁵⁵, R. Tanaka ¹¹⁵, S. Tanaka ¹³¹, S. Tanaka ⁶⁵, A.J. Tanasijczuk ¹⁴², K. Tani ⁶⁶, N. Tannoury ⁸³, S. Tapprogge ⁸¹, D. Tardif ¹⁵⁸, S. Tarem ¹⁵², F. Tarrade ²⁸, G.F. Tartarelli ^{89a}, P. Tas ¹²⁶, M. Tasevsky ¹²⁵, E. Tassi ^{36a,36b}, M. Tatarkhanov ¹⁴, Y. Tayalati ^{135d}, C. Taylor ⁷⁷, F.E. Taylor ⁹², G.N. Taylor ⁸⁶, W. Taylor ^{159b}, M. Teinturier ¹¹⁵, M. Teixeira Dias Castanheira ⁷⁵, P. Teixeira-Dias ⁷⁶, G.N. Taylor⁸⁶, W. Taylor^{159b}, M. Teinturier¹¹⁵, M. Teixeira Dias Castanheira⁷⁵, P. Teixeira-Dias⁷⁶, K.K. Temming⁴⁸, H. Ten Kate²⁹, P.K. Teng¹⁵¹, S. Terada⁶⁵, K. Terashi¹⁵⁵, J. Terron⁸⁰, M. Testa⁴⁷, R.J. Teuscher^{158, j}, J. Therhaag²⁰, T. Theveneaux-Pelzer⁷⁸, M. Thioye¹⁷⁶, S. Thoma⁴⁸, J.P. Thomas¹⁷, E.N. Thompson³⁴, P.D. Thompson¹⁷, P.D. Thompson¹⁵⁸, A.S. Thompson⁵³, L.A. Thomsen³⁵, E. Thomson¹²⁰, M. Thomson²⁷, R.P. Thun⁸⁷, F. Tian³⁴, M.J. Tibbetts¹⁴, T. Tic¹²⁵, V.O. Tikhomirov⁹⁴, Y.A. Tikhonov^{107, f}, S. Timoshenko⁹⁶, P. Tipton¹⁷⁶, F.J. Tique Aires Viegas²⁹, S. Tisserant⁸³, T. Todorov⁴,

S. Todorova-Nova ¹⁶¹, B. Toggerson ¹⁶³, J. Tojo ⁶⁹, S. Tokár ^{144a}, K. Tokunaga ⁶⁶, K. Tokushuku ⁶⁵, K. Tollefson ⁸⁸, M. Tomoto ¹⁰¹, L. Tompkins ³⁰, K. Toms ¹⁰³, A. Tonoyan ¹³, C. Topfel ¹⁶, N.D. Topilin ⁶⁴, I. Torchiani ²⁹, E. Torrence ¹¹⁴, H. Torres ⁷⁸, E. Torró Pastor ¹⁶⁷, J. Toth ^{83,ab}, F. Touchard ⁸³, D.R. Tovey ¹³⁹, T. Trefzger ¹⁷⁴, L. Tremblet ²⁹, A. Tricoli ²⁹, I.M. Trigger ^{159a}, S. Trincaz-Duvoid ⁷⁸, M.F. Tripiana ⁷⁰, W. Trischuk ¹⁵⁸, B. Trocmé ⁵⁵, C. Troncon ^{89a}, M. Trottier-McDonald ¹⁴², M. Trzebinski ³⁸, A. Trzupek ³⁸, C. Tsarouchas ²⁹, J.C.-L. Tseng ¹¹⁸, M. Tsiakiris ¹⁰⁵, P.V. Tsiareshka ⁹⁰, D. Tsionou ^{4,af}, G. Tsipolitis ⁹, V. Tsiskaridze ⁴⁸, E.G. Tskhadadze ^{51a}, I.I. Tsukerman ⁹⁵, V. Tsulaia ¹⁴, J.-W. Tsung ²⁰, S. Tsuno ⁶⁵, D. Tsybychev ¹⁴⁸, A. Tua ¹³⁹, A. Tudorache ^{25a}, V. Tudorache ^{25a}, J.M. Tuggle ³⁰, M. Turala ³⁸, D. Turecek ¹²⁷, I. Turk Cakir ^{3e}, E. Turlay ¹⁰⁵, R. Turra ^{89a,89b}, P.M. Tuts ³⁴, A. Tykhonov ⁷⁴, M. Tylmad ^{146a,146b}, M. Tyndel ¹²⁹, G. Tzanakos ⁸, K. Uchida ²⁰, I. Ueda ¹⁵⁵, R. Ueno ²⁸, M. Ugland ¹³, M. Uhlenbrock ²⁰, M. Uhrmacher ⁵⁴, F. Ukegawa ¹⁶⁰, G. Unal ²⁹, A. Undrus ²⁴, G. Unel ¹⁶³, Y. Unno ⁶⁵, D. Urbaniec ³⁴, G. Usai ⁷, M. Uslenghi ^{119a,119b}, L. Vacavant ⁸³, V. Vacek ¹²⁷, B. Vachon ⁸⁵, S. Valsen ¹⁴, J. Valenta ¹²⁵, P. Valente ^{132a}, S. Valentinetti ^{19a,19b}, S. Valkar ¹²⁶, E. Valladolid Gallego ¹⁶⁷, S. Vallecorsa ¹⁵², J.A. Valls Ferrer ¹⁶⁷, H. van der Graaf ¹⁰⁵, E. van der Kraaij ¹⁰⁵, R. Van Der Leeuw ¹⁰⁵, E. van der Poel ¹⁰⁵, D. van der Ster ²⁹, N. van Eldik ⁸⁴, P. van Gemmeren ⁵, I. van Vulpen ¹⁰⁵, M. Vanadia ⁹⁹, W. Vandelli ²⁹, A. Vaniachine ⁵, P. Vankov ⁴¹, F. Vannucci ⁷⁸, R. Vari ^{132a}, T. Varol ⁸⁴, D. Varouchas ¹⁴, A. Vartapetian ⁷, A. Vaniachine⁵, P. Vankov⁴¹, F. Vannucci⁷⁸, R. Vari^{132a}, T. Varol⁸⁴, D. Varouchas¹⁴, A. Vartapetian⁷, K.E. Varvell ¹⁵⁰, V.I. Vassilakopoulos ⁵⁶, F. Vazeille ³³, T. Vazquez Schroeder ⁵⁴, G. Vegni ^{89a,89b}, J.J. Veillet ¹¹⁵, F. Veloso ^{124a}, R. Veness ²⁹, S. Veneziano ^{132a}, A. Ventura ^{72a,72b}, D. Ventura ⁸⁴, M. Venturi ⁴⁸, N. Venturi ¹⁵⁸, V. Vercesi ^{119a}, M. Verducci ¹³⁸, W. Verkerke ¹⁰⁵, J.C. Vermeulen ¹⁰⁵, A. Vest ⁴³, M.C. Vetterli ^{142,d}, I. Vichou ¹⁶⁵, T. Vickey ^{145b,ag}, O.E. Vickey Boeriu ^{145b}, G.H.A. Viehhauser ¹¹⁸, S. Viel¹⁶⁸, M. Villa^{19a,19b}, M. Villaplana Perez¹⁶⁷, E. Vilucchi⁴⁷, M.G. Vincter²⁸, E. Vinek²⁹, V.B. Vinogradov⁶⁴, M. Virchaux^{136,*}, J. Virzi¹⁴, O. Vitells¹⁷², M. Viti⁴¹, I. Vivarelli⁴⁸, F. Vives Vaque², S. Vlachos⁹, D. Vladoiu⁹⁸, M. Vlasak¹²⁷, A. Vogel²⁰, P. Vokac¹²⁷, G. Volpi⁴⁷, M. Volpi⁸⁶, G. Volpini^{89a}, H. von der Schmitt⁹⁹, J. von Loeben⁹⁹, H. von Radziewski⁴⁸, E. von Toerne²⁰, V. Vorobel¹²⁶, H. von der Schmitt ⁹⁹, J. von Loeben ⁹⁹, H. von Radziewski ⁴⁸, E. von Toerne ²⁰, V. Vorobel ¹²⁰, V. Vorobel ¹²⁰, V. Vorwerk ¹¹, M. Vos ¹⁶⁷, R. Voss ²⁹, T.T. Voss ¹⁷⁵, J.H. Vossebeld ⁷³, N. Vranjes ¹³⁶, M. Vranjes Milosavljevic ¹⁰⁵, V. Vrba ¹²⁵, M. Vreeswijk ¹⁰⁵, T. Vu Anh ⁴⁸, R. Vuillermet ²⁹, I. Vukotic ¹¹⁵, W. Wagner ¹⁷⁵, P. Wagner ¹²⁰, H. Wahlen ¹⁷⁵, S. Wahrmund ⁴³, J. Wakabayashi ¹⁰¹, S. Walch ⁸⁷, J. Walder ⁷¹, R. Walker ⁹⁸, W. Walkowiak ¹⁴¹, R. Wall ¹⁷⁶, P. Waller ⁷³, C. Wang ⁴⁴, H. Wang ¹⁷³, H. Wang ^{32b,ah}, J. Wang ¹⁵¹, J. Wang ⁵⁵, J.C. Wang ¹³⁸, R. Wang ¹⁰³, S.M. Wang ¹⁵¹, T. Wang ²⁰, A. Warburton ⁸⁵, C.P. Ward ²⁷, M. Warsinsky ⁴⁸, A. Washbrook ⁴⁵, C. Wasicki ⁴¹, P.M. Watkins ¹⁷, A.T. Watson ¹⁷, I.J. Watson ¹⁵⁰, M.F. Watson ¹⁷, G. Watts ¹³⁸, S. Watts ⁸², A.T. Waugh ¹⁵⁰, B.M. Waugh ⁷⁷, M. Weber ¹²⁹, M.S. Weber ¹⁶, P. Weber ⁵⁴, A.R. Weidberg ¹¹⁸, P. Weigell ⁹⁹, J. Weingarten ⁵⁴, C. Weiser ⁴⁸, H. Wellenstein ²², P.S. Wells ²⁹, T. Wenaus ²⁴, D. Wendland ¹⁵, Z. Weng ^{151,u}, T. Wengler ²⁹, S. Wenig ²⁹, N. Wermes ²⁰ M. Werner ⁴⁸ P. Werner ²⁹ M. Werth ¹⁶³ M. Wessels ^{58a}, I. Wetter ¹⁶¹, C. Weydert ⁵⁵. N. Wernerstein¹²⁷, P.S. Weils²³, I. Wenaus²⁴, D. Wendland¹³, Z. Weng^{151,4}, I. Wengler²⁹, S. Wenig N. Wermes²⁰, M. Werner⁴⁸, P. Werner²⁹, M. Werth¹⁶³, M. Wessels^{58a}, J. Wetter¹⁶¹, C. Weydert⁵⁵, K. Whalen²⁸, S.J. Wheeler-Ellis¹⁶³, A. White⁷, M.J. White⁸⁶, S. White^{122a,122b}, S.R. Whitehead¹¹⁸, D. Whiteson¹⁶³, D. Whittington⁶⁰, F. Wicek¹¹⁵, D. Wicke¹⁷⁵, F.J. Wickens¹²⁹, W. Wiedenmann¹⁷³, M. Wielers¹²⁹, P. Wienemann²⁰, C. Wiglesworth⁷⁵, L.A.M. Wiik-Fuchs⁴⁸, P.A. Wijeratne⁷⁷, A. Wildauer¹⁶⁷, M.A. Wildt^{41,q}, I. Wilhelm¹²⁶, H.G. Wilkens²⁹, J.Z. Will⁹⁸, E. Williams³⁴, H.H. Williams¹²⁰, W. Willis³⁴, S. Willocq⁸⁴, J.A. Wilson¹⁷, M.G. Wilson¹⁴³, A. Wilson⁸⁷, I. Wingerter-Seez⁴, S. Winkelmann⁴⁸, F. Winklmeier²⁹, M. Wittgen¹⁴³, M.W. Wolter³⁸, H. Wolters^{124a,h}, I. Wingerter-Seez⁴, S. Winkelmann⁴⁸, F. Winklmeier²⁹, M. Wittgen¹⁴³, M.W. Wolter³⁸, H. Wolters^{124a,I} W.C. Wong⁴⁰, G. Wooden⁸⁷, B.K. Wosiek³⁸, J. Wotschack²⁹, M.J. Woudstra⁸⁴, K.W. Wozniak³⁸, K. Wraight⁵³, C. Wright⁵³, M. Wright⁵³, B. Wrona⁷³, S.L. Wu¹⁷³, X. Wu⁴⁹, Y. Wu^{32b,ai}, E. Wulf³⁴, B.M. Wynne⁴⁵, S. Xella³⁵, M. Xiao¹³⁶, S. Xie⁴⁸, C. Xu^{32b,x}, D. Xu¹³⁹, B. Yabsley¹⁵⁰, S. Yacoob^{145b}, M. Yamada⁶⁵, H. Yamaguchi¹⁵⁵, A. Yamamoto⁶⁵, K. Yamamoto⁶³, S. Yamamoto¹⁵⁵, T. Yamamura¹⁵⁵, T. Yamanaka¹⁵⁵, J. Yamaoka⁴⁴, T. Yamazaki¹⁵⁵, Y. Yamazaki⁶⁶, Z. Yan²¹, H. Yang⁸⁷, U.K. Yang⁸², Y. Yang⁶⁰, Z. Yang^{146a,146b}, S. Yanush⁹¹, L. Yao^{32a}, Y. Yao¹⁴, Y. Yasu⁶⁵, G.V. Ybeles Smit¹³⁰, J. Ye³⁹, S. Ye²⁴, M. Yilmaz^{3c}, R. Yoosoofmiya¹²³, K. Yorita¹⁷¹, R. Yoshida⁵, C. Young¹⁴³, C.J. Young¹¹⁸, S. Youssef²¹, D. Yu²⁴, J. Yu⁷, J. Yu¹¹², L. Yuan⁶⁶, A. Yurkewicz¹⁰⁶, B. Zabinski³⁸, R. Zaidan⁶², A.M. Zaitsev¹²⁸, Z. Zajacova²⁹, L. Zanello^{132a,132b}, A. Zaytsev¹⁰⁷, C. Zeitnitz¹⁷⁵, M. Zeller¹⁷⁶, M. Zeman¹²⁵, A. Zemla³⁸, C. Zendler²⁰, O. Zenin¹²⁸, T. Ženiš^{144a}, Z. Zinonos^{122a,122b}, S. Zenz¹⁴, D. Zerwas¹¹⁵, G. Zevi della Porta⁵⁷, Z. Zhan^{32d}, D. Zhang^{32b,ah}, H. Zhang⁸⁸, J. Zhang⁵, X. Zhang^{32d}, Z. Zhang¹¹⁵, L. Zhao¹⁰⁸, T. Zhao¹³⁸, Z. Zhao^{32b}, A. Zhemchugov⁶⁴, J. Zhong¹¹⁸, B. Zhou⁸⁷, N. Zhou¹⁶³,

Y. Zhou¹⁵¹, C.G. Zhu^{32d}, H. Zhu⁴¹, J. Zhu⁸⁷, Y. Zhu^{32b}, X. Zhuang⁹⁸, V. Zhuravlov⁹⁹, D. Zieminska⁶⁰, R. Zimmermann²⁰, S. Zimmermann²⁰, S. Zimmermann⁴⁸, M. Ziolkowski¹⁴¹, R. Zitoun⁴, L. Živkovič³⁴, V.V. Zmouchko^{128,*}, G. Zobernig¹⁷³, A. Zoccoli^{19a,19b}, M. zur Nedden¹⁵, V. Zutshi¹⁰⁶, L. Zwalinski²⁹

- ³ ^(a) Department of Physics, Ankara University, Ankara; ^(b) Department of Physics, Dumlupinar University, Kutahya; ^(c) Department of Physics, Gazi University, Ankara; ^(d) Division of Physics,
- TOBB University of Economics and Technology, Ankara; ^(e) Turkish Atomic Energy Authority, Ankara. Turkey
- ⁴ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
- ⁵ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
- ⁶ Department of Physics, University of Arizona, Tucson, AZ, United States
- Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
- ⁸ Physics Department, University of Athens, Athens, Greece
- ⁹ Physics Department, National Technical University of Athens, Zografou, Greece
- ¹⁰ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ¹¹ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain

¹² ^(a) Institute of Physics, University of Belgrade, Belgrade, ^(b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

- ¹³ Department for Physics and Technology, University of Bergen, Bergen, Norway
- ¹⁴ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
- ¹⁵ Department of Physics, Humboldt University, Berlin, Germany
- ¹⁶ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
- ¹⁷ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
 ¹⁸ ^(a) Department of Physics, Bogazici University, Istanbul; ^(b) Division of Physics, Dogus University, Istanbul; ^(c) Department of Physics Engineering, Gaziantep University, Gaziantep;
- ^(d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
- ¹⁹ ^(a) INFN Sezione di Bologna; ^(b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
- ²⁰ Physikalisches Institut, University of Bonn, Bonn, Germany
- ²¹ Department of Physics, Boston University, Boston, MA, United States
- ²² Department of Physics, Brandeis University, Waltham, MA, United States
- 23 (a) Universidade Federal do Rio De Janeiro COPPE/EE/JF. Rio de Janeiro: (b) Federal University of Juiz de Fora (UFIF), Juiz de Fora: (c) Federal University of Sao Joao del Rei (UFSI), Sao Joao del Rei; ^(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
- ²⁴ Physics Department, Brookhaven National Laboratory, Upton, NY, United States
- ²⁵ (a) National Institute of Physics and Nuclear Engineering, Bucharest; ^(b) University Politehnica Bucharest, Bucharest; ^(c) West University in Timisoara, Timisoara, Romania
- ²⁶ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- ²⁷ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- ²⁸ Department of Physics, Carleton University, Ottawa, ON, Canada
- ²⁹ CERN, Geneva, Switzerland
- ³⁰ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
- 31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
- 32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of
- Physics, Nanjing University, Jiangsu; ^(d)School of Physics, Shandong University, Shandong, China
 ³³ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
- ³⁴ Nevis Laboratory, Columbia University, Irvington, NY, United States
- ³⁵ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
- ³⁶ ^(a) INFN Gruppo Collegato di Cosenza; ^(b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
- ³⁷ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
- ³⁸ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
- ³⁹ Physics Department, Southern Methodist University, Dallas, TX, United States
- ⁴⁰ Physics Department, University of Texas at Dallas, Richardson, TX, United States
- ⁴¹ DESY, Hamburg and Zeuthen, Germany
- ⁴² Institut für Experimentelle Physik IV. Technische Universität Dortmund, Dortmund, Germany
- ⁴³ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
- ⁴⁴ Department of Physics, Duke University, Durham, NC, United States
- ⁴⁵ SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- ⁴⁶ Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
- ⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy
- ⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
- ⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland
- ⁵⁰ ^(a) INFN Sezione di Genova; ^(b) Dipartimento di Fisica, Università di Genova, Genova, Italy
- ⁵¹ (a) EAndronikashvili Institute of Physics, Tbilisi State University, Tbilisi; ^(b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
- ⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
- ⁵³ SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
- ⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
- 55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
- ⁵⁶ Department of Physics, Hampton University, Hampton, VA, United States
- ⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
- 58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg; Heidelberg; (c) ZITI Institut für
- technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
- ⁵⁹ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
- ⁶⁰ Department of Physics, Indiana University, Bloomington, IN, United States
- ⁶¹ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
- 62 University of Iowa, Iowa City, IA, United States
- 63 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
- ⁶⁴ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
- ⁶⁵ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
- ⁶⁶ Graduate School of Science, Kobe University, Kobe, Japan
- ⁶⁷ Faculty of Science, Kyoto University, Kyoto, Japan
- 68 Kyoto University of Education, Kyoto, Japan
- ⁶⁹ Department of Physics, Kyushu University, Fukuoka, Japan

¹ University at Albany, Albany, NY, United States

² Department of Physics, University of Alberta, Edmonton, AB, Canada

⁷⁰ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

⁷¹ Physics Department, Lancaster University, Lancaster, United Kingdom

72 (a) INFN Sezione di Lecce: (b) Dipartimento di Matematica e Fisica. Università del Salento. Lecce. Italy

⁷³ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

⁷⁴ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

⁷⁵ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

⁷⁶ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom 77 Department of Physics and Astronomy, University College London, London, United Kingdom

⁷⁸ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

⁷⁹ Fysiska institutionen, Lunds universitet, Lund, Sweden

⁸⁰ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain

⁸¹ Institut für Physik, Universität Mainz, Mainz, Germany

⁸² School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

⁸³ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

⁸⁴ Department of Physics, University of Massachusetts, Amherst, MA, United States

⁸⁵ Department of Physics, McGill University, Montreal, QC, Canada

⁸⁶ School of Physics, University of Melbourne, Victoria, Australia

⁸⁷ Department of Physics, The University of Michigan, Ann Arbor, MI, United States

⁸⁸ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States

⁸⁹ ^(d) INFN Sezione di Milano; ^(b) Dipartimento di Fisica, Università di Milano, Milano, Italy

⁹⁰ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

⁹¹ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

⁹² Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States

⁹³ Group of Particle Physics, University of Montreal, Montreal, QC, Canada

⁹⁴ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

⁹⁵ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

⁹⁶ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

⁹⁷ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

⁹⁹ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

¹⁰⁰ Nagasaki Institute of Applied Science, Nagasaki, Japan

¹⁰¹ Graduate School of Science, Nagoya University, Nagoya, Japan

¹⁰² ^(d) INFN Sezione di Napoli, ^(b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
 ¹⁰³ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States

¹⁰⁴ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

¹⁰⁵ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

¹⁰⁶ Department of Physics, Northern Illinois University, DeKalb, IL, United States

¹⁰⁷ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

¹⁰⁸ Department of Physics, New York University, New York, NY, United States

¹⁰⁹ Ohio State University, Columbus, OH, United States

¹¹⁰ Faculty of Science, Okayama University, Okayama, Japan

¹¹¹ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States

¹¹² Department of Physics, Oklahoma State University, Stillwater, OK, United States

113 Palacký University, RCPTM, Olomouc, Czech Republic

¹¹⁴ Center for High Energy Physics, University of Oregon, Eugene, OR, United States

¹¹⁵ LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France

¹¹⁶ Graduate School of Science, Osaka University, Osaka, Japan

¹¹⁷ Department of Physics, University of Oslo, Oslo, Norway

¹¹⁸ Department of Physics, Oxford University, Oxford, United Kingdom
¹¹⁹ ⁽⁶⁾ INFN Sezione di Pavia; ^(b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy

¹²⁰ Department of Physics, University of Pennsylvania, Philadelphia, PA, United States

¹²¹ Petersburg Nuclear Physics Institute, Gatchina, Russia

¹²² ^(a) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

¹²³ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States

124 (a) Laboratorio de Instrumentacao e Física Experimental de Particulas – IIP, Lisboa, Portugal; ^(b) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain

¹²⁵ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

¹²⁶ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

¹²⁷ Czech Technical University in Prague, Praha, Czech Republic

¹²⁸ State Research Center Institute for High Energy Physics, Protvino, Russia

129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

¹³⁰ Physics Department, University of Regina, Regina, SK, Canada

¹³¹ Ritsumeikan University, Kusatsu, Shiga, Japan

¹³² ^(a) INFN Sezione di Roma I; ^(b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy

¹³³ ^(a) INFN Sezione di Roma Tor Vergata; ^(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

¹³⁴ ^(a) INFN Sezione di Roma Tre; ^(b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy

135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies – Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA – Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculty of sciences, Mohammed V – Agdal University, Rabat, Morocco

136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France

¹³⁷ Santa Cruz, Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States

¹³⁸ Department of Physics, University of Washington, Seattle, WA, United States

¹³⁹ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

140 Department of Physics, Shinshu University, Nagano, Japan

¹⁴¹ Fachbereich Physik, Universität Siegen, Siegen, Germany

¹⁴² Department of Physics, Simon Fraser University, Burnaby, BC, Canada

¹⁴³ SLAC National Accelerator Laboratory, Stanford, CA, United States

144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

- 145 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
- ¹⁴⁶ ^(a) Department of Physics, Stockholm University; ^(b) The Oskar Klein Centre, Stockholm, Sweden
- ¹⁴⁷ Physics Department, Royal Institute of Technology, Stockholm, Sweden
- ¹⁴⁸ Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
- ¹⁴⁹ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
- ¹⁵⁰ School of Physics, University of Sydney, Sydney, Australia
- ¹⁵¹ Institute of Physics, Academia Sinica, Taipei, Taiwan
- ¹⁵² Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
- ¹⁵³ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ¹⁵⁴ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- ¹⁵⁵ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
- ¹⁵⁶ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- ¹⁵⁷ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- ¹⁵⁸ Department of Physics, University of Toronto, Toronto, ON, Canada
- ¹⁵⁹ (a) TRIUMF, Vancouver BC; ^(b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
- ¹⁶⁰ Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- ¹⁶¹ Science and Technology Center, Tufts University, Medford, MA, United States
- ¹⁶² Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
- ¹⁶³ Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
- 164 (@)NFN Gruppo Collegato di Udine; (⁶⁾ICTP, Trieste; ^(c)Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
- ¹⁶⁵ Department of Physics, University of Illinois, Urbana, IL, United States
- ¹⁶⁶ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
- 167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de
- Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
- ¹⁶⁸ Department of Physics, University of British Columbia, Vancouver, BC, Canada
- ¹⁶⁹ Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- ¹⁷⁰ Department of Physics, University of Warwick, Coventry, United Kingdom
- ¹⁷¹ Waseda University, Tokyo, Japan
- ¹⁷² Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- ¹⁷³ Department of Physics, University of Wisconsin, Madison, WI, United States
- ¹⁷⁴ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- ¹⁷⁵ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- ¹⁷⁶ Department of Physics, Yale University, New Haven, CT, United States
- ¹⁷⁷ Yerevan Physics Institute, Yerevan, Armenia
- ¹⁷⁸ Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
- ^a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal,
- ^b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
- ^c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
- Anso at Particle Physics Department, Ratherford Appleton Laboratory, Diacot, Onited Ringde
- ^d Also at TRIUMF, Vancouver, BC, Canada.
- ^e Also at Department of Physics, California State University, Fresno, CA, United States.
- ^f Also at Novosibirsk State University, Novosibirsk, Russia.
- ^g Also at Fermilab, Batavia, IL, United States.
- ^h Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
- ^{*i*} Also at Università di Napoli Parthenope, Napoli, Italy.
- ^j Also at Institute of Particle Physics (IPP), Canada,
- k Also at Department of Physics, Middle East Technical University, Ankara, Turkey,
- ¹ Also at Louisiana Tech University, Ruston, LA, United States.
- ^m Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
- n Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
- ^o Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
- ^{*p*} Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
- ^q Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
- ^r Also at Manhattan College, New York, NY, United States.
- ^s Also at School of Physics, Shandong University, Shandong, China.
- ^t Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
- ^u Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
- ^v Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
- ^w Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.
- * Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.
- ^y Also at Section de Physique, Université de Genève, Geneva, Switzerland.
- ^z Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
- aa Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
- ^{ab} Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
- ^{ac} Also at California Institute of Technology, Pasadena, CA, United States.
- ^{ad} Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
- ae Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France.
- ^{df} Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom,
- ^{ag} Also at Department of Physics, Oxford University, Oxford, United Kingdom.
- ^{*ah*} Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
- ^{*ai*} Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States,
- * Deceased.