Physics Letters B 719 (2013) 242-260

Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

A search for high-mass resonances decaying to $\tau^+\tau^-$ in *pp* collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector \hat{r}

ATLAS Collaboration*

ARTICLE INFO

Article history: Received 24 October 2012 Received in revised form 18 December 2012 Accepted 19 January 2013 Available online 26 January 2013 Editor: H. Weerts

Keywords: Exotics Z' Ditau Resonance Search

ABSTRACT

This Letter presents a search for high-mass resonances decaying into $\tau^+\tau^-$ final states using protonproton collisions at $\sqrt{s} = 7$ TeV produced by the Large Hadron Collider. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 4.6 fb⁻¹. No statistically significant excess above the Standard Model expectation is observed; 95% credibility upper limits are set on the cross section times branching fraction of Z' resonances decaying into $\tau^+\tau^-$ pairs as a function of the resonance mass. As a result, Z' bosons of the Sequential Standard Model with masses less than 1.40 TeV are excluded at 95% credibility.

© 2013 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

Many extensions of the Standard Model (SM), motivated by grand unification, predict additional heavy gauge bosons [1–6]. As lepton universality is not necessarily a requirement for these new gauge bosons, it is essential to search in all decay modes. In particular, some models with extended weak or hypercharge gauge groups that offer an explanation for the high mass of the top quark predict that such bosons preferentially couple to third-generation fermions [7].

This Letter presents the first search for high-mass resonances decaying into $\tau^+\tau^-$ pairs using the ATLAS detector [8]. The Sequential Standard Model (SSM) is a benchmark model that contains a heavy neutral gauge boson, $Z'_{\rm SSM}$, with the same couplings to fermions as the Z boson of the SM. This model is used to optimise the event selection of the search; limits on the cross section times $\tau^+\tau^-$ branching fraction of a generic neutral resonance are reported.

Direct searches for high-mass ditau resonances have been performed previously by the CDF [9] and CMS [10] collaborations. The latter search sets the most stringent 95% confidence level limits and excludes $Z'_{\rm SSM}$ masses below 1.4 TeV, with an expected limit of 1.1 TeV, using 4.9 fb⁻¹ of integrated luminosity at $\sqrt{s} = 7$ TeV. Indirect limits on Z' bosons with non-universal flavour couplings have been set using measurements from LEP and LEP II [11] and translate to a lower bound on the Z' mass of 1.09 TeV. For comparison, the most stringent limits on $Z'_{\rm SSM}$ in the dielectron and dimuon decay channels combined are 2.2 TeV from ATLAS [12] and 2.3 TeV from CMS [13].

Tau leptons can decay into a charged lepton and two neutrinos ($\tau_{\text{lep}} = \tau_e$ or τ_μ), or hadronically (τ_{had}), predominantly into one or three charged pions, a neutrino and often additional neutral pions. The $\tau_{\text{had}} \tau_{\text{had}}$ (branching ratio, BR = 42%), $\tau_\mu \tau_{\text{had}}$ (BR = 23%), $\tau_e \tau_{\text{had}}$ (BR = 6%) channels are analysed. Due to the different dominant background contributions and signal sensitivities, each channel is analysed separately and a statistical combination is used to maximise the sensitivity.

While the expected natural width of the $Z'_{\rm SSM}$ is small, approximately 3% of the Z' mass, the mass resolution is 30–50% in $\tau^+\tau^-$ decay modes due to the undetected neutrinos from the tau decays. Therefore, a counting experiment is performed in all analysis channels from events that pass a high-mass requirement.

2. Event samples

The data used in this search were recorded with the ATLAS detector in proton–proton (*pp*) collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV during the 2011 run of the Large Hadron Collider (LHC) [14]. The ATLAS detector consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer incorporating large superconducting toroid magnets. Each subdetector is divided into barrel and end-cap components.

^{*} E-mail address: atlas.publications@cern.ch,

^{0370-2693/ © 2013} CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license. http://dx.doi.org/10.1016/j.physletb.2013.01.040

Only data taken with pp collisions in stable beam conditions and with all ATLAS subsystems operational are used, resulting in an integrated luminosity of 4.6 fb⁻¹. The data were collected using a combination of single-tau and ditau triggers, designed to select hadronic tau decays, and single-lepton triggers. The $\tau_{had} \tau_{had}$ channel uses events passing either a ditau trigger with transverse energy (E_T) thresholds of 20 and 29 GeV, or a single-tau trigger with an $E_{\rm T}$ threshold of 125 GeV. The $\tau_{\mu}\tau_{\rm had}$ and $\tau_{e}\tau_{\mu}$ channels use events passing a single-muon trigger with a transverse momentum $(p_{\rm T})$ threshold of 18 GeV, which is supplemented by accepting events that pass a single-muon trigger with a $p_{\rm T}$ threshold of 40 GeV that operates only in the barrel region but does not require a matching inner detector track. The $\tau_e \tau_{had}$ channel uses events passing a single-electron trigger with $p_{\rm T}$ thresholds in the range 20–22 GeV, depending on the data-taking period. Events that pass the trigger are selected if the vertex with the largest sum of the squared track momenta has at least four associated tracks, each with $p_{\rm T} > 0.5$ GeV.

Monte Carlo (MC) simulation is used to estimate signal efficiencies and some background contributions. MC samples of background processes from W + jets and Z/γ^* + jets (enriched in high-mass $Z/\gamma^* \rightarrow \tau \tau$) events are generated with ALPGEN 2.13 [15], including up to five additional partons. Samples of $t\bar{t}$, Wtand diboson (WW, WZ, and ZZ) events are generated with MC@NLO 4.01 [16,17]. For these MC samples, the parton showering and hadronisation is performed by HERWIG 6.520 [18] interfaced to JIMMY 4.31 [19] for multiple parton interactions. Samples of s-channel and t-channel single top-quark production are generated with AcerMC 3.8 [20], with the parton showering and hadronisation performed by PYTHIA 6.425 [21]. Samples of Z'_{SSM} signal events are generated with PYTHIA 6.425, for eleven mass hypotheses ranging from 500 to 1750 GeV in steps of 125 GeV. In all samples photon radiation is performed by PHOTOS [22], and tau lepton decays are generated with TAUOLA [23]. The choice of parton distribution functions (PDFs) depends on the generator: CTEQ6L1 [24] is used with ALPGEN, CT10 [25] with MC@NLO and MRST2007 LO* [26] with PYTHIA and AcerMC.

The Z/γ^* cross section calculated at next-to-next-to-leading order (NNLO) using PHOZPR [27] with MSTW2008 PDFs [28] is used to derive mass-dependent *K*-factors that are applied to the leading order Z/γ^* + jets and $Z' \rightarrow \tau\tau$ cross sections. The *W* + jets cross section is calculated at NNLO using FEWZ 2.0 [29,30]. The $t\bar{t}$ cross section is calculated at approximate NNLO [31–33]. The cross sections for single-top production are calculated at next-tonext-to-leading logarithm for the *s*-channel [34] and approximate NNLO for *t*-channel and *Wt* production modes [35].

The detector response for each MC sample is simulated using a detailed GEANT4 [36] model of the ATLAS detector and subdetector-specific digitisation algorithms [37]. As the data are affected by the detector response to multiple pp interactions occurring in the same or in neighbouring bunch crossings (referred to as pile-up), minimum-bias interactions generated with PYTHIA 6.425 (with a specific LHC tune [38]) are overlaid on the generated signal and background events. The resulting events are re-weighted so that the distribution of the number of minimum-bias interactions per bunch crossing agrees with data. All samples are simulated with more than twice the effective luminosity of the data, except W + jets, where an equivalent of approximately 1.5 fb⁻¹ is simulated.

3. Physics object reconstruction

Muon candidates are reconstructed by combining an inner detector track with a track from the muon spectrometer. They are required to have $p_T > 10 \text{ GeV}$ and $|\eta| < 2.5.^1$ Muon quality criteria are applied in order to achieve a precise measurement of the muon momentum and reduce the misidentification rate [39]. These quality requirements correspond to a muon reconstruction and identification efficiency of approximately 95%.

Electrons are reconstructed by matching clustered energy deposits in the EM calorimeter to tracks reconstructed in the inner detector [40]. The electron candidates are required to have $p_{\rm T}$ > 15 GeV and to be within the fiducial volume of the inner detector, $|\eta| < 2.47$. The transition region between the barrel and end-cap EM calorimeters, with $1.37 < |\eta| < 1.52$, is excluded. The candidates are required to pass quality criteria based on the expected calorimeter shower shape and amount of radiation in the transition radiation tracker. These quality requirements correspond to an electron identification (ID) efficiency of approximately 90%. Electrons and muons are considered isolated if they are away from large deposits of energy in the calorimeter, or tracks with large $p_{\rm T}$ consistent with originating from the same vertex.² In the $\tau_e \tau_{had}$ channel, isolated electrons are also required to pass a tighter identification requirement corresponding to an efficiency of approximately 80%.

Jets are reconstructed using the anti- k_t algorithm [41,42] with a radius parameter value of 0.4. The algorithm uses reconstructed, noise-suppressed clusters of calorimeter cells [43]. Jets are calibrated to the hadronic energy scale with correction factors based on simulation and validated using test-beam and collision data [44]. All jets are required to have $p_T > 25$ GeV and $|\eta| < 4.5$. For jets within the inner detector acceptance ($|\eta| < 2.4$), the *jet vertex fraction* is required to be at least 0.75; the jet vertex fraction is defined as the sum of the p_T of tracks associated with the jet and consistent with originating from the selected primary vertex, divided by the sum of the p_T of all tracks associated with the jet. This requirement reduces the number of jets that originate from pile-up or are heavily contaminated by it. Events are discarded if a jet is associated with out-of-time activity or calorimeter noise [45].

Candidates for hadronic tau decays are defined as jets with either one or three associated tracks reconstructed in the inner detector. The kinematic properties of the tau candidate are reconstructed from the visible tau lepton decay products (all products excluding neutrinos). The tau charge is reconstructed from the sum of the charges of the associated tracks and is required to be ± 1 . The charge misidentification probability is found to be negligible. Hadronic tau decays are identified with a multivariate algorithm that employs boosted decision trees (BDTs) to discriminate against quark- and gluon-initiated jets using shower shape and tracking information [46]. Working points with a tau identification efficiency of about 50% (medium) for the $au_\mu au_{
m had}$ and $au_e au_{
m had}$ channels and 60% (loose) for the $au_{had} au_{had}$ channel are chosen, leading to a rate of false identification for quark- and gluon-initiated jets of a few percent [47]. Tau candidates are also required to have $p_T > 35$ GeV and to be in the fiducial volume of the inner detector, $|\eta| < 2.47$

¹ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the *z*-axis along the beam pipe. The *x*-axis points from the IP to the centre of the LHC ring, and the *y*-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Separation in the $\eta-\phi$ plane is defined as $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

² Lepton isolation is defined using the sum of the $E_{\rm T}$ deposited in calorimeter cells within $\Delta R < 0.2$ of the lepton, $E_{\rm T}^{0.2}$, and the scalar sum of the $p_{\rm T}$ of tracks with $p_{\rm T} > 0.5$ GeV consistent with the same vertex as the lepton and within $\Delta R < 0.4$, $p_{\rm T}^{0.4}$, Muons are considered isolated if they have $E_{\rm T}^{0.2}/p_{\rm T} < 4\%$ (and $p_{\rm T}^{0.4}/p_{\rm T} < 6\%$ in the $\tau_e \tau_\mu$ channel). Isolated electrons must have $p_{\rm T}^{0.4}/p_{\rm T} < 5\%$ and $E_{\rm T}^{0.2}/p_{\rm T} < 5\%$ and $E_{\rm T}^{0.2}/p_{\rm T} < 5\%$ in the $\tau_e \tau_\mu$ channel).

(the EM calorimeter transition region is excluded). In the $\tau_{\rm lep}\tau_{\rm had}$ channels, tau candidates are required to have only one track, which must not be in the range $|\eta| < 0.05$, and to pass a muon veto. The removed pseudorapidity region corresponds to a gap in the transition radiation tracker that reduces the power of electron/pion discrimination. In the $\tau_e \tau_{\rm had}$ channel, tau candidates are also required to pass an electron veto using BDTs.

Geometric overlap of objects with $\Delta R < 0.2$ is resolved by selecting only one of the overlapping objects in the following order of priority: muons, electrons, tau candidates and jets. The missing transverse momentum (with magnitude E_T^{miss}) is calculated from the vector sum of the transverse momenta of all high- p_T objects reconstructed in the event, as well as a term for the remaining activity in the calorimeter [48]. Clusters associated with electrons, hadronic tau decays and jets are calibrated separately, with the remaining clusters calibrated at the EM energy scale.

4. Event selection

Selected events in the $\tau_{had} \tau_{had}$ channel must contain at least two oppositely-charged tau candidates with $p_T > 50$ GeV and no electrons with $p_T > 15$ GeV or muons with $p_T > 10$ GeV. If the event was selected by the ditau trigger, both tau candidates are required to be geometrically matched to the objects that passed the trigger. For events that pass only the single-tau trigger there is no ambiguity, so trigger matching is not required. If multiple tau candidates are selected, the two highest- p_T candidates are chosen. The angle between the tau candidates in the transverse plane must be greater than 2.7 radians.

Selected events in the $\tau_{\rm lep}\tau_{\rm had}$ channels must contain exactly one isolated muon with $p_{\rm T} > 25$ GeV or an isolated electron with $p_{\rm T} > 30$ GeV; no additional electrons with $p_{\rm T} > 15$ GeV or muons with $p_{\rm T} > 4$ GeV; and exactly one tau candidate with $p_{\rm T} > 35$ GeV. The angle between the lepton and tau candidate in the transverse plane must be greater than 2.7 radians, and the pair must have opposite electric charge.

For the $\tau_e \tau_{had}$ channel, the $Z \rightarrow ee$ and multijet contributions are reduced to a negligible level by requiring $E_T^{miss} > 30$ GeV. The W + jets background is suppressed by requiring the transverse mass, m_T , of the electron– E_T^{miss} system, defined as

$$m_{\rm T} = \sqrt{2p_{\rm Te} E_{\rm T}^{\rm miss} (1 - \cos \Delta \phi)}, \tag{1}$$

where $\Delta \phi$ is the angle between the lepton and $E_{\rm T}^{\rm miss}$ in the transverse plane, to be less than 50 GeV.

Selected events in the $\tau_e \tau_\mu$ channel must contain exactly one isolated muon with $p_T > 25$ GeV and one isolated electron with $p_T > 35$ GeV and opposite electric charge, no additional electrons with $p_T > 15$ GeV or muons with $p_T > 10$ GeV and not more than one jet. The jet requirement suppresses $t\bar{t}$ events, which typically have higher jet multiplicity than the signal. The two leptons are required to be back-to-back in the transverse plane using the criterion $p_V^{VIS} < 10$ GeV, with

$$p_{\zeta}^{\text{vis}} = \vec{p}_{\text{T}e} \cdot \hat{\zeta} + \vec{p}_{\text{T}\mu} \cdot \hat{\zeta}, \qquad (2)$$

where $\hat{\zeta}$ is a unit vector along the bisector of the *e* and μ momenta. This selection provides good suppression of the diboson and $t\bar{t}$ backgrounds. For Z' events, the $E_{\rm T}^{\rm miss}$ tends to point away from the highest- $p_{\rm T}$ lepton, so the angle between the highest- $p_{\rm T}$ lepton and $E_{\rm T}^{\rm miss}$ in the transverse plane is required to be greater than 2.6 radians.

The search in all channels is performed by counting events in signal regions with *total transverse mass* above thresholds optimised separately for each signal mass hypothesis in each channel Table 1

Thresholds on $m_{\rm T}^{\rm tot}$ used for each signal mass point in each channel. All values are given in GeV.

$m_{Z'}$	500	625	750	875	1000	1125	\geqslant 1250
$ au_{ m had} au_{ m had}$	350	400	500	500	650	650	700
$\tau_{\mu}\tau_{had}$	400	400	500	500	600	600	600
$\tau_e \tau_{had}$	400	400	400	500	500	500	500
$\tau_e \tau_\mu$	300	350	350	350	500	500	500

to give the best expected exclusion limits (see Table 1). The total transverse mass, m_T^{tot} , is defined as the mass of the visible decay products of both tau leptons and E_T^{miss} , neglecting longitudinal momentum components and the tau lepton mass,

$$m_{\rm T}^{\rm tot} = \sqrt{2p_{\rm T1}p_{\rm T2}C + 2E_{\rm T}^{\rm miss}p_{\rm T1}C_1 + 2E_{\rm T}^{\rm miss}p_{\rm T2}C_2},$$
(3)

where p_{T1} and p_{T2} are the transverse momenta of the visible products of the two tau decays; *C* is defined as $1 - \cos \Delta \phi$, where $\Delta \phi$ is the angle in the transverse plane between the visible products of the two tau decays; and C_1 and C_2 are defined analogously for the angles in the transverse plane between E_T^{miss} and the visible products of the first and second tau decay, respectively. Figs. 1(a)-1(d)show the m_T^{tot} distribution after event selection in each channel.

5. Background estimation

The dominant background processes in the $\tau_{had} \tau_{had}$ channel are multijet production and $Z/\gamma^* \rightarrow \tau \tau$. Minor contributions come from $W(\rightarrow \tau \nu)$ +jets, $Z(\rightarrow \ell \ell)$ +jets ($\ell = e$ or μ), $W(\rightarrow \ell \nu)$ +jets, $t\bar{t}$, single top-quark and diboson production. The shape of the multijet mass distribution is estimated from data that pass the full event selection but have two tau candidates of the same electric charge. The contribution is normalised to events that pass the full event selection but have low m_{T}^{tot} . All other background contributions are estimated from simulation.

The main background contributions in the $\tau_{\text{lep}}\tau_{\text{had}}$ channels come from $Z/\gamma^* \rightarrow \tau \tau$, W + jets, $t\bar{t}$ and diboson production, with minor contributions from $Z(\rightarrow \ell \ell)$ + jets, multijet and single topquark events. The contributions involving fake hadronic tau decays from multijet and W + jets events are modelled with data-driven techniques involving *fake factors*, which parameterise the rate for lepton candidates in jets to pass lepton isolation or jets to pass tau identification, respectively. The remaining background is estimated using simulation.

The dominant background processes in the $\tau_e \tau_\mu$ channel are $t\bar{t}$, $Z/\gamma^* \rightarrow \tau \tau$ and diboson production. Contributions from processes such as $Z(\rightarrow \mu\mu)$ + jets, W + jets and $W\gamma$ + jets, where a jet or photon is misidentified as an electron, are very small in the signal region. Multijet events are suppressed by tight lepton isolation criteria. Since background processes involving fake leptons make only minor contributions, all background contributions in the $\tau_e \tau_\mu$ channel are estimated using simulation. The MC estimates of the dominant background contributions are checked using high-purity control regions in data.

The following subsections describe the data-driven background estimates in more detail.

5.1. Multijet background in the $\tau_{had} \tau_{had}$ channel

The shape of the $m_{\rm T}^{\rm tot}$ distribution for the multijet background is estimated using events that pass the standard event selection, but have two selected $\tau_{\rm had}$ candidates with the same electric charge and with $m_{\rm T}^{\rm tot} > 200 \mbox{ GeV}$ to avoid the low $m_{\rm T}^{\rm tot}$ region which is affected by the tau $p_{\rm T}$ threshold. For a low-mass signal with $m_{Z'} \leqslant 625 \mbox{ GeV}$, a lower bound of 160 GeV is used, as

Fig. 1. The m_{T}^{tot} distribution after event selection without the m_{T}^{tot} requirement for each channel: (a) $\tau_{had}\tau_{had}$, (b) $\tau_{\mu}\tau_{had}$, (c) $\tau_{e}\tau_{had}$ and (d) $\tau_{e}\tau_{\mu}$. The estimated contributions from SM processes are stacked and appear in the same order as in the legend. The contribution from $Z \rightarrow ee$ events in which an electron is misidentified as a tau candidate is shown separately in the $\tau_{e}\tau_{had}$ channel. A Z'_{SSM} signal and the events observed in data are overlaid. The signal mass point closest to the Z'_{SSM} exclusion limit in each channel is chosen and is indicated in parentheses in the legend in units of GeV. The uncertainty on the total estimated background (hatched) includes only the statistical uncertainty from the simulated samples. The visible decay products of hadronically decaying taus are denoted by $\tau_{had-vis}$.

discussed below. This control region has only 2% contamination from other background processes and negligible signal contamination. The $m_{\rm T}^{\rm tot}$ distribution is modelled by performing an unbinned maximum likelihood fit to the data in the control region using the following function:

$$f(m_{\rm T}^{\rm tot}|p_0, p_1, p_2) = p_0 \cdot (m_{\rm T}^{\rm tot})^{p_1 + p_2 \log(m_{\rm T}^{\rm tot})},\tag{4}$$

where p_0 , p_1 and p_2 are free parameters. The integral of the fitted function in the high-mass tail matches the number of observed events well for any choice of the $m_{\rm T}^{\rm tot}$ threshold, and the function models the high-mass tail well in a simulated dijet sample enriched in high-mass events. The statistical uncertainty is estimated using pseudo-experiments and increases monotonically from 12% to 83% with increasing $m_{\mathrm{T}}^{\mathrm{tot}}$ threshold. The systematic uncertainty due to the choice of the fitting function is evaluated using alternative fitting functions and ranges from 1% to 7%. The multijet model is normalised to data that pass all analysis requirements but have $m_{\rm T}^{\rm tot}$ in the range 200–250 GeV. For the low-mass points with $m_{Z'} \leq 625$ GeV, the low- m_T^{tot} side-band is lowered to 160-200 GeV to keep signal contamination negligible. Both side-bands have a maximum contamination of 5% from other background processes, which is subtracted, and negligible contamination from signal. The statistical uncertainty from the normalisation ranges from 2% to 5%. Systematic uncertainties affecting the normalisation of the background processes are propagated when performing the subtraction but have a negligible effect.

5.2. Multijet background in the $\tau_{lep} \tau_{had}$ channels

The background from multijet events is negligible at high $m_{\rm T}^{\rm tot}$, but it is important to estimate its contribution to model the inclusive mass distribution. Multijet events are exceptional among the background processes because the muons and electrons produced in heavy-flavour decays or the light-flavour hadrons falsely identified as electrons, are typically not isolated in the calorimeter but produced in jets. To estimate the multijet background, events in the data that fail lepton isolation are weighted event-by-event, with fake factors for lepton isolation measured from data in a multijet-rich control region (multijet-CR). The multijet-CR is defined by requiring exactly one selected lepton, as in Section 4. but without the isolation requirement; at least one tau candidate that fails the BDT ID; no tau candidates that pass the BDT ID; $E_{\rm T}^{\rm miss}$ < 15 GeV for the $\tau_{\mu} \tau_{\rm had}$ channel, $E_{\rm T}^{\rm miss}$ < 30 GeV for the $au_e au_{had}$ channel; and the transverse mass formed by the lepton and $E_{\rm T}^{\rm miss}$, $m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$, to be less than 30 GeV. For the $\tau_{\mu} \tau_{\rm had}$ channel, where the multijet contribution is dominated by *b*-quark-initiated jets, the muon is additionally required to have a transverse impact parameter of $|d_0(\mu)| > 0.08$ mm with respect to the primary vertex, which increases the purity of the multijet control region. The leptons in the multijet control region are divided into those that pass (isolated) and a subset that fail (anti-isolated) the isolation requirements. In the $au_{\mu} au_{had}$ channel the anti-isolated sample includes all muons that fail isolation, while in the $au_e au_{had}$ channel, the anti-isolation requirement is tightened to reduce contamination from real isolated electrons. Isolation fake factors, $f_{\rm iso}$, are

defined as the number of isolated leptons in the data, N^{iso} , divided by the number of anti-isolated leptons, $N^{\text{anti-iso}}$, binned in p_{T} and η :

$$f_{\rm iso}(p_{\rm T},\eta) \equiv \frac{N^{\rm iso}(p_{\rm T},\eta)}{N^{\rm anti-iso}(p_{\rm T},\eta)} \bigg|_{\rm multijet-CR}.$$
(5)

Contamination from real isolated leptons is estimated using simulation and subtracted from $N^{\rm lso}$ (~3% for $\tau_{\mu}\tau_{\rm had}$ and ~25% for $\tau_{e}\tau_{\rm had}$). The number of multijet events passing lepton isolation, $N_{\rm multijet}$, is predicted by weighting the events with anti-isolated leptons by their fake factor:

$$N_{\text{multijet}}(p_{\mathrm{T}},\eta,\mathbf{x}) = f_{\text{iso}}(p_{\mathrm{T}},\eta) \left(N_{\text{data}}^{\text{anti-iso}}(p_{\mathrm{T}},\eta,\mathbf{x}) - N_{\mathrm{MC}}^{\text{anti-iso}}(p_{\mathrm{T}},\eta,\mathbf{x}) \right).$$
(6)

The shape of the multijet background in a given kinematic variable, x, is modelled from the events in the data with anti-isolated leptons, $N_{data}^{anti-iso}$, corrected by subtracting the expected contamination from other background processes predicted with MC simulation, $N_{MC}^{anti-iso}$.

This method assumes that the ratio of the number of isolated leptons to the number of anti-isolated leptons in multijet events is not strongly correlated with the requirements used to enrich the multijet control sample. This assumption has been verified by varying the $E_{\rm T}^{\rm miss}$ and d_0 selection criteria used to define the multijet control region. A conservative 100% systematic uncertainty on the isolation fake factor is assumed, but this has negligible effect on the sensitivity because the expected multijet background is less than a percent of the total background in both the $\tau_{\mu} \tau_{\rm had}$ and $\tau_e \tau_{\rm had}$ channels.

5.3. W + jets background in the $\tau_{lep}\tau_{had}$ channels

The W + jets background is estimated using a technique similar to the multijet estimate, where tau candidates that fail the BDT ID are weighted event-by-event with fake factors for jets to pass the BDT ID in W + jets events. A high purity W + jets control region (W-CR) is defined by selecting events that have exactly one isolated lepton, as in Section 4; at least one tau candidate that is not required to pass the BDT ID; and $m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$ between 70 and 200 GeV. For the $\tau_e \tau_{\rm had}$ channel, the tau candidate is additionally required to pass the electron veto. Tau ID fake factors, f_{τ} , are defined as the number of tau candidates that pass the BDT ID, $N^{\rm pass \ \tau-ID}$, divided by the number that fail, $N^{\rm fail \ \tau-ID}$, binned in $p_{\rm T}$ and η :

$$f_{\tau}(p_{\mathrm{T}},\eta) \equiv \frac{N^{\mathrm{pass}\ \tau-\mathrm{ID}}(p_{\mathrm{T}},\eta)}{N^{\mathrm{fail}\ \tau-\mathrm{ID}}(p_{\mathrm{T}},\eta)}\Big|_{\mathrm{W-CR}},\tag{7}$$

The number of W + jets events passing the BDT ID, N_{W+jets} , is predicted by weighting the events that fail the BDT ID by their fake factor:

$$N_{W+\text{jets}}(p_{\mathrm{T}},\eta,x) = f_{\tau}(p_{\mathrm{T}},\eta) \left(N_{\text{data}}^{\text{fail} \tau-\mathrm{ID}}(p_{\mathrm{T}},\eta,x) - N_{\text{multijet}}^{\text{fail} \tau-\mathrm{ID}}(p_{\mathrm{T}},\eta,x) - N_{\mathrm{MC}}^{\text{fail} \tau-\mathrm{ID}}(p_{\mathrm{T}},\eta,x) \right).$$
(8)

The shape of the W + jets background is modelled using events in the data that failed the BDT ID, $N_{data}^{fail} \tau^{-ID}$, with the multijet contamination, $N_{multijet}^{fail} \tau^{-ID}$ (estimated from data), and other contamination, $N_{MC}^{fail} \tau^{-ID}$ (estimated from simulation), subtracted.

A 30% systematic uncertainty on the fake factors is assigned by comparing the fake factors to those measured in a data sample enriched in Z + jets instead of W + jets, which provides a sample of jets with a similar quark/gluon fraction [49]. This background estimation method relies on the assumption that the tau identification

fake factors for W + jets events are not strongly correlated with the selection used to define the W + jets control region. This assumption has been verified by varying the $m_{\rm T}$ selection criterion used to define the W + jets control region, resulting in a few percent variation, which is well within the systematic uncertainty.

6. Systematic uncertainties

Systematic effects on the contributions of signal and background processes estimated from simulation are discussed in this section. These include theoretical uncertainties on the cross sections of simulated processes and experimental uncertainties on the trigger, reconstruction and identification efficiencies; on the energy and momentum scales and resolutions; and on the measurement of the integrated luminosity. For each source of uncertainty, the correlations across analysis channels, as well as the correlations between signal and background, are taken into account. Uncertainties on the background contributions estimated from data have been discussed in their respective sections.

The overall uncertainty on the Z' signal and the $Z/\gamma^* \rightarrow \tau \tau$ background due to PDFs, α_S and scale variations is estimated to be 12% at 1.5 TeV, dominated by the PDF uncertainty [12]. The uncertainty is evaluated using PDF error sets, and the spread of the variations covers the difference between the central values obtained with the CTEQ and MSTW PDF sets. Additionally, for $Z/\gamma^* \rightarrow \tau \tau$, a systematic uncertainty of 10% is attributed to electroweak corrections [50]. This uncertainty is not considered for the signal as it is strongly model-dependent. An uncertainty of 4-5% is assumed for the inclusive cross section of the single gauge boson and diboson production mechanisms and a relative uncertainty of 24% is added in quadrature per additional jet, due to the irreducible Berends-scaling uncertainty [51,52]. For tt and single top-quark production, the QCD scale uncertainties are in the range of 3-6% [35,53,54]. The uncertainties related to the proton PDFs, including those arising from the choice of PDF set, amount to 8% for the predominantly gluon-initiated processes such as tt and 4% for the predominantly quark-initiated processes at low mass, such as onshell single gauge boson and diboson production [25,28,55-57].

The uncertainty on the integrated luminosity is 3.9% [58,59]. The efficiencies of the electron, muon and hadronic tau triggers are measured in data and are used to correct the simulation. The associated systematic uncertainties are typically 1–2% for electrons and muons, 2.5% for the ditau trigger and 5% for the high- p_T single-tau trigger. Differences between data and simulation in the reconstruction and identification efficiencies of electrons, muons, and hadronic tau decays are taken into account, as well as the differences in the energy and momentum scales and resolutions. The associated uncertainties for muons and electrons are typically < 1%.

The systematic uncertainties on the identification efficiency of hadronic tau decays are estimated at low p_T from data samples enriched in $W \rightarrow \tau \nu$ and $Z \rightarrow \tau \tau$ events. At high $p_{\rm T}$, there are no abundant sources of real hadronic tau decays to make an efficiency measurement. Rather, the fraction of jets that pass the tau identification is studied in high- p_{T} dijet events as a function of the jet p_{T} , which indicates that there is no degradation in the modelling of the detector response as a function of the $p_{\rm T}$ of tau candidates. From these studies, an efficiency uncertainty of up to 8% is assigned to high- $p_{\rm T}$ tau candidates. The uncertainty on the jet-to-tau misidentification rate is 50%, determined from data-MC comparisons in W + jet events. The uncertainty on the electron-to-tau misidentification rate is 50–100%, depending on the pseudorapidity of the tau candidate, based on measurements made using a $Z \rightarrow ee$ sample selected from data [47]. The energy scale uncertainty on taus and jets is evaluated based on the single-hadron response in

Table 2

Uncertainties on the estimated signal and total background contributions in percent for each channel. The following signal masses, chosen to be close to the region where the limits are set, are used: 1250 GeV for $\tau_{had}\tau_{had}$ (hh); 1000 GeV for $\tau_{\mu}\tau_{had}$ (μ h) and $\tau_e \tau_{had}$ (eh); and 750 GeV for $\tau_e \tau_{\mu}$ ($e\mu$). A dash denotes that the uncertainty is not applicable. The statistical uncertainty corresponds to the uncertainty due to limited sample size in the MC and control regions.

Uncertainty [%]	Signal			Background				
	hh	μ h	eh	eμ	hh	μ h	eh	eμ
Stat. uncertainty	1	2	2	3	5	20	23	7
Eff. and fake rate	16	10	8	1	12	16	4	3
Energy scale and res.	5	7	6	2	$^{+22}_{-11}$	3	8	5
Theory cross section	8	6	6	5	9	4	4	5
Luminosity	4	4	4	4	2	2	2	4
Data-driven methods	-	-	-	-	$^{+21}_{-11}$	6	16	-

the calorimeters [44,60]. In addition, the tau energy scale is validated in data samples enriched in $Z \rightarrow \tau \tau$ events. The systematic uncertainties related to the jet and tau energy scale and resolution are functions of η and $p_{\rm T}$, and are generally near 3%. These uncertainties are treated as fully correlated. Energy scale and resolution uncertainties on all objects are propagated to the $E_{\rm T}^{\rm miss}$ calculation. The uncertainty on the $E_{\rm T}^{\rm miss}$ due to clusters that do not belong to any reconstructed object is measured to be negligible in all channels.

Table 2 summarises the uncertainties on the estimated signal and total background contributions in each channel. For the background, the contribution from each uncertainty depends on the fraction of the background estimated with simulation. The dominant uncertainties on the background come from the multijet shape estimation and the tau energy scale uncertainty for $Z/\gamma^* \rightarrow \tau \tau$ events in the $\tau_{had} \tau_{had}$ channel, from the limited sample size and the fake factor estimate of the W + jets background in the $\tau_{lep} \tau_{had}$ channels and from the statistical uncertainty of the MC samples in the $\tau_{e} \tau_{\mu}$ channel. The dominant uncertainty on the signal for the $\tau_{had} \tau_{had}$ and $\tau_{lep} \tau_{had}$ channels comes from the tau identification efficiency and for the $\tau_e \tau_{\mu}$ channel, from the statistical uncertainty on the MC samples.

7. Results and discussion

The numbers of observed and expected events including their total uncertainties, after the full selection in all channels, are summarised in Table 3. In all cases, the number of observed events is consistent with the expected Standard Model background. There-

Table 3

Number of expected and observed events after event selection for each analysis channel. The expected contribution from the signal and background in each channel is calculated for the signal mass point closest to the Z'_{SSM} exclusion limit. The total uncertainties on each estimated contribution are shown. The signal efficiency denotes the expected number of signal events divided by the product of the production cross section, the ditau branching fraction and the integrated luminosity, $\sigma(pp \rightarrow Z'_{SSM}) \times BR(Z'_{SSM} \rightarrow \tau \tau) \times \int L dt$.

$m_{Z'}$ [GeV] $m_{ m T}^{ m cot}$ threshold [GeV]	τ _{had} τ _{had} 1250 700	$ \begin{aligned} \tau_{\mu} \tau_{\text{had}} \\ 1000 \\ 600 \end{aligned} $	τ _e τ _{had} 1000 500	τ _e τ _μ 750 350
$Z/\gamma^* \rightarrow \tau \tau$	0.73 ± 0.23	0.36 ± 0.06	0.57 ± 0.11	0.55 ± 0.07
W + jets	< 0.03	0.28 ± 0.22	0.8 ± 0.4	0.33 ± 0.10
$Z(\rightarrow \ell\ell) + jets$	< 0.01	< 0.1	< 0.01	0.06 ± 0.02
tī	< 0.02	0.33 ± 0.15	0.13 ± 0.09	0.97 ± 0.22
Diboson	< 0.01	0.23 ± 0.07	0.06 ± 0.03	1.69 ± 0.24
Single top	< 0.01	0.19 ± 0.18	< 0.1	< 0.1
Multijet	0.24 ± 0.15	< 0.01	< 0.1	< 0.01
Total expected background	0.97 ± 0.27	1.4 ± 0.4	1.6 ± 0.5	3.6 ± 0.4
Events observed	2	1	0	5
Expected signal events	6.3 ± 1.1	5.5 ± 0.7	5.0 ± 0.5	6.72 ± 0.26
Signal efficiency (%)	4,3	1.1	1.0	0.4

fore, upper limits are set on the production of a high-mass resonance decaying to $\tau^+\tau^-$ pairs.

The statistical combination of the channels employs a likelihood function constructed as the product of Poisson probability terms describing the total number of events observed in each channel. The Poisson probability in each channel is evaluated for the observed number of data events given the signal plus background expectation. Systematic uncertainties on the expected number of events are incorporated into the likelihood via Gaussian-distributed nuisance parameters. Correlations across channels are taken into account. A signal strength parameter multiplies the expected signal in each channel, for which a positive uniform prior probability distribution is assumed. Theoretical uncertainties on the signal cross section are not included in the calculation of the experimental limit as they are model-dependent.

Bayesian 95% credibility upper limits are set on the cross section times branching fraction for a high-mass resonance decaying into a $\tau^+\tau^-$ pair as a function of the resonance mass, using the Bayesian Analysis Toolkit [61]. Figs. 2(a) and 2(b) show the limits for the individual channels and for the combination, respectively. The resulting 95% credibility lower limit on the mass of a $Z'_{\rm SSM}$ decaying to $\tau^+\tau^-$ pairs is 1.40 TeV, with an expected limit of 1.42 TeV. The observed and expected limits in the individual channels are, respectively: 1.26 and 1.35 TeV ($\tau_{\rm had}\tau_{\rm had}$); 1.07 and 1.06 TeV ($\tau_{\mu}\tau_{\rm had}$); 1.10 and 1.03 TeV ($\tau_{e}\tau_{\rm had}$); and 0.72 and 0.82 TeV ($\tau_{e}\tau_{\mu}$).

The impact of the choice of the prior on the signal strength parameter has been evaluated by also considering the reference prior [62]. Use of the reference prior improves the mass limits by approximately 50 GeV. The impact of the vector and axial coupling strengths of the Z' has been investigated, as these can alter the fraction of the tau momentum carried by the visible decay products. For purely V - A couplings, the limit on the cross section times $\tau^+\tau^-$ branching fraction is improved by ~10% over the mass range. For purely V + A couplings, there is a mass-dependent degradation, from ~15% at high mass to ~40% at low mass. All variations lie within the 1σ band of the expected exclusion limit.

8. Conclusion

A search for high-mass ditau resonances has been performed using 4.6 fb⁻¹ of data collected with the ATLAS detector in *pp* collisions at $\sqrt{s} = 7$ TeV at the LHC. The $\tau_{had}\tau_{had}$, $\tau_{\mu}\tau_{had}$, $\tau_{e}\tau_{had}$ and $\tau_{e}\tau_{\mu}$ channels are analysed. The observed number of events in the high-transverse-mass region is consistent with the SM expec-

Fig. 2. (a) The expected (dashed) and observed (solid) 95% credibility upper limits on the cross section times $\tau^+\tau^-$ branching fraction, in the τ_{had} , $\tau_{\mu}\tau_{had}$, $\tau_{e}\tau_{had}$ and $\tau_e \tau_\mu$ channels and for the combination. The expected Z'_{SSM} production cross section and its corresponding theoretical uncertainty (dotted) are also included. (b) The expected and observed limits for the combination including 1σ and 2σ uncertainty bands. Z'_{SSM} masses up to 1.40 TeV are excluded, in agreement with the expected limit of 1.42 TeV in the absence of a signal.

tation. Limits are set on the cross section times branching fraction for such resonances. The resulting lower limit on the mass of a Z'decaying to $\tau^+\tau^-$ in the Sequential Standard Model is 1.40 TeV at 95% credibility, in agreement with the expected limit of 1.42 TeV in the absence of a signal.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada: CERN: CONICYT, Chile: CAS, MOST and NSFC, China: COL-CIENCIAS, Colombia: MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

- [1] P. Langacker, Rev. Mod. Phys. 81 (2009) 1199, arXiv:0801.1345 [hep-ph].
- [2] J.L. Hewett, et al., Phys. Rep. 183 (1989) 193.
- [3] M. Cvetic, et al., Discovery and identification of extra gauge bosons, arXiv: hep-ph/9504216, 1995.
- [4] A. Leike, Phys. Rep. 317 (1999) 143, arXiv:hep-ph/9805494.
- [5] T.G. Rizzo, Z⁷ phenomenology and the LHC, arXiv:hep-ph/0610104, 2006.
- [6] R. Diener, et al., Phys. Rev. D 83 (2011) 115008, arXiv:1006.2845 [hep-ph].
- [7] K.R. Lynch, et al., Phys. Rev. D 63 (2001) 035006, arXiv:hep-ph/0007286,
- [8] ATLAS Collaboration, [INST 3 (2008) S08003.
- [9] CDF Collaboration, D. Acosta, et al., Phys. Rev. Lett. 95 (2005) 131801, arXiv: hep-ex/0506034.
- [10] CMS Collaboration, Phys. Lett. B 716 (2012) 82, arXiv:1206.1725 [hep-ex].
- [11] R.S. Chivukula, et al., Phys. Rev. D 66 (2002) 015006, arXiv:hep-ph/0205064.
- [12] ATLAS Collaboration, JHEP 1211 (2012) 138, arXiv:1209.2535 [hep-ex].
- [13] CMS Collaboration, Phys. Lett. B 714 (2012) 158, arXiv:1206.1849 [hep-ex].
- [14] L.R. Evans, et al., JINST 3 (2008) S08001.
- [15] M.L. Mangano, et al., JHEP 0307 (2003) 001, arXiv:hep-ph/0206293.
- [16] S. Frixione, et al., JHEP 0206 (2002) 029, arXiv:hep-ph/0204244.
- [17] S. Frixione, et al., JHEP 0807 (2008) 029, arXiv:0805.3067 [hep-ph].
- [18] G. Corcella, et al., JHEP 0101 (2001) 010, arXiv:hep-ph/0011363.
- [19] J.M. Butterworth, et al., Z. Phys. C 72 (1996) 637, arXiv:hep-ph/9601371.
- [20] B.P. Kersevan, et al., The Monte Carlo event generator AcerMC version 2.0 with interfaces to PYTHIA 6.2 and HERWIG 6.5, arXiv:hep-ph/0405247, 2004.
- [21] T. Sjöstrand, et al., JHEP 0605 (2006) 026, arXiv:hep-ph/0603175.
- [22] P. Golonka, et al., Eur. Phys. J. C 45 (2006) 97, arXiv:hep-ph/0506026.
- [23] N. Davidson, et al., Comput. Phys. Commun. 183 (2012) 821, arXiv:1002.0543 [hep-ph].
- [24] J. Pumplin, et al., JHEP 0207 (2002) 012, arXiv:hep-ph/0201195.
- [25] H.-L. Lai, et al., Phys. Rev. D 82 (2010) 074024, arXiv:1007.2241 [hep-ph].
- [26] A. Sherstnev, et al., Eur. Phys. J. C 55 (2008) 553, arXiv:0711.2473 [hep-ph].
- [27] R. Hamberg, et al., Nucl. Phys. B 359 (1991) 343.
- [28] A.D. Martin, et al., Eur. Phys. J. C 63 (2009) 189, arXiv:0901.0002 [hep-ph].
- [29] K. Melnikov, et al., Phys. Rev. D 74 (2006) 114017.
- [30] R. Gavin, et al., Comput. Phys. Commun. 182 (2011) 2388, arXiv:1011.3540 [hep-ph].
- [31] S. Moch, et al., Phys. Rev. D 78 (2008) 034003.
- [32] U. Langenfeld, et al., New results for tt production at hadron colliders, arXiv: 0907.2527 [hep-ph], 2009.
- [33] M. Aliev, et al., Comput. Phys. Commun. 182 (2011) 1034, arXiv:1007.1327 [hep-ph].
- [34] N. Kidonakis, Phys. Rev. D 81 (2010) 054028, arXiv:1001.5034 [hep-ph].
- [35] N. Kidonakis, Phys. Rev. D 83 (2011) 091503, arXiv:1103.2792 [hep-ph].
- [36] S. Agostinelli, et al., Nucl. Instrum. Meth. A 506 (2003) 250.
- [37] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568 [physics.ins-det].
- [38] ATLAS Collaboration, ATLAS tunes of PYTHIA 6 and PYTHIA 8 for MC11, ATL-PHYS-PUB-2011-009, 2011, http://cdsweb.cern.ch/record/1363300.
- [39] ATLAS Collaboration, Muon reconstruction efficiency in reprocessed 2010 LHC proton-proton collision data recorded with the ATLAS detector, ATLAS-CONF-2011-063, 2011, http://cdsweb.cern.ch/record/1345743.
- [40] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1909, arXiv:1110.3174 [hep-ex].
- [41] M. Cacciari, et al., JHEP 0804 (2008) 063, arXiv:0802.1189 [hep-ph].

- [42] M. Cacciari, et al., Phys. Lett. B 641 (2006) 57, arXiv:hep-ph/0512210.
- [43] W. Lampl, et al., Calorimeter clustering algorithms: Description and performance, ATL-LARG-PUB-2008-002, 2008, http://cdsweb.cern.ch/record/1099735.
- [44] ATLAS Collaboration, Eur. Phys. J. C, in press, arXiv:1112.6426 [hep-ex].
- [45] ATLAS Collaboration, Data-quality requirements and event cleaning for jets and missing transverse energy reconstruction with the ATLAS detector in proton– proton collisions at a center-of-mass energy of √s = 7 TeV, ATLAS-CONF-2010-038, 2010, http://cdsweb.cern.ch/record/1277678.
- [46] ATLAS Collaboration, Reconstruction, energy calibration, and identification of hadronically decaying tau leptons, ATLAS-CONF-2011-077, 2011, http:// cdsweb.cern.ch/record/1353226.
- [47] ATLAS Collaboration, Performance of the reconstruction and identification of hadronic tau decays with ATLAS, ATLAS-CONF-2011-152, 2011, http:// cdsweb.cern.ch/record/1398195.
- [48] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1844, arXiv:1108.5602 [hep-ex].
- [49] J. Gallicchio, et al., JHEP 1110 (2011) 103, arXiv:1104.1175 [hep-ph].
- [50] ATLAS Collaboration, Phys. Rev. Lett. 107 (2011) 272002, arXiv:1108.1582 [hep-ex].
- [51] F.A. Berends, et al., Phys. Lett. B 224 (1989) 237.

- [52] F.A. Berends, et al., Nucl. Phys. B 357 (1991) 32.
- [53] S. Moch, et al., Phys. Rev. D 78 (2008) 034003, arXiv:0804.1476 [hep-ph].
- [54] M. Beneke, et al., Phys. Lett. B 690 (2010) 483, arXiv:0911.5166 [hep-ph].
- [55] M. Botje, et al., The PDF4LHC Working Group interim recommendations, arXiv: 1101.0538 [hep-ph], 2011.
- [56] S. Alekhin, et al., The PDF4LHC Working Group interim report, arXiv:1101.0536 [hep-ph], 2011.
- [57] R.D. Ball, et al., Nucl. Phys. B 849 (2011) 296, arXiv:1101.1300 [hep-ph].
- [58] ATLAS Collaboration, Luminosity determination in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector in 2011, ATLAS-CONF-2011-116, 2011, http://cdsweb.cern.ch/record/1376384.
- [59] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630, arXiv:1101.2185 [hep-ex].
- [60] ATLAS Collaboration, Determination of the tau energy scale and the associated systematic uncertainty in proton–proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector at the LHC in 2011, ATLAS-CONF-2012-054, 2012, http://cdsweb.cern.ch/record/1453781.
- [61] A. Caldwell, et al., Comput. Phys. Commun. 180 (2009) 2197, arXiv:0808.2552 [physics.data-an].
- [62] D. Casadei, JINST 7 (2012) 1012, arXiv:1108.4270 [physics.data-an].

ATLAS Collaboration

G. Aad ⁴⁸, T. Abajyan ²¹, B. Abbott ¹¹¹, J. Abdallah ¹², S. Abdel Khalek ¹¹⁵, A.A. Abdelalim ⁴⁹, O. Abdinov ¹¹, R. Aben ¹⁰⁵, B. Abi ¹¹², M. Abolins ⁸⁸, O.S. AbouZeid ¹⁵⁸, H. Abramowicz ¹⁵³, H. Abreu ¹³⁶, B.S. Acharya ^{164a,164b}, L. Adamczyk ³⁸, D.L. Adams ²⁵, T.N. Addy ⁵⁶, J. Adelman ¹⁷⁶, S. Adomeit ⁹⁸, P. Adragna ⁷⁵, T. Adye ¹²⁹, S. Aefsky ²³, J.A. Aguilar-Saavedra ^{124b,a}, M. Agustoni ¹⁷, M. Aharrouche ⁸¹, S.P. Ahlen ²², F. Ahles ⁴⁸, A. Ahmad ¹⁴⁸, M. Ahsan ⁴¹, G. Aielli ^{133a,133b}, T.P.A. Åkesson ⁷⁹, G. Akimoto ¹⁵⁵, A.V. Akimov ⁹⁴, M.S. Alam ², M.A. Alam ⁷⁶, J. Albert ¹⁶⁹, S. Albrand ⁵⁵, M. Aleksa ³⁰, I.N. Aleksandrov ⁶⁴, F. Alessandria ^{89a}, C. Alexa ^{26a}, G. Alexander ¹⁵³, G. Alexandre ⁴⁹, T. Alexopoulos ¹⁰, M. Alhroob ^{164a,164c}, M. Aliev ¹⁶, G. Alimonti ^{89a}, J. Alison ¹²⁰, B.M.M. Allbrooke ¹⁸, P.P. Allport ⁷³, S.E. Allwood-Spiers ⁵³, J. Almond ⁸², A. Aloisio ^{102a,102b}, R. Alon ¹⁷², A. Alonso ⁷⁹, F. Alonso ⁷⁰, A. Altheimer ³⁵, B. Alvarez Gonzalez ⁸⁸, M.G. Alviggi ^{102a,102b}, K. Amako ⁶⁵, C. Amelung ²³, V.V. Ammosov ^{128,*}, S.P. Amor Dos Santos ^{124a}, A. Amorim ^{124a,b}, N. Amram ¹⁵³, C. Anastopoulos ³⁰, L.S. Ancu ¹⁷, N. Andari ¹¹⁵, T. Andeen ³⁵, C. F. Anders ^{58a}, K.I. Anderson ³¹, A. Andreazza ^{89a,89b}, V. Andrei ^{58a}, T. Andeen³⁵, C.F. Anders^{58b}, G. Anders^{58a}, K.J. Anderson³¹, A. Andreazza^{89a,89b}, V. Andrei^{58a}, M.-L. Andrieux⁵⁵, X.S. Anduaga⁷⁰, S. Angelidakis⁹, P. Anger⁴⁴, A. Angerami³⁵, F. Anghinolfi³⁰, M.-L. Andrieux ⁵⁵, X.S. Anduaga ⁷⁰, S. Angelidakis ⁹, P. Anger ⁴⁴, A. Angerami ³⁵, F. Anghinolfi ³⁰, A. Anisenkov ¹⁰⁷, N. Anjos ^{124a}, A. Annovi ⁴⁷, A. Antonaki ⁹, M. Antonelli ⁴⁷, A. Antonov ⁹⁶, J. Antos ^{144b}, F. Anulli ^{132a}, M. Aoki ¹⁰¹, S. Aoun ⁸³, L. Aperio Bella ⁵, R. Apolle ^{118,c}, G. Arabidze ⁸⁸, I. Aracena ¹⁴³, Y. Arai ⁶⁵, A.T.H. Arce ⁴⁵, S. Arfaoui ¹⁴⁸, J.-F. Arguin ⁹³, S. Argyropoulos ⁴², E. Arik ^{19a,*}, M. Arik ^{19a}, A.J. Armbruster ⁸⁷, O. Arnaez ⁸¹, V. Arnal ⁸⁰, C. Arnault ¹¹⁵, A. Artamonov ⁹⁵, G. Artoni ^{132a,132b}, D. Arutinov ²¹, S. Asai ¹⁵⁵, S. Ask ²⁸, B. Åsman ^{146a,146b}, L. Asquith ⁶, K. Assamagan ^{25,d}, A. Astbury ¹⁶⁹, M. Atkinson ¹⁶⁵, B. Aubert ⁵, E. Auge ¹¹⁵, K. Augsten ¹²⁷, M. Aurousseau ^{145a}, G. Avolio ³⁰, R. Avramidou ¹⁰, D. Axen ¹⁶⁸, G. Azuelos ^{93,e}, Y. Azuma ¹⁵⁵, M.A. Baak ³⁰, G. Baccaglioni ^{89a}, C. Bacci ^{134a,134b}, A.M. Bach ¹⁵, H. Bachacou ¹³⁶, K. Bachas ³⁰, M. Backes ⁴⁹, M. Backhaus ²¹, J. Backus Mayes ¹⁴³, E. Badescu ^{26a}, P. Bagnaia ^{132a,132b}, S. Bahinipati ³, Y. Bai ^{33a}, D.C. Bailey ¹⁵⁸, T. Bain ¹⁵⁸, J.T. Baines ¹²⁹, O.K. Baker ¹⁷⁶, M.D. Baker ²⁵, S. Baker ⁷⁷, P. Balek ¹²⁶, F. Banas ³⁹, P. Baneriee ⁹³, Sw. Baneriee ¹⁷³, D. Banfi ³⁰ M.D. Baker²⁵, S. Baker⁷⁷, P. Balek¹²⁶, E. Banas³⁹, P. Banerjee⁹³, Sw. Banerjee¹⁷³, D. Banfi³⁰, A. Bangert¹⁵⁰, V. Bansal¹⁶⁹, H.S. Bansil¹⁸, L. Barak¹⁷², S.P. Baranov⁹⁴, A. Barbaro Galtieri¹⁵, T. Barber⁴⁸, A. Bangert ¹³⁶, V. Bansal ¹⁰⁹, H.S. Bansil ¹⁸, L. Barak ¹⁷², S.P. Baranov ⁹⁴, A. Barbaro Galtieri ¹³, T. Barber⁴³, E.L. Barberio ⁸⁶, D. Barberis ^{50a,50b}, M. Barbero ²¹, D.Y. Bardin ⁶⁴, T. Barillari ⁹⁹, M. Barisonzi ¹⁷⁵, T. Barklow ¹⁴³, N. Barlow ²⁸, B.M. Barnett ¹²⁹, R.M. Barnett ¹⁵, A. Baroncelli ^{134a}, G. Barone ⁴⁹, A.J. Barr ¹¹⁸, F. Barreiro ⁸⁰, J. Barreiro Guimaráes da Costa ⁵⁷, P. Barrillon ¹¹⁵, R. Bartoldus ¹⁴³, A.E. Barton ⁷¹, V. Bartsch ¹⁴⁹, A. Basye ¹⁶⁵, R.L. Bates ⁵³, L. Batkova ^{144a}, J.R. Batley ²⁸, A. Battaglia ¹⁷, M. Battistin ³⁰, F. Bauer ¹³⁶, H.S. Bawa ^{143, f}, S. Beale ⁹⁸, T. Beau ⁷⁸, P.H. Beauchemin ¹⁶¹, R. Beccherle ^{50a}, P. Bechtle ²¹, H.P. Beck ¹⁷, A.K. Becker ¹⁷⁵, S. Becker ⁹⁸, M. Beckingham ¹³⁸, K.H. Becks ¹⁷⁵, A.J. Beddall ^{19c}, A. Beddall ^{19c}, S. Bedikian ¹⁷⁶, V.A. Bednyakov ⁶⁴, C.P. Bee ⁸³, L.J. Beemster ¹⁰⁵, M. Begel ²⁵, S. Behar Harpaz ¹⁵², P.K. Behera ⁶², M. Beimforde ⁹⁹, G. Belanger, Champagne ⁸⁵, Pl. Bell ⁴⁹, W.H. Bell ⁴⁹, C. Bella ¹⁵³ P.K. Behera ⁶², M. Beimforde ⁹⁹, C. Belanger-Champagne ⁸⁵, P.J. Bell ⁴⁹, W.H. Bell ⁴⁹, G. Bella ¹⁵³, L. Bellagamba ^{20a}, M. Bellomo ³⁰, A. Belloni ⁵⁷, O. Beloborodova ^{107,g}, K. Belotskiy ⁹⁶, O. Beltramello ³⁰, O. Benary ¹⁵³, D. Benchekroun ^{135a}, K. Bendtz ^{146a, 146b}, N. Benekos ¹⁶⁵, Y. Benhammou ¹⁵³, E. Benhar Noccioli⁴⁹, J.A. Benitez Garcia^{159b}, D.P. Benjamin⁴⁵, M. Benoit¹¹⁵, J.R. Bensinger²³, K. Benslama¹³⁰, S. Bentvelsen¹⁰⁵, D. Berge³⁰, E. Bergeaas Kuutmann⁴², N. Berger⁵, F. Berghaus¹⁶⁹,

E. Berglund ¹⁰⁵, J. Beringer ¹⁵, P. Bernat ⁷⁷, R. Bernhard ⁴⁸, C. Bernius ²⁵, T. Berry ⁷⁶, C. Bertella ⁸³, A. Bertin ^{20a,20b}, F. Bertolucci ^{122a,122b}, M.I. Besana ^{89a,89b}, G.J. Besjes ¹⁰⁴, N. Besson ¹³⁶, S. Bethke ⁹⁹, W. Bhimji ⁴⁶, R.M. Bianchi ³⁰, L. Bianchini ²³, M. Bianco ^{72a,72b}, O. Biebel ⁹⁸, S.P. Bieniek ⁷⁷, K. Bierwagen ⁵⁴, J. Biesiada ¹⁵, M. Biglietti ^{134a}, H. Bilokon ⁴⁷, M. Bindi ^{20a,20b}, S. Binet ¹¹⁵, A. Bingul ^{19c}, C. Bini ^{132a,132b}, C. Biscarat ¹⁷⁸, B. Bittner ⁹⁹, C.W. Black ¹⁵⁰, K.M. Black ²², R.E. Blair ⁶, J.-B. Blanchard ¹³⁶, G. Blanchot ³⁰, T. Blazek ^{144a}, I. Bloch ⁴², C. Blocker ²³, J. Blocki ³⁹, A. Blondel ⁴⁹, W. Blum ⁸¹, U. Blumenschein ⁵⁴, G.J. Bobbink ¹⁰⁵, V.S. Bobrovnikov ¹⁰⁷, S.S. Bocchetta ⁷⁹, A. Bocci ⁴⁵, C.R. Boddy ¹¹⁸, M. Boehler ⁴⁸, J. Boek ¹⁷⁵, N. Boelaert ³⁶, J.A. Bogaerts ³⁰, A. Bogdanchikov ¹⁰⁷, A. Bogouch ^{90,*}, C. Bohm ^{146a}, J. Bohm ¹²⁵, V. Boisvert ⁷⁶, T. Bold ³⁸, V. Boldea ^{26a}, N.M. Bolnet ¹³⁶, M. Bomben ⁷⁸, M. Bona ⁷⁵, M. Boonekamp ¹³⁶, S. Bordoni ⁷⁸, C. Borer ¹⁷, A. Borisov ¹²⁸, G. Borissov ⁷¹, I. Borjanovic ^{13a}, M. Borri ⁸², S. Borroni ⁸⁷, J. Bortfeldt ⁹⁸, V. Bortolotto ^{134a,134b}, K. Bos ¹⁰⁵, D. Boscherini ^{20a}, M. Bosman ¹², H. Boterenbrood ¹⁰⁵, I. Bouchami ⁹³, I. Boudreau ¹²³, E.V. Bouhova-Thacker ⁷¹, D. Boumediene ³⁴. M. Bona ⁷⁵, M. Boonekamp ¹³⁰, S. Bortdoni ⁷⁶, C. Borer ¹⁷, A. Borisov ¹²⁸, G. Borssov ¹¹, I. Borjanovic ¹³⁴, M. Borri ⁸², S. Borroni ⁸⁷, J. Bortfeldt ⁹⁸, V. Bortolotto ^{134a,134b}, K. Bos ¹⁰⁵, D. Boscherini ^{20a}, M. Bosman ¹², H. Boterenbrood ¹⁰⁵, J. Bouchami ⁹³, J. Boudreau ¹²³, E.V. Bouhova-Thacker ⁷¹, D. Boumediene ³⁴, C. Bourdarios ¹¹⁵, N. Bousson ⁸³, A. Boveia ³¹, J. Boyd ³⁰, I.R. Boyko ⁶⁴, I. Bozovic-Jelisavcic ^{13b}, J. Bracinik ¹⁸, P. Branchini ^{134a}, A. Brandt ⁸, G. Brandt ¹¹⁸, O. Brandt ⁵⁴, U. Bratzler ¹⁵⁶, B. Brau ⁸⁴, J.E. Brau ¹¹⁴, H.M. Braun ^{175,*}, S.F. Brazzale ^{164a,164c}, B. Brelier ¹⁵⁸, J. Bremer ³⁰, K. Brendlinger ¹²⁰, R. Brenner ¹⁶⁶, S. Bressler ¹⁷², D. Britton ⁵³, F.M. Brochu ²⁸, I. Brock ²¹, R. Brock ⁸⁸, F. Broggi ^{89a}, C. Bromberg ⁸⁸, J. Bronner ⁹⁹, G. Brooijmans ³⁵, T. Bronoks ⁷⁶, W.K. Brooks ^{32b}, G. Brown ⁸², H. Brown ⁸, P.A. Bruckman de Renstrom ³⁹, D. Bruncko ^{144b}, R. Bruneliere ⁴⁸, S. Brunet ⁶⁰, A. Bruni ^{20a}, G. Bruni ^{20a}, M. Bruschi ^{20a}, T. Buanes ¹⁴, Q. Buat ⁵⁵, F. Bucci ⁴⁹, J. Buchanan ¹¹⁸, P. Buchholz ¹⁴¹, R.M. Buckingham ¹¹⁸, A.G. Buckley ⁴⁶, S.I. Buda ^{26a}, I.A. Budagov ⁶⁴, B. Budick ¹⁰⁸, V. Büscher ⁸¹, L. Bugge ¹¹⁷, O. Bulekov ⁹⁶, A.C. Bundock ⁷³, M. Bunse ⁴³, T. Buran ¹¹⁷, H. Burckhart ³⁰, S. Burdin ⁷³, T. Burgess ¹⁴, S. Burke ¹²⁹, E. Busato ³⁴, P. Bussey ⁵³, C.P. Buszello ¹⁶⁶, B. Butler ¹⁴³, J.M. Butler ²², C.M. Buttar ⁵³, J.M. Butterworth ⁷⁷, W. Buttinger ²⁸, M. Byszewski ³⁰, S. Cabrera Urbán ¹⁶⁷, D. Caforio ^{20a,20b}, O. Cakir ^{4a}, P. Calafiura ¹⁵, G. Calderini ⁷⁸, P. Calfayan ⁹⁸, R. Calkins ¹⁰⁶, L.P. Caloba ^{24a}, R. Caloi ^{132a,132b}, D. Calver ³⁴, S. Calvet ³⁴, R. Camacho Toro ³⁴, P. Camarri ^{133a,133b}, D. Cameron ¹¹⁷, L.M. Caminada ¹⁵, R. Caminal Armadans ¹², S. Campan ³⁰, M. Campanelli ⁷⁷, V. Canale ^{102a,102b}, F. Canelli ³¹, A. Canepa ^{159a}, J. Cantero ⁸⁰, A. catinaccio⁺⁺, J.C. cattal⁺⁺, G. cattal⁺⁺, G. cattal⁺⁺, C. cattal⁺⁺, S. catin⁺⁺, S. Chafaq⁺⁺, S. Chakraborty⁺⁺, A. S. Cerqueira^{24b}, A. Cerri³⁰, L. Cerrito⁷⁵, F. Cerutti⁴⁷, S.A. Cetin⁺⁺, A. Chafaq⁺⁺, D. Chakraborty⁺⁺, Chang⁺⁺, S. Chapleau⁸⁵, J.D. Chapman²⁸, J.W. Chapman⁸⁷, E. Chareyre⁷⁸, D.G. Charlton¹⁸, V. Chavda⁸², C.A. Chavez Barajas³⁰, S. Cheatham⁸⁵, S. Chekanov⁶, S.V. Chekulaev⁺⁺, S.G. Charlov⁶⁴, M.A. Chelstowska¹⁰⁴, C. Chen⁶³, H. Chen²⁵, S. Chen^{33c}, X. Chen¹⁷³, Y. Chen³⁵, Y. Cheng³¹, A. Cheplakov⁶⁴, R. Cherkaoui El Moursli^{135e}, V. Cheruyatin²⁵, E. Cheu⁷, S.L. Cheung¹⁵⁸, L. Chevalier¹³⁶, G. Chiefari^{102a,102b}, L. Chikovan^{51a,*}, J.T. Childers³⁰, A. Chilingarov⁷¹, G. Chiodini^{72a}, A.S. Chisholm¹⁸, R.T. Chislett⁷⁷, A. Chitan^{26a}, M.V. Chizhov⁶⁴, G. Choudalakis³¹, S. Chouridou¹³⁷, I.A. Christov⁴⁸, D. Chromek-Burckhart³⁰, M.L. Chu¹⁵¹, J. Chudoba¹²⁵, G. Ciapetti^{132a,132b}, A.K. Ciftci^{4a}, R. Ciftci^{4a}, D. Cinca³⁴, V. Cindro⁷⁴, C. Ciocca^{20a,20b}, A. Ciocio¹⁵, M. Cirilli⁸⁷, P. Cirkovic^{13b}, Z.H. Citron¹⁷², M. Citterio^{89a}, M. Ciubara^{26a}, A. Clark⁴⁹, P.J. Clark⁴⁶, R.N. Clarke¹⁵, W. Cleland¹²³, J.C. Clemens⁸³, B. Clement⁵⁵, C. Clement^{146a,146b}, Y. Coadou⁸³, M. Cobal^{164a,164c}, A. Coccaro¹³⁸, J. Cochran⁶³, L. Coffey²³, J.G. Cogan¹⁴³, J. Coggeshall¹⁶⁵, E. Cogneras¹⁷⁸, J. Colas⁵, S. Cole¹⁰⁶, A.P. Colijn¹⁰⁵, N.J. Collins¹⁸, C. Collins^{-174a}, E. Coniavitis¹⁶⁶, M.C. Conidi¹², M. Corsoni^{89a,89b}, V. Consorti⁴⁸, S. Constantinescu^{26a}, C. Conta^{119a,119b}, G. Conti⁵⁷, F. Conventi^{102a,j}, M. Cooke¹⁵, B.D. Cooper⁷⁷, A.M. Cooper-Sarkar¹¹⁸, K. Copic¹⁵, T. Cornelissen¹⁷⁵, M. Corradi^{20a}, F. Corriveau^{85,k}, A. Cortes-Gonzalez¹⁶⁹, G. Covtan⁷⁶, C. Cowden²⁸, B.E. Cox⁸², K. Cranmer¹⁰⁸, F. Crescioli^{122a,122b}, M. Crist

T. Cuhadar Donszelmann¹³⁹, J. Cummings¹⁷⁶, M. Curatolo⁴⁷, C.J. Curtis¹⁸, C. Cuthbert¹⁵⁰, P. Cwetanski⁶⁰, H. Czirr¹⁴¹, P. Czodrowski⁴⁴, Z. Czyczula¹⁷⁶, S. D'Auria⁵³, M. D'Onofrio⁷³, A. D'Orazio ^{132a,132b}, M.J. Da Cunha Sargedas De Sousa ^{124a}, C. Da Via⁸², W. Dabrowski ³⁸, A. Dafinca ¹¹⁸, A. D'Orazio ^{132a,132b}, M.J. Da Cunha Sargedas De Sousa ^{124a}, C. Da Via⁸², W. Dabrowski ³⁸, A. Dafinca ¹¹⁸, T. Dai⁸⁷, C. Dallapiccola⁸⁴, M. Dam³⁶, M. Dameri ^{50a,50b}, D.S. Damiani ¹³⁷, H.O. Danielsson³⁰, V. Dao⁴⁹, G. Darbo ^{50a}, G.L. Darlea^{26b}, J.A. Dassoulas⁴², W. Davey²¹, T. Davidek ¹²⁶, N. Davidson⁸⁶, R. Davidson⁷¹, E. Davies ^{118,c}, M. Davies ⁹³, O. Davignon⁷⁸, A.R. Davison⁷⁷, Y. Davygora ^{58a}, E. Dawe¹⁴², I. Dawson ¹³⁹, R.K. Daya-Ishmukhametova²³, K. De⁸, R. de Asmundis ^{102a}, S. De Castro ^{20a,20b}, S. De Cecco⁷⁸, J. de Graat ⁹⁸, N. De Groot ¹⁰⁴, P. de Jong ¹⁰⁵, C. De La Taille ¹¹⁵, H. De la Torre ⁸⁰, F. De Lorenzi ⁶³, L. de Mora ⁷¹, L. De Nooij ¹⁰⁵, D. De Pedis ^{132a}, A. De Salvo ^{132a}, U. De Sanctis ^{164a,164c}, A. De Santo ¹⁴⁹, J.B. De Vivie De Regie ¹¹⁵, G. De Zorzi ^{132a,132b}, W.J. Dearnaley ⁷¹, R. Debbe ²⁵, C. Debenedetti ⁴⁶, B. Dechenaux ⁵⁵, D.V. Dedovich ⁶⁴, J. Degenhardt ¹²⁰, J. Del Peso ⁸⁰, T. Del Prete ^{122a,122b}, T. Delemontex ⁵⁵, B. Dechenaux³⁵, D.V. Dedovich³⁷, J. Degenhardt¹²⁶, J. Del Peso³⁶, I. Del Prete^{1224,1225}, I. Delemontex³⁷
M. Deliyergiyev⁷⁴, A. Dell'Acqua³⁰, L. Dell'Asta²², M. Della Pietra^{102a,j}, D. della Volpe^{102a,102b},
M. Delmastro⁵, P.A. Delsart⁵⁵, C. Deluca¹⁰⁵, S. Demers¹⁷⁶, M. Demichev⁶⁴, B. Demirkoz^{12,l},
S.P. Denisov¹²⁸, D. Derendarz³⁹, J.E. Derkaoui^{135d}, F. Derue⁷⁸, P. Dervan⁷³, K. Desch²¹, E. Devetak¹⁴⁸,
P.O. Deviveiros¹⁰⁵, A. Dewhurst¹²⁹, B. DeWilde¹⁴⁸, S. Dhaliwal¹⁵⁸, R. Dhullipudi^{25,m},
A. Di Ciaccio^{133a,133b}, L. Di Ciaccio⁵, C. Di Donato^{102a,102b}, A. Di Girolamo³⁰, B. Di Girolamo³⁰,
S. Di Luise^{134a,134b}, A. Di Mattia¹⁷³, B. Di Micco³⁰, R. Di Nardo⁴⁷, A. Di Simone^{133a,133b},
P. Di Sinia^{204,20b}, M.A. Diag^{32d}, F.B. Dickl⁸⁷, J. Dickrich⁴², T.A. Distanceh^{58d}, G. Diglia⁸⁶ S. DI LUISE ^{157a, 157b}, A. DI Mattia ¹⁷³, B. Di Micco ³⁰, R. Di Nardo ⁴⁷, A. Di Simone ^{133a, 133b},
R. Di Sipio ^{20a, 20b}, M.A. Diaz ^{32a}, E.B. Diehl ⁸⁷, J. Dietrich ⁴², T.A. Dietzsch ^{58a}, S. Diglio ⁸⁶,
K. Dindar Yagci ⁴⁰, J. Dingfelder ²¹, F. Dinut ^{26a}, C. Dionisi ^{132a, 132b}, P. Dita ^{26a}, S. Dita ^{26a}, F. Dittus ³⁰,
F. Djama ⁸³, T. Djobava ^{51b}, M.A.B. do Vale ^{24c}, A. Do Valle Wemans ^{124a, n}, T.K.O. Doan ⁵, M. Dobbs ⁸⁵,
D. Dobos ³⁰, E. Dobson ^{30, o}, J. Dodd ³⁵, C. Doglioni ⁴⁹, T. Doherty ⁵³, Y. Doi ^{65,*}, J. Dolejsi ¹²⁶, I. Dolenc ⁷⁴,
Z. Dolezal ¹²⁶, B.A. Dolgoshein ^{96,*}, T. Dohmae ¹⁵⁵, M. Donadelli ^{24d}, J. Donini ³⁴, J. Dopke ³⁰, A. Doria ^{102a},
A. Dos Anjos ¹⁷³, A. Dotti ^{122a, 122b}, M.T. Dova ⁷⁰, A.D. Doxiadis ¹⁰⁵, A.T. Doyle ⁵³, N. Dressnandt ¹²⁰,
M. Dris ¹⁰, J. Dubbert ⁹⁹, S. Dube ¹⁵, E. Duchovni ¹⁷², G. Duckeck ⁹⁸, D. Duda ¹⁷⁵, A. Dudarev ³⁰,
E. Dudziak ⁶³, M. Dührssen ³⁰, I.P. Duerdoth ⁸², L. Duflot ¹¹⁵, M. A. Dufour ⁸⁵, L. Dursuid ⁷⁶, M. Dueferd ⁵⁸⁴ F. Dudziak⁶³, M. Dührssen³⁰, I.P. Duerdoth⁸², L. Duflot¹¹⁵, M.-A. Dufour⁸⁵, L. Duguid⁷⁶, M. Dunford^{58a}, H. Duran Yildiz^{4a}, R. Duxfield¹³⁹, M. Dwuznik³⁸, M. Düren⁵², W.L. Ebenstein⁴⁵, J. Ebke⁹⁸, S. Eckweiler⁸¹, K. Edmonds⁸¹, W. Edson², C.A. Edwards⁷⁶, N.C. Edwards⁵³, W. Ehrenfeld⁴², T. Eifert¹⁴³, G. Eigen¹⁴, K. Einsweiler¹⁵, E. Eisenhandler⁷⁵, T. Ekelof¹⁶⁶, M. El Kacimi^{135c}, M. Ellert¹⁶⁶, S. Elles⁵, G. Eigen ¹⁴, K. Einsweiler ¹⁵, E. Eisenhandler ¹⁵, I. Ekelof ¹⁶⁶, M. El Kacimi ¹⁵⁵, M. Ellert ¹⁶⁶, S. Elles ⁵, F. Ellinghaus ⁸¹, K. Ellis ⁷⁵, N. Ellis ³⁰, J. Elmsheuser ⁹⁸, M. Elsing ³⁰, D. Emeliyanov ¹²⁹, R. Engelmann ¹⁴⁸, A. Engl ⁹⁸, B. Epp ⁶¹, J. Erdmann ⁵⁴, A. Ereditato ¹⁷, D. Eriksson ^{146a}, J. Ernst ², M. Ernst ²⁵, J. Ernwein ¹³⁶, D. Errede ¹⁶⁵, S. Errede ¹⁶⁵, E. Ertel ⁸¹, M. Escalier ¹¹⁵, H. Esch ⁴³, C. Escobar ¹²³, X. Espinal Curull ¹², B. Esposito ⁴⁷, F. Etienne ⁸³, A.I. Etienvre ¹³⁶, E. Etzion ¹⁵³, D. Evangelakou ⁵⁴, H. Evans ⁶⁰, L. Fabbri ^{20a,20b}, C. Fabre ³⁰, R.M. Fakhrutdinov ¹²⁸, S. Falciano ^{132a}, Y. Fang ^{33a}, M. Fanti ^{89a,89b}, A. Farbin ⁸, A. Farilla ^{134a}, J. Farley ¹⁴⁸, T. Farooque ¹⁵⁸, S. Farrell ¹⁶³, S.M. Farrington ¹⁷⁰, P. Farthouat ³⁰, F. Fassi ¹⁶⁷, P. Fassnacht ³⁰, D. Fassouliotis ⁹, B. Fatholahzadeh ¹⁵⁸, A. Favareto ^{89a,89b}, L. Fayard ¹¹⁵, S. Fazio ^{37a,37b}, R. Febbraro ³⁴, P. Eederic ^{144a}, O.L. Endin ¹²¹, W. Eederke ⁸⁸, M. Eebling, Kasshek ⁴⁸, L. Eeligipi ⁸³, C. Engg ^{33d}, F. L. Engg P. Federic^{144a}, O.L. Fedin¹²¹, W. Fedorko⁸⁸, M. Fehling-Kaschek⁴⁸, L. Feligioni⁸³, C. Feng^{33d}, E.J. Feng⁶, A.B. Fenyuk¹²⁸, J. Ferencei^{144b}, W. Fernando⁶, S. Ferrag⁵³, J. Ferrando⁵³, V. Ferrara⁴², A. Ferrari¹⁶⁶, P. Ferrari ¹⁰⁵, R. Ferrari ^{119a}, D.E. Ferreira de Lima ⁵³, A. Ferrer ¹⁶⁷, D. Ferrere ⁴⁹, C. Ferretti ⁸⁷, A. Ferretto Parodi ^{50a,50b}, M. Fiascaris ³¹, F. Fiedler ⁸¹, A. Filipčič ⁷⁴, F. Filthaut ¹⁰⁴, M. Fincke-Keeler ¹⁶⁹, M.C.N. Fiolhais ^{124a,h}, L. Fiorini ¹⁶⁷, A. Firan ⁴⁰, G. Fischer ⁴², M.J. Fisher ¹⁰⁹, M. Flechl ⁴⁸, I. Fleck ¹⁴¹, J. Fleckner⁸¹, P. Fleischmann¹⁷⁴, S. Fleischmann¹⁷⁵, T. Flick¹⁷⁵, A. Floderus⁷⁹, L.R. Flores Castillo¹⁷³, A.C. Florez Bustos^{159b}, M.J. Flowerdew⁹⁹, T. Fonseca Martin¹⁷, A. Formica¹³⁶, A. Forti⁸², D. Fortin^{159a}, D. Fournier¹¹⁵, A.J. Fowler⁴⁵, H. Fox⁷¹, P. Francavilla¹², M. Franchini^{20a,20b}, S. Franchino^{119a,119b}, D. Francis³⁰, T. Frank¹⁷², M. Franklin⁵⁷, S. Franz³⁰, M. Fraternali^{119a,119b}, S. Fratina¹²⁰, S.T. French²⁸, C. Friedrich⁴², F. Friedrich⁴⁴, R. Froeschl³⁰, D. Froidevaux³⁰, J.A. Frost²⁸, C. Fukunaga¹⁵⁶, E. Fullana Torregrosa³⁰, B.G. Fulsom¹⁴³, J. Fuster¹⁶⁷, C. Gabaldon³⁰, O. Gabizon¹⁷², T. Gadfort²⁵, S. Gadomski⁴⁹, G. Gagliardi^{50a,50b}, P. Gagnon⁶⁰, C. Galea⁹⁸, B. Galhardo^{124a}, E.J. Gallas¹¹⁸, V. Gallo¹⁷, B.J. Gallop¹²⁹, P. Gallus¹²⁵, K.K. Gan¹⁰⁹, Y.S. Gao^{143,f}, A. Gaponenko¹⁵, F. Garberson¹⁷⁶, M. Garcia-Sciveres¹⁵, C. García¹⁶⁷, J.E. García Navarro¹⁶⁷, R.W. Gardner³¹, N. Garelli³⁰, H. Garitaonandia¹⁰⁵, V. Garonne³⁰, C. Gatti⁴⁷, G. Gaudio^{119a}, B. Gaur¹⁴¹, L. Gauthier¹³⁶, P. Gauzzi ^{132a, 132b}, I.L. Gavrilenko ⁹⁴, C. Gay ¹⁶⁸, G. Gaycken ²¹, E.N. Gazis ¹⁰, P. Ge ^{33d}, Z. Gecse ¹⁶⁸, C.N.P. Gee¹²⁹, D.A.A. Geerts¹⁰⁵, Ch. Geich-Gimbel²¹, K. Gellerstedt^{146a, 146b}, C. Gemme^{50a}.

A. Gemmell ⁵³, M.H. Genest ⁵⁵, S. Gentile ^{132a,132b}, M. George ⁵⁴, S. George ⁷⁶, P. Gerlach ¹⁷⁵, A. Gershon ¹⁵³, C. Geweniger ^{58a}, H. Ghazlane ^{135b}, N. Ghodbane ³⁴, B. Giacobbe ^{20a}, S. Giagu ^{132a,132b}, V. Giakoumopoulou ⁹, V. Giangiobbe ¹², F. Gianotti ³⁰, B. Gibbard ²⁵, A. Gibson ¹⁵⁸, S.M. Gibson ³⁰, M. Gilchriese ¹⁵, D. Gillberg ²⁹, A.R. Gillman ¹²⁹, D.M. Gingrich ^{3,e}, J. Ginzburg ¹⁵³, N. Giokaris ⁹, M.P. Giordani ^{164c}, R. Giordano ^{102a,102b}, F.M. Giorgi ¹⁶, P. Giovannini ⁹⁹, P.F. Giraud ¹³⁶, D. Giugni ^{89a}, M. Giunta ⁹³, B.K. Gjelsten ¹¹⁷, L.K. Gladilin ⁹⁷, C. Glasman ⁸⁰, J. Glatzer ²¹, A. Glazov ⁴², K.W. Glitza ¹⁷⁵, G.L. Glonti ⁶⁴, J.R. Goddard ⁷⁵, J. Godfrey ¹⁴², J. Godlewski ³⁰, M. Goebel ⁴², T. Göpfert ⁴⁴, C. Goeringer ⁸¹, C. Gössling ⁴³, S. Goldfarb ⁸⁷, T. Golling ¹⁷⁶, A. Gomes ^{124a,b}, L.S. Gomez Fajardo ⁴², R. Gonçalo ⁷⁶, J. Goncalves Pinto Firmino Da Costa ⁴², L. Gonella ²¹, S. González de la Hoz ¹⁶⁷, G. Gonzalez Parra ¹², M.L. Conzalez Silva ²⁷, S. Conzalez Sevilla ⁴⁹, H. Goodson ¹⁴⁸, L. Goossens ³⁰, P.A. Corbounov ⁹⁵ M.L. Gonzalez Silva²⁷, S. Gonzalez-Sevilla⁴⁹, J.J. Goodson¹⁴⁸, L. Goossens³⁰, P.A. Gorbounov⁹⁵, H.A. Gordon²⁵, I. Gorelov¹⁰³, G. Gorfine¹⁷⁵, B. Gorini³⁰, E. Gorini^{72a,72b}, A. Gorišek⁷⁴, E. Gornicki³⁹, A.T. Goshaw⁶, M. Gosselink¹⁰⁵, M.I. Gostkin⁶⁴, I. Gough Eschrich¹⁶³, M. Gouighri^{135a}, D. Goujdami^{135c}, M.P. Goulette⁴⁹, A.G. Goussiou¹³⁸, C. Goy⁵, S. Gozpinar²³, I. Grabowska-Bold³⁸, P. Grafström^{20a,20b}, M.B. Goulette ⁴⁹, A.G. Goussiou ¹³⁸, C. Goy⁵, S. Gozpinar²³, I. Grabowska-Bold ³⁸, P. Grafström ^{20a,20b},
K.-J. Grahn ⁴², E. Gramstad ¹¹⁷, F. Grancagnolo ^{72a}, S. Grancagnolo ¹⁶, V. Grassi ¹⁴⁸, V. Gratchev ¹²¹,
N. Grau ³⁵, H.M. Gray ³⁰, J.A. Gray ¹⁴⁸, E. Graziani ^{134a}, O.G. Grebenyuk ¹²¹, T. Greenshaw ⁷³,
Z.D. Greenwood ^{25,m}, K. Gregersen ³⁶, I.M. Gregor ⁴², P. Grenier ¹⁴³, J. Griffiths ⁸, N. Grigalashvili ⁶⁴,
A.A. Grillo ¹³⁷, S. Grinstein ¹², Ph. Gris ³⁴, Y.V. Grishkevich ⁹⁷, J.-F. Grivaz ¹¹⁵, E. Gross ¹⁷²,
J. Grosse-Knetter ⁵⁴, J. Groth-Jensen ¹⁷², K. Grybel ¹⁴¹, D. Guest ¹⁷⁶, C. Guicheney ³⁴, E. Guido ^{50a,50b},
S. Guindon ⁵⁴, U. Gul ⁵³, J. Gunther ¹²⁵, B. Guo ¹⁵⁸, J. Guo ³⁵, P. Gutierrez ¹¹¹, N. Guttman ¹⁵³,
O. Gutzwiller ¹⁷³, C. Guyot ¹³⁶, C. Gwenlan ¹¹⁸, C.B. Gwilliam ⁷³, A. Haas ¹⁰⁸, S. Haas ³⁰, C. Haber ¹⁵,
H.K. Hadavand ⁸, D.R. Hadley ¹⁸, P. Haefner ²¹, F. Hahn ³⁰, Z. Hajduk ³⁹, H. Hakobyan ¹⁷⁷, D. Hall ¹¹⁸,
K. Hamacher ¹⁷⁵, P. Hamal ¹¹³, K. Hamano ⁸⁶, M. Hamer ⁵⁴, A. Hamilton ^{145b, p}, S. Hamilton ¹⁶¹, L. Han ^{33b},
K. Hanagaki ¹¹⁶, K. Hanawa ¹⁶⁰, M. Hance ¹⁵, C. Handel ⁸¹, P. Hanke ^{58a}, J.R. Hansen ³⁶, J.B. Hansen ³⁶,
J.D. Harsen ³⁶, P.H. Hansen ³⁶, P. Hansson ¹⁴³, K. Hara ¹⁶⁰, T. Harenberg ¹⁷⁵, S. Harkusha ⁹⁰, D. Harper ⁸⁷,
R.D. Harrington ⁴⁶, O.M. Harris ¹³⁸, J. Hartert ⁴⁸, F. Hartjes ¹⁰⁵, T. Haruyama ⁶⁵, A. Harvey ⁵⁶,
S. Hasegawa ¹⁰¹, Y. Hasegawa ¹⁴⁰, S. Hassani ¹³⁶, S. Haug ¹⁷⁵, M. Hauserli ⁸⁸, M. Havranek ²¹,
C.M. Hawkes ¹⁸, R.J. Hawkings ³⁰, A.D. Hawkins ⁷⁹, T. Hayakawa ⁶⁶, T. Hayashi ¹⁶⁰, D. Hayden ⁷⁶,
C.P. Hays ¹¹⁸, H.S. Hayward ⁷³, S.J. Haywood ¹²⁹, S.J. Head ¹⁸, V. Hedberg ⁷⁹, L. Heelan ⁸, S. Heim ¹²⁰,
B. Heinemann ¹⁵, S. Heisterkamp ³⁶, L. A.M. Henriques Correia ³⁰, S. Henrot-Versille ¹¹⁵, C. Hensel ⁵⁴, C.M. Hernandez ⁸, Y. Hernández Jiménez ¹⁶⁷, R. Herrberg ¹⁶, G. Herten ⁴⁸, R. Hertenberger ⁹⁸, L. Hervas ³⁰, G.G. Hesketh ⁷⁷, N.P. Hessey ¹⁰⁵, E. Higón-Rodriguez ¹⁶⁷, J.C. Hill ²⁸, K.H. Hiller ⁴², S. Hillert ²¹, S.J. Hillier ¹⁸, I. Hinchliffe ¹⁵, E. Hines ¹²⁰, M. Hirose ¹¹⁶, F. Hirsch ⁴³, D. Hirschbuehl ¹⁷⁵, J. Hobbs ¹⁴⁸, N. Hod ¹⁵³, M.C. Hodgkinson ¹³⁹, P. Hodgson ¹³⁹, A. Hoecker ³⁰, M.R. Hoeferkamp ¹⁰³, J. Hoffman ⁴⁰, D. Hoffmann ⁸³, M. Hohlfeld ⁸¹, M. Holder ¹⁴¹, S.O. Holmgren ^{146a}, T. Holy ¹²⁷, J.L. Holzbauer ⁸⁸, T.M. Hong ¹²⁰, L. Hooft van Huysduynen ¹⁰⁸, S. Horner ⁴⁸, J.-Y. Hostachy ⁵⁵, S. Hou ¹⁵¹, A. Hoummada ^{135a}, J. Howard ¹¹⁸, J. Howarth ⁸², I. Hristova ¹⁶, J. Hrivnac ¹¹⁵, T. Hryn'ova ⁵, P.J. Hsu ⁸¹, S.-C. Hsu ¹⁵, D. Hu ³⁵, Z. Hubacek ¹²⁷, F. Hubaut ⁸³, F. Huegging ²¹, A. Huettmann ⁴², T.B. Huffman ¹¹⁸, E.W. Hughes ³⁵, G. Hughes ⁷¹, M. Huhtinen ³⁰, M. Hurwitz ¹⁵, N. Huseynov ^{64,q}, J. Huston ⁸⁸, J. Huth ⁵⁷, G. Iacobucci ⁴⁹, G. Iakovidis ¹⁰, M. Ibbotson ⁸², I. Ibragimov ¹⁴¹, L. Iconomidou-Fayard ¹¹⁵, J. Idarraga ¹¹⁵, P. Iengo ^{102a}, O. Igonkina ¹⁰⁵, Y. Ikegami ⁶⁵, M. Ikeno ⁶⁵, D. Iliadis ¹⁵⁴, N. Ilic ¹⁵⁸, T. Ince ⁹⁹, P. Ioannou ⁹, M. Iodice ^{134a}, K. Iordanidou ⁹, V. Ippolito ^{132a,132b}, A. Irles Quiles ¹⁶⁷, C. Isaksson ¹⁶⁶, M. Ishino ⁶⁷, M. Ishitsuka ¹⁵⁷, R. Ishmukhametov ¹⁰⁹, C. Issever ¹¹⁸, S. Istin ^{19a}, A.V. Ivashin ¹²⁸, W. Iwanski ³⁹, H. Iwasaki ⁶⁵, J.M. Izen ⁴¹, V. Izzo ^{102a}, B. Jackson ¹²⁰, J.N. Jackson ⁷³, P. Jackson ¹, M.R. Jaekel ³⁰, V. Jain ⁶⁰, K. Jakobs ⁴⁸, R. Ishmukhametov ¹⁰⁹, C. Issever ¹¹⁸, S. Istin ^{19a}, A.V. Ivashin ¹²⁸, W. Iwanski ³⁹, H. Iwasaki ⁶⁵, J.M. Izen ⁴¹, V. Izzo ^{102a}, B. Jackson ¹²⁰, J.N. Jackson ⁷³, P. Jackson ¹, M.R. Jaekel ³⁰, V. Jain ⁶⁰, K. Jakobs ⁴⁸, S. Jakobsen ³⁶, T. Jakoubek ¹²⁵, J. Jakubek ¹²⁷, D.O. Jamin ¹⁵¹, D.K. Jana ¹¹¹, E. Jansen ⁷⁷, H. Jansen ³⁰, J. Janssen ²¹, A. Jantsch ⁹⁹, M. Janus ⁴⁸, R.C. Jared ¹⁷³, G. Jarlskog ⁷⁹, L. Jeanty ⁵⁷, I. Jen-La Plante ³¹, D. Jennens ⁸⁶, P. Jenni ³⁰, A.E. Loevschall-Jensen ³⁶, P. Jež ³⁶, S. Jézéquel ⁵, M.K. Jha ^{20a}, H. Ji ¹⁷³, W. Ji ⁸¹, J. Jia ¹⁴⁸, Y. Jiang ^{33b}, M. Jimenez Belenguer ⁴², S. Jin ^{33a}, O. Jinnouchi ¹⁵⁷, M.D. Joergensen ³⁶, D. Joffe ⁴⁰, M. Johansen ^{146a, 146b}, K.E. Johansson ^{146a}, P. Johansson ¹³⁹, S. Johnert ⁴², K.A. Johns ⁷, K. Jon-And ^{146a, 146b}, G. Jones ¹⁷⁰, R.W.L. Jones ⁷¹, T.J. Jones ⁷³, C. Joram ³⁰, P.M. Jorge ^{124a}, K.D. Joshi ⁸², J. Jovicevic ¹⁴⁷, T. Jovin ^{13b}, X. Ju ¹⁷³, C.A. Jung ⁴³, R.M. Jungst ³⁰, V. Juranek ¹²⁵, P. Jussel ⁶¹, A. Juste Rozas ¹², S. Kabana ¹⁷,

253

M. Kaci¹⁶⁷, A. Kaczmarska³⁹, P. Kadlecik³⁶, M. Kado¹¹⁵, H. Kagan¹⁰⁹, M. Kagan⁵⁷, E. Kajomovitz¹⁵², S. Kalinin¹⁷⁵, L.V. Kalinovskaya⁶⁴, S. Kama⁴⁰, N. Kanaya¹⁵⁵, M. Kaneda³⁰, S. Kaneti²⁸, T. Kanno¹⁵⁷, V.A. Kantserov⁹⁶, J. Kanzaki⁶⁵, B. Kaplan¹⁰⁸, A. Kapliy³¹, J. Kaplon³⁰, D. Kar⁵³, M. Karagounis²¹, K. Karakostas¹⁰, M. Karnevskiy⁴², V. Kartvelishvili⁷¹, A.N. Karyukhin¹²⁸, L. Kashif¹⁷³, G. Kasieczka^{58b}, V.A. Kantsetov⁻⁷, J. Kalizaki⁻⁷, B. Kapian⁻¹⁰⁰, A. Kapiny⁻⁷, J. Kapion⁻⁷⁰, D. Kal⁻²⁹, M. Karagoullis²¹,
K. Karakostas¹⁰, M. Karnevskiy⁴², V. Kartvelishvili⁷¹, A.N. Karyukhin¹²⁸, L. Kashi¹⁷³, G. Kasieczka^{58b},
R.D. Kass¹⁰⁹, A. Kastanas¹⁴, M. Kataoka⁵, Y. Kataoka¹⁵⁵, E. Katsoufis¹⁰, J. Katzy⁴², V. Kaushik⁷,
K. Kawagoe⁶⁹, T. Kawamoto¹⁵⁵, G. Kawamura⁸¹, M.S. Kayl¹⁰⁵, S. Kazama¹⁵⁵, V.A. Kazanin¹⁰⁷,
M.Y. Kazarinov⁶⁴, R. Keeler¹⁶⁹, P.T. Keener¹²⁰, R. Kehoe⁴⁰, M. Keil⁵⁴, G.D. Kekelidze⁶⁴, J.S. Keller¹³⁸,
M. Kenyon⁵³, O. Kepka¹²⁵, N. Kerschen³⁰, B.P. Kerševan⁷⁴, S. Kersten¹⁷⁵, K. Kessoku¹⁵⁵, J. Keugn¹⁵⁸,
F. Khalil-zada¹¹, H. Khandanyan^{146a,146b}, A. Khanov¹¹², D. Kharchenko⁶⁴, A. Khodinov⁹⁶,
A. Khomich^{58a}, T.J. Khoo²⁸, G. Khoriauli²¹, A. Khoroshilov¹⁷⁵, V. Khovanskiy⁹⁵, E. Khramov⁶⁴,
J. Khubua^{51b}, H. Kim^{146a,146b}, S.H. Kim¹⁶⁰, N. Kimura¹⁷¹, O. Kind¹⁶, B.T. King⁷³, M. King⁶⁶,
R.S.B. King¹¹⁸, J. Kirk¹²⁹, A.E. Kiryunin⁹⁹, T. Kishimoto⁶⁶, D. Kisielewska³⁸, T. Kitamura⁶⁶,
T. Kittelmann¹²³, K. Kiuchi¹⁶⁰, E. Kladiva^{144b}, M. Klein⁷³, U. Klein⁷³, K. Kleinknecht⁸¹, M. Klemetti⁸⁵,
A. Klier¹⁷², P. Klimek^{146a,146b}, A. Klinentov²⁵, R. Klingenberg⁴³, J.A. Klinge⁸², E.B. Klinkby³⁶,
T. Klioutchnikova³⁰, P.F. Klok¹⁰⁴, S. Klous¹⁰⁵, E.-E. Kluge^{58a}, T. Kluge⁷³, P. Kluit¹⁰⁵, S. Kluth⁹⁹,
E. Kneringer⁶¹, E.B.F.G. Knoops⁸³, A. Knue⁵⁴, B.R. Ko⁴⁵, T. Kobayashi¹⁵⁵, M. Kobel⁴⁴, M. Kocian¹⁴³,
P. Kodys¹²⁶, K. Köneke³⁰, A.C. Köngi¹⁰⁴, S. Koenig⁸¹, L. Köpke⁸¹, F. Koetsveld¹⁰⁴, P. Koevesarki²¹,
T. Koffas²⁹, E. Koffeman¹⁰⁵, L.A. Kogan¹¹⁸, S. Kohlmann¹⁷⁵, F. Kohn⁵⁴, Z. Kohout¹²⁷, T. Kohriki⁶⁵,
T. Koi¹⁴³, G.M. Kolachev^{107,*}, H. Kolanoski¹⁶, V. Kolesnikov⁶⁴, I. Kolestou^{89a}, J. Koll⁸⁸, A.A. K M.W. Krasny⁷⁸, A. Krasznahorkay¹⁰⁸, J.K. Kraus²¹, S. Kreiss¹⁰⁸, F. Krejci¹²⁷, J. Kretzschmar⁷³ M.W. Krasny ⁷⁸, A. Krasznahorkay ¹⁰⁸, J.K. Kraus ²¹, S. Kreiss ¹⁰⁸, F. Krejci ¹²⁷, J. Kretzschmar ⁷³, N. Krieger ⁵⁴, P. Krieger ¹⁵⁸, K. Kroeninger ⁵⁴, H. Kroha ⁹⁹, J. Kroll ¹²⁰, J. Kroseberg ²¹, J. Krstic ^{13a}, U. Kruchonak ⁶⁴, H. Krüger ²¹, T. Kruker ¹⁷, N. Krumnack ⁶³, Z.V. Krumshteyn ⁶⁴, M.K. Kruse ⁴⁵, T. Kubota ⁸⁶, S. Kuday ^{4a}, S. Kuehn ⁴⁸, A. Kugel ^{58c}, T. Kuhl ⁴², D. Kuhn ⁶¹, V. Kukhtin ⁶⁴, Y. Kulchitsky ⁹⁰, S. Kuleshov ^{32b}, C. Kummer ⁹⁸, M. Kuna ⁷⁸, J. Kunkle ¹²⁰, A. Kupco ¹²⁵, H. Kurashige ⁶⁶, M. Kurata ¹⁶⁰, Y.A. Kurochkin ⁹⁰, V. Kus ¹²⁵, E.S. Kuwertz ¹⁴⁷, M. Kuze ¹⁵⁷, J. Kvita ¹⁴², R. Kwee ¹⁶, A. La Rosa ⁴⁹, L. La Rotonda ^{37a,37b}, L. Labarga ⁸⁰, J. Labbe ⁵, S. Lablak ^{135a}, C. Lacasta ¹⁶⁷, F. Lacava ^{132a,132b}, J. Lacey ²⁹, H. Lacker ¹⁶, D. Lacour ⁷⁸, V.R. Lacuesta ¹⁶⁷, E. Ladygin ⁶⁴, R. Lafaye ⁵, B. Laforge ⁷⁸, T. Lagouri ¹⁷⁶, S. Lai ⁴⁸, E. Laisne ⁵⁵, L. Lambourne ⁷⁷, C.L. Lampen ⁷, W. Lampl ⁷, E. Lancon ¹³⁶, U. Landgraf ⁴⁸, M.P.J. Landon ⁷⁵, W.S. Lang ^{58a}, C. Lange ⁴², A.L. Lankford ¹⁶³, F. Langi ²⁵, K. Lantzsch ¹⁷⁵, A. Lanza ^{119a}, S. Lanlace ⁷⁸ V.S. Lang^{58a}, C. Lange⁴², A.J. Lankford¹⁶³, F. Lanni²⁵, K. Lantzsch¹⁷⁵, A. Lanza^{119a}, S. Laplace⁷⁸, C. Lapoire²¹, J.F. Laporte¹³⁶, T. Lari^{89a}, A. Larner¹¹⁸, M. Lassnig³⁰, P. Laurelli⁴⁷, V. Lavorini^{37a,37b}, W. Lavrijsen¹⁵, P. Laycock⁷³, O. Le Dortz⁷⁸, E. Le Guirriec⁸³, E. Le Menedeu¹², T. LeCompte⁶, F. Ledroit-Guillon⁵⁵, H. Lee¹⁰⁵, J.S.H. Lee¹¹⁶, S.C. Lee¹⁵¹, L. Lee¹⁷⁶, M. Lefebvre¹⁶⁹, M. Legendre¹³⁶, F. Ledroit-Guillon ⁵⁵, H. Lee ¹⁰⁵, J.S.H. Lee ¹¹⁶, S.C. Lee ¹⁵¹, L. Lee ¹⁷⁶, M. Lefebvre ¹⁶⁹, M. Legendre ¹³⁶,
F. Legger ⁹⁸, C. Leggett ¹⁵, M. Lehmacher ²¹, G. Lehmann Miotto ³⁰, A.G. Leister ¹⁷⁶, M.A.L. Leite ^{24d},
R. Leitner ¹²⁶, D. Lellouch ¹⁷², B. Lemmer ⁵⁴, V. Lendermann ^{58a}, K.J.C. Leney ^{145b}, T. Lenz ¹⁰⁵, G. Lenzen ¹⁷⁵,
B. Lenzi ³⁰, K. Leonhardt ⁴⁴, S. Leontsinis ¹⁰, F. Lepold ^{58a}, C. Leroy ⁹³, J.-R. Lessard ¹⁶⁹, C.G. Lester ²⁸,
C.M. Lester ¹²⁰, J. Levêque ⁵, D. Levin ⁸⁷, L.J. Levinson ¹⁷², A. Lewis ¹¹⁸, G.H. Lewis ¹⁰⁸, A.M. Leyko ²¹,
M. Leyton ¹⁶, B. Li ^{33b}, B. Li ⁸³, H. Li ¹⁴⁸, H.L. Li ³¹, S. Li ^{33b,t}, X. Li ⁸⁷, Z. Liang ^{118,u}, H. Liao ³⁴, B. Liberti ^{133a},
P. Lichard ³⁰, M. Lichtnecker ⁹⁸, K. Lie ¹⁶⁵, W. Liebig ¹⁴, C. Limbach ²¹, A. Limosani ⁸⁶, M. Limper ⁶²,
S.C. Lin ^{151,v}, F. Linde ¹⁰⁵, J.T. Linnemann ⁸⁸, E. Lipeles ¹²⁰, A. Lipniacka ¹⁴, T.M. Liss ¹⁶⁵, D. Lissauer ²⁵,
A. Lister ⁴⁹, A.M. Litke ¹³⁷, C. Liu ²⁹, D. Liu ¹⁵¹, H. Liu ⁸⁷, J.B. Liu ⁸⁷, M. Liu ⁸⁷, M. Liu ^{33b}, Y. Liu ^{33b},
M. Livan ^{119a,119b}, S.S.A. Livermore ¹¹⁸, A. Lleres ⁵⁵, J. Llorente Merino ⁸⁰, S.L. Lloyd ⁷⁵, E. Lobodzinska ⁴²,
P. Loch ⁷, W.S. Lockman ¹³⁷, T. Loddenkoetter ²¹, F.K. Loebinger ⁸², A. Loginov ¹⁷⁶, C.W. Loh ¹⁶⁸, T. Lohse ¹⁶,
K. Lohwasser ⁴⁸, M. Lokaijcek ¹²⁵, V.P. Lombardo ⁵, R.E. Long ⁷¹, L. Lopes ^{124a}, D. Lopez Mateos ⁵⁷. K. Lohwasser⁴⁸, M. Lokajicek¹²⁵, V.P. Lombardo⁵, R.E. Long⁷¹, L. Lopes^{124a}, D. Lopez Mateos⁵⁷, J. Lorenz⁹⁸, N. Lorenzo Martinez¹¹⁵, M. Losada¹⁶², P. Loscutoff¹⁵, F. Lo Sterzo^{132a,132b}, M.J. Losty^{159a,*}, X. Lou⁴¹, A. Lounis¹¹⁵, K.F. Loureiro¹⁶², J. Love⁶, P.A. Love⁷¹, A.J. Lowe^{143,f}, F. Lu^{33a}, H.J. Lubatti¹³⁸, C. Luci^{132a,132b}, A. Lucotte⁵⁵, A. Ludwig⁴⁴, D. Ludwig⁴², I. Ludwig⁴⁸, J. Ludwig⁴⁸, F. Luehring⁶⁰, G. Luijckx¹⁰⁵, W. Lukas⁶¹, L. Luminari^{132a}, E. Lund¹¹⁷, B. Lund-Jensen¹⁴⁷, B. Lundberg⁷⁹,

J. Lundberg ^{146a,146b}, O. Lundberg ^{146a,146b}, J. Lundquist ³⁶, M. Lungwitz ⁸¹, D. Lynn ²⁵, E. Lytken ⁷⁹, H. Ma ²⁵, L.L. Ma ¹⁷³, G. Maccarrone ⁴⁷, A. Macchiolo ⁹⁹, B. Maček ⁷⁴, J. Machado Miguens ^{124a}, D. Macina ³⁰, R. Mackeprang ³⁶, R.J. Madaras ¹⁵, H.J. Maddocks ⁷¹, W.F. Mader ⁴⁴, R. Maenner ^{58c}, T. Maeno ²⁵, P. Mättig ¹⁷⁵, S. Mättig ⁴², L. Magnoni ¹⁶³, E. Magradze ⁵⁴, K. Mahboubi ⁴⁸, J. Mahlstedt ¹⁰⁵, S. Mahmoud ⁷³, G. Mahout ¹⁸, C. Maiani ¹³⁶, C. Maidantchik ^{24a}, A. Maio ^{124a,b}, S. Majewski ²⁵, Y. Makida ⁶⁵, N. Makovec ¹¹⁵, P. Mal ¹³⁶, B. Malaescu ³⁰, Pa. Malecki ³⁹, P. Malecki ³⁹, V.P. Maleev ¹²¹, F. Malek ⁵⁵, U. Mallik ⁶², D. Malon ⁶, C. Malone ¹⁴³, S. Maltezos ¹⁰, V. Malyshev ¹⁰⁷, S. Malyukov ³⁰, R. Mameghani ⁹⁸, J. Mamuzic ^{13b}, A. Manabe ⁶⁵, L. Mandelli ^{89a}, I. Mandić ⁷⁴, R. Mandrysch ¹⁶, J. Maneira ^{124a}, A. Manfredini ⁹⁹, L. Manhaes de Andrade Filho ^{24b}, J.A. Manjarres Ramos ¹³⁶, A. Mann ⁵⁴, P.M. Manning ¹³⁷, A. Manousakis-Katsikakis ⁹, B. Mansoulie ¹³⁶, A. Mapelli ³⁰, L. Mapelli ³⁰, L. March ¹⁶⁷, J.F. Marchand ²⁹, F. Marchese ^{133a,133b}, G. Marchiori ⁷⁸, M. Marcisovsky ¹²⁵, C.P. Marino ¹⁶⁹, F. Marroquim ^{24a}, Z. Marshall ³⁰, L.F. Marti ¹⁷, S. Marti-Garcia ¹⁶⁷, B. Martin ³⁰, B. Martin ⁸⁸, J.P. Martin ⁹³, J. Maneira ¹⁻⁴⁹, A. Manfredini ¹⁹, L. Manhaes de Andrade Filho ⁴⁹, J.A. Manjarres Ramos ¹⁹, A. Manei³⁹, P.M. Manning ¹³⁷, A. Manouskak-Katsikakis ⁹, B. Mansoulie ¹³⁶, A. Mapeli ³⁰, L. Marchi¹⁰⁷, J.F. Marchand ²⁰, F. Marchese ¹³³, ¹³³, G. Marchiori ⁷⁸, M. Marcisovsky ¹²⁵, C.P. Marino ¹⁶⁹, P. Martine ²⁴, Z. Marshall ³⁰, L.F. Marti ¹⁷, S. Marti-Garcia ¹⁵⁷, B. Martin ²⁰, B. Mattin ⁸⁸, J.P. Martin ⁹³, T.A. Martini ¹⁸, V.J. Martin ¹⁶, B. Martin ¹⁰, L. Masse ¹⁰, M. Martino ¹⁷, J. Masset ¹⁰, J. Masset ¹⁰⁰, M. Martinez ¹⁴, V. Martinez ¹⁵, P. Mastinistov ⁴¹, J. Masik ²⁵, A. L. Maslennikov ¹⁰⁷, J. Masset ^{200,200}, G. Massaro ¹⁰⁵, N. Massinistov ⁴¹, J. Masik ²⁷, A. L. Maslennikov ¹⁰⁷, J. Masset ^{200,200}, G. Massaro ¹⁰⁵, N. Massinistov ⁴¹, J. Masik ²⁷, J. Maurer ⁴³, S.J. Makfeld ⁷³, D.A. Maximov ^{107,8}, A. Mayel ¹³⁹, R. Mazini ¹⁵¹, M. Mazur ¹, L. Mazaferro ^{132a,130}, M. Mazzatli ⁸³⁴, J. Mc Donald ⁸⁵, S.P. Mc Kee ⁵⁷, A. McCari ¹⁵⁵, R.L. McCarthy ¹⁴⁸, ¹⁷⁶, G. McCarthy ²⁹, N.A. McCubbin ¹²⁹, K.M. McFarlane ^{56,4}, J.A. McAyden ¹³⁹, G. Mcheilldze ¹³⁷, T. Mclaughlan ¹¹⁸, S.J. McMahon ¹²⁹, R.A. McPherson ^{160,4}, A. Meade ⁸⁴, J. Mechnich ¹⁰⁵, M. Mecturel ¹⁷⁵, M. Medinnis ⁴², S. Meenta ³¹, R. Meera-Lebbai ¹¹¹, T. Meguro ¹¹⁶, S. M. Menturel ²⁵, K. Meler ³⁸⁴, B. Meirose ²⁷⁰, C. Melachrinos ³¹⁰, S. Menke ⁹⁹, E. Meoni ¹⁶¹, K.M. Mercurio ⁵⁷, P. Mermod ⁴⁰, L. Merola ^{102,4,102}, C. Merogatelli ^{202,205}, S. Menke ⁹⁹, E. Meoni ¹⁶³, M. Matrile ²⁵, S. Metel ⁶³, C. Meyer ⁸¹, J. P. Meyer ¹³⁵, J. P. Meyer ¹³⁵, J. Meryer ¹¹⁷, J. Mitestikova ¹²⁶, M. Mikuz ¹⁴, D.W. Miller ⁵³, R. Miller ⁸⁹, U.J. Mills ¹⁵⁶, C. Mills ⁵⁷, A. Miloe ¹²⁷, D.A. Mitstea ¹⁴², J. M. Distein ¹⁴⁷, Z. A. Minaenko ¹³⁸, M. Miller ⁸⁰, J. Millot ¹⁵⁶, G. Morello ^{137,20}, J. Morent¹³⁷, V.A. Mitestikova ¹⁴⁷, M. Mikuez ⁴⁴, D.W. Miller ⁵³, R. Monzal ¹⁴⁸, M. Morel¹³⁶, S.A. Olivares Pino ^{32a}, M. Oliveira ^{124a,h}, D. Oliveira Damazio ²⁵, E. Oliver Garcia ¹⁶⁷, D. Olivito ¹²⁰, A. Olszewski ³⁹, J. Olszowska ³⁹, A. Onofre ^{124a,aa}, P.U.E. Onyisi ³¹, C.J. Oram ^{159a}, M.J. Oreglia ³¹, Y. Oren ¹⁵³, D. Orestano ^{134a,134b}, N. Orlando ^{72a,72b}, I. Orlov ¹⁰⁷, C. Oropeza Barrera ⁵³, R.S. Orr ¹⁵⁸, B. Osculati ^{50a,50b}, R. Ospanov ¹²⁰, C. Osuna ¹², G. Otero y Garzon ²⁷, J.P. Ottersbach ¹⁰⁵, M. Ouchrif ^{135d}, E.A. Ouellette ¹⁶⁹, F. Ould-Saada ¹¹⁷, A. Ouraou ¹³⁶, Q. Ouyang ^{33a}, A. Ovcharova ¹⁵, M. Owen ⁸², S. Owen ¹³⁹, V.E. Ozcan ^{19a}, N. Ozturk ⁸, A. Pacheco Pages ¹², C. Padilla Aranda ¹², S. Pagan Griso ¹⁵, E. Paganis ¹³⁹, C. Pahl ⁹⁹, F. Paige ²⁵, P. Pais ⁸⁴, K. Pajchel ¹¹⁷, G. Palacino ^{159b}, C.P. Paleari ⁷, S. Palestini ³⁰, D. Pallin ³⁴, A. Palma ^{124a}, J.D. Palmer ¹⁸, Y.B. Pan ¹⁷³, E. Panagiotopoulou ¹⁰, J.G. Panduro Vazquez ⁷⁶, P. Pani ¹⁰⁵, N. Panikashvili ⁸⁷, S. Panitkin ²⁵, D. Pantea ^{26a}, A. Papadelis ^{146a}, Th.D. Papadopoulou ¹⁰, A. Paramonov ⁶, D. Paredes Hernandez ³⁴, W. Park ^{25,ab}, M.A. Parker ²⁸, F. Parodi ^{50a,50b}, J.A. Parsons ³⁵, U. Parzefall ⁴⁸, S. Pashapour ⁵⁴, E. Pasqualucci ^{132a}, S. Passaggio ^{50a}, A. Passeri ^{134a}, F. Pastore ^{134a,134b,*}, Fr. Pastore ⁷⁶, G. Pásztor ^{49,ac}, S. Pataraia ¹⁷⁵, N. Patel ¹⁵⁰, J.R. Pater ⁸², S. Patricelli ^{102a,102b}, T. Pauly ³⁰, M. Pecsy ^{144a}, S. Pedraza Lopez ¹⁶⁷, M.I. Pedraza Morales ¹⁷³, S.V. Peleganchuk ¹⁰⁷, D. Pelikan ¹⁶⁶, M. Pecsy^{144a}, S. Pedraza Lopez¹⁶⁷, M.I. Pedraza Morales¹⁷³, S.V. Peleganchuk¹⁰⁷, D. Pelikan¹⁶⁶, H. Peng^{33b}, B. Penning³¹, A. Penson³⁵, J. Penwell⁶⁰, M. Perantoni^{24a}, K. Perez ^{35,ad}, T. Perez Cavalcanti⁴², E. Perez Codina^{159a}, M.T. Pérez García-Estañ¹⁶⁷, V. Perez Reale³⁵, L. Perini^{89a,89b}, H. Pernegger ³⁰, R. Perrino ^{72a}, P. Perrodo ⁵, V.D. Peshekhonov ⁶⁴, K. Peters ³⁰, B.A. Petersen ³⁰, J. Petersen³⁰, T.C. Petersen³⁶, E. Petit⁵, A. Petridis¹⁵⁴, C. Petridou¹⁵⁴, E. Petrolo^{132a}, F. Petrucci^{134a,134b}, D. Petschull⁴², M. Petteni¹⁴², R. Pezoa^{32b}, A. Phan⁸⁶, P.W. Phillips¹²⁹, G. Piacquadio³⁰, A. Picazio⁴⁹, E. Piccaro⁷⁵, M. Piccinini^{20a,20b}, S.M. Piec⁴², R. Piegaia²⁷, D.T. Pignotti¹⁰⁹, J.E. Pilcher³¹, A.D. Pilkington⁸², J. Pina^{124a,b}, M. Pinamonti^{164a,164c}, A. Pinder¹¹⁸, J.L. Pinfold³, B. Pinto^{124a}, ⁵⁸ C. Pizio ^{89a,89b}, M. Plamondon ¹⁶⁹, M.-A. Pleier ²⁵, E. Plotnikova ⁶⁴, A. Poblaguev ²⁵, S. Poddar ^{58a}, F. Podlyski ³⁴, L. Poggioli ¹¹⁵, D. Pohl ²¹, M. Pohl ⁴⁹, G. Polesello ^{119a}, A. Policicchio ^{37a,37b}, A. Polini ^{20a}, J. Poll ⁷⁵, V. Polychronakos ²⁵, D. Pomeroy ²³, K. Pommes ³⁰, L. Pontecorvo ^{132a}, B.G. Pope ⁸⁸, G.A. Popeneciu ^{26a}, D.S. Popovic ^{13a}, A. Popleton ³⁰, X. Portell Bueso ³⁰, G.E. Pospelov ⁹⁹, S. Pospisil ¹²⁷, G.A. Popeneciu^{26a}, D.S. Popovic^{13a}, A. Poppleton³⁰, X. Portell Bueso³⁰, G.E. Pospelov⁹⁹, S. Pospisil¹²⁷, I.N. Potrap⁹⁹, C.J. Potter¹⁴⁹, C.T. Potter¹¹⁴, G. Poulard³⁰, J. Poveda⁶⁰, V. Pozdnyakov⁶⁴, R. Prabhu⁷⁷, P. Pralavorio⁸³, A. Pranko¹⁵, S. Prasad³⁰, R. Pravahan²⁵, S. Prell⁶³, K. Pretzl¹⁷, D. Price⁶⁰, J. Price⁷³, L.E. Price⁶, D. Prieur¹²³, M. Primavera^{72a}, K. Prokofiev¹⁰⁸, F. Prokoshin^{32b}, S. Protopopescu²⁵, J. Proudfoot⁶, X. Prudent⁴⁴, M. Przybycien³⁸, H. Przysiezniak⁵, S. Psoroulas²¹, E. Ptacek¹¹⁴, E. Pueschel⁸⁴, J. Purdham⁸⁷, M. Purohit^{25,ab}, P. Puzo¹¹⁵, Y. Pylypchenko⁶², J. Qian⁸⁷, A. Quadt⁵⁴, D.R. Quarrie¹⁵, W.B. Quayle¹⁷³, F. Quinonez^{32a}, M. Raas¹⁰⁴, V. Radeka²⁵, V. Radescu⁴², P. Radloff¹¹⁴, F. Ragusa^{89a,89b}, G. Rahal¹⁷⁸, A.M. Rahimi¹⁰⁹, D. Rahm²⁵, S. Rajagopalan²⁵, M. Rammensee⁴⁸, M. Rammes¹⁴¹, A.S. Randle-Conde⁴⁰, K. Randrianarivony²⁹, F. Rauscher⁹⁸, T.C. Rave⁴⁸, M. Raymond³⁰, A.L. Read¹¹⁷, D.M. Rebuzzi^{119a,119b}, A. Redelbach¹⁷⁴, G. Redlinger²⁵, R. Reece¹²⁰, K. Reeves⁴¹, A. Reinsch¹¹⁴, I. Reisinger⁴³, C. Rembser³⁰, Z.L. Ren¹⁵¹, A. Renaud¹¹⁵, M. Rescigno^{132a}, S. Resconi^{89a}, A.L. Read ¹¹⁷, D.M. Rebuzzi ^{119a,119b}, A. Redelbach ¹⁷⁴, G. Redlinger ²⁵, R. Reece ¹²⁰, K. Reeves ⁴¹,
A. Reinsch ¹¹⁴, I. Reisinger ⁴³, C. Rembser ³⁰, Z.L. Ren ¹⁵¹, A. Renaud ¹¹⁵, M. Rescigno ^{132a}, S. Resconi ^{89a},
B. Resende ¹³⁶, P. Reznicek ⁹⁸, R. Rezvani ¹⁵⁸, R. Richter ⁹⁹, E. Richter-Was ^{5,ae}, M. Ridel ⁷⁸, M. Rijpstra ¹⁰⁵,
M. Rijssenbeek ¹⁴⁸, A. Rimoldi ^{119a,119b}, L. Rinaldi ^{20a}, R.R. Rios ⁴⁰, I. Riu ¹², G. Rivoltella ^{89a,89b},
F. Rizatdinova ¹¹², E. Rizvi ⁷⁵, S.H. Robertson ^{85,k}, A. Robichaud-Veronneau ¹¹⁸, D. Robinson ²⁸,
J.E.M. Robinson ⁸², A. Robson ⁵³, J.G. Rocha de Lima ¹⁰⁶, C. Roda ^{122a,122b}, D. Roda Dos Santos ³⁰, A. Roe ⁵⁴,
S. Roe ³⁰, O. Røhne ¹¹⁷, S. Rolli ¹⁶¹, A. Romaniouk ⁹⁶, M. Romano ^{20a,20b}, G. Romeo ²⁷, E. Romero Adam ¹⁶⁷,
N. Rompotis ¹³⁸, L. Roos ⁷⁸, E. Ros ¹⁶⁷, S. Rosati ^{132a}, K. Rosbach ⁴⁹, A. Rose ¹⁴⁹, M. Rose ⁷⁶,
G.A. Rosenbaum ¹⁵⁸, E.I. Rosenberg ⁶³, P.L. Rosendahl ¹⁴, O. Rosenthal ¹⁴¹, L. Rosselet ⁴⁹, V. Rossetti ¹²,
E. Rossi ^{132a,132b}, L.P. Rossi ^{50a}, M. Rotaru ^{26a}, I. Roth ¹⁷², J. Rothberg ¹³⁸, D. Rousseau ¹¹⁵, C.R. Royon ¹³⁶,
A. Rozanov ⁸³, Y. Rozen ¹⁵², X. Ruan ^{33a,af}, F. Rubbo ¹², I. Rubinskiv ⁴², N. Ruckstuhl ¹⁰⁵, V.I. Rud ⁹⁷ A. Rozanov⁸³, Y. Rozen¹⁵², X. Ruan^{33a,af}, F. Rubbo¹², I. Rubinskiy⁴², N. Ruckstuhl¹⁰⁵, V.I. Rud⁹⁷, C. Rudolph⁴⁴, G. Rudolph⁶¹, F. Rühr⁷, A. Ruiz-Martinez⁶³, L. Rumyantsev⁶⁴, Z. Rurikova⁴⁸, N.A. Rusakovich⁶⁴, A. Ruschke⁹⁸, J.P. Rutherfoord⁷, P. Ruzicka¹²⁵, Y.F. Ryabov¹²¹, M. Rybar¹²⁶, G. Rybkin¹¹⁵, N.C. Ryder¹¹⁸, A.F. Saavedra¹⁵⁰, I. Sadeh¹⁵³, H.F-W. Sadrozinski¹³⁷, R. Sadykov⁶⁴, F. Safai Tehrani^{132a}, H. Sakamoto¹⁵⁵, G. Salamanna⁷⁵, A. Salamon^{133a}, M. Saleem¹¹¹, D. Salek³⁰, P. Salibagia⁹⁹, A. Salaman¹⁴³, J. Salek¹⁶⁷, P.M. Salaman¹⁵⁵, G. Salamanna⁷⁵, A. Salamon^{133a}, M. Saleem¹¹¹, D. Salek³⁰, D. Salihagic ⁹⁹, A. Salnikov ¹⁴³, J. Salt ¹⁶⁷, B.M. Salvachua Ferrando ⁶, D. Salvatore ^{37a,37b}, F. Salvatore ¹⁴⁹, A. Salvucci ¹⁰⁴, A. Salzburger ³⁰, D. Sampsonidis ¹⁵⁴, B.H. Samset ¹¹⁷, A. Sanchez ^{102a,102b}, V. Sanchez Martinez ¹⁶⁷, H. Sandaker ¹⁴, H.G. Sander ⁸¹, M.P. Sanders ⁹⁸, M. Sandhoff ¹⁷⁵, T. Sandoval ²⁸, C. Sandoval ¹⁶², R. Sandstroem ⁹⁹, D.P.C. Sankey ¹²⁹, A. Sansoni ⁴⁷, C. Santamarina Rios ⁸⁵, C. Santoni ³⁴, R. Santonico ^{133a,133b}, H. Santos ^{124a}, I. Santoyo Castillo ¹⁴⁹, J.G. Saraiva ^{124a}, T. Sarangi ¹⁷³,

E. Sarkisyan-Grinbaum⁸, B. Sarrazin²¹, F. Sarri^{122a,122b}, G. Sartisohn¹⁷⁵, O. Sasaki⁶⁵, Y. Sasaki¹⁵⁵, N. Sasao⁶⁷, I. Satsounkevitch⁹⁰, G. Sauvage^{5,*}, E. Sauvan⁵, J.B. Sauvan¹¹⁵, P. Savard^{158,e}, V. Savinov¹²³, D.O. Savu³⁰, L. Sawyer^{25,m}, D.H. Saxon⁵³, J. Saxon¹²⁰, C. Sbarra^{20a}, A. Sbrizzi^{20a,20b}, D.A. Scannicchio¹⁶³, M. Scarcella¹⁵⁰, J. Schaarschmidt¹¹⁵, P. Schacht⁹⁹, D. Schaefer¹²⁰, U. Schäfer⁸¹, D.O. Savu¹⁻⁷, L. Sawye^{1-1,m}, D.R. Saxo¹¹⁻⁷, J. Saxo¹¹⁻⁷, S. Sako¹¹⁻¹⁵, C. Soha¹¹⁷, J. Scha¹¹⁷, J. Scha¹¹⁷, J. Scha¹¹⁵, D. Scha¹¹⁵, D. Scha¹¹⁵, D. Scha¹¹⁶, M. Schamberge¹¹⁴⁸, A. Schaelicke⁴⁶, S. Schaepe²¹, S. Schaetzel^{58b}, A.C. Schaffer¹¹⁵, D. Schaile⁹⁸, R.D. Schamberger¹⁴⁸, A.G. Schamov¹⁰⁷, V. Schaff^{58a}, V.A. Schegelsky¹²¹, D. Scheirti, ⁸⁷, M. Schernau¹⁶³, M.I. Scherzer³⁵, C. Schiavi^{50a,50b}, J. Schieck⁹⁸, M. Schioppa^{37a,37b}, S. Schlenker³⁰, E. Schmidt⁴⁸, K. Schmieden²¹, C. Schmitt^{58b}, B. Schneider¹⁷, U. Schnoor⁴⁴, L. Schoeffel¹³⁶, A. Schoening^{58b}, A.L.S. Schorlemmer⁵⁴, M. Schutt³⁰, D. Schouten^{159a}, J. Schovancova¹²⁵, M. Schram⁸⁵, C. Schroeder⁸¹, N. Schroer^{58c}, M.J. Schultens²¹, J. Schultes¹⁷⁵, H.-C. Schultz-Coulon^{58a}, H. Schul²¹⁶, M. Schumacher⁴⁸, B.A. Schumm¹³⁷, Ph. Schuel³⁶, C. Schwanenberger⁸², A. Schwartzman¹⁴³, Ph. Schwegler⁹⁹, Ph. Schwegler⁹⁹, R. Schwierhorst⁸⁸, R. Schwierz⁴⁴, J. Schwidt¹⁰, S. Schwidt²¹, M. Schwoerer⁵, F.G. Sciacca¹⁷, G. Sciolla²³, W.G. Scott¹²⁹, J. Searcy¹¹⁴, G. Sedov⁴², E. Sedykh¹²¹, S.C. Seidel¹⁰³, A. Seiden¹³⁷, F. Seifert⁴⁴, J.M. Seixas^{24a}, G. Sekhniadze^{102a}, SJ. Sekula⁴⁰, K.E. Selbach⁴⁶, D.M. Seliverstov¹²¹, B. Sellden^{146a}, G. Sellers⁷³, M. Seman^{144b}, N. Semprini-Cesari^{20a,20b}, C. Serfon⁹⁸, L. Serin¹¹⁵, L. Serkin⁵⁴, R. Seuster^{159a}, H. Severini¹¹¹, A. Sfyrla³⁰, E. Shabalina⁵⁴, M. Shamim¹¹⁴, L.Y. Shan^{33a}, J.T. Shank²², Q.T. Shao⁸⁶, M. Shapiro¹⁵, P.B. Shatalov⁹⁵, K. Shaw^{164a,164c}, D. Sherran¹⁷⁶, P. Sherwood⁷⁷, S. Shimizu¹⁰¹, M. Shimojima¹⁰⁰, T. Shin⁵⁶, M. Shiyakova⁶⁴, A. Shmeleva⁹⁴, M.J. Shochet³¹, O. Silverstein¹⁴³, S. Silverstein^{146a}, V. Simak¹²⁷, O. Simat¹³⁵, D. Silverstein¹⁴³, S. Silverstein^{146a}, V. Simak¹²⁷, O. Simat¹³⁶, P. Sinev¹⁵⁷, A. Sinon¹¹⁵, E. Simion¹⁸, B. Simmons⁷⁷, R. Simoniello^{89a,89b}, M. Simonyan³⁶, P. Sinervo¹⁵⁸, N.B. Sinev¹¹⁴, V. Sipic P. Skubic ¹¹¹, M. Slater ¹⁸, T. Slavicek ¹²⁷, K. Sliwa ¹⁶¹, V. Smakhtin ¹⁷², B.H. Smart ⁴⁶, L. Smestad ¹¹⁷, S.Yu. Smirnov ⁹⁶, Y. Smirnov ⁹⁶, L.N. Smirnova ⁹⁷, O. Smirnova ⁷⁹, B.C. Smith ⁵⁷, D. Smith ¹⁴³, K.M. Smith ⁵³, M. Smizanska ⁷¹, K. Smolek ¹²⁷, A.A. Snesarev ⁹⁴, S.W. Snow ⁸², J. Snow ¹¹¹, S. Snyder ²⁵, R. Sobie ^{169,k}, J. Sodomka ¹²⁷, A. Soffer ¹⁵³, C.A. Solans ¹⁶⁷, M. Solar ¹²⁷, J. Solc ¹²⁷, E.Yu. Soldatov ⁹⁶, U. Soldevila ¹⁶⁷, E. Solfaroli Camillocci ^{132a,132b}, A.A. Solodkov ¹²⁸, O.V. Solovyanov ¹²⁸, V. Solovyev ¹²¹, N. Soni ¹, A. Sood ¹⁵, V. Sopko ¹²⁷, B. Sopko ¹²⁷, M. Sosebee ⁸, R. Soualah ^{164a,164c}, A. Soukharev ¹⁰⁷, S. Spagnolo ^{72a,72b}, F. Spano ⁷⁶, R. Spighi ^{20a}, G. Spigo ³⁰, R. Spiwoks ³⁰, M. Spousta ^{126,ag}, T. Spreitzer ¹⁵⁸, B. Spurlock ⁸, R.D. St. Denis ⁵³, J. Stahlman ¹²⁰, R. Stamen ^{58a}, E. Stanecka ³⁹, R.W. Stanek ⁶, C. Stanescu ^{134a}, M. Stanescu-Bellu ⁴², M.M. Stanitzki ⁴², S. Stapnes ¹¹⁷, E.A. Starchenko ¹²⁸, J. Stark ⁵⁵, P. Staroba ¹²⁵, P. Starovoitov ⁴², R. Staszewski ³⁹, A. Staude ⁹⁸, P. Stavina ^{144a,*}, G. Steele ⁵³, P. Steinbach ⁴⁴, P. Steinberg ²⁵, I. Stekl ¹²⁷, B. Stelzer ¹⁴², H.I. Stelzer ⁸⁸ O. Stelzer-Chilton ^{159a}, H. Stenzel ⁵², S. Stern ⁹⁹ C. Startescu -, M. Startescu-benu -, M.M. Stalmitzki -, S. Stapnes -, E.A. Startchenko -, J. Stark -, P. Staroba 125, P. Starovoitov 42, R. Staszewski ³⁹, A. Staude ⁹⁸, P. Stavina ^{144a,*}, G. Steele ⁵³, P. Steinbach ⁴⁴, P. Steinberg ²⁵, I. Stekl ¹²⁷, B. Stelzer ¹⁴², H.J. Stelzer ⁸⁸, O. Stelzer-Chilton ¹⁵⁹a, H. Stenzel ⁵², S. Stern ⁹⁹, G.A. Stewart ³⁰, J.A. Stillings ²¹, M.C. Stockton ⁸⁵, K. Stoerig ⁴⁸, G. Stoicea ^{26a}, S. Stonjek ⁹⁹, P. Strachota ¹²⁶, A.R. Stradling ⁸, A. Straessner ⁴⁴, J. Strandberg ¹⁴⁷, S. Strandberg ^{146a,146b}, A. Strandlie ¹¹⁷, M. Strang ¹⁰⁹, E. Strauss ¹⁴³, M. Strauss ¹¹¹, P. Strizenec ^{144b}, R. Ströhmer ¹⁷⁴, D.M. Strom ¹¹⁴, J.A. Strong ^{76,*}, R. Stroynowski ⁴⁰, B. Stugu ¹⁴, I. Stumer ^{25,*}, J. Stupak ¹⁴⁸, P. Sturm ¹⁷⁵, N.A. Styles ⁴², D.A. Soh ^{151,u}, D. Su ¹⁴³, H.S. Subramania ³, R. Subramaniam ²⁵, A. Succurro ¹², Y. Sugaya ¹¹⁶, C. Suhr ¹⁰⁶, M. Suk ¹²⁶, V.V. Sulin ⁹⁴, S. Sultansoy ^{4d}, T. Sumida ⁶⁷, X. Sun ⁵⁵, J.E. Sundermann ⁴⁸, K. Suruliz ¹³⁹, G. Susinno ^{37a,37b}, M.R. Sutton ¹⁴⁹, Y. Suzuki ⁶⁵, Y. Suzuki ⁶⁶, M. Svatos ¹²⁵, S. Swedish ¹⁶⁸, I. Sykora ^{144a}, T. Sykora ¹²⁶, J. Sánchez ¹⁶⁷, D. Ta ¹⁰⁵, K. Tackmann ⁴², A. Taffard ¹⁶³, R. Tafirout ^{159a}, N. Taiblum ¹⁵³, Y. Takahashi ¹⁰¹, H. Takai ²⁵, R. Takashima ⁶⁸, H. Takeda ⁶⁶, T. Takeshita ¹⁴⁰, Y. Takubo ⁶⁵, M. Talby ⁸³, A. Talyshev ^{107,g}, M.C. Tamsett ²⁵, K.G. Tan ⁸⁶, J. Tanaka ¹⁵⁵, R. Tanaka ¹¹⁵, S. Tanaka ¹³¹, S. Tanaka ⁶⁵, A.J. Tanasijczuk ¹⁴², K. Tani ⁶⁶, N. Tannoury ⁸³, S. Tapprogge ⁸¹, D. Tardif ¹⁵⁸, S. Tarem ¹⁵², F. Taratel ²⁹, G.F. Tartarelli ^{89a}, P. Tas ¹²⁶, M. Tasevsky ¹²⁵, E. Tasis ^{37a,37b}, Y. Tayalati ^{135d}, C. Taylor ⁷⁷, F.E. Taylor ⁹², G.N. Taylor ⁸⁶, K.K. Temming ⁴⁸, H. Ten Kate ³⁰, P.K. Teng ¹⁵¹, S. Terada ⁶⁵, K. Terashi ¹⁵⁵, J. Terron ⁸⁰, M. Tetsa ⁴⁷, R.J. Teuscher ^{158,k}, J. Therhaag ²¹, T. Theveneaux-Pelzer ⁷⁸, S. Thoma ⁴⁸, J.

257

B. Toggerson ¹⁶³, J. Tojo ⁶⁹, S. Tokár ^{144a}, K. Tokushuku ⁶⁵, K. Tollefson ⁸⁸, M. Tomoto ¹⁰¹, L. Tompkins ³¹, K. Toms ¹⁰³, A. Tonoyan ¹⁴, C. Topfel ¹⁷, N.D. Topilin ⁶⁴, E. Torrence ¹¹⁴, H. Torres ⁷⁸, E. Torró Pastor ¹⁶⁷, B. Töggerson ¹⁰⁵, J. Tojo⁵⁰, S. Tökär^{14ma}, K. Tökushuku⁵⁵, K. Tolleston⁶⁸, M. Tomoto¹⁰⁷, L. Tömpkins¹¹, K. Toms¹⁰³, A. Tonoyan ¹⁴, C. Topfel ¹⁷, N.D. Topilin ⁶⁴, E. Torrence ¹¹⁴, H. Torres⁷⁸, E. Torró Pastor ¹⁶⁷, J. Toth^{83,ac}, F. Touchard⁸³, D.R. Tovey¹³⁹, T. Trefzger ¹⁷⁴, L. Tremblet³⁰, A. Tricoli³⁰, I.M. Trigger ^{159a}, S. Trincaz-Duvoid⁷⁸, M.F. Tripiana⁷⁰, N. Triplett²⁵, W. Trischuk¹⁵⁸, B. Trocmé⁵⁵, C. Troncon^{89a}, M. Trottier-McDonald¹⁴², P. True⁸⁸, M. Trzebinski³⁹, A. Trzupek³⁹, C. Tsarouchas³⁰, J.C-L. Tseng ¹¹⁸, M. Tsiakiris¹⁰⁵, P.V. Tsiareshka⁹⁰, D. Tsionou^{5,ah}, G. Tsipolitis¹⁰, S. Tsiskaridze¹², V. Tsiskaridze⁴⁸, E.G. Tskhadadze^{51a}, I.I. Tsukerman⁹⁵, V. Tsulaia¹⁵, J.-W. Tsung²¹, S. Tsuno⁶⁵, D. Tsybychev¹⁴⁸, A. Tua¹³⁹, A. Tudorache^{26a}, V. Tudorache^{26a}, J.M. Tuggle³¹, A. Tukn¹²⁰, M. Turala³⁹, D. Turecek¹²⁷, I. Turk Cakir^{4e}, E. Turlay¹⁰⁵, R. Turra^{89a,89b}, P.M. Tuts³⁵, A. Nutna¹²⁰, M. Turla³⁹, D. Turecek¹²⁷, M. Uhrmacher⁵⁴, F. Ukegawa¹⁶⁰, G. Unal³⁰, A. Undrus²⁵, G. Unel¹⁶³, Y. Unno⁶⁵, D. Urbaniec³⁵, P. Urquijo²¹, G. Usai⁸, M. Uslenghi ^{119a,119b}, L. Vacavant⁸³, V. Vacek¹²⁷, B. Vachon⁸⁵, S. Valsen¹⁵, J. Valenta¹²⁵, S. Valentinetti ^{20a,20b}, A. Valero¹⁶⁷, S. Valkar¹²⁶, E. Valladolid Gallego¹⁶⁷, S. Vallecorsa¹⁵², J.A. Valls Ferrer¹⁶⁷, R. Van Berg¹²⁰, P.C. Van Der Deijl¹⁰⁵, R. van der Geer¹⁰⁵, H. van der Graaf¹⁰⁵, R. Van Der Leeuw¹⁰⁵, E. van der Poel¹⁰⁵, D. van der Ster³⁰, N. van Eldik³⁰, P. van Gemmeren⁶, I. van Vulpen¹⁰⁵, M. Vanadia⁹⁹, W. Vandelli³⁰, A. Variaetina⁸, K.E. Varvell¹⁵⁰, V.I. Vassilakopoulos⁵⁶, F. Vazeille³⁴, T. Vazquez Schroeder⁵⁴, G. Vegni^{89a,89b}, J.J. Veillet¹¹⁵, F. Veloso^{124a}, R. Veness³⁰, S. Veneziano^{132a}, A. Ventura^{72a,72b}, D. Ventura⁸⁴, M. Venturi¹⁵⁸, N. Venteri^{159a}, V. Vercesi^{119a}, M. Verducci¹³⁸, W. Verkerke¹⁰⁵, J.C. Vermeulen¹⁰⁵, A. Vest⁴⁴, M.C. Vettreli^{142,e}, I. Vichou¹⁶ H. von Radziewski⁴⁸, E. von Toerne²¹, V. Vorobel¹²⁶, V. Vorwerk¹², M. Vos¹⁶⁷, R. Voss³⁰, T.T. Voss¹⁷⁵, J.H. Vossebeld ⁷³, N. Vranjes ¹³⁶, M. Vranjes Milosavljevic ¹⁰⁵, V. Vrba ¹²⁵, M. Vreeswijk ¹⁰⁵, T. Vu Anh⁴⁸, R. Vuillermet ³⁰, I. Vukotic ³¹, W. Wagner ¹⁷⁵, P. Wagner ¹²⁰, H. Wahlen ¹⁷⁵, S. Wahrmund ⁴⁴, J. Wakabayashi 101 , S. Walch 87 , J. Walder 71 , R. Walker 98 , W. Walkowiak 141 , R. Wall 176 , P. Waller 73 , B. Walsh 176 , C. Wang 45 , H. Wang 173 , H. Wang 40 , J. Wang 151 , J. Wang 55 , R. Wang 103 , S.M. Wang 151 , D. Walsh M, C. Wang M, H. Wang M, H. Wang W, J. Wang W, J. Wang W, J. Wang W, S. M. Wang W, S. M. Wang W, T. Wang ²¹, A. Warburton ⁸⁵, C.P. Ward ²⁸, D.R. Wardrope ⁷⁷, M. Warsinsky ⁴⁸, A. Washbrook ⁴⁶,
C. Wasicki ⁴², I. Watanabe ⁶⁶, P.M. Watkins ¹⁸, A.T. Watson ¹⁸, I.J. Watson ¹⁵⁰, M.F. Watson ¹⁸, G. Watts ¹³⁸,
S. Watts ⁸², A.T. Waugh ¹⁵⁰, B.M. Waugh ⁷⁷, M.S. Weber ¹⁷, J.S. Webster ³¹, A.R. Weidberg ¹¹⁸, P. Weigell ⁹⁹,
J. Weingarten ⁵⁴, C. Weiser ⁴⁸, P.S. Wells ³⁰, T. Wenaus ²⁵, D. Wendland ¹⁶, Z. Weng ^{151,u}, T. Wengler ³⁰, S. Wenig³⁰, N. Wermes²¹, M. Werner⁴⁸, P. Werner³⁰, M. Werth¹⁶³, M. Wessels^{58a}, J. Wetter¹⁶¹, C. Weydert⁵⁵, K. Whalen²⁹, A. White⁸, M.J. White⁸⁶, S. White^{122a,122b}, S.R. Whitehead¹¹⁸, C. Weydert ³⁵, K. Whalen ²⁵, A. White⁵, M.J. White⁵, S. White¹⁷⁵, S.K. White¹⁷⁵, S.K. White¹⁷⁵, S.K. White¹⁷⁵, D. Wicke¹⁷⁵, F.J. Wickens¹²⁹, W. Wiedenmann¹⁷³, M. Wielers¹²⁹, P. Wienemann²¹, C. Wiglesworth⁷⁵, L.A.M. Wiik-Fuchs²¹, P.A. Wijeratne⁷⁷, A. Wildauer⁹⁹, M.A. Wildt^{42,r}, I. Wilhelm¹²⁶, H.G. Wilkens³⁰, J.Z. Will⁹⁸, E. Williams³⁵, H.H. Williams¹²⁰, W. Willis³⁵, S. Willocq⁸⁴, J.A. Wilson¹⁸, M.G. Wilson¹⁴³, A. Wilson⁸⁷, I. Wingerter-Seez⁵, S. Winkelmann⁴⁸, F. Winklmeier³⁰, M. Wittgen¹⁴³, S.J. Wollstadt⁸¹, M.W. Wolter³⁹, M. Wittgen¹²⁴, ^b WK and ⁴¹, C. Winklmeier³⁰, M. Wittgen¹⁴³, S.J. Wollstadt⁸¹, M.W. Wolter³⁹, I. Wingerter-Seez⁵, S. Winkelmann⁴⁸, F. Winklmeier³⁰, M. Wittgen¹⁴³, S.J. Wollstadt⁸¹, M.W. Wolter³⁹ H. Wolters^{124a,h}, W.C. Wong⁴¹, G. Wooden⁸⁷, B.K. Wosiek³⁹, J. Wotschack³⁰, M.J. Woudstra⁸², K.W. Wozniak³⁹, K. Wraight⁵³, M. Wright⁵³, B. Wrona⁷³, S.L. Wu¹⁷³, X. Wu⁴⁹, Y. Wu^{33b,aj}, E. Wulf³⁵, B.M. Wynne⁴⁶, S. Xella³⁶, M. Xiao¹³⁶, S. Xie⁴⁸, C. Xu^{33b,y}, D. Xu¹³⁹, L. Xu^{33b}, B. Yabsley¹⁵⁰, S. Yacoob^{145a,ak}, M. Yamada⁶⁵, H. Yamaguchi¹⁵⁵, A. Yamamoto⁶⁵, K. Yamamoto⁶³, S. Yamamoto¹⁵⁵, T. Yamamura¹⁵⁵, T. Yamanaka¹⁵⁵, T. Yamazaki¹⁵⁵, Y. Yamazaki⁶⁶, Z. Yan²², H. Yang⁸⁷, U.K. Yang⁸², Y. Yang¹⁰⁹, Z. Yang^{146a,146b}, S. Yanush⁹¹, L. Yao^{33a}, Y. Yao¹⁵, Y. Yasu⁶⁵, G.V. Ybeles Smit¹³⁰, J. Ye⁴⁰, S. Ye²⁵, M. Yilmaz^{4c}, R. Yoosoofmiya¹²³, K. Yorita¹⁷¹, R. Yoshida⁶, K. Yoshihara¹⁵⁵, C. Young¹⁴³, C.J. Young¹¹⁸, S. Youssef²², D. Yu²⁵, D.R. Yu¹⁵, J. Yu⁸, J. Yu¹¹², L. Yuan⁶⁶, A. Yurkewicz¹⁰⁶, B. Zabinski³⁹, R. Zaidan⁶², A.M. Zaitsev¹²⁸, Z. Zajacova³⁰, L. Zanello^{132a,132b}, D. Zanzi⁹⁹, A. Zaytsev²⁵, C. Zeitnitz¹⁷⁵, M. Zeman¹²⁵, A. Zemla³⁹, C. Zendler²¹, O. Zenin¹²⁸, T. Ženiš^{144a}, Z. Zinonos^{122a,122b}, D. Zerwas¹¹⁵, G. Zevi della Porta⁵⁷, D. Zhang^{33b,al}, H. Zhang⁸⁸, J. Zhang⁶, X. Zhang^{33d}, Z. Zhang¹¹⁵, L. Zhao¹⁰⁸, Z. Zhao^{33b}, A. Zhemchugov⁶⁴, J. Zhong¹¹⁸, B. Zhou⁸⁷, N. Zhou¹⁶³, Y. Zhou¹⁵¹, C.G. Zhu^{33d},

¹ School of Chemistry and Physics, University of Adelaide, Adelaide, Australia ² Physics Department, SUNY Albany, Albany, NY, United States ³ Department of Physics, University of Alberta, Edmonton, AB, Canada 4 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupinar University, Kutahva; (c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; ^(e) Turkish Atomic Energy Authority, Ankara, Turkey ⁵ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France ⁶ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States ⁷ Department of Physics, University of Arizona, Tucson, AZ, United States ⁸ Department of Physics, The University of Texas at Arlington, Arlington, TX, United States ⁹ Physics Department, University of Athens, Athens, Greece ¹⁰ Physics Department, National Technical University of Athens, Zografou, Greece ¹¹ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan ¹² Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain 13 @ Institute of Physics, University of Belgrade, Belgrade; ^(b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia ¹⁴ Department for Physics and Technology, University of Bergen, Bergen, Norway ¹⁵ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States ¹⁶ Department of Physics, Humboldt University, Berlin, Germany ¹⁷ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland ¹⁸ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 19 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey ²⁰ ^(a) INFN Sezione di Bologna; ^(b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy ²¹ Physikalisches Institut, University of Bonn, Bonn, Germany ²² Department of Physics, Boston University, Boston, MA, United States ²³ Department of Physics, Brandeis University, Waltham, MA, United States 24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ^(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil ²⁵ Physics Department, Brookhaven National Laboratory, Upton, NY, United States 26 (a) National Institute of Physics and Nuclear Engineering. Bucharest: (b) University Politehnica Bucharest. Bucharest: (c) West University in Timisoara. Timisoara. Romania ²⁷ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina ²⁸ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom ²⁹ Department of Physics, Carleton University, Ottawa, ON, Canada ³⁰ CERN, Geneva, Switzerland ³¹ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States ^{32 (a)} Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ^(b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
 ^{33 (a)} Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ^(b) Department of Modern Physics, University of Science and Technology of China, Anhui; ^(c) Department of Physics, Nanjing University, Jiangsu; ^(d) School of Physics, Shandong University, Shandong; ^(e) Physics Department, Shanghai Jiao Tong University, Shanghai, China Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France ³⁵ Nevis Laboratory, Columbia University, Irvington, NY, United States ³⁶ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark ³⁷ ^(a) INFN Gruppo Collegato di Cosenza; ^(b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy ³⁸ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland ³⁹ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland ⁴⁰ Physics Department, Southern Methodist University, Dallas, TX, United States ⁴¹ Physics Department, University of Texas at Dallas, Richardson, TX, United States ⁴² DESY, Hamburg and Zeuthen, Germany ⁴³ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany ⁴⁴ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany ⁴⁵ Department of Physics, Duke University, Durham, NC, United States ⁴⁶ SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom ⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy 48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany ⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland INFN Sezione di Genova; ^(b) Dipartimento di Fisica, Università di Genova, Genova, Italy
 ^(a) INFN Sezione di Genova; ^(b) Dipartimento di Fisica, Università di Genova, Genova, Italy
 ^(a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; ^(b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia ⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany ⁵³ SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom ⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany 55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France ⁵⁶ Department of Physics, Hampton University, Hampton, VA, United States ⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States 58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany ⁵⁹ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan ⁶⁰ Department of Physics, Indiana University, Bloomington, IN, United States ⁶¹ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

- 62 University of Iowa, Iowa City, IA, United States
- 63 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States

- ⁶⁷ Faculty of Science, Kyoto University, Kyoto, Japan
- 68 Kyoto University of Education, Kyoto, Japan
- ⁶⁹ Department of Physics, Kyushu University, Fukuoka, Japan

H. Zhu⁴², J. Zhu⁸⁷, Y. Zhu^{33b}, X. Zhuang⁹⁸, V. Zhuravlov⁹⁹, A. Zibell⁹⁸, D. Zieminska⁶⁰, N.I. Zimin⁶⁴, R. Zimmermann²¹, S. Zimmermann²¹, S. Zimmermann⁴⁸, M. Ziolkowski¹⁴¹, R. Zitoun⁵, L. Živkovič³⁵, V.V. Zmouchko^{128,*}, G. Zobernig¹⁷³, A. Zoccoli^{20a,20b}, M. zur Nedden¹⁶, V. Zutshi¹⁰⁶, L. Zwalinski³⁰

- ⁶⁴ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
- ⁶⁵ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
- ⁶⁶ Graduate School of Science, Kobe University, Kobe, Japan

⁷⁰ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

⁷¹ Physics Department, Lancaster University, Lancaster, United Kingdom

⁷² ^(a) INFN Sezione di Lecce; ^(b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

⁷³ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

⁷⁴ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

⁷⁵ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

⁷⁶ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom

⁷⁷ Department of Physics and Astronomy, University College London, London, United Kingdom

78 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

⁷⁹ Fysiska institutionen, Lunds universitet, Lund, Sweden

⁸⁰ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain

⁸¹ Institut für Physik, Universität Mainz, Mainz, Germany

⁸² School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

⁸³ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

⁸⁴ Department of Physics, University of Massachusetts, Amherst, MA, United States

⁸⁵ Department of Physics, McGill University, Montreal, QC, Canada

⁸⁶ School of Physics, University of Melbourne, Victoria, Australia

⁸⁷ Department of Physics, The University of Michigan, Ann Arbor, MI, United States

⁸⁸ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States

⁸⁹ ^(a) INFN Sezione di Milano; ^(b) Dipartimento di Fisica, Università di Milano, Milano, Italy

⁹⁰ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

⁹¹ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus

⁹² Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States

⁹³ Group of Particle Physics, University of Montreal, Montreal, QC, Canada

⁹⁴ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

⁹⁵ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

⁹⁶ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

⁹⁷ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

⁹⁸ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

⁹⁹ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

¹⁰⁰ Nagasaki Institute of Applied Science, Nagasaki, Japan

¹⁰¹ Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

¹⁰² ^(a) INFN Sezione di Napoli; ^(b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy

¹⁰³ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States

¹⁰⁴ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

¹⁰⁵ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

¹⁰⁶ Department of Physics, Northern Illinois University, DeKalb, IL, United States

¹⁰⁷ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

¹⁰⁸ Department of Physics, New York University, New York, NY, United States

¹⁰⁹ Ohio State University, Columbus, OH, United States

¹¹⁰ Faculty of Science, Okayama University, Okayama, Japan

¹¹¹ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States

¹¹² Department of Physics, Oklahoma State University, Stillwater, OK, United States

¹¹³ Palacký University, RCPTM, Olomouc, Czech Republic

¹¹⁴ Center for High Energy Physics, University of Oregon, Eugene, OR, United States

¹¹⁵ LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

¹¹⁶ Graduate School of Science, Osaka University, Osaka, Japan

¹¹⁷ Department of Physics, University of Oslo, Oslo, Norway

¹¹⁸ Department of Physics, Oxford University, Oxford, United Kingdom

¹¹⁹ ^(a) INFN Sezione di Pavia; ^(b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy

¹²⁰ Department of Physics, University of Pennsylvania, Philadelphia, PA, United States

¹²¹ Petersburg Nuclear Physics Institute, Gatchina, Russia

¹²² ^(a) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

¹²³ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States

124 (a) Laboratorio de Instrumentacao e Física Experimental de Particulas – LIP, Lisboa, Portugal; (b) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain

¹²⁵ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

¹²⁶ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

¹²⁷ Czech Technical University in Prague, Praha, Czech Republic

¹²⁸ State Research Center Institute for High Energy Physics, Protvino, Russia

¹²⁹ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

¹³⁰ Physics Department, University of Regina, Regina, SK, Canada

¹³¹ Ritsumeikan University, Kusatsu, Shiga, Japan

¹³² ^(a) INFN Sezione di Roma I; ^(b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy

¹³³ ^(a) INFN Sezione di Roma Tor Vergata; ^(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

¹³⁴ ^(a) INFN Sezione di Roma Tre; ^(b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy

¹³⁵ (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies – Université Hassan II, Casablanca; ^(b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; ^(c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA, Marrakech; ^(d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ^(e) Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco

136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France

¹³⁷ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States

¹³⁸ Department of Physics, University of Washington, Seattle, WA, United States

¹³⁹ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

140 Department of Physics, Shinshu University, Nagano, Japan

¹⁴¹ Fachbereich Physik, Universität Siegen, Siegen, Germany

¹⁴² Department of Physics, Simon Fraser University, Burnaby, BC, Canada

¹⁴³ SLAC National Accelerator Laboratory, Stanford, CA, United States

144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

- 145 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
- ¹⁴⁶ ^(a) Department of Physics, Stockholm University; ^(b) The Oskar Klein Centre, Stockholm, Sweden
- ¹⁴⁷ Physics Department, Royal Institute of Technology, Stockholm, Sweden
- ¹⁴⁸ Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
- ¹⁴⁹ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
- ¹⁵⁰ School of Physics, University of Sydney, Sydney, Australia
- ¹⁵¹ Institute of Physics, Academia Sinica, Taipei, Taiwan
- ¹⁵² Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
- ¹⁵³ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ¹⁵⁴ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- ¹⁵⁵ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
- ¹⁵⁶ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- ¹⁵⁷ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- ¹⁵⁸ Department of Physics, University of Toronto, Toronto, ON, Canada
- ¹⁵⁹ (a) TRIUMF, Vancouver, BC; ^(b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
- ¹⁶⁰ Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- ¹⁶¹ Department of Physics and Astronomy, Tufts University, Medford, MA, United States
- ¹⁶² Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
- ¹⁶³ Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
- 164 @ INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
- ¹⁶⁵ Department of Physics, University of Illinois, Urbana, IL, United States
- ¹⁶⁶ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
- 167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de
- Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia. Spain
- ¹⁶⁸ Department of Physics, University of British Columbia, Vancouver, BC, Canada
- ¹⁶⁹ Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- ¹⁷⁰ Department of Physics, University of Warwick, Coventry, United Kingdom
- ¹⁷¹ Waseda University, Tokyo, Japan
- ¹⁷² Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- ¹⁷³ Department of Physics, University of Wisconsin, Madison, WI, United States
- ¹⁷⁴ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- ¹⁷⁵ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- ¹⁷⁶ Department of Physics, Yale University, New Haven, CT, United States
- ¹⁷⁷ Yerevan Physics Institute, Yerevan, Armenia
- ¹⁷⁸ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
- ^a Also at Laboratorio de Instrumentação e Fisiça Experimental de Particulas LIP, Lisboa, Portugal,
- ^b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
- Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
- ^d Also at Department of Physics, University of Johannesburg, Johannesburg, South Africa.
- Also at TRIUMF, Vancouver, BC, Canada.
- Also at Department of Physics, California State University, Fresno, CA, United States.
- ^g Also at Novosibirsk State University, Novosibirsk, Russia,
- ^h Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
- Also at Department of Physics, UASLP, San Luis Potosi, Mexico.
- j Also at Università di Napoli Parthenope, Napoli, Italy.
- k Also at Institute of Particle Physics (IPP), Canada,
- Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
- ^m Also at Louisiana Tech University, Ruston, LA, United States,
- Also at Dep. Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal,
- Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
- р Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
- Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
- Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany,

- 11 Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
- Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
- Also at School of Physics, Shandong University, Shandong, China.
- х Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.
- Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.
- Also at Section de Physique, Université de Genève, Geneva, Switzerland.
- aa Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
- ab Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
- Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
- ^{ad} Also at California Institute of Technology, Pasadena, CA, United States.
- ae Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
- ^{of} Also at LAL Université Paris-Sud and CNRS/IN2P3, Orsav, France,
- ^{ag} Also at Nevis Laboratory, Columbia University, Irvington, NY, United States.
- ^{ah} Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
- ^{*ai*} Also at Department of Physics, Oxford University, Oxford, United Kingdom.
- ^{*aj*} Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
- ak Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.
- $^{\it al}\,$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
- Deceased.

Also at Manhattan College, New York, NY, United States. Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.