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Abstract

A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at 
centre-of-mass energies from 130 to 183 GeV, corresponding to an integrated luminosity of 88.3 pb_1. The Higgs decays 
into a charm and a strange quark or into a tau lepton and its associated neutrino are considered. The observed candidates are 
consistent with the expectations from Standard Model background processes. A lower limit of 57.5 GeV on the charged 
Higgs mass is derived at 95% CL, independent of the decay branching ratio Br(H tv). © 1999 Published by Elsevier 
Science B.V. All rights reserved.

1. Introduction

In the Standard Model [1], the Higgs mechanism 
[2] is used to generate the masses of W and Z bosons 
via spontaneous breaking of the local gauge symme
try. The Higgs sector requires one doublet of com

plex scalar fields which leads to the prediction of a 
single neutral scalar Higgs boson.

There are more general models, e.g. those derived 
from supersymmetry, that contain more than one 
Higgs doublet [3]. A minimal extension to the Stan
dard Model has a two-doublet Higgs sector, which 
leads to five physical Higgs bosons: three neutral 
(A0, h0, H0) and two charged (H "). The discovery 
of a charged Higgs particle would be clear evidence 
for physics beyond the Standard Model.
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Charged Higgs bosons can be produced in eqe" 

interactions via the process e 'e" ™ (Z/g) ™ H 'H", 
The Born cross section in the framework of two 
doublet models contains the mass of the charged 
Higgs boson as the only free parameter [4], In this 
letter, we describe the analysis of the data taken at 
LEP from 1995 to 1997 at centre-of-mass energies 
between 130-183 GeV, The sensitivity of this data 
covers the Higgs mass region below the mass of the 
charged heavy gauge boson, mW, Charged Higgs 
bosons are expected to decay mainly into the heavi
est lepton that is kinematically allowed and its asso
ciated neutrino, or into the heaviest kinematically 
allowed quark pair whose decay is not Cabibbo-sup- 
pressed, Thus there are three possible decay modes: 
HqH"™ t+ptt"nT, cst"nT and cscs, The relative 
branching ratio is model dependent, Therefore three 
different analyses are optimised for each of the 
possible final states, The results include and super
sede previous lower limits to the mass of charged 
Higgs bosons established by L3 using the data col
lected at the Z peak [5], Results from other LEP 
experiments are published in Ref, [6],

energy loss, multiple scattering and showering in the 
detector,

2.1. Search in the H ' H " ™ t ' tt " nT channel

The signature for the leptonic decay channel is a 
pair of tau leptons with large missing energy and 
momentum, giving rise to low multiplicity events 
with low visible energy, Such events are selected by 
requiring a visible energy of less than 0,5T, be
tween 2 and 20 calorimetric clusters and a charged 
track multiplicity of between 2 and 8, Dilepton final 
states from e' e"™/V" (/ = e,m,t) are rejected 
by requiring the maximum angle between any pair of 
tracks to be less than 165° and the event thrust to be 
less than 0,98, Radiative dilepton production is re
duced by rejecting events with one or more recon
structed photons with energy greater than 20 GeV, 
Background from two-photon interactions is reduced 
by rejecting events where the sum of the energy 
deposited in the luminosity monitor and the active 
lead rings exceeds 1 GeV, Remaining two-photon 
interaction events are rejected by requiring the ratio 
of the missing transverse momentum and the visible 
energy to be greater than 0,2 and the ratio of the 
missing longitudinal momentum and the visible en
ergy to be less than 0,7, and by rejecting events 
where there is no reconstructed jet with a momentum 
transverse to the beam axis exceeding 15 GeV, 
Cosmic muons are rejected by requiring tracks to
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2. Data analysis

The data were collected with the L3 detector [7] at
LEP, corresponding to an integrated luminosity of 
88,3 pb"1; where 12,0 pb"1 were collected at a 
centre-of-mass energy of 130-136 GeV, 10,8 pb"1 
at 161 GeV, 10,2 pb"1 at 172 GeV and 55,3 pb"1 at 
183 GeV,

The signal cross section is calculated using the 
PYTHIA Monte Carlo program [8], For the effi
ciency estimates, samples of e'e"™ (Z/g) ™ 
HqH" events are generated for Higgs masses be
tween 40 and 80 GeV in mass steps of 5 GeV, About 
1000 events for each final state are generated at each 
Higgs mass, For the background studies the follow
ing Monte Carlo generators are used: PYTHIA for 
e'e"™ qq(g) and eqe"™ ZZ, KORALW [9] for 
e'e"™ Wq W", PHOJET [10] for eqe"™ eqe"qq, 
DIAG36 [11] for eqe"™ eqe"/V"(l = e,m,T), 
KORALZ [12] for eqe"™ m+m", eqe"™ t+t" 

and BHAGENE3 [13] for eqe"™ eqe", The L3 
detector response is simulated using the GEANT 
program [14] which takes into account the effects of

Fig. 1. Energy spectra, after pre-selection, for events with (a) 
electrons and (b) muons in the final state for's = 183 GeV. The 
dotted line indicates the signal of a 60 GeV charged Higgs boson 
at Br(H " ™ tv) = 1 multiplied by a factor 5. The background is 
dominated by W decays into leptons.
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originate from the e ' e interaction region and at 
least one scintillator hit in time with the beam cross
ing.

Tau leptons are identified via their decay into 
isolated electrons or muons, or as a low multiplicity 
jet comprising 1, 2 or 3 tracks within a 10° half
opening angle around the jet direction. This allows 
acceptance of 1-prong t decays with a spurious track 
or a photon conversion and 3-prong decays in which 
one track is not reconstructed. Muons must have a 
momentum of at least 5% of the beam energy in 
order to reduce the number of fake signatures from 
hadrons that escape the hadron calorimeter. For 
hadronically decaying t candidates, the ratio 
E30/E10 must be less than 1.3, where E30 and E10 
are the energy depositions in a 30° and 10° half angle 
cone around the direction of the decay particles of 
the t respectively.

Events that are consistent with the signal are 
selected by requiring the presence of at least two t 
decay candidates. At centre-of-mass energies above 
136 GeV, additional criteria are applied to the t 
candidates to reduce contamination from WW ™ 
qq / = e,m). More energetic leptons are more
likely to come directly from a W decay than from a 
charged Higgs because of the greater number of 
unobserved neutrinos in the latter case. For t decays 
to electrons or muons, the observed lepton energy 
must be less than 0.45 of the beam energy (Fig. 1). 
Further reduction of W background is achieved by 
requiring the event to have at least one hadronically 
decaying t candidate.

The efficiency of the H'H y ™ t'v.t y vT selec
tion for the different Higgs masses is shown in Table 
1. Table 2 shows the number of events selected in

/s (GeV)

mH

Table 1
Selection efficiencies (in%) for the t+ vtt vt final state for 
different masses m ± at different centre-of-mass energies

+ (GeV) 130-136 161 172 183

45 29 20 21 23
50 33 22 23 25
55 35 24 26 26
60 38 27 29 27
65 - 28 29 28
70 - 30 30 30

Table 2
Expected background and number of events selected in data in the 
t+ ptt_ vt final state at each centre-of-mass energy

T (GeV) 130-136 161 172 183

Expected background 0.3 0.5 1.3 9.2
Data 0 0 1 6

the data and the expected background for the differ
ent centre-of-mass energies. The total number of 
events selected in data is 7, where 11.3 background 
events are expected from Standard Model processes. 
Almost all of the remaining background comes from 
W pair production.

Systematic uncertainties in the signal efficiencies 
and the expected number of background events were 
investigated by comparing the distributions of sev
eral signal-sensitive variables in the data and the 
Monte Carlo. We assign a systematic error of 0.8 
events in the total predicted background and 1.5% in 
the expected signal efficiencies.

2.2. Search in the H ' H ™ cs t Vt channel

The semileptonic final state H'H ™ cs t vT 9 is 
characterised by two hadronic jets, a t lepton and 
missing momentum. High multiplicity events are 
selected by requiring more than 5 charged tracks and 
more than 10 calorimetric clusters. Tau leptons are 
identified in the same way as for the H'Hy™ 
t ' vtt y vT selection with the additional constraint that 
hadronically decaying t candidates must have one or 
three tracks and unit charge. The latter requirement 
on the t leptons reduces the contamination from 
qq(y) events. Selected events are forced into two 
jets using the DURHAM algorithm [15], after sub
tracting the t candidate.

The charge conjugated decay is also considered.

The kinematic cuts differ slightly for the different 
centre-of-mass energies. As an example, we describe 
here the cuts for the /s = 183 GeV data where we 
have the largest search sensitivity due to the high 
centre-of-mass energy and the large integrated lumi
nosity.
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COS® Mass (GeV)

Fig. 2. Distributions for the Hq H_ ™ cst_ vt channel after the 
pre-selection and the t identification: (a) ratio of the missing 
transverse momentum and the visible energy for ' = 183 GeV, 
(b) sum of the electron energy and the absolute value of the 
missing momentum in the rest frame of the leptonically decaying 
parent particle for events with an identified electron in the final 
state for ' = 183 GeV, the background process Wq W_ ™ qqev 
is clearly separated from the signal, (c) polar angle distribution of 
the negative parent particle for ' = 183 GeV, (d) reconstructed 
mass spectrum after all cuts for T = 130-183 GeV. The dotted 
lines indicate the signal for a 60 GeV charged Higgs boson at 
Br(H " ™ tv) = 0.5 multiplied by a factor 100 (a)-(c) and by a 
factor one (d).

The missing transverse momentum must be at 
least 10% of the visible energy in order to reject 
background from the reactions e 'e ™ qqqq(y) and 
qq(y) (Fig. 2a). The background contribution from 
eqe ™ qq(y) is further reduced by requiring the 
missing momentum parallel to the beam axis to be 
smaller than 50% of the visible energy. The polar 
angle of the missing momentum vector must satisfy 
|cos®miss | - 0.9. Furthermore, the visible mass, after 
subtraction of the t candidate, must be less than 90 
GeV and the opening angle of the two jets must be 
less than 160° in the plane perpendicular to the beam 
axis. The energy deposition in a cone of 25° around 
the missing momentum vector projected in the same 
plane must be smaller than 40 GeV and the sum of 
the opening angles of the t candidate and the miss
ing momentum vector to the closest jet is required to 
be larger than 80°.

A kinematic fit is performed imposing energy and 
momentum conservation for an assumed production 
of a pair of equal mass particles with one decaying 
into two jets and the other into a t and a neutrino. 
The directions of the jets, of the t and of the missing 
momentum vector are kept at their measured values. 
Using this method, a resolution of about 4 GeV is 
obtained in the distribution of the effective mass of 
the two jets and of the t and the neutrino.

Semileptonically decaying W-pairs (WW ™ 
qq/n; / = e,m) are suppressed in the following way: 
the four momenta are transformed into the rest frame 
of the leptonically decaying parent particle. In this 
frame, the lepton energy E )l is greater if the lepton 
comes from a prompt W decay than from a t decay. 
The missing momentum |Pm*ss| is also larger in the 
first case because the neutrinos from the t decay are 
almost oppositely directed to the t neutrino coming 
directly from the W. For the selection, the sum 
E} q | Pm*ss | is used, which should be smaller than 60 
GeV for an electron and smaller than 50 GeV for a 
muon in the final state. The discriminating power of 
this variable is shown in Fig. 2b.

To further reject qq(y), two-photon interactions 
and W pair events, the flight direction of the parent 
particle is considered. The production of the charged 
Higgs follows a sin2® dependence whereas the ma
jor fraction of the background is collected in the 
forward-backward region of the detector (Fig. 2c). 
Events with | cos® |< 0.9 are accepted.

The selection efficiencies for the different centre- 
of-mass energies are shown in Table 3. The back
ground expectation together with the selected data 
events are given in Table 4. The total number of 
events selected in data is 39, where 39.8 background

Table 3
Selection efficiencies (in%) for the cst~ vt final state for differ
ent masses mH " at different centre-of-mass energies

m h ± (GeV)

T (GeV)

130-136 161 172 183

45 41 36 34 38
50 41 40 35 41
55 39 42 46 42
60 33 47 46 41
65 - 44 44 42
70 - 41 42 42



M. Acciarri et al. /Physics Letters B 446 (1999) 368-377 375

Table 4
Background expectation and observed data at the investigated 
centre-of-mass energies for the cst vt channel

's (GeV) 130-136 161 172 183

Expected background 0.6 2.0 7.1 30.1
Data 1 1 9 28

events are expected from Standard Model processes. 
The background is dominated by the process WW ™ 
qqtv (f 70%) and other WW decays (» 22%); the 
remaining contributions are qq(g) and neutral cur
rent four-fermion events. For the final mass distribu
tion, we use the average of the masses of the jet-jet 
and the tv pairs respectively, calculated after the 
kinematic fit. Fig. 2d shows the mass distribution for 
data and background events for all investigated cen- 
tre-of-mass energies combined.

The main contribution to the systematic error 
comes from the t identification. Systematic uncer
tainties in the t identification were studied using 
high statistic e'e ™ e'e , e'e ™ /i' /i , e'e 
™ t'Ty and e ' e ™ qq(g) data and MC samples 
at 91 GeV centre-of-mass energy. A systematic error 
of 2% for the signal efficiency and 2.5% for the 
background expectation is derived.

2.3. Search in the H ' H ™ cscs channel

Events of the channel H'H ™ cscs have high 
multiplicity and are balanced in transverse and longi
tudinal momenta. Their total centre-of-mass energy 
is deposited in the detector and they are character
ized by four hadronic jets. The cut values differ 
slightly at the different centre-of-mass energies. The 
cuts described here are for /s = 183 GeV.

Candidate events are selected by requiring more 
than 15 charged tracks and more than 45 calorimetric 
clusters. The visible energy must be between 0.6/s 
and 1.4/s and the transverse and longitudinal nor
malised missing energy less than 0.3.

Radiative qq(g) events are suppressed by reject
ing events that contain an isolated photon with an 
energy greater 0.1 T. Furthermore, the event sphe- 
rocity must be within 0.14 and 0.74.

The events are subject to the DURHAM algo
rithm with fcut = 0.008. Events with less than 4 jets

Table 5
Selection efficiencies (in%) for the cscs final state for different 
masses + at different centre-of-mass energies

mH " (GeV)

/s (GeV)

130-136 161 172 183

45 36 37 35 29
50 41 45 45 36
55 44 51 45 39
60 46 44 43 40
65 - 45 41 38
70 - 46 39 34

are rejected and the remaining ones are forced into 
four jets. The jet energies are rescaled with a com
mon factor so that their sum is equal to '.

The four jets are grouped into three possible 
pairings and the differences between the invariant 
masses of all pairings are calculated. Choosing the 
pair with the minimum invariant mass difference, the 
polar angle of the parent particle must satisfy |cos@| 
< 0.8. The opening angle between the two jets origi
nating from the same parent particle must be be
tween 53° and 130°. Considering the jet pairing with 
the medium invariant mass difference, events are 
rejected if the average of the two masses is within 2 
GeV equal to mW and their difference is less than 20 
GeV. With these cuts the number of WW events is 
further reduced.

A five-constraint kinematic fit is then applied 
assuming the production of a pair of equal mass 
particles each decaying into two jets. The x2 per 
degree-of-freedom of the fit must be smaller than 
5.5. This further suppresses the qq background.

The selection efficiencies are shown in Table 5. 
The expected background and the selected data are 
shown in Table 6. The total number of events se
lected in data is 145, where 159.5 background events 
are expected from Standard Model processes. The

Table 6
Expected background and number of events selected in data in the 
cscs final state at each centre-of-mass energy

/s (GeV)

130-136 161 172 183

Expected background 19.0 15.2 25.9 99.4
Data 21 13 18 93
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main contribution to the background comes from W 
pair decays into four jets. In Fig. 3, the average dijet 
invariant mass distribution is shown for the data and 
the expected background at ' = 130-183 GeV. The 
low mass tail for the WW background is due to 
incorrectly assigned jet pairs.

Systematic errors are assigned to the signal effi
ciencies and the expected number of background 
events by comparing the distributions of signal-sensi
tive variables in the data and the Monte Carlo simu
lation. The main contribution to the systematic error 
comes from the fact that the number of reconstructed 
jets per event is not perfectly simulated in the Monte 
Carlo. We assign a systematic error of 4.5 events in 
the total predicted background and 0.6% in the ex
pected signal efficiencies.

3. Results

The number of selected events in data is consis
tent, in each decay channel, with the number of 
events expected from Standard Model processes. No 
indication of pair-produced charged Higgs bosons is 
observed. Mass limits as a function of the branching 
fraction Br(H " ™ tp. are derived at 95% confidence 
level, where the confidence level is calculated using 
the same technique described in [16]. For the HqH y 
™ cscs and the Hq H y ™ cs t y pt channels we use 
the reconstructed mass distribution in the limit calcu-

Fig. 3. Distribution of the mass resulting from a kinematic fit, 
with assumed production of a pair of equal mass particles, for data 
and background events in the cscs channel at ' = 130-183 GeV. 
The dotted line indicates the signal of a 60 GeV charged Higgs 
boson at Br(H " ™ cs) = 1.

40 50 60 70 80 90 100

Mh± (GeV)

Fig. 4. Excluded regions for the charged Higgs boson at 95% CL 
in the plane of the branching fraction Br(H ± ™ tv) versus mass.

lation, whereas for the H'H ™ t' vtt~ vT channel 
the total number of data, expected background and 
expected signal events are used.

Systematic uncertainties are taken into account 
using the same procedure as in the Standard Model 
Higgs search [17]. In addition to the systematic 
errors resulting from the selection, an error of 0.3% 
on the luminosity measurement, an error of 5% on 
the background normalisation and an error of 2% on 
the signal cross section are taken into account.

Fig. 4 shows the excluded mass regions of charged 
Higgs bosons at 95% CL for the analyses of each 
final state and their combination as function of the 
branching fraction Br(H ±™ tv). A lower limit on 
the mass of the charged Higgs boson of 
mH±) 57.5GeV (1)

independent of the branching fraction is obtained.
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