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a b s t r a c t

We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search
for groups of directionally-aligned events (or ‘multiplets’) which exhibit a correlation between arrival direc-
tion and the inverse of the energy. These signatures are expected from sets of events coming from the same
source after having been deflected by intervening coherent magnetic fields. The observation of several
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Keywords:
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events from the same source would open the possibility to accurately reconstruct the position of the source
and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cos-
mic rays. We describe the largest multiplets found and compute the probability that they appeared by
chance from an isotropic distribution. We find no statistically significant evidence for the presence of mul-
tiplets arising from magnetic deflections in the present data.

� 2011 Elsevier B.V. All rights reserved.
ffiffiffiffiffiffiffiffiffiffiffiffis ffiffiffiffiffiffiffiffiffiffiffiffis

1. Introduction

The origin of ultra-high energy cosmic rays is a long-standing
open question, and the identification of their sources is one of
the primary motivations for the research conducted at the Pierre
Auger Observatory. If the density of cosmic rays sources is not
too large, it is expected that there could be indications of the pres-
ence of multiplets, i.e. sets of events with different energy that
come from a single point-like source. Due to the magnetic fields
that cosmic rays traverse on their paths from their sources to the
Earth, they will be deflected and this deflection is proportional to
the inverse of their energy if the deflections are small. Therefore,
to identify sets of cosmic rays that come from a single source, a
search for events that show a correlation between their arrival
direction and the inverse of their energy has been performed using
the data recorded at the Pierre Auger Observatory. The observation
of cosmic ray multiplets could allow for the accurate location of the
direction of the source and could also provide a new means to
probe the galactic magnetic field, as it should be possible to infer
the value of the integral of the component of the magnetic field
orthogonal to the trajectory of the cosmic rays. Note that to ob-
serve a correlated multiplet the source should be steady, in the
sense that its lifetime is larger than the difference in the time de-
lays due to the propagation in the intervening magnetic fields for
the energies considered. Moreover, magnetic fields should also be
steady in the same sense so that cosmic rays traverse approxi-
mately the same fields.

This study relies on the acceleration at the source of a proton
component (or intermediate mass nuclei being accelerated and
photo-disintegrated during extragalactic propagation with the
deflections due to extragalactic magnetic fields being small com-
pared to those in the Galaxy). Due to the magnitude of the known
magnetic fields involved, heavy nuclei at these energies would ap-
pear spread over a very large region of the sky, probing regions
with different amplitudes and directions of the magnetic field,
and hence losing their alignment and correlation with the inverse
of energy.

The galactic magnetic field is poorly constrained by the avail-
able data, even though there has been considerable effort to im-
prove this knowledge using different observational techniques,
see, e.g. [1–3]. This field is usually described as the superposition
of a large-scale regular component and a turbulent one. The regular
component has a few lG strength and is coherent on scales of a
few kpc with a structure related to the spiral arms of the galactic
disk, and eventually also a more extended halo component (see,
e.g. [4]). The deflection of cosmic rays with energy E and charge
Z by the regular component of the magnetic field B

!
after traversing

a distance L is given by

d ’ 16�
20 EeV

E=Z

Z L

0

d~l
3 kpc

� B
!

2 lG

�����
�����; ð1Þ

where 1 EeV � 1018 eV. This is the predominant deflection because,
although the turbulent component has a root mean square ampli-
tude of Brms ’ (1 � 2)Breg, it has a much smaller coherence length
(typically Lc ’ 50–100 pc) [5,6], leading to a smaller deflection, with
a typical root mean square value
drms ’ 1:5�
20 EeV

E=Z
Brms

3 lG
L

1 kpc
Lc

50 pc
: ð2Þ
After traveling a distance L through the turbulent field, the trajecto-
ries of cosmic rays would be displaced a distance �drmsL with re-
spect to the one they would have had if only the regular field
were present. If this displacement is smaller than the coherence
length Lc, this means that all the particles with that energy have
experienced nearly the same values of the turbulent field along
their trajectories. Thus, the effect is that the arrival direction of cos-
mic rays will coherently wiggle with an amplitude drms(E) around
the direction determined by the deflection due to the regular mag-
netic field as a function of the energy. Conversely, when
drms(E)L > Lc, particles of the same energy that have probed uncorre-
lated values of the turbulent field are able to reach the observer
from the source and several images appear, scattered by drms(E)
around the image that would be produced by the regular field alone.
Which of the two regimes actually takes place depends on the en-
ergy considered and on the distance traveled in the turbulent field.
For instance, for L ’ 2 kpc and energy about 20 EeV, the second sit-
uation applies, while at much higher energies the first one holds.

Extragalactic magnetic fields could also deflect the trajectories
of cosmic rays, but their strength is yet unknown and the relevance
of their effect is a matter of debate, see, e.g. [7–9].
2. The Pierre Auger Observatory and the data set

The Pierre Auger Observatory, located in Malargüe, Argentina
(35.2�S, 69.5�W) at 1400 m a.s.l. [10], was designed to measure ul-
tra-high energy cosmic rays (energy E > 1018) with unprecedented
statistics. It consists of a surface array of 1660 water-Cherenkov
stations. The surface array is arranged in an equilateral triangular
grid with 1500 m spacing, covering an area of approximately
3000 km2 [11]. The array is overlooked by 27 fluorescence tele-
scopes located on hills at four sites on its periphery [12]. The sur-
face and air fluorescence detectors are designed to perform
complementary measurements of air showers created by cosmic
rays. The surface array is used to observe the lateral distribution
of the air shower particles at ground level, while the fluorescence
telescopes are used to record the longitudinal development of
the shower as it moves through the atmosphere.

In this work we analyze events with zenith angles smaller than
60� recorded by the surface detector from 1st January 2004 to 31st
December 2010. The events are required to have at least five active
stations surrounding the station with the highest signal, and the
reconstructed core must be inside an active equilateral triangle
of stations [13]. The corresponding exposure is 25,806 km2 sr yr.
The angular resolution, defined as the 68th percentile of the distri-
bution of opening angles between the true and reconstructed
directions of simulated events, is better than 0.9� for events that
trigger at least six surface stations (E > 10 EeV) [14]. The energy
resolution is about 15% and the absolute energy scale, given by
the fluorescence calibration, has a systematic uncertainty of 22%
[15].
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3. Method adopted for the multiplets search

In the limit of large energy, and hence small deflections, it is a
good approximation to consider the following simplified relation
between the cosmic ray observed arrival directions, described by
the unit vector ~h, and the actual source direction hs

!

~h ¼ hs
!þ Ze

E

Z L

0
d~l� B

!’ hs
!þ D

!ðhs
!Þ

E
; ð3Þ

where Ze is the electric charge of the cosmic ray and D � jD!ðhs
!Þj

will be called the deflection power and will be given in units of 1�
100 EeV, which is �1.9 e lG kpc.

In the case of proton sources, departures from the linear
approximation are relevant for energies below 20 EeV for typical
galactic magnetic field models [16], as the deflections of the trajec-
tories are large and the integral of the magnetic field component
orthogonal to the path cannot be approximated as a constant for
a fixed source direction. This fact motivates the restriction of the
present analysis to events with energies above 20 EeV.

In order to identify sets of events coming from the same source,
the main requirement will be that they appear aligned in the sky
and have a high value of the correlation coefficient between the ar-
rival direction and the inverse of the energy.

To compute the correlation coefficient for a given subset of N
nearby event directions, we first identify the axis along which
the correlation is maximal. For this we initially use an arbitrary
coordinate system (x,y) in the tangent plane to the celestial sphere
(centered in the average direction to the events) and compute the
covariance

Covðx;1=EÞ ¼ 1
N

XN

i¼1

ðxi � hxiÞð1=Ei � h1=EiÞ ð4Þ

and similarly for Cov(y,1/E). We then rotate the coordinates to a
system (u,w) in which Cov(w,1/E) = 0, and hence Cov(u,1/E) is
maximal. This corresponds to a rotation angle between the u and
x axes given by

a ¼ arctan
Covðy;1=EÞ
Covðx;1=EÞ

� �
: ð5Þ

The correlation between u and 1/E is measured through the correla-
tion coefficient

Cðu;1=EÞ ¼ Covðu;1=EÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðuÞVarð1=EÞ

p ; ð6Þ

where the variances are given by Var(x) = h(x � hxi)2i. We demon-
strate this procedure in Fig. 1. In the left panel we show the selec-
tion of coordinates u and w for a set of events of a simulated source
superimposed on a background of isotropically distributed events.
In the right panel the correlation between u and 1/E for the same
source events is plotted.

A given set of events will be identified as a correlated multiplet
when C(u,1/E) > Cmin and, when the spread in the transverse direc-
tion w is small, W = max(jwi �hwij) < Wmax (corresponding to a to-
tal width of �2Wmax in the perpendicular direction). The values for
Cmin and Wmax were chosen as a compromise between maximizing
the signal from a true source and minimizing the background aris-
ing from chance alignments. In order to determine the optimal val-
ues of these quantities, we performed numerical simulations of
sets of events from randomly-located extragalactic sources. In
these simulations, protons were propagated through a bisymmet-
ric magnetic field with even symmetry (BSS-S) [17,18] (the local
value of the field used was 2 lG) and the effect of the turbulent
magnetic field was included by simply adding a random deflection
with root mean square amplitude drms = 1.5� (20 EeV/E). Although
the latter is a rough approximation, and a dependence on the arri-
val directions should be expected, it is good enough for the purpose
of fixing Cmin and Wmax. We considered one hundred extragalactic
sources located at random isotropic directions and simulated sets
of N events coming from each source (N = 14,13,12). The energy
of the events followed an E�2 spectrum at the source and we added
random gaussian uncertainties in the angular directions and ener-
gies to account for the experimental resolution. Magnetic lensing
effects [18] were taken into account in the simulation through
the magnification or demagnification of the energy spectrum of
each source. As an example we show in Fig. 2(a) the resulting dis-
tribution of W for multiplets of 14 events. The significance of a gi-
ven multiplet can be quantified by computing the fraction of
isotropically distributed simulations, with the same total number
of events as in the data and with the same energy spectrum, in
which a multiplet with the same or larger multiplicity and passing
the same cuts appears by chance. At high energies the UHECR
angular distribution may not be isotropic, reflecting structure in
the distribution of sources within the GZK horizon. However, our
data set is dominated by lower energy events for which isotropy
is an excellent approximation. We show in Fig. 3(a) the chance
probability for multiplets of different multiplicity as a function of
Wmax. We note that when reducing Wmax, some of the events of
the multiplets will be missed and their multiplicity will be re-
duced. However, the significance of a smaller multiplet passing a
tighter bound on Wmax can be larger than the significance of the
complete multiplet with a looser Wmax cut. It turns out that the
largest mean significance for the simulated sources (i.e. the aver-
age of the significances of the resulting multiplets after imposing
the cuts) appears when a cut Wmax ’ 1.5� is applied. The angular
scale of 1.5� provides in fact a reasonable cut which accounts for
the angular resolution and the mean value of the turbulent field
deflections. We note that in the case of 14-plets, in 50% of the sim-
ulations all the events pass this cut and the multiplet will be recon-
structed as a 14-plet, while in 38% of the cases one event is lost and
in 11% of the cases two events are lost.

A similar analysis can be performed to fix the cut on the corre-
lation coefficient Cmin. The distribution of C(u,1/E) for the simu-
lated 14-plets is shown in Fig. 2(b) and the chance probability
for multiplets of different multiplicity as a function of Cmin is illus-
trated in Fig. 3(b). The largest mean significance is attained now for
values of Cmin in the range from 0.85 to 0.9, depending on the mul-
tiplicity considered. We will then fix in the following Wmax = 1.5�
and Cmin = 0.9. Considering simulations with 14 events and for a
cut Cmin = 0.9, we find that in 57% of the cases all events pass the
cuts, in 12% of the simulations one event is lost and in 11% of them
two events are lost. We note that the choice of the optimal cuts de-
pends slightly on the galactic magnetic field model considered in
the simulations and on the modeling of the turbulent field
deflections.

We will hence search for correlated multiplets of events with
energies above 20 EeV (so that the linear correlation of the deflec-
tion with 1/E is still expected to be valid for proton sources) which
extend up to 20� in the sky (see Eq. (1)). We also require that the
multiplet contains at least one event with energy above 45 EeV.
We note that the energy of the most energetic event of a set of
10 events with E > 20 EeV from a source with spectral index
s = 2.5 is larger than 45 EeV with a probability of 97% (for a spectral
index s = 3 this probability is �90% and for s = 2 it is �99.7%).
Hence, requiring one high energy event above 45 EeV is not restric-
tive, and it simplifies the strategy to start the search for multiplets,
which proceeds by looking at all possible sets of events contained
in windows of 20� around those high energy events. Since we are
ultimately interested in multiplicities larger than 8 (see Fig. 3 in
which it is apparent that for the present statistics above 20 EeV
correlated sets of smaller multiplicity are very likely to appear by



(a) (b)
Fig. 1. Selection of coordinates u and w for a set of events of a simulated source (black thick asterisks) superimposed on a background of isotropically-distributed events (blue
asterisks) (a). The size of the circles is proportional to the energy of the events. Correlation between u and 1/E for the same source events (b). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Distribution of the maximum angular distance W, (a) and the correlation coefficient C(u,1/E) between the angular position u and 1/E, (b) for 14-plets from the 100
simulated sources. The vertical dashed lines indicate the cuts on W and C optimized for multiplicity and significance (see text).

Fig. 3. Chance probability Pch for finding in isotropic simulations one large multiplet of a given multiplicity as a function of Wmax (adopting Cmin = 0.9) (a) and as a function of
Cmin (adopting Wmax = 1.5�) (b) (see text).
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chance in isotropic simulations), it is possible to make this search
more efficient by first identifying the high energy end of the candi-
date multiplets. We hence consider for every event above 45 EeV
the quadruplets that it forms with the events within a circle of
15� having energies above 25 EeV and with a correlation coefficient
C(u,1/E) P 0.8. The precise values of these cuts are not crucial as
long as they allow one to safely include the larger multiplets of
interest. For each of these candidates we then extend the search
including all the events above 20 EeV with an angular distance to
the highest energy one smaller than 20� and at a distance smaller
than 3Wmax from the quadruplet axis. This allows us to find the
correlated multiplets satisfying the cuts in Wmax and Cmin in a very



Table 1
Deflection power, D; reconstructed position of the potential source in galactic
coordinates, (l, b)S; uncertainty in the reconstructed position of the potential source
along the direction of deflection, DuS, and orthogonal to it, DwS; and linear correlation
coefficient, C, for the largest correlated multiplets found. The data correspond to
events with energy above 20 EeV from 1st January 2004 to 31st December 2010.

Multiplet D[�100 EeV] (l,b)S[�] DuS[�] DwS[�] C

12-plet 4.3 ± 0.7 (�46.7,13.2) 2.4 0.9 0.903
10-plet I 5.1 ± 0.9 (�39.9,23.4) 2.7 0.9 0.901
10-plet IIa 8.2 ± 1.3 (�85.6,�80.4) 4.3 1.9 0.920
10-plet IIb 7.6 ± 1.2 (�79.6,�77.9) 4.0 1.6 0.919
10-plet IIc 6.5 ± 1.1 (�91.5,�75.7) 3.9 1.6 0.908
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efficient way, as it is desirable to be able to perform a large number
of simulations.

The multiplets search procedure has been designed for sources
having a light composition. For sources having instead a heavy
composition above 20 EeV, multiplets will be much more difficult
to identify since they would typically spread through a larger re-
gion in the sky and also the linearity of their directional distribu-
tion will be lost.

Once a correlated multiplet is identified, from the linear fit to
the relation

u ¼ us þ
D
E
; ð7Þ

the position of the source (us, 0) (in the u–w coordinate system) and
the deflection power D can be obtained.

A true correlated multiplet arising from magnetic field deflec-
tions of events from a single source can also include by chance
some events from the background that appear aligned and corre-
lated in energy with the events from the source. We have esti-
mated the fraction of events that is expected to be due to chance
background alignments by simulating an isotropic background dis-
tribution of events with the energy of the observed events above
20 EeV and superimposing multiplets of 12 events from simulated
sources. We found that 29% of the reconstructed multiplets do not
pick additional background events, while 46% just pick one addi-
tional background event and 25% pick two or more. Thus, the frac-
tion of events added from the background is typically very small.
4. Results

We applied the method discussed in Section 3 to 1509 events
above 20 EeV recorded at the Pierre Auger Observatory from 1st
January 2004 to 31st December 2010. We implemented a search
for all possible multiplets which extend up to 20� in the sky and
contain at least one event with energy above 45 EeV, and that have
a half-width smaller than Wmax = 1.5� and a correlation coefficient
larger than Cmin = 0.9. The largest multiplet found in this data set is
one 12-plet and there are also two independent decuplets. They
are displayed in Fig. 4. Their deflection power, position of the po-
tential source location and correlation coefficient are listed in Table
1. Decuplet II in Table 1 consists of three dependent sets of ten
events (a–c) that are formed by the combination of a set of twelve
events. These three decuplets are not independent of each other
since they have most events in common. The uncertainties in the
reconstruction of the position of the potential sources have been
Fig. 4. Observed multiplets with 10 or more events in galactic coordinates. The size
of the circles is proportional to the energy of the event. Plus signs indicate the
positions of the potential sources for each multiplet. One decuplet is in fact three
dependent decuplets that are formed by the combination of twelve events and the
three corresponding reconstructions of the potential sources are shown. The solid
line represents the border of the field of view of the Southern Observatory for zenith
angles smaller than 60� and the grey shaded area is the region outside the field of
view.
calculated propagating the uncertainties in energy and arrival
direction to an uncertainty in the rotation angle (Eq. (5)) and in
the linear fit performed to the deflection vs. 1/E (Eq. (7)).

The probability that the observed number (or more) of corre-
lated multiplets appears by chance can be computed by applying
a similar analysis to simulations of randomly distributed events
weighted by the geometric exposure of the experiment [19] and
with the energies of the observed events. The fraction of simula-
tions with at least one multiplet with 12 or more events is 6%,
and the fraction having at least three multiplets with 10 or more
events is 20%. Therefore, there is no statistically significant evi-
dence for the presence of multiplets from actual sources in the
data. We note that with the present statistics, an individual multi-
plet passing the required selection cuts should have at least 14 cor-
related events in order that its chance probability be 10�3.

Measurements by the Pierre Auger Observatory [20] of the
depth of shower maximum and its fluctuations indicate a trend to-
wards heavy nuclei with increasing energy. This interpretation of
the shower depths is not certain, however. It relies on shower
simulations that use hadronic interaction models to extrapolate
particle interaction properties two orders of magnitude in centre-
of-mass energy beyond the regime where they have been tested
experimentally. Magnetic alignment and correlation with the in-
verse of the energy as searched here are not expected for heavy nu-
clei. Assuming there are sources which accelerate an appreciable
proton component, the non-observation of significant multiplets
could be the consequence of having a large density of sources. Gi-
ven the present statistics, the maximum source density which
would allow to observe a multiplet containing 12 events above
20 EeV from the nearest source to the Earth can be roughly esti-
mated by considering that this source should produce a fraction
12/1509 � 1/125 of the total flux observed in the field of view of
the Auger Observatory in this energy range. Assuming that the
sources have equal intrinsic luminosity and are uniformly distrib-
uted and that cosmic rays in this energy range can arrive from dis-
tances up to about 1 Gpc, the above mentioned constraints imply
that the nearest source should be within �10 Mpc. Thus, the mean
local density of sources should not be larger than a few
10�4 Mpc�3. The fact that we have not seen a larger multiplet is
an indication that the density of sources is probably larger. This
very rough estimation is subject to large fluctuations but it is indic-
ative that densities within the current lower limits may lead to the
kind of signals searched for here. We note, however, that this
bound would be relaxed if contributions of heavy cosmic ray
primaries become significant, or if very strong turbulent magnetic
fields were present.
5. Conclusions

A search for ultra-high energy cosmic ray multiplets was per-
formed in the data gathered between 1st January 2004 and 31st
December 2010 by the Pierre Auger Observatory with energy
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above 20 EeV. The largest multiplet found was one 12-plet. The
probability that it appears by chance from an isotropic distribution
of events is 6%. Thus, there is no significant evidence for the
existence of correlated multiplets in the present data set. Future
data will be analyzed to check if some of the observed multiplets
grow significantly or if some new large multiplets appear.
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