Physics Letters B 710 (2012) 67-85

Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in $\sqrt{s} = 7$ TeV proton–proton collisions $\stackrel{\circ}{\approx}$

ATLAS Collaboration*

ARTICLE INFO

Article history: Received 29 September 2011 Received in revised form 8 February 2012 Accepted 16 February 2012 Available online 21 February 2012 Editor: H. Weerts

ABSTRACT

A search for squarks and gluinos in events containing jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2011 by the ATLAS experiment in $\sqrt{s} = 7$ TeV proton–proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in 1.04 fb⁻¹ of data. Gluino and squark masses below 700 GeV and 875 GeV respectively are excluded at the 95% confidence level in simplified models containing only squarks of the first two generations, a gluino octet and a massless neutralino. The exclusion limit increases to 1075 GeV for squarks and gluinos of equal mass. In MSUGRA/CMSSM models with tan $\beta = 10$, $A_0 = 0$ and $\mu > 0$, squarks and gluinos of equal mass are excluded for masses below 950 GeV. These limits extend the region of supersymmetric parameter space excluded by previous measurements. © 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

Many extensions of the Standard Model (SM) include heavy coloured particles, some of which could be accessible at the Large Hadron Collider (LHC) [1]. The squarks and gluinos of supersymmetric (SUSY) theories [2] are one class of such particles. This Letter presents a new ATLAS search for squarks and gluinos in final states containing only jets and large missing transverse momentum. This final state can be generated by a large number of *R*-parity conserving models [3] in which squarks, \tilde{q} , and gluinos, \tilde{g} , can be produced in pairs $\{\tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{q}\tilde{g}\}$ and can decay via $\tilde{q} \to q\tilde{\chi}_1^0$ and $\tilde{g} \to q\bar{q}\tilde{\chi}_1^0$ to weakly interacting neutralinos, $\tilde{\chi}_1^0$, which escape the detector unseen. The analysis presented here is based on a purely hadronic selection; events with reconstructed electrons or muons are vetoed to avoid overlap with a related ATLAS search [4]. This updated analysis uses 1.04 fb^{-1} of data recorded in 2011 and extends the sensitivity of the previous search described in Ref. [5] by including final state topologies with at least four jets, rather than three as before. The statistical analysis benefits from an improved technique which uses a combined likelihood fit across all the control regions used to determine the background contributions, in order to take into account correlations among the measurements. The search strategy is optimised for maximum discovery reach in the $(m_{\tilde{g}}, m_{\tilde{a}})$ -plane for a set of simplified models in which all other supersymmetric particles (except for the lightest neutralino) are assigned masses beyond the reach of the LHC. Currently, the most stringent limits on squark and gluino masses are obtained at the LHC [4-6].

2. The ATLAS detector and data samples

The ATLAS detector [7] is a multipurpose particle physics apparatus with a forward-backward symmetric cylindrical geometry and nearly 4π coverage in solid angle.¹ The layout of the detector is dominated by four superconducting magnet systems, which comprise a thin solenoid surrounding the inner tracking detectors and three large toroids supporting a large muon spectrometer. The calorimeters are of particular importance to this analysis. In the pseudorapidity region $|\eta| < 3.2$, high-granularity liquid-argon (LAr) electromagnetic (EM) sampling calorimeters are used. A steel-scintillator tile calorimeter provides hadronic coverage over $|\eta| < 1.7$. The end-cap and forward regions, spanning $1.5 < |\eta| < 4.9$, are instrumented with LAr calorimetry for both EM and hadronic measurements.

The data used in this analysis were collected in the first half of 2011 with the LHC operating at a centre-of-mass energy of 7 TeV. Application of beam, detector and data-quality requirements resulted in a total integrated luminosity of 1.04 ± 0.04 fb⁻¹ [8]. The main trigger required events to contain a leading jet with a transverse momentum (p_T), above 75 GeV and missing transverse momentum above 45 GeV. The trigger used an energy scale calibrated for electromagnetic objects. The details of the trigger specifications varied throughout the data-taking period, partly as a consequence of the rapidly increasing LHC luminosity. The efficiency of the

 $^{^{}st}$ © CERN for the benefit of the ATLAS Collaboration.

^{*} E-mail address: atlas.publications@cern.ch,

^{0370-2693/} \odot 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license. doi:10.1016/j.physletb.2012.02.051

¹ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the *z*-axis along the beam pipe. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

trigger is >98% for events selected by the offline analysis. The average number of proton-proton interactions per bunch crossing in the data sample was approximately six.

3. Object reconstruction

The requirements used to select jets and leptons (objects) are chosen to give sensitivity to a range of SUSY models. let candidates are reconstructed using the anti- k_t jet clustering algorithm [9,10] with a distance parameter of 0.4. The inputs to this algorithm are three-dimensional clusters of calorimeter cells [11] seeded by those with energy significantly above the measured noise. Jet momenta are constructed by performing a four-vector sum over these cell clusters, treating each as an (E, \vec{p}) four-vector with zero mass. These jets are corrected for the effects of calorimeter noncompensation and inhomogeneities by using $p_{\rm T}$ and η -dependent calibration factors based on Monte Carlo (MC) and validated with extensive test-beam and collision-data studies [12]. Furthermore, the reconstructed jet is modified such that the jet direction points to the primary vertex, defined as the vertex with the highest summed track $p_{\rm T}^2$, instead of the geometrical centre of the ATLAS detector. Only jet candidates with corrected transverse momenta $p_{\rm T}$ > 20 GeV are subsequently retained. For 84% of the data used, a temporary electronics failure in the LAr barrel calorimeter created a dead region in the second and third longitudinal layers, approximately 1.4×0.2 in $\Delta \eta \times \Delta \phi$, in which on average 30% of the incident jet energy is lost. The impact on the reconstruction efficiency for $p_T > 20$ GeV jets is found to be negligible. If any of the four leading jets fall into this region the event is rejected. causing a loss of signal acceptance which is smaller than 15% for the models considered here.

Electron candidates are required to have $p_T > 20$ GeV, have $|\eta| < 2.47$, and pass the 'medium' shower shape and track selection criteria of Ref. [13]. Muon candidates [13] are required to have $p_T > 10$ GeV and $|\eta| < 2.4$. Since no use is made of tau-lepton candidates in this analysis, in the following the term lepton will refer only to electrons and muons.

The measurement of the missing transverse momentum twodimensional vector \vec{P}_{T}^{miss} (and its magnitude E_{T}^{miss}) is then based on the transverse momenta of all electron and muon candidates, all jets which are not also electron candidates, and all calorimeter clusters with $|\eta| < 4.5$ not associated to such objects.

Following the steps above, overlaps between candidate jets with $|\eta| < 2.8$ and leptons are resolved using the method of Ref. [14] as follows. First, any such jet candidate lying within a distance $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ of an electron is discarded: then any electron or muon candidate remaining within a distance $\Delta R = 0.4$ of any surviving jet candidate is discarded. Next, all jet candidates with $|\eta| > 2.8$ are discarded. Thereafter, the electron, muon and jet candidates surviving this procedure are considered as "reconstructed", and the term "candidate" is dropped.

4. Event selection

Following the object reconstruction described above, events are discarded if they contain any electrons or muons with $p_T > 20$ GeV, or any jets failing quality selection criteria designed to suppress detector noise and non-collision backgrounds (see e.g. Ref. [15]).

These selections include a veto on leading jets (with $p_T > 100 \text{ GeV}$ and $|\eta| < 2$) which have a low fraction (<0.05) of their p_T carried by charged tracks, and a requirement that the leading jets all have consistent timing information from the calorimeters. Events are also rejected if the reconstructed primary vertex is associated with fewer than five tracks.

Table 1

Criteria for admission to each of the five overlapping signal regions ($m_{\rm eff}$, $E_{\rm T}^{\rm miss}$ and $p_{\rm T}$ in GeV). All variables are defined in Section 4. The $m_{\rm eff}$ is defined with a variable number of jets, appropriate to each signal region. In the high mass selection, all jets with $p_{\rm T} > 40$ GeV are used to compute the $m_{\rm eff}$ value used in the final cut, but the $E_{\rm T}^{\rm miss}$ definition is unchanged. The $\Delta\phi$ cut is only applied up to the third leading jet.

Signal region	≥2-jet	≥3-jet	≽4-jet	High mass
$E_{\mathrm{T}}^{\mathrm{miss}}$ Leading jet p_{T}	>130	>130	>130	>130
	>130	>130	>130	>130
Second jet $p_{\rm T}$	>40	>40	>40	>80
Third jet $p_{\rm T}$	-	>40	>40	>80
Fourth jet $p_{\rm T}$	-	-	>40	>80
$\Delta \phi$ (jet, \vec{P}_{T}^{miss}) _{min}	>0,4	>0,4	>0.4	>0.4
E_{T}^{miss}/m_{eff}	>0,3	>0,25	>0.25	>0.2
m_{eff}	>1000	>1000	>500/1000	>1100

In order to achieve maximal reach over the $(m_{\tilde{g}}, m_{\tilde{a}})$ -plane, five signal regions are defined. Squarks typically generate at least one jet in their decays, for instance through ${ ilde q} o q { ilde \chi}_1^0$, while gluinos typically generate at least two, for instance through $\tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$. Processes contributing to $\tilde{q}\tilde{q}$, $\tilde{q}\tilde{g}$ and $\tilde{g}\tilde{g}$ final states therefore lead to events containing at least two, three or four jets, respectively. Cascade decays of heavy particles tend to increase the final state multiplicity. Four signal regions characterised by increasing jet multiplicity requirements are therefore defined as shown in Table 1, with the leading jet having $p_{\rm T} > 130$ GeV, and other jets $p_{\rm T}$ > 40 GeV. The effective mass, $m_{\rm eff}$, is calculated as the sum of $\dot{E}_{\mathrm{T}}^{\mathrm{miss}}$ and the magnitudes of the transverse momenta of the two, three or four highest p_{T} jets used to define the signal region. Two four-jet signal regions are defined requiring $m_{\rm eff} > 500$ GeV (optimised for small mass differences between SUSY mass states) and $m_{\rm eff}$ > 1000 GeV (optimised for higher mass differences). In addition, a fifth 'high mass' signal region is derived from the four-jet sample, with more stringent requirements on the $p_{\rm T}$ of the nonleading jets (>80 GeV) and on $m_{\rm eff}$ (>1100 GeV), in order to give maximal reach in the SUSY mass spectrum. For this latter signal region the transverse momenta of all jets with $p_{\rm T} > 40~{\rm GeV}$ are used to compute $m_{\rm eff}$. In Table 1, $\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$)_{min} is the smallest of the azimuthal separations between $\vec{P}_{T}^{\text{miss}}$ and jets with $p_{\rm T} > 40$ GeV (all reconstructed jets up to a maximum of three, in descending order of $p_{\rm T}$). Requirements on $\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss})_{\rm min}$ and $E_{T}^{\text{miss}}/m_{\text{eff}}$ are designed to reduce the background from multi-jet processes.

5. Backgrounds, simulation and normalisation

Standard Model background processes contribute to the event counts in the signal regions. The dominant sources are: W + jets, Z + jets, top pair, single top, and multi-jet production. Noncollision backgrounds have been found to be negligible. The majority of the W + jets background is composed of $W \rightarrow \tau v$ events, or $W \rightarrow e\nu, \mu\nu$ events in which no electron or muon candidate is reconstructed. The largest part of the Z + jets background comes from the irreducible component in which $Z \to \nu \bar{\nu}$ decays generate large $E_{\rm T}^{\rm miss}$. Hadronic $\bar{\tau}$ decays in $t\bar{t} \rightarrow b\bar{b}\tau\nu qq$ and single top events can also generate large E_{T}^{miss} and pass the jet and lepton requirements at a non-negligible rate. The multi-jet background in the signal regions is caused by misreconstruction of jet energies in the calorimeters leading to apparent missing transverse momentum, as well as by neutrino production in semileptonic decays of heavy quarks. Extensive validation of the MC simulation against data has been performed for each of these background sources and for a wide variety of control regions.

In order to estimate the backgrounds in a consistent fashion, five control regions (CRs) are defined for each of the five signal regions (SRs), giving 25 CRs in total. The orthogonal CR event selections are designed to provide uncorrelated data samples enriched in particular background sources. Each ensemble of one SR and five CRs constitutes a different 'channel' of the analysis. The CR selections are optimised to maintain adequate statistical weight, while minimising as far as possible the systematic uncertainties arising from extrapolation to the SR. The purities of the CRs for the main background processes in which they are enriched exceed 50% in all cases.

For each channel, measurements in the CRs are used to derive background expectations in the SR through the use of 'transfer factors' equivalent to the ratios of expected event counts in the CRs and SR, derived independently of the data observations in the CR and SR. Some uncertainties, such as those arising in MC simulation from the jet energy scale and physics modelling, are reduced in the transfer factors. The combined likelihood fit across all control regions ensures that the background estimates are consistent for all processes, taking into account contamination of the CRs by multiple SM processes.

The likelihood function is built by the Poisson probability density function (pdf) describing the SR and the CRs and a pdf describing the systematic uncertainties:

$$L(\boldsymbol{n}|\boldsymbol{\mu}, \boldsymbol{b}, \boldsymbol{\theta}) = P_{SR} \times P_{WR} \times P_{TR} \times P_{ZRa} \times P_{ZRb} \times P_{QR} \times C_{Syst}.$$

The mean of the Poisson pdfs in the CRs are defined as

$$\lambda_i(\mu, \boldsymbol{b}, \boldsymbol{\theta}) = \mu \cdot C_{\mathrm{SR} \to i\mathrm{R}}(\boldsymbol{\theta}) + \sum_i C_{j\mathrm{R} \to i\mathrm{R}}(\boldsymbol{\theta}) \cdot b_{j\mathrm{R}}$$

where the index *j* runs over the background control regions. μ is the signal strength, b_{jR} is the background j in region R and $C_{jR \rightarrow SR}$ the transfer factor of process j from region R to the SR. The terms $C_{QR \rightarrow QR}$, $C_{WR \rightarrow WR}$, $C_{ZRa,b \rightarrow ZRa,b}$, $C_{TR \rightarrow TR}$ are by construction all equal to 1. Since the fit is not over-constrained in CR2, CR3 and CR4, where there is a single estimate of the background, the fit output matches the observed number of events in these regions by construction. This is not the case in CR1a and CR1b which both estimate the same background process, and a best fit number is produced in these regions.

The transfer factors are obtained from a combination of data and MC inputs. Those for multi-jet processes are estimated using a data-driven technique based upon the smearing of jets in a low $E_{\rm T}^{\rm miss}$ data sample ('seed' events with $E_{\rm T}^{\rm miss}/\sqrt{\Sigma p_T}$ (jet) < 0.6 GeV^{1/2}) with jet response functions tuned by comparison with multi-jet dominated data control regions [5]. For the Z + jets, W + jets and top quark processes they are derived from MC. For each channel a likelihood fit is performed to the observed event counts in the five CRs, taking into account correlations in the systematic uncertainties in the transfer factors.

The irreducible background from $Z(\nu\bar{\nu})$ + jets events is estimated using control regions enriched in related processes with similar kinematics: events with isolated photons and jets [16] and events due to $Z(ee/\mu\mu)$ + jets (control regions denoted by 'CR1a' and 'CR1b' respectively). The reconstructed momentum of the photon or the lepton-pair system is added to \bar{P}_{T}^{miss} to obtain an estimate of the E_{T}^{miss} observed in $Z(\nu\bar{\nu})$ + jets events. The results from both control regions are found to be in good agreement, and both are used in the final fit. The small additional background contributions arising from Z decays to misidentified charged leptons, and misidentified photon events, are estimated using the same control regions with appropriate transfer factors.

The background from multi-jet processes is determined using control regions (CR2) in which the cut on $\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$)_{min} is reversed and tightened: $\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$)_{min} < 0.2. This selects events in which $\vec{P}_{\rm T}^{\rm miss}$ is aligned with one of the three leading jets in the transverse plane. Such a topology is characteristic of events containing mismeasured jets, or neutrino emission from heavy flavour decays within jets. A separate control region is used to estimate the additional multi-jet background generated by events affected by the temporarily dead region in the barrel EM calorimeter; this result is added to the multi-jet background estimate obtained from CR2.

The background from $W(\ell \nu)$ + jets production is estimated from samples of events with a lepton (ℓ), $E_{\rm T}^{\rm miss}$ > 130 GeV and a transverse mass of the (ℓ , $E_{\rm T}^{\rm miss}$) system between 30 GeV and 100 GeV, i.e. consistent with the W mass (control regions CR3). A veto against jets arising from *b*-quark decays, based on a tagging procedure exploiting both impact parameter and secondary vertex information, is applied to remove events containing top quarks. In this CR, leptons are treated as jets for the computation of the kinematic variables.

The background from top quark production is estimated using the same selection as for $W(\ell v)$ + jets events, but replacing the *b*-jet veto with a *b*-tag requirement (control regions CR4). This enhances the population of events containing top quark decays relative to that of direct W production events. The resulting transfer factors include the contribution from events where both top quarks decay semi-leptonically, as well as events due to single top production.

MC simulation samples are used to develop the analysis, determine the transfer factors used to estimate the W + jets, Z + jets and top quark backgrounds, and assess the sensitivity to specific SUSY signal models. Samples of multi-jet events from quantumchromodynamic (QCD) processes are generated with PYTHIA [17], using the MRST2007LO* modified leading-order parton distribution functions (PDFs) [18]. Production of top quark pairs is simulated with MC@NLO [19,20] (with a top quark mass of 172.5 GeV) and the Next-to-Leading Order (NLO) PDF set CTEQ6.6 [21]. Single top production is also simulated with MC@NLO [22,23]. Samples of W and Z/γ^* events with accompanying jets are generated with ALPGEN [24] and PDF set CTEQ6L1 [25]. Fragmentation and hadronization for the ALPGEN and MC@NLO samples are performed with HERWIG [26,27], using JIMMY [28] for the underlying event. SUSY signal samples are generated with HERWIG++ [29], normalised using NLO cross sections determined with PROSPINO [30]. The MC samples are produced using ATLAS parameter tunes [31] and are processed through a GEANT4 [32] based detector simulation [33]. Corrections are applied for small differences in reconstruction efficiencies, energy scales and resolutions between data and MC. Varving pile-up conditions as a function of the instantaneous luminosity are taken into account by reweighting the simulated events according to the mean number of interactions per bunch crossing observed in the data. Multijet MC samples, presented here in some figures for illustrative purposes only, are normalised to a sample of dijet events with $\Delta \phi$ (jet, \vec{P}_{T}^{miss})_{min} < 0.4. In all other cases the best available NLO or Next-to-NLO theoretical cross-section calculations were used.

6. Systematic uncertainties

Systematic uncertainties arise from the use of the transfer factors relating observations in the control regions to background expectations in the signal regions, and from the modelling of the SUSY signal. For the transfer factors derived from MC, the primary common sources of systematic uncertainty are the jet energy scale and resolution, physics modelling and reconstruction performance in the presence of pile-up.

The jet energy scale uncertainty has been measured from the complete 2010 data set using the procedure described in Ref. [12]. It depends upon $p_{\rm T}$, η and proximity to adjacent jets, and on average amounts to around 4%. The jet energy resolution measured with 2010 data [34] is applied to the MC jets, with the difference between the re-calibrated and nominal MC resolution taken as the systematic uncertainty. Additional contributions are added to both of these uncertainties to take into account of the impact of pileup at the relatively high luminosity delivered by the LHC in the 2011 run. Both in-time pile-up, i.e. multiple collisions within the same bunch crossing, and out-of-time pile-up, which arises from the detector response to neighbouring bunch crossings, have effects on jet energy measurements. These were studied in detail as a function of the average number of collisions per bunch crossing and by comparing data recorded with 75 and 50 ns bunch spacing. A worsening in the jet energy resolution in the forward region is observed when moving from 75 to 50 ns operation; a systematic uncertainty of $0.07 \times p_{\rm T}$ is therefore applied to jets with $|\eta| > 2.8$, used for the E_{τ}^{miss} calculation. The combined effects of in-time and out-of-time pile-up on the jet energy scale are accounted for by an additional conservative systematic uncertainty of up to 7% depending on $|\eta|$ and p_{T} . All these uncertainties are propagated to the $E_{\rm T}^{\rm miss}$ measurement. The impact of in-time pile-up on other aspects of the selection was also investigated and found to be negligible as expected given the high energies of the jets entering the signal samples.

The dominant modelling uncertainty in MC predictions for the signal region and control regions arises from the treatment of jet radiation, which affects the calculation of $m_{\rm eff}$. In order to assess this uncertainty, the main backgrounds are estimated using alternative generators (ALPGEN rather than MC@NLO for $t\bar{t}$ production) or reduced jet multiplicity (ALPGEN processes with 0–4 partons instead of 0–5 partons for W/Z + jets production). The impact of renormalisation and factorisation scale variations and PDF uncertainties was also studied. Differences in the absolute expectations for the numbers of events in the SR and CR as high as 100% are observed for specific processes; the impact on the ratios used in the transfer factors is, however, much smaller (differences \lesssim 40%, channel dependent).

Additional uncertainties considered, for specific processes, include those arising from photon and lepton trigger efficiency, reconstruction efficiency, energy scale and resolution (CR1a, CR1b, CR3 and CR4), *b*-tag/veto efficiency (CR3 and CR4), photon acceptance and backgrounds (CR1a) and the limited size of MC samples (all CRs). Uncertainties on the multi-jet transfer factors are dominated by the modelling of the non-Gaussian tails of the response function. Other sources, including the limited number of data events, and uncertainties on the Gaussian part of the response functions, are also considered.

Systematic uncertainties on the expected SUSY signal are estimated by varying the factorisation and renormalisation scales in PROSPINO between half and twice their default values and by considering the PDF uncertainties provided by CTEQ6. Uncertainties are calculated for individual production processes ($\tilde{q}\tilde{q}$, $\tilde{g}\tilde{g}$, and $\tilde{q}\tilde{g}$) and are typically ~35% in the vicinity of the limits expected to be set by this analysis. Jet energy scale and resolution, and pileup uncertainties on SUSY signal expectations are typically smaller than 30–40%.

7. Results, interpretation and limits

The observed signal region $m_{\rm eff}$ distributions for each of the channels used in this analysis are shown in Fig. 1, together with

MC background expectations prior to using the likelihood fitting procedure. The number of observed data events and the number of SM events expected to enter each of the signal regions, determined using the likelihood fit, are shown in Table 2. The data are found to be in good agreement with the background expectation and no excess is observed. To illustrate the procedure, the inputs and outputs of the combined likelihood fit for the high mass channel are shown in Table 3.

Data from the five channels are used to set the limits, taking the channel with the best expected limit at each point in parameter space. The limit for each channel is obtained by comparing the observed numbers of signal events with those expected from SM background plus SUSY signal processes, taking into account uncertainties in the expectation including those which are correlated between signal and background (for instance jet energy scale uncertainties). The impact of SUSY signal contamination of the control regions is taken into account by applying MC-derived model dependent correction factors ~0.97–1.02 to the resulting exclusion significance values. The excluded regions are obtained using the CL_s prescription [41].

An interpretation of the results is presented in Fig. 2 (left) as a 95% confidence exclusion region in the $(m_{\tilde{g}}, m_{\tilde{q}})$ -plane for a simplified set of SUSY models with $m(\tilde{\chi}_1^0) = 0$. In these models the gluino mass and the masses of the squarks of the first two generations are set to the values shown in the figure. All other supersymmetric particles, including the squarks of the third generation, are decoupled by being given masses of 5 TeV. The limits are reduced by decay chain kinematics if $m(\tilde{\chi}_1^0)$ is comparable to the squark or gluino mass. ISASUSY from ISAJET [42] v7.80 is used to calculate the decay tables, and to guarantee consistent electroweak symmetry breaking.

The results are also interpreted in the tan $\beta = 10$, $A_0 = 0$, $\mu > 0$ slice of MSUGRA/CMSSM² [43] in Fig. 2 (right). These limits include the effects of the mass spectrum of the SUSY particles on their decay chains. In regions of parameter space with small mass splittings between states, the modelling of initial state radiation can affect the signal significance. This modelling is taken from HERWIG without modification.

In the limit of light neutralinos, with the assumption that the coloured sparticles are directly produced and decay directly to jets and $\tilde{\chi}^0_1$, the limits on the gluino and squark masses are approximately 700 GeV and 875 GeV respectively for squark or gluino masses below 2 TeV, rising to 1075 GeV if the squarks and gluinos are assumed to be mass-degenerate. These limits remain essentially unchanged if the $\tilde{\chi}_1^0$ mass is raised as high as 200 GeV. In the case of a specific SUSY-breaking scenario, i.e. CMSSM/MSUGRA with $\tan \beta = 10$, $A_0 = 0$, $\mu > 0$, the limit on $m_{1/2}$ reaches 460 GeV for low values of m_0 , and equal mass squarks and gluinos are excluded below 950 GeV. The use of signal selections sensitive to larger jet multiplicities than in [5] has improved the ATLAS reach at large m_0 . The five signal regions are used to set limits on $\sigma_{new} = \sigma A \epsilon$, for non-SM cross-sections (σ) for which ATLAS has an acceptance A and a detection efficiency of ϵ .³ The excluded values of σ_{new} are 22 fb, 25 fb, 429 fb, 27 fb and 17 fb, respectively, at the 95% confidence level.

 $^{^2}$ Five parameters are needed to specify a particular MSUGRA/CMSSM model. They are the universal scalar mass, m_0 , the universal gaugino mass $m_{1/2}$, the universal trilinear scalar coupling, A_0 , the ratio of the vacuum expectation values of the two Higgs fields, $\tan\beta$, and the sign of the higgsino mass parameter, $\mu>0$ or <0.

³ Values of the acceptance A times efficiency ϵ can be obtained from the hepdata archive at http://hepdata.cedar.ac.uk/resource/atlas/.

Fig. 1. The observed m_{eff} distributions in the signal regions for the \geq 2-jet channel (top left), the \geq 3-jet channel (top right) and the two \geq 4-jet channels (bottom left), and for the high mass channel using the inclusive definition of m_{eff} (bottom right), after all the selection criteria but the m_{eff} cut. These plots also show the expected SM contributions obtained from MC simulated samples prior to normalisation using the data-driven likelihood method described in the text. The red arrows indicate the lower bounds on m_{eff} used in the final signal region selections. The expectation for an MSUGRA/CMSSM reference point with $m_0 = 660$ GeV, $m_{1/2} = 240$ GeV, $A_0 = 0$, tan $\beta = 10$ and $\mu > 0$ is also shown. This reference point is also indicated by the star on Fig. 2. Below each plot the ratio of the data to the SM expectation is provided. Black vertical bars show the statistical uncertainty from the data, while the yellow band shows the size of the systematic uncertainties from the MC simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

Table 2

Fitted background components in each SR, compared with the number of events observed in data. The Z/γ + jets background is constrained with control regions CR1a and CR1b, the QCD multi-jet, W and top quark backgrounds by control regions CR2, CR3 and CR4, respectively. In each case the first (second) quoted uncertainty is statistical (systematic). Background components are partially correlated and hence the uncertainties (statistical and systematic) on the total background estimates do not equal the quadrature sums of the uncertainties on the components.

Process	Signal region								
	≥2-jet	≥3-jet	\geqslant 4-jet, $m_{ m eff}$ > 500 GeV	\geqslant 4-jet, $m_{ m eff}$ $>$ 1000 GeV	High mass				
Z/γ + jets W + jets $t\bar{t}$ + single top QCD multi-jet	$\begin{array}{c} 32.3 \pm 2.6 \pm 6.9 \\ 26.4 \pm 4.0 \pm 6.7 \\ 3.4 \pm 1.6 \pm 1.6 \\ 0.22 \pm 0.06 \pm 0.24 \end{array}$	$\begin{array}{c} 25.5 \pm 2.6 \pm 4.9 \\ 22.6 \pm 3.5 \pm 5.6 \\ 5.9 \pm 2.0 \pm 2.2 \\ 0.92 \pm 0.12 \pm 0.46 \end{array}$	$\begin{array}{c} 209\pm9\pm38\\ 349\pm30\pm122\\ 425\pm39\pm84\\ 34\pm2\pm29 \end{array}$	$\begin{array}{c} 16.2 \pm 2.2 \pm 3.7 \\ 13.0 \pm 2.2 \pm 4.7 \\ 4.0 \pm 1.3 \pm 2.0 \\ 0.73 \pm 0.14 \pm 0.50 \end{array}$	$\begin{array}{c} 3.3 \pm 1.0 \pm 1.3 \\ 2.1 \pm 0.8 \pm 1.1 \\ 5.7 \pm 1.8 \pm 1.9 \\ 2.10 \pm 0.37 \pm 0.82 \end{array}$				
Total	$62.4\pm4.4\pm9.3$	$54.9\pm3.9\pm7.1$	$1015\pm41\pm144$	$33.9 \pm 2.9 \pm 6.2$	$13.1\pm1.9\pm2.5$				
Data	58	59	1118	40	18				

8. Summary

This Letter reports a search for new physics in final states containing high- p_T jets, missing transverse momentum and no

electrons or muons with $p_T > 20$ GeV. Data recorded by the ATLAS experiment a the LHC, corresponding to an integrated luminosity of 1.04 fb⁻¹ have been used. Good agreement is seen between the numbers of events observed in the five signal regions and the

Table 3

Numerical inputs (i.e. the observed numbers of events in data) to and outputs from the likelihood fit to the control regions for the high mass channel. Each background process listed in the second row is measured using a control region, and the corresponding transfer factor is listed in the third row. An entry '-' in rows 5–7 indicates that the process in that row is assumed not to contribute to the control region (based on Monte Carlo studies) and hence is excluded from the fit. All numerical entries give event counts, with the exception of the transfer factors.

	Signal/control region						
	CR1a	CR1b	CR2	CR3	CR4	SR	
Data	8	7	34	15	12	18	
Targeted background	Z/γ + jets	Z/γ + jets	QCD multi-jet	W + jets	$t\bar{t} + single top$	-	
Transfer factor	0.374	0.812	0.063	0.196	0.372	-	
Fitted Z/γ + jets	8.3	5.8	0.7	0.5	0.0	3.3	
Fitted QCD multi-jet	-	-	29.8	0.8	0.6	2.1	
Fitted W + jets	-	-	0.5	10.0	0.4	2.1	
Fitted $t\bar{t} + single$ top	_	0.0	3.0	3.7	11.0	5.7	
Fitted total background	8,3	5.9	34,0	15.0	12.0	13.1	
Statistical uncertainty	± 2.7	\pm 1.2	± 5.8	± 3.9	± 3.5	± 1.9	
Systematic uncertainty	± 0.6	± 1.7	± 0.1	± 0.1	± 0.2	± 2.5	

Fig. 2. Combined exclusion limits for simplified SUSY models with $m(\tilde{\chi}_1^0) = 0$ (left) and MSUGRA/CMSSM models with $\tan \beta = 10$, $A_0 = 0$ and $\mu > 0$ (right). The combined limits are obtained by using the signal region which generates the best expected limit at each point in the parameter plane. The dashed (blue in the web version) line corresponds to the median expected 95% C.L. limit and the solid (red in the web version) line corresponds to the observed limit at 95% C.L. The dotted (blue in the web version) lines correspond to the $\pm 1\sigma$ variation in the expected limits. Also shown for comparison purposes in the figures are limits from the Tevatron [35–38] and LEP [39, 40], although it should be noted that some of these limits were generated with different models or parameter choices (see legends). The previous published ATLAS limits from the right-hand figure.

numbers of events expected from SM sources. The exclusion limits placed on non-SM cross sections impose new constraints on scenarios with novel physics.

The results are interpreted in both a simplified model containing only squarks of the first two generations, a gluino octet and a massless neutralino, as well as in MSUGRA/CMSSM models with $\tan \beta = 10$, $A_0 = 0$ and $\mu > 0$. In the simplified model, gluino and squark masses below 700 GeV and 875 GeV respectively are excluded at the 95% confidence level for squark or gluino masses below 2 TeV, with the limit increasing to 1075 GeV for equal mass squarks and gluinos. In the MSUGRA/CMSSM models, equal mass squarks and gluinos are excluded below 950 GeV.

Acknowledgements

We wish to thank CERN for the efficient commissioning and operation of the LHC during this data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCvT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

- [1] L.R. Evans, P. Bryant (Eds.), LHC Machine, JINST 3 (2008) S08001.
- [2] P. Ramond, Phys. Rev. D 3 (1971) 2415;
 - Yu.A. Golfand, E.P. Likhtman, JETP Lett. 13 (1971) 323;
 - A. Neveu, J.H. Schwartz, Nucl. Phys. B 31 (1971) 86;
 - A. Neveu, J.H. Schwartz, Phys. Rev. D 4 (1971) 1109;
 - D.V. Volkov, V.P. Akulov, Phys. Lett. B 46 (1973) 109;
 - J. Wess, B. Zumino, Phys. Lett. B 49 (1974) 52; J. Wess, B. Zumino, Nucl. Phys. B 70 (1974) 39,
- [3] P. Fayet, Phys. Lett. B 69 (1977) 489;
- G.R. Farrar, P. Fayet, Phys. Lett. B 69 (1977) 489, G.R. Farrar, P. Fayet, Phys. Lett. B 76 (1978) 575.
- [4] ATIAS Collaboration, Phys. Rev. Lett. 102 (2011) 131802, arXiv:1102.2357 [hep-ex].
- [5] ATLAS Collaboration, Phys. Lett. B 701 (2011) 186, arXiv:1102.5290 [hep-ex].
- [6] CMS Collaboration, Phys. Lett. B 698 (2011) 196, arXiv:1101.1628 [hep-ex];
 CMS Collaboration, Search for new physics with jets and missing transverse momentum in *pp* collisions at √s = 7 TeV, arXiv:1106.4503 [hep-ex];
 CMS Collaboration, Inclusive search for squarks and gluinos in *pp* collisions at √s = 7 TeV, arXiv:1107.1279 [hep-ex];
 CMS Collaboration, Search for squarks and gluinos in *pp* collisions at √s = 7 TeV, arXiv:1107.1279 [hep-ex];
- CMS Collaboration, Search for supersymmetry at the LHC in events with jets and missing transverse energy, arXiv:1109.2352 [hep-ex].
- [7] ATLAS Collaboration, JINST 3 (2008) S08003.
- [8] ATLAS Collaboration, Luminosity determination in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector in 2011, ATL-CONF-2011-116.
- [9] M. Cacciari, G.P. Salam, G. Soyez, JHEP 0804 (2008) 063, arXiv:0802.1189 [hep-ph].
- [10] M. Cacciari, G.P. Salam, Phys. Lett. B 641 (2006) 57, arXiv:hep-ph/0512210.
- [11] W. Lampl, et al., Calorimeter clustering algorithms: description and performance, ATL-LARG-PUB-2008-002.
- [12] ATLAS Collaboration, Jet energy scale and its systematic uncertainty in proton–proton collisions at $\sqrt{s} = 7$ TeV in ATLAS 2010 data, ATLAS-CONF-2011-032.
- [13] ATLAS Collaboration, JHEP 1012 (2010) 060, arXiv:1010.2130 [hep-ex].
- [14] ATLAS Collaboration, Expected performance of the ATLAS experiment detector, trigger and physics, CERN-OPEN-2008-020, arXiv:0901.0512 [hep-ex].

ATLAS Collaboration

- [15] ATLAS Collaboration, Jet energy measurement with the ATLAS detector in proton–proton collisions at $\sqrt{s} = 7$ TeV, Eur. Phys. J. C, submitted for publication, arXiv:1112.6426 [hep-ex].
- [16] S. Ask, et al., JHEP 1110 (2011) 058.
- [17] T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 0605 (2006) 026, arXiv:hep-ph/0603175.
 [18] A. Sherstnev, R.S. Thorne, Eur. Phys. J. C 55 (2008) 553, arXiv:0711.2473
- [hep-ph].
- [19] S. Frixione, B.R. Webber, JHEP 0206 (2002) 029, arXiv:hep-ph/0204244.
- [20] S. Frixione, P. Nason, B.R. Webber, JHEP 0308 (2003) 007, arXiv:hep-ph/ 0305252.
- [21] P.M. Nadolsky, et al., Phys. Rev. D 78 (2008) 013004.
- [22] S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, JHEP 0603 (2006) 092, arXiv:hep-ph/0512250.
- [23] S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, C.D. White, JHEP 0807 (2008) 029, arXiv:0805.3067 [hep-ph].
- [24] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, JHEP 0307 (2003) 001, arXiv:hep-ph/0206293.
- [25] J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, JHEP 0207 (2002) 012, arXiv:hep-ph/0201195.
- [26] G. Corcella, et al., JHEP 0101 (2001) 010, arXiv:hep-ph/0011363.
- [27] G. Corcella, et al., HERWIG 6.5 release note, arXiv:hep-ph/0210213.
- [28] J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Z. Phys. C 72 (1996) 637, arXiv: hep-ph/9601371.
- [29] M. Bahr, et al., Eur. Phys. J. C 58 (2008) 639, arXiv:0803.0883 [hep-ph].
- [30] W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Nucl. Phys. B 492 (1997) 51, arXiv:hep-ph/9610490.
- [31] ATLAS Collaboration, First tuning of HERWIG/JIMMY to ATLAS data, ATL-PHYS-PUB-2010-014;
- ATLAS Collaboration, Charged particle multiplicities in *pp* interactions at \sqrt{s} = 0.9 and 7 TeV in a diffractive limited phase-space measured with the ATLAS detector at the LHC and new PYTHIA6 tune, ATLAS-CONF-2010-031.
- [32] GEANT4 Collaboration, S. Agostinelli, et al., Nucl. Instrum. Meth. A 506 (2003) 250.
- [33] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568 [physics.ins-det].
- [34] ATLAS Collaboration, Jet energy resolution and selection efficiency relative to track jets from in-situ techniques with the ATLAS detector using proton–proton collisions at a center of mass energy $\sqrt{s} = 7$ TeV, ATLAS-CONF-2010-054.
- [35] D0 Collaboration, Phys. Rev. Lett. 75 (1995) 618.
- [36] CDF Collaboration, Phys. Rev. Lett. 88 (2002) 041801, arXiv:hep-ex/0106001.
- [37] CDF Collaboration, Phys. Rev. Lett. 102 (2009) 121801, arXiv:0811.2512 [hep-ex].
- [38] D0 Collaboration, Phys. Lett. B 660 (2008) 449, arXiv:0712.3805 [hep-ex].
- [39] DELPHI Collaboration, Eur. Phys. J. C 31 (2003) 421, arXiv:hep-ex/0311019.
- [40] L3 Collaboration, Phys. Lett. B 580 (2004) 37, arXiv:hep-ex/0310007.
- [41] A. Read, J. Phys. G: Nucl. Part. Phys. 28 (2002) 2693.
- [42] F.E. Paige, S.D. Protopopescu, H. Baer, X. Tata, ISAJET 7.69: A Monte Carlo event generator for pp, $\bar{p}p$, and e^+e^- reactions, arXiv:hep-ph/0312045.
- [43] A.H. Chamseddine, R.L. Arnowitt, P. Nath, Phys. Rev. Lett. 49 (1982) 970;
 R. Barbieri, S. Ferrara, C.A. Savoy, Phys. Lett. B 119 (1982) 343;
 - L.E. Ibanez, Phys. Lett. B 118 (1982) 73;
 - L.J. Hall, J.D. Lykken, S. Weinberg, Phys. Rev. D 27 (1983) 2359;
 - N. Ohta, Prog. Theor. Phys. 70 (1983) 542;
 - G.L. Kane, C.F. Kolda, L. Roszkowski, J.D. Wells, Phys. Rev. D 49 (1994) 6173, arXiv:hep-ph/9312272.

G. Aad ⁴⁸, B. Abbott ¹¹¹, J. Abdallah ¹¹, A.A. Abdelalim ⁴⁹, A. Abdesselam ¹¹⁸, O. Abdinov ¹⁰, B. Abi ¹¹², M. Abolins ⁸⁸, H. Abramowicz ¹⁵³, H. Abreu ¹¹⁵, E. Acerbi ^{89a,89b}, B.S. Acharya ^{164a,164b}, D.L. Adams ²⁴, T.N. Addy ⁵⁶, J. Adelman ¹⁷⁵, M. Aderholz ⁹⁹, S. Adomeit ⁹⁸, P. Adragna ⁷⁵, T. Adye ¹²⁹, S. Aefsky ²², J.A. Aguilar-Saavedra ^{124b,a}, M. Aharrouche ⁸¹, S.P. Ahlen ²¹, F. Ahles ⁴⁸, A. Ahmad ¹⁴⁸, M. Ahsan ⁴⁰, G. Aielli ^{133a,133b}, T. Akdogan ^{18a}, T.P.A. Åkesson ⁷⁹, G. Akimoto ¹⁵⁵, A.V. Akimov ⁹⁴, A. Akiyama ⁶⁷, M.S. Alam ¹, M.A. Alam ⁷⁶, J. Albert ¹⁶⁹, S. Albrand ⁵⁵, M. Aleksa ²⁹, I.N. Aleksandrov ⁶⁵, F. Alessandria ^{89a}, C. Alexa ^{25a}, G. Alexander ¹⁵³, G. Alexandre ⁴⁹, T. Alexopoulos ⁹, M. Alhroob ²⁰, M. Aliev ¹⁵, G. Alimonti ^{89a}, J. Alison ¹²⁰, M. Aliyev ¹⁰, P.P. Allport ⁷³, S.E. Allwood-Spiers ⁵³, J. Almond ⁸², A. Aloisio ^{102a,102b}, R. Alon ¹⁷¹, A. Alonso ⁷⁹, M.G. Alviggi ^{102a,102b}, K. Amako ⁶⁶, P. Amaral ²⁹, C. Amelung ²², V.V. Ammosov ¹²⁸, A. Amorim ^{124a,b}, G. Amorós ¹⁶⁷, N. Amram ¹⁵³, C. Anastopoulos ²⁹, L.S. Ancu ¹⁶, N. Andrei ¹¹⁵, T. Andeen ³⁴, C.F. Anders ²⁰, G. Anders ^{58a}, K.J. Anderson ³⁰, A. Andreazza ^{89a,89b}, V. Andrei ⁵⁵, X.S. Anduaga ⁷⁰, A. Angerami ³⁴, F. Anghinolfi ²⁹, N. Anjos ^{124a}, A. Annovi ⁴⁷, A. Antonaki ⁸, M. Antonelli ⁴⁷, A. Antonov ⁹⁶, J. Antos ^{144b}, F. Anulli ^{132a}, S. Aoun ⁸³,

L. Aperio Bella⁴, R. Apolle^{118,c}, G. Arabidze⁸⁸, I. Aracena¹⁴³, Y. Arai⁶⁶, A.T.H. Arce⁴⁴, J.P. Archambault²⁸, S. Arfaoui^{29,d}, J.-F. Arguin¹⁴, E. Arik^{18a,*}, M. Arik^{18a}, A.J. Armbruster⁸⁷, O. Arnaez⁸¹, C. Arnault¹¹⁵, A. Artamonov⁹⁵, G. Artoni^{132a,132b}, D. Arutinov²⁰, S. Asai¹⁵⁵, R. Asfandiyarov¹⁷², S. Ask²⁷, B. Åsman^{146a,146b}, L. Asquith⁵, K. Assamagan²⁴, A. Astbury¹⁶⁹, A. Astvatsatourov⁵², G. Atoian¹⁷⁵, B. Aubert⁴, E. Auge¹¹⁵, K. Augsten¹²⁷, M. Aurousseau^{145a}, N. Austin⁷³, G. Avolio¹⁶³, R. Avramidou⁹, D. Axen¹⁶⁸, C. Ay⁵⁴, G. Azuelos^{93,e}, Y. Azuma¹⁵⁵, M.A. Baak²⁹, G. Baccaglioni^{89a}, C. Bacci^{134a,134b}, A.M. Bach¹⁴, H. Bachacou¹³⁶, K. Bachas²⁹, G. Bachy²⁹, M. Backes⁴⁹, M. Backhaus²⁰, E. Badescu^{25a}, P. Bagnaia^{132a,132b}, S. Bahinipati², Y. Bai^{32a}, D.C. Bailey¹⁵⁸, T. Bain¹⁵⁸, J.T. Baines¹²⁹, O.K. Baker¹⁷⁵, M.D. Baker²⁴, S. Baker⁷⁷, E. Banas³⁸, P. Banerjee⁹³, Sw. Banerjee¹⁷², D. Banfi²⁹, A. Bangert¹³⁷, V. Bansal¹⁶⁹, H.S. Bansil¹⁷, L. Barak¹⁷¹, S.P. Baranov⁹⁴, A. Barashkou⁶⁵, A. Barbaro Galtieri¹⁴, T. Barberio⁸⁶, D. Barberis^{50a,50b}, M. Barbero²⁰, D.Y. Bardin⁶⁵, T. Barillari⁹⁹, M. Barisonzi¹⁷⁴, T. Barklow¹⁴³, N. Barlow²⁷, B.M. Barnett¹²⁹, R.M. Barnett¹⁴, A. Baroncelli^{134a}, G. Barone⁴⁹, A.J. Barr¹¹⁸, F. Barreiro⁸⁰, J. Barreiro Guimarães da Costa⁵⁷, P. Barrillon¹¹⁵, R. Bartoldus¹⁴³, T. Barber ²⁷, E.L. Barberio ⁸⁶, D. Barberis ^{50a,50b}, M. Barbero ²⁰, D.Y. Bardin ⁶⁵, T. Barillari ⁹⁹,
 M. Barisonzi ¹⁷⁴, T. Barklow ¹⁴³, N. Barlow ²⁷, B.M. Barnett ¹²⁹, R.M. Barnett ¹⁴, A. Barnocelli ^{134a},
 G. Barnoe ⁴⁹, A.J. Barr ¹¹⁸, F. Barreiro ⁸⁰, J. Barreiro Guimarães da Costa ⁵⁷, P. Barrillon ¹¹⁵, R. Bartollous ¹⁴³,
 A.E. Barton ⁷¹, D. Bartsch ²⁰, V. Bartsch ¹⁴⁹, R.L. Bates ⁵³, L. Batkova ^{144a}, J.R. Batley ²⁷, A. Battaglia ¹⁶,
 M. Battistin ²⁹, G. Battistoni ^{89a}, F. Bauer ¹³⁶, H.S. Bawa ^{143,f}, B. Beare ¹⁵⁸, T. Beau ⁷⁸, P.H. Beauchemin ¹¹⁸,
 R. Beccherle ^{50a}, P. Bechtle ⁴¹, H.P. Beck ¹⁶, M. Beckingham ⁴⁸, K.H. Becks ¹⁷⁴, A.J. Beddall ^{18c},
 A. Beddall ^{18c}, S. Bedikian ¹⁷⁵, V.A. Bednyakov ⁶⁵, C.P. Bee ⁸³, M. Begel ²⁴, S. Behar Harpaz ¹⁵²,
 P.K. Behera ⁶³, M. Beimforde ⁹⁹, C. Belanger-Champagne ⁸⁵, P.J. Bell ⁴⁹, W.H. Bell ⁴⁹, G. Bella ¹⁵³,
 L. Bellagamba ^{19a}, F. Bellina ²⁹, M. Bellomo ²⁹, A. Belloni ⁵⁷, O. Beloborodova ¹⁰⁷, K. Belotskiy ⁹⁶,
 O. Beltramello ²⁹, S. Ben Ami ¹⁵³, D. Benjamin ⁴⁴, M. Benoit ¹¹⁵, J.R. Bensinger ²², K. Benslama ¹³⁰,
 S. Bentvelsen ¹⁰⁵, D. Berge ²⁹, E. Bergeaas Kuutmann ⁴¹, N. Berger ⁴, F. Berghaus ¹⁶⁹, F. Berglund ⁴⁹,
 J. Berringer ¹⁴, K. Bernardet ⁸³, P. Bernat ⁷⁷, R. Bernhard ⁴⁸, C. Berninus ²⁴, T. Bertin ^{19a,19b},
 F. Bertinelli ²³, F. Bertolucci ^{122,12b}, M.I. Besana ^{89,80b}, N. Besson ¹³⁶, S. Betry ⁶⁹, A. Betrin ^{19a,19b},
 R. Bianchi ²⁹, M. Bilanco ^{72a,72b}, O. Biebel ⁹⁸, S.P. Bieniek ⁷⁷, K. Biernwagen ⁵⁴, J. Biesiada ¹⁴,
 M. Biglietti ^{134a,134b}, H. Bilokon ⁴⁷, M. Bindi ^{19a,19b}, S. Binet ¹¹⁵, A. Bingul ^{18c}, C. Bini ^{122,132b},
 C. Biocket ²³, J. Blockl³⁴, R. M. Bodael ⁴⁹, W. Bilm ⁸⁵, J. Bexlexel ⁴¹⁴, S. Bog M. Bruschi ^{19a}, T. Buanes ¹³, F. Bucci ⁴⁹, J. Buchanan ¹¹⁸, N.J. Buchanan ², P. Buchholz ¹⁴¹, R.M. Buckingham ¹¹⁸, A.G. Buckley ⁴⁵, S.I. Buda ^{25a}, I.A. Budagov ⁶⁵, B. Budick ¹⁰⁸, V. Büscher ⁸¹, L. Bugge ¹¹⁷, D. Buira-Clark ¹¹⁸, O. Bulekov ⁹⁶, M. Bunse ⁴², T. Buran ¹¹⁷, H. Burckhart ²⁹, S. Burdin ⁷³, T. Burgess ¹³, S. Burke ¹²⁹, E. Busato ³³, P. Bussey ⁵³, C.P. Buszello ¹⁶⁶, F. Butin ²⁹, B. Butler ¹⁴³, J.M. Butler ²¹, C.M. Buttar ⁵³, J.M. Butterworth ⁷⁷, W. Buttinger ²⁷, T. Byatt ⁷⁷, S. Cabrera Urbán ¹⁶⁷, D. Caforio ^{19a,19b}, O. Cakir ^{3a}, P. Calafiura ¹⁴, G. Calderini ⁷⁸, P. Calfayan ⁹⁸, R. Calkins ¹⁰⁶, L.P. Caloba ^{23a}, R. Caloi ^{132a,132b}, D. Calvet ³³, S. Calvet ³³, R. Camacho Toro ³³, P. Camarri ^{133a,133b}, M. Cambiaghi ^{119a,119b}, D. Cameron ¹¹⁷, S. Campana ²⁹, M. Campanelli ⁷⁷, V. Canale ^{102a,102b}, F. Canelli ^{30,h}, A. Canepa ^{159a}, J. Cantero ⁸⁰, L. Capasso ^{102a,102b}, M.D.M. Capeans Garrido ²⁹, I. Caprini ^{25a}, M. Capriotti ⁹⁹, M. Capua ^{36a,36b}, R. Caputo ¹⁴⁸, R. Cardarelli ^{133a}, T. Carli ²⁹, G. Carlino ^{102a}, L. Carminati ^{89a,89b}, B. Caron ^{159a}, S. Caron ⁴⁸, G.D. Carrillo Montoya ¹⁷², A.A. Carter ⁷⁵, J.R. Carter ²⁷, J. Carvalho ^{124a,i}, D. Casadei ¹⁰⁸, M.P. Casado ¹¹, M. Cascella ^{122a,122b}, C. Caso ^{50a,50b,*}, A.M. Castaneda Hernandez ¹⁷²,

75

E. Castaneda-Miranda¹⁷², V. Castillo Gimenez¹⁶⁷, N.F. Castro^{124a}, G. Cataldi^{72a}, F. Cataneo²⁹ L. Castaneua-Winanda ¹⁰⁷, V. Castino Ginnenez ¹⁰⁷, N.F. Castro ^{121a}, G. Cataldi ^{12a}, F. Cataneo ²⁵,
A. Catinaccio ²⁹, J.R. Catmore ⁷¹, A. Cattai ²⁹, G. Cattani ^{133a,133b}, S. Caughron ⁸⁸, D. Cauz ^{164a,164c},
P. Cavalleri ⁷⁸, D. Cavalli ^{89a}, M. Cavalli-Sforza ¹¹, V. Cavasinni ^{122a,122b}, F. Ceradini ^{134a,134b},
A.S. Cerqueira ^{23a}, A. Cerri ²⁹, L. Cerrito ⁷⁵, F. Cerutti ⁴⁷, S.A. Cetin ^{18b}, F. Cevenini ^{102a,102b}, A. Chafaq ^{135a},
D. Chakraborty ¹⁰⁶, K. Chan², B. Chapleau ⁸⁵, J.D. Chapman ²⁷, J.W. Chapman ⁸⁷, E. Chareyre ⁷⁸,
D.G. Charlton ¹⁷, V. Chavda ⁸², C.A. Chavez Barajas ²⁹, S. Cheatham ⁸⁵, S. Chekanov ⁵, S.V. Chekulaev ^{159a}, D.G. Charlton ¹⁷, V. Chavda ³², C.A. Chavez Barajas ²³, S. Cheatham ³⁵, S. Chekanov ⁵, S.V. Chekulaev ¹⁵⁵⁴, G.A. Chelkov ⁶⁵, M.A. Chelstowska ¹⁰⁴, C. Chen ⁶⁴, H. Chen ²⁴, S. Chen ^{32c}, T. Chen ^{32c}, X. Chen ¹⁷², S. Cheng ^{32a}, A. Cheplakov ⁶⁵, V.F. Chepurnov ⁶⁵, R. Cherkaoui El Moursli ^{135e}, V. Chernyatin ²⁴, E. Cheu ⁶, S.L. Cheung ¹⁵⁸, L. Chevalier ¹³⁶, G. Chiefari ^{102a,102b}, L. Chikovani ^{51a}, J.T. Childers ^{58a}, A. Chilingarov ⁷¹, G. Chiodini ^{72a}, M.V. Chizhov ⁶⁵, G. Choudalakis ³⁰, S. Chouridou ¹³⁷, I.A. Christidi ⁷⁷, A. Christov ⁴⁸, D. Chromek-Burckhart ²⁹, M.L. Chu ¹⁵¹, J. Chudoba ¹²⁵, G. Ciapetti ^{132a,132b}, K. Ciba ³⁷, A.K. Ciftci ^{3a}, R. Ciftci ^{3a}, D. Cinca ³³, V. Cindro ⁷⁴, M.D. Ciobotaru ¹⁶³, C. Ciocca ^{19a,19b}, A. Ciocio ¹⁴, M. Cirilli ⁸⁷, M. Ciubancan 25a , A. Clark 49 , P.J. Clark 45 , W. Cleland 123 , J.C. Clemens 83 , B. Clement 55 , C. Clement 146a,146b , R.W. Clifft 129 , Y. Coadou 83 , M. Cobal 164a,164c , A. Coccaro 50a,50b , J. Cochran 64 , P. Coe¹¹⁸, J.G. Cogan¹⁴³, J. Coggeshall¹⁶⁵, E. Cogneras¹⁷⁷, C.D. Cojocaru²⁸, J. Colas⁴, A.P. Colijn¹⁰⁵, C. Collard¹¹⁵, N.J. Collins¹⁷, C. Collins-Tooth⁵³, J. Collot⁵⁵, G. Colon⁸⁴, P. Conde Muiño^{124a}, E. Coniavitis¹¹⁸, M.C. Conidi¹¹, M. Consonni¹⁰⁴, V. Consorti⁴⁸, S. Constantinescu^{25a}, C. Conta^{119a,119b}, E. Contavitis ¹¹⁰, M.C. Conidi ¹¹, M. Consonni ¹⁰⁴, V. Consorti ⁴⁰, S. Constantinescu ²⁰⁴, C. Conta ¹¹⁰⁴, T. Dai⁸⁷, C. Dallapiccola⁸⁴, M. Dam³⁵, M. Dameri^{50a,50b}, D.S. Damiani¹³⁷, H.O. Danielsson²⁹, D. Dannheim⁹⁹, V. Dao⁴⁹, G. Darbo^{50a}, G.L. Darlea^{25b}, C. Daum¹⁰⁵, J.P. Dauvergne²⁹, W. Davey⁸⁶, T. Davidek ¹²⁶, N. Davidson ⁸⁶, R. Davidson ⁷¹, E. Davies ^{118, c}, M. Davies ⁹³, A.R. Davison ⁷⁷, Y. Davygora ^{58a}, E. Dawe ¹⁴², I. Dawson ¹³⁹, J.W. Dawson ^{5,*}, R.K. Daya ³⁹, K. De⁷, R. de Asmundis ^{102a}, S. De Castro ^{19a,19b}, P.E. De Castro Faria Salgado ²⁴, S. De Cecco ⁷⁸, J. de Graat ⁹⁸, N. De Groot ¹⁰⁴, P. de Jong ¹⁰⁵, C. De La Taille ¹¹⁵, H. De la Torre ⁸⁰, B. De Lotto ^{164a,164c}, L. De Mora ⁷¹, L. De Nooij ¹⁰⁵, D. De Pedis ^{132a}, A. De Salvo ^{132a}, U. De Sanctis ^{164a,164c}, A. De Santo ¹⁴⁹, J.B. De Vivie De Regie ¹¹⁵, L. De Johng, J. C. De La Tainle, J. R. De la Torrie, P. De Botto, J. De Word, J. L. De Mola, J. De Mola, J. De Nooil, 103, D. De Pedis 132a, A. De Salvo 132a, U. De Sanctis 164a,164c, A. De Santo 149, J.B. De Vivie De Regie 115, S. Dean 77, R. Debbe 24, D.V. Dedovich 65, J. Degenhardt 120, M. Dehchar 118, C. Del Papa 164a,164c, J. Del Peso 80, T. Del Prete 122a,122b, M. Deliyergiyev 74, A. Dell'Acqua 29, L. Dell'Asta 89a,89b, M. Della Pietra 102a, J. D. della Volpe 102a,102b, M. Delmastro 29, P. Delpierre 83, N. Delruelle 29, P.A. Delsart 55, C. Deluca 148, S. Demers 175, M. Demichev 65, B. Demirkoz 11,1, J. Deng 163, S.P. Denisov 128, D. Derendarz 38, J.E. Derkaoui 135d, F. Derue 78, P. Dervan 73, K. Desch 20, E. Devetak 148, P.O. Deviveiros 158, A. Dewhurst 129, B. DeWilde 148, S. Dhaliwal 158, R. Dhullipudi 24.m, A. Di Ciaccio 133a,133b, L. Di Ciaccio 4, A. Di Girolamo 29, B. Di Girolamo 29, S. Di Luise 134a,134b, A. Di Mattia 88, B. Di Micco 29, R. Di Nardo 133a,133b, A. Di Simone 133a,133b, R. Di Sipio 19a,19b, M.A. Diaz 31a, F. Diblen 18c, E.B. Diehl 87, J. Dietrich 41, T.A. Dietzsch 58a, S. Diglio 115, K. Dindar Yagci 39, J. Dingfelder 20, C. Dionisi 132a,132b, P. Dita 25a, S. Dita 25a, F. Dittus 29, F. Djama 83, T. Djobava 51b, M.A.B. do Vale 23a, A. Do Valle Wemans 124a, T.K.O. Doan 4, M. Dobbs 85, R. Dobinson 29, *, D. Dobos 29, E. Dobson 29, M. Dobson 163, J. Dodd 34, C. Doglioni 118, T. Doherty 53, Y. Doi 66.*, J. Dolejsi 126, I. Dolenc 74, Z. Dolezal 126, B.A. Dolg Shein 96.*, T. Dohmae 155, M. Donadelli 23d, M. Donega 120, J. Donini 55, J. Dopke 29, A. Doria 102a, A. Dos Anjos 172, M. Dossi 11, A. Dietrich 11, G. Duckeck 98, A. Dudarev 29, F. Duziak 64, M. Dührssen 29, I.P. Duerdoth 82, L. Duflot 115, M.-A. Dufour 85, M. Dunford 29, H. Duran Yildiz 3b, R. Duxifield 139, M. Dwuznik 37, F. Dydak ²⁶, M. Düren 52, W.L. Ebenstein 44, J. Ebke 98, S. Eckert 48, S. Eckweiler 81, K. Edmonds 81, C.A. Edwards 76, N.C. Edwards 53, W. Ehrenfeld 41, T. Ehrich 99, T. Eifert 29, G. Eigen 13, K. Einswei C.A. Edwards⁷⁶, N.C. Edwards⁵³, W. Ehrenfeld⁴¹, T. Ehrich⁹⁹, T. Eifert²⁹, G. Eigen¹³, K. Einsweiler¹⁴, E. Eisenhandler⁷⁵, T. Ekelof¹⁶⁶, M. El Kacimi^{135c}, M. Ellert¹⁶⁶, S. Elles⁴, F. Ellinghaus⁸¹, K. Ellis⁷⁵, N. Ellis²⁹, J. Elmsheuser⁹⁸, M. Elsing²⁹, D. Emeliyanov¹²⁹, R. Engelmann¹⁴⁸, A. Engl⁹⁸, B. Epp⁶²,

A. Eppig⁸⁷, J. Erdmann⁵⁴, A. Ereditato¹⁶, D. Eriksson^{146a}, J. Ernst¹, M. Ernst²⁴, J. Ernwein¹³⁶, D. Errede¹⁶⁵, S. Errede¹⁶⁵, E. Ertel⁸¹, M. Escalier¹¹⁵, C. Escobar¹²³, X. Espinal Curull¹¹, B. Esposito⁴⁷, F. Etienne⁸³, A.I. Etienvre¹³⁶, E. Etzion¹⁵³, D. Evangelakou⁵⁴, H. Evans⁶¹, L. Fabbri^{19a,19b}, C. Fabre²⁹, R.M. Fakhrutdinov¹²⁸, S. Falciano^{132a}, Y. Fang¹⁷², M. Fanti^{89a,89b}, A. Farbin⁷, A. Farilla^{134a}, J. Farley¹⁴⁸, T. Farooque¹⁵⁸, S.M. Farrington¹¹⁸, P. Farthouat²⁹, P. Fassnacht²⁹, D. Fassouliotis⁸, B. Fatholahzadeh¹⁵⁸, A. Favareto^{89a,89b}, L. Fayard¹¹⁵, S. Fazio^{36a,36b}, R. Febbraro³³, P. Federic^{144a}, O.L. Fedin¹²¹, T. Farooque ¹⁵⁸, S.M. Farrington ¹¹⁸, P. Farthouat ²⁹, P. Fassnacht ²⁹, D. Fassouliotis ⁸, B. Fatholahzadeh ¹⁵⁸, A. Favareto ^{89a, 89b}, L. Fayard ¹¹⁵, S. Fazio ^{36a, 36b}, R. Febbraro ³³, P. Federic ^{144a}, O.L. Fedin ¹²¹, W. Fedorko ⁸⁸, M. Fehling-Kaschek ⁴⁸, I. Feligioni ⁸³, D. Fellmann ⁵, C.U. Felzmann ⁸⁶, C. Feng ³²⁴, E.J. Feng ³⁰, A.B. Fenyuk ¹²⁸, J. Ferencei ^{144b}, J. Ferland ⁹³, W. Fernando ¹⁰⁹, S. Ferrag ⁵³, J. Ferrando ⁵³, V. Ferrara ⁴¹, A. Ferretti ⁶⁷, A. Ferretti ⁶⁷, A. Ferretti ⁶⁷, A. Ferretti ⁸⁷, A. Ferretto Parodi ^{50a, 50b}, M. Fiascaris ³⁰, F. Fieldler ⁸¹, A. Filipötz ⁷⁴, A. Filippas ⁹, F. Filthaut ¹⁰⁴, M. Fincke-Keeler ¹⁶⁹, M.C.N. Fiolhais ^{124a,i}, L. Fiorini ¹⁶⁷, A. Firan ³⁹, G. Fischer ⁴¹, P. Fischer ²⁰, M.J. Fisher ¹⁰⁹, S.M. Fisher ¹²⁹, M. Flechl ⁴⁸, I. Fleck ¹⁴¹, J. Fleckner ⁸¹, P. Fleischmann ¹⁷³, S. Fleischmann ¹⁷⁴, T. Flick ¹⁷⁴, L.R. Flores Castillo ¹⁷², M.J. Flowerdew ⁹⁹, M. Fokitis ⁹, T. Fonseca Martin ¹⁶, D.A. Forbush ¹³⁸, A. Formica ¹⁵⁶, A. Forti ⁸², D. Fortin ^{159a}, J.M. Foster ⁸², D. Fournier ¹¹⁵, A. Forussat ²⁹, A.J. Fowler ⁴⁴, K. Fowler ¹³⁷, H. Fox ⁷¹, P. Francavilla ^{122a,122b}, S. Franchino ^{119a,119b}, D. Francis ²⁹, T. Franktin ⁵⁷, S. Franz ²⁹, M. Fraternali ^{119a,119b}, S. Fratina ¹²⁰, S.T. French ²⁷, F. Friedrich ⁴³, R. Froeschl ²⁹, D. Froidevaux ²⁹, J.A. Frost ²⁷, C. Fukunaga ¹⁵⁶, F. Fullana Torregrosa ²⁹, J. Fuster ¹⁶⁷, C. Gabaldon ²⁹, O. Gabizon ⁷¹, T. Gadfort ²⁴, S. Gadomski ⁴⁹, G. Gagliant ¹⁰⁵, V. Garonne ²⁹, J. Garcon ⁶¹, C. Galea ⁹⁸, E.J. Gallas ¹¹⁸, M.V. Gallas ²⁹, V. Gallo ¹⁶, B.J. Gallop ¹²⁹, P. Gallus ¹²⁵, K. Garone ²⁹, J. García ¹⁶⁷, J.E. García Navarro ⁴⁹, R.W. Gardner ³⁰, N. Garcila ²⁹, P. Gazdot ¹⁶⁵, C. Gave²⁷, P. Gardot ¹⁶⁴, C. Gave¹⁷⁴, S. Gaudine ^{119a}, O. Gaumer ⁴⁹, B. Gaut ¹¹¹, L. Gauthier ¹³⁵, M. Garcia-Sciveres ¹⁴, C. García ¹⁶⁷, J.E. García Navar S. González de la Hoz¹⁶⁷, M.L. Gonzalez Silva²⁶, S. Gonzalez-Sevilla⁴⁹, J.J. Goodson¹⁴⁸, L. Goossens²⁹, P.A. Gorbounov⁹⁵, H.A. Gordon²⁴, I. Gorelov¹⁰³, G. Gorfine¹⁷⁴, B. Gorini²⁹, E. Gorini^{72a,72b}, A. Gorišek⁷⁴, E. Gornicki³⁸, S.A. Gorokhov¹²⁸, V.N. Goryachev¹²⁸, B. Gosdzik⁴¹, M. Gosselink¹⁰⁵, M.I. Gostkin⁶⁵, I. Gough Eschrich¹⁶³, M. Gouighri^{135a}, D. Goujdami^{135c}, M.P. Goulette⁴⁹, M.I. Gostkin ⁶⁵, I. Gough Eschrich ¹⁶³, M. Gouighri ^{135a}, D. Goujdami ^{135c}, M.P. Goulette ⁴⁹, A.G. Goussiou ¹³⁸, C. Goy ⁴, I. Grabowska-Bold ^{163,g}, V. Grabski ¹⁷⁶, P. Grafström ²⁹, C. Grah ¹⁷⁴, K.-J. Grahn ⁴¹, F. Grancagnolo ^{72a}, S. Grancagnolo ¹⁵, V. Grassi ¹⁴⁸, V. Gratchev ¹²¹, N. Grau ³⁴, H.M. Gray ²⁹, J.A. Gray ¹⁴⁸, E. Graziani ^{134a}, O.G. Grebenyuk ¹²¹, D. Greenfield ¹²⁹, T. Greenshaw ⁷³, Z.D. Greenwood ^{24,m}, K. Gregersen ³⁵, I.M. Gregor ⁴¹, P. Grenier ¹⁴³, J. Griffiths ¹³⁸, N. Grigalashvili ⁶⁵, A.A. Grillo ¹³⁷, S. Grinstein ¹¹, Y.V. Grishkevich ⁹⁷, J.-F. Grivaz ¹¹⁵, J. Grognuz ²⁹, M. Groh ⁹⁹, E. Gross ¹⁷¹, J. Grosse-Knetter ⁵⁴, J. Groth-Jensen ¹⁷¹, K. Grybel ¹⁴¹, V.J. Guarino ⁵, D. Guest ¹⁷⁵, C. Guicheney ³³, A. Guida ^{72a,72b}, T. Guillemin ⁴, S. Guindon ⁵⁴, H. Guler ^{85,n}, J. Guther ¹²⁵, B. Guo ¹⁵⁸, J. Guo ³⁴, A. Gupta ³⁰, Y. Gusakov ⁶⁵, V.N. Gushchin ¹²⁸, A. Gutierrez ⁹³, P. Gutierrez ¹¹¹, N. Guttman ¹⁵³, O. Gutzwiller ¹⁷², C. Guyot ¹³⁶, C. Gwenlan ¹¹⁸, C.B. Gwilliam ⁷³, A. Haas ¹⁴³, S. Haas ²⁹, C. Haber ¹⁴, R. Hackenburg ²⁴, H.K. Hadavand ³⁹, D.R. Hadley ¹⁷, P. Haefner ⁹⁹, F. Hahn ²⁹, S. Haider ²⁹, Z. Hajduk ³⁸, H. Hakobyan ¹⁷⁶, J. Haller ⁵⁴, K. Hamacher ¹⁷⁴, P. Hamal ¹¹³, A. Hamilton ⁴⁹, S. Hamilton ¹⁶¹, H. Han ^{32a}, L. Han ^{32b}, K. Hanagaki ¹¹⁶, M. Hance ¹²⁰, C. Handel ⁸¹, P. Hanke ^{58a}, J.R. Hansen ³⁵, J.B. Hansen ³⁵, J.D. Hansen ³⁵, P.H. Hansen ³⁵, P. Hansson ¹⁴³, K. Harrison ¹⁷, J. Hartert ⁴⁸, F. Hartjes ¹⁰⁵, T. Haruyama ⁶⁶, A. Harvey ⁵⁶, S. Hasegawa ¹⁰¹, Y. Hasegawa ¹⁴⁰, S. Hassani ¹³⁶, M. Hatch ²⁹, D. Hauff ⁹⁹, S. Haug ¹⁶,

77

M. Hauschild²⁹, R. Hauser⁸⁸, M. Havranek²⁰, B.M. Hawes¹¹⁸, C.M. Hawkes¹⁷, R.J. Hawkings²⁹, D. Hawkins ¹⁶³, T. Hayakawa ⁶⁷, D. Hayden ⁷⁶, H.S. Hayward ⁷³, S.J. Haywood ¹²⁹, E. Hazen ²¹, M. He ^{32d}, S.J. Head ¹⁷, V. Hedberg ⁷⁹, L. Heelan ⁷, S. Heim ⁸⁸, B. Heinemann ¹⁴, S. Heisterkamp ³⁵, L. Helary ⁴, M. Heller ¹¹⁵, S. Hellman ^{146a,146b}, D. Hellmich ²⁰, C. Helsens ¹¹, R.C.W. Henderson ⁷¹, M. Henke ^{58a}, A. Henrichs ⁵⁴, A.M. Henriques Correia ²⁹, S. Henrot-Versille ¹¹⁵, F. Henry-Couannier ⁸³, C. Hensel ⁵⁴, T. Henß ¹⁷⁴, C.M. Hernandez ⁷, Y. Hernández Jiménez ¹⁶⁷, R. Herrberg ¹⁵, A.D. Hershenhorn ¹⁵², G. Herten ⁴⁸, R. Hertenberger ⁹⁸, L. Hervas ²⁹, N.P. Hessey ¹⁰⁵, A. Hidvegi ^{146a}, E. Higón-Rodriguez ¹⁶⁷, D. Hill ⁵, *, J.C. Hill ²⁷, N. Hill ⁵, K.H. Hiller ⁴¹, S. Hillert ²⁰, S.J. Hillier ¹⁷, I. Hinchliffe ¹⁴, E. Hines ¹²⁰, M. Hirose ¹¹⁶, F. Hirsch ⁴², D. Hirschbuehl ¹⁷⁴, J. Hobbs ¹⁴⁸, N. Hod ¹⁵³, M.C. Hodgkinson ¹³⁹, P. Hodgson ¹³⁹, A. Hoecker ²⁹, M.R. Hoeferkamp ¹⁰³, J. Hoffman ³⁹, D. Hoffmann ⁸³, M. Hohlfeld ⁸¹, M. Holder ¹⁴¹, S.O. Holmgren ^{146a}, T. Holy ¹²⁷, J.L. Holzbauer ⁸⁸, Y. Homma ⁶⁷, T.M. Hong ¹²⁰, L. Hooft van Huysduynen ¹⁰⁸, T. Horazdovsky ¹²⁷, C. Horn ¹⁴³, S. Horner ⁴⁸, K. Horton ¹¹⁸, J.-Y. Hostachy ⁵⁵, S. Hou ¹⁵¹, M.A. Houlden ⁷³, A. Hoummada ^{135a}, J. Howarth ⁸², D.F. Howell ¹¹⁸, I. Hristova ¹⁵, J. Hrivnac ¹¹⁵, I. Hruska ¹²⁵, T. Hryn'ova ⁴, P.J. Hsu ¹⁷⁵, S.-C. Hsu ¹⁴, G.S. Huang ¹¹¹, Z. Hubacek ¹²⁷, F. Hubaut ⁸³, F. Huegging ²⁰, T.B. Huffman ¹¹⁸, E.W. Hughes ³⁴, G. Hughes ⁷¹, R.E. Hughes-Jones ⁸², M. Huhtinen ²⁹, P. Hurst ⁵⁷, M. Hurwitz ¹⁴, U. Husemann ⁴¹, N. Huseynov ^{65,o}, J. Huston ⁸⁸, J. Huth ⁵⁷, G. Iacobucci ⁴⁹, G. Iakovidis ⁹, M. Ibbotson ⁸², I. Ibragimov ¹⁴¹, R. Ichimiya ⁶⁷, L. Iconomidou-Fayard ¹¹⁵, J. Idarraga ¹¹⁵, M. Idzik ³⁷, P. Iengo ^{102a,102b}, O. Igonkina ¹⁰⁵, Y. Ikegami ⁶⁶, M. Ikeno ⁶⁶, Y. Ilchenko ³⁹, D. Iliadis ¹⁵⁴, D. Imbault ⁷⁸, M. Imhaeuser ¹⁷⁴, M. Imori ¹⁵⁵, T D. Hawkins¹⁶³, T. Hayakawa⁶⁷, D. Hayden⁷⁶, H.S. Hayward⁷³, S.J. Haywood¹²⁹, E. Hazen²¹, M. He^{32d}, G. lakovidis⁷, M. libbotson¹², I. Ibragimov¹⁴¹, K. Ichimiya⁶⁵, L. Iconomidou-hayard¹¹⁵, J. Idarraga¹¹⁵, M. Idzik³⁷, P. lengo^{102a,102b}, O. Igonkina¹⁰⁵, Y. Ikegami⁶⁶, M. Ikeno⁶⁶, Y. Ilchenko³⁹, D. Iliadis¹⁵⁴, D. Imbault⁷⁸, M. Imhaeuser¹⁷⁴, M. Imori¹⁵⁵, T. Ince²⁰, J. Inigo-Golfin²⁹, P. Ioannou⁸, M. Iodice^{134a}, G. Ionescu⁴, A. Irles Quiles¹⁶⁷, K. Ishii⁶⁶, A. Ishikawa⁶⁷, M. Ishino⁶⁸, R. Ishmukhametov³⁹, C. Issever¹¹⁸, S. Istin^{18a}, A.V. Ivashin¹²⁸, W. Iwanski³⁸, H. Iwasaki⁶⁶, J.M. Izen⁴⁰, V. Izzo^{102a}, B. Jackson¹²⁰, J.N. Jackson⁷³, P. Jackson¹⁴³, M.R. Jaekel²⁹, V. Jain⁶¹, K. Jakobs⁴⁸, S. Jakobsen³⁵, J. Jakubek¹²⁷, D.K. Jana¹¹¹, E. Jankowski¹⁵⁸, E. Jansen⁷⁷, A. Jantsch⁹⁹, M. Janus²⁰, G. Jarlskog⁷⁹, L. Jeanty⁵⁷, K. Jelen³⁷, I. Jen-La Plante³⁰, P. Jenni²⁹, A. Jeremie⁴, P. Jež³⁵, S. Jézéquel⁴, M.K. Iha^{19a}, H. Ji¹⁷², W. Ji⁸¹, J. Jia¹⁴⁸, Y. Jiang^{32b}, M. Jimenez Belenguer⁴¹, G. Jin^{32b}, S. Jin^{32a}, O. Jinnouchi¹⁵⁷, M.D. Joergensen³⁵, D. Joffe³⁹, L.G. Johansen¹³, M. Johansen^{146a,146b}, K.E. Johansson^{146a}, P. Johansson¹³⁹, S. Johnert⁴¹, K.A. Johns⁶, K. Jon-And^{146a,146b}, G. Jones⁸², R.W.L. Jones⁷¹, T.W. Jones⁷⁷, T.J. Jones⁷³, O. Jonsson²⁹, C. Joram²⁹, P.M. Jorge^{124a,b}, J. Joseph¹⁴, T. Jovin^{12b}, X. Ju¹³⁰, V. Juranek¹²⁵, P. Jussel⁶², A. Juste Rozas¹¹, V.V. Kabachenko¹²⁸, S. Kabana¹⁶, M. Kaci¹⁶⁷, A. Kaczmarska³⁸, P. Kadlecik³⁵, M. Kado¹¹⁵, H. Kagan¹⁰⁹, M. Kagan⁵⁷, S. Kaiser⁹⁹, E. Kajomovitz¹⁵², S. Kalinin¹⁷⁴, L.V. Kalinovskaya⁶⁵, S. Kama³⁹, N. Kanaya¹⁵⁵, M. Kanego²¹¹⁸, M. Karnevskiy⁴¹, K. Karr⁵, V. Kartvelishvili⁷¹, A. Kapliy³⁰, J. Kaplon²⁹, D. Kar⁴³, M. Karagoz¹¹⁸, M. Karnevskiy⁴¹, K. Karr⁵, V. Kartvelishvili⁷¹, A. Kapliy³⁰, J. Kaplon²⁹, D. Kar⁴³, M. Karagoz¹¹⁸, M. Karansot⁵⁵, G. Kawamura⁸¹, M.S. Kayl¹⁰⁵, V.A. Kazanin¹⁰⁷, M.Y. Kazanino⁶⁵, J.R. Keates⁸², R. Keeler¹⁶⁹, R. Kehoe³⁹, M. Keil⁵⁴, K. Kessoku ¹³⁵, C. Ketterer⁴⁶, J. Keung ¹³⁶, M. Khakzad ²⁶, F. Khalil-zada ¹⁶, H. Khandanyan ¹⁶⁶, A. Khanov ¹¹², D. Kharchenko ⁶⁵, A. Khodinov ⁹⁶, A.G. Kholodenko ¹²⁸, A. Khomich ^{58a}, T.J. Khoo ²⁷, G. Khoriauli ²⁰, A. Khoroshilov ¹⁷⁴, N. Khovanskiy ⁶⁵, V. Khovanskiy ⁹⁵, E. Khramov ⁶⁵, J. Khubua ^{51b}, H. Kim ⁷, M.S. Kim ², P.C. Kim ¹⁴³, S.H. Kim ¹⁶⁰, N. Kimura ¹⁷⁰, O. Kind ¹⁵, B.T. King ⁷³, M. King ⁶⁷, R.S.B. King ¹¹⁸, J. Kirk ¹²⁹, L.E. Kirsch ²², A.E. Kiryunin ⁹⁹, T. Kishimoto ⁶⁷, D. Kisielewska ³⁷, T. Kittelmann ¹²³, A.M. Kiver ¹²⁸, E. Kladiva ^{144b}, J. Klaiber-Lodewigs ⁴², M. Klein ⁷³, U. Klein ⁷³, K. Kleinknecht ⁸¹, M. Klemetti ⁸⁵, A. Klier ¹⁷¹, A. Klimentov ²⁴, R. Klingenberg ⁴², E.B. Klinkby ³⁵, T. Klioutchnikova ²⁹, P.F. Klok ¹⁰⁴, S. Klous ¹⁰⁵, E.-E. Kluge ^{58a}, T. Kluge ⁷³, P. Kluit ¹⁰⁵, S. Kluth ⁹⁹, T. Klioutchnikova²⁹, P.F. Klok¹⁰⁴, S. Klous¹⁰⁵, E.-E. Kluge^{58a}, T. Kluge⁷³, P. Kluit¹⁰⁵, S. Kluth⁹⁹, N.S. Knecht¹⁵⁸, E. Kneringer⁶², J. Knobloch²⁹, E.B.F.G. Knoops⁸³, A. Knue⁵⁴, B.R. Ko⁴⁴, T. Kobayashi¹⁵⁵, M. Kobel⁴³, M. Kocian¹⁴³, A. Kocnar¹¹³, P. Kodys¹²⁶, K. Köneke²⁹, A.C. König¹⁰⁴, S. Koenig⁸¹, L. Köpke⁸¹, F. Koetsveld¹⁰⁴, P. Koevesarki²⁰, T. Koffas²⁸, E. Koffeman¹⁰⁵, F. Kohn⁵⁴, Z. Kohout¹²⁷, T. Kohriki⁶⁶, T. Koi¹⁴³, T. Kokott²⁰, G.M. Kolachev¹⁰⁷, H. Kolanoski¹⁵, V. Kolesnikov⁶⁵, I. Koletsou^{89a}, J. Koll⁸⁸, D. Kollar²⁹, M. Kollefrath⁴⁸, S.D. Kolya⁸², A.A. Komar⁹⁴, Y. Komori¹⁵⁵, T. Kondo⁶⁶, T. Kono^{41, p}, A.I. Kononov⁴⁸, R. Konoplich^{108, q}, N. Konstantinidis⁷⁷, A. Kootz¹⁷⁴, S. Koperny³⁷, S.V. Kopikov¹²⁸, K. Korcyl³⁸, K. Kordas¹⁵⁴, V. Koreshev¹²⁸, A. Korn¹¹⁸, A. Korol¹⁰⁷, I. Korolkov¹¹, E.V. Korolkova¹³⁹, V.A. Korotkov¹²⁸, O. Kortner⁹⁹, S. Kortner⁹⁹, V.V. Kostyukhin²⁰, M.J. Kotamäki²⁹, S. Kotov⁹⁹,

V.M. Kotov ⁶⁵, A. Kotwal ⁴⁴, C. Kourkoumelis ⁸, V. Kouskoura ¹⁵⁴, A. Koutsman ¹⁰⁵, R. Kowalewski ¹⁶⁹, T.Z. Kowalski ³⁷, W. Kozanecki ¹³⁶, A.S. Kozhin ¹²⁸, V. Kral ¹²⁷, V.A. Kramarenko ⁹⁷, G. Kramberger ⁷⁴, M.W. Krasny ⁷⁸, A. Krasznahorkay ¹⁰⁸, J. Kraus ⁸⁸, A. Kreisel ¹⁵³, F. Krejci ¹²⁷, J. Kretzschmar ⁷³, N. Krieger ⁵⁴, P. Krieger ¹⁵⁸, K. Kroeninger ⁵⁴, H. Kroha ⁹⁹, J. Kroll ¹²⁰, J. Kroseberg ²⁰, J. Krstic ^{12a}, U. Kruchonak ⁶⁵, H. Krüger ²⁰, T. Kruker ¹⁶, Z.V. Krumshteyn ⁶⁵, A. Kruth ²⁰, T. Kubota ⁸⁶, S. Kuehn ⁴⁸, A. Kugel ^{58c}, T. Kuhl ⁴¹, D. Kuhn ⁶², V. Kukhtin ⁶⁵, Y. Kulchitsky ⁹⁰, S. Kuleshov ^{31b}, C. Kummer ⁹⁸, M. Kuna ⁷⁸, N. Kundu ¹¹⁸, J. Kunkle ¹²⁰, A. Kupco ¹²⁵, H. Kurashige ⁶⁷, M. Kurata ¹⁶⁰, Y.A. Kurochkin ⁹⁰, V. Kus ¹²⁵, W. Kuykendall ¹³⁸, M. Kuze ¹⁵⁷, P. Kuzhir ⁹¹, J. Kvita ²⁹, R. Kwee ¹⁵, A. La Rosa ¹⁷², L. La Rotonda ^{36a,36b}, L. Labarga ⁸⁰, J. Labbe ⁴, S. Lablak ^{135a}, C. Lacasta ¹⁶⁷, F. Lacava ^{132a,132b}, H. Lacker ¹⁵, D. Lacour ⁷⁸, V.R. Lacuesta ¹⁶⁷, E. Ladygin ⁶⁵, R. Lafaye ⁴, B. Laforge ⁷⁸, T. Lagouri ⁸⁰, S. Lai ⁴⁸, E. Laisne ⁵⁵, M. Lamanna ²⁹, C.L. Lampen ⁶, W. Lampl ⁶, E. Lancon ¹³⁶, U. Landgraf ⁴⁸, M.P.J. Landon ⁷⁵, H. Landsman ¹⁵², J.L. Lane ⁸², C. Lange ⁴¹, A.J. Lankford ¹⁶³, F. Lanni ²⁴, K. Lantzsch ²⁹, S. Laplace ⁷⁸, C. Lapoire ²⁰, J.F. Laporte ¹³⁶, T. Lari ^{89a}, A.V. Larionov ¹²⁸, A. Larner ¹¹⁸, C. Lasseur ²⁹, M. Lassnig ²⁹, P. Laurelli ⁴⁷, A. Lavorato ¹¹⁸, W. Lavrijsen ¹⁴, P. Laycock ⁷³, A.B. Lazarev ⁶⁵, O. Le Dortz ⁷⁸, E. Le Guirrice ⁸³, C. Le Maner ¹⁵⁸, E. Le Menedeu ¹³⁶, C. Lebel ⁹³, T. LeCompte ⁵, F. Ledroit-Guillon ⁵⁵, H. Lee ¹⁰⁵, J.S.H. Lee ¹⁵⁰, S.C. Lee ¹⁵¹, L. Lee ¹⁷⁵, M. Lefebvre ¹⁶⁹, M. Legendre ¹³⁶, A. Leger ⁴⁹, B.C. LeÇeyt ¹²⁰, Ja. Lapolite 118, W. Lavrijsen 4, P. Laycock 7, A.B. Lazarev⁶⁶, O. Le Dortz ⁷⁸, E. Le Guirriec⁸⁵,
 L. Levanto 118, W. Lavrijsen 4, P. Laycock 7, A.B. Lazarev⁶⁶, O. Le Dortz ⁷⁸, E. Le Guirriec⁸⁵,
 L. Lee Maner ¹⁵⁶, E. Le Menedeu ¹³⁶, C. Lebel ³³, T. LeCompte⁵, F. Ledroit-Guillon 5, H. Lee ¹⁰⁵,
 J.S.H. Lee ¹⁵⁰, S.C. Lee ¹⁵¹, L. Lee ¹⁷⁵, M. Lefebvre ¹⁶⁹, M. Legendre ¹³⁶, A. Leger⁴⁹, B.C. LeCeyt ¹²⁰,
 E. Legger⁴⁹, C. Leggett ¹⁴, M. Lehtmacher ²⁰, C. Lehmann Miotto ²⁹, X. Lei⁶, M.A.L. Leite ²³⁴, R. Leitner ¹²⁶,
 L. Levin ⁷⁴, B. Lenzi ²⁹, K. Leonhardt ⁴³, S. Leontsinis ⁹, C. Leroy⁹³, J.-R. Lessard ¹⁶⁹, J. Lesser ^{146a},
 C.G. Lester ²⁷, A. Leung Fook Cheong ¹⁷², J. Levin⁸⁰, A.M. Leyko ²⁰, M. Leyton ¹⁵, B. Le¹⁸³, H. Li¹⁷², S. Li^{22b,d},
 X. Li⁸⁷, Z. Liang ³⁹, Z. Liang ^{118, 7}, H. Liao ³³, B. Liberti ¹³³, P. Lichard ²⁹, M. Lichtnecker ⁹⁸, K. Lie ¹⁶⁵,
 W. Lieblg ¹³, R. Lifshitz ¹⁵², J.N. Lilley ¹⁷, C. Limbach ²⁰, A. Limosan ¹⁸⁶, M. Limper ⁶³, S.C. Lin ^{151,4},
 K. Lister ⁴⁰, A.M. Litke ¹³⁷, T. Loidenkoetter ²⁰, F.K. Loebinger ⁸², A. Loginov ¹⁷⁵, C.W. Loh ¹⁶⁸, T. Lohse ¹⁵,
 K. Lohwasser ⁴⁸, M. Lokajicek ¹²², J. Loken ¹⁸, Y. P. Lombardo ⁴, R.E. Longino ¹⁷⁵, C.W. Loh ¹⁶⁸, T. Lohse ¹⁵,
 K. Lohwasser ⁴⁸, M. Lokajicek ¹²², J. Loken ¹⁸, Y. P. Lombardo ⁴, R.E. Longino ¹⁷⁵, S. X. Lou⁴⁰,
 Lounis ¹¹⁵, K. Loureiro ¹⁶², J. Love²¹, P.A. Love²¹, A. Ludwig ⁴⁸, J. Ludwig ⁴⁸, F. Luehring ⁶¹,
 C. Luci ^{122,124,b}, M. Losda ¹⁶², P. Loscutoff ¹⁴, F. Lo Sterzo ^{132a,132b}, M.J. Losty ^{159a}, X. Lou⁴⁰,
 Lounis ¹¹⁵, K.E. Loureiro ¹⁶², J. Love²¹, P.A. Love²¹, A.J. Love¹⁴³, F. Ludwig ⁴⁸, F. Luehring ⁶¹,
 C. Luij^{212,124,b}, M. Losda ¹⁶², P. Loscutoff ¹⁴, F. Lowe¹⁴³, F. Lu^{32,4} P. Matricon ¹¹⁵, H. Matsumoto ¹⁵⁵, H. Matsunaga ¹⁵⁵, T. Matsushita ⁶⁷, C. Mattravers ^{118,c}, J.M. Maugain ²⁹, S.J. Maxfield ⁷³, D.A. Maximov ¹⁰⁷, E.N. May ⁵, A. Mayne ¹³⁹, R. Mazini ¹⁵¹, M. Mazur ²⁰, M. Mazzanti ^{89a}, E. Mazzoni ^{122a,122b}, S.P. Mc Kee ⁸⁷, A. McCarn ¹⁶⁵, R.L. McCarthy ¹⁴⁸, T.G. McCarthy ²⁸, N.A. McCubbin ¹²⁹, K.W. McFarlane ⁵⁶, J.A. Mcfayden ¹³⁹, H. McGlone ⁵³, G. Mchedlidze ^{51b}, R.A. McLaren ²⁹, T. Mclaughlan ¹⁷,

S.J. McMahon¹²⁹, R.A. McPherson^{169, k}, A. Meade⁸⁴, J. Mechnich¹⁰⁵, M. Mechtel¹⁷⁴, M. Medinnis⁴¹, S.J. McMahon ¹²⁵, R.A. McPherson ^{105,R}, A. Meade ⁶⁴, J. Mechnich ¹⁰⁵, M. Mechtel ¹⁷⁴, M. Medinnis ⁴¹, R. Meera-Lebbai ¹¹¹, T. Meguro ¹¹⁶, R. Mehdiyev ⁹³, S. Mehlhase ³⁵, A. Mehta ⁷³, K. Meier ^{58a}, J. Meinhardt ⁴⁸, B. Meirose ⁷⁹, C. Melachrinos ³⁰, B.R. Mellado Garcia ¹⁷², L. Mendoza Navas ¹⁶², Z. Meng ^{151,t}, A. Mengarelli ^{19a,19b}, S. Menke ⁹⁹, C. Menot ²⁹, E. Meoni ¹¹, K.M. Mercurio ⁵⁷, P. Mermod ¹¹⁸, L. Merola ^{102a,102b}, C. Meroni ^{89a}, F.S. Merritt ³⁰, A. Messina ²⁹, J. Metcalfe ¹⁰³, A.S. Mete ⁶⁴, S. Meuser ²⁰, C. Meyer ⁸¹, J.-P. Meyer ¹³⁶, J. Meyer ¹⁷³, J. Meyer ⁵⁴, T.C. Meyer ²⁹, W.T. Meyer ⁶⁴, J. Miao ^{32d}, S. Michal ²⁹, L. Micu ^{25a}, R.P. Middleton ¹²⁹, P. Miele ²⁹, S. Migas ⁷³, L. Mijović ⁴¹, G. Mikenberg ¹⁷¹, M. Mikestikova ¹²⁵, M. Mikuž ⁷⁴, D.W. Miller ³⁰, R.J. Miller ⁸⁸, W.J. Mills ¹⁶⁸, C. Mills ⁵⁷, A. Milov ¹⁷¹, D.A. Milstead ^{146a,146b}, D. Miltetein ¹⁷¹, A.A. Minzenko ¹²⁸, M. Miñano ¹⁶⁷, I.A. Minashvili ⁶⁵, A.L. Minov ¹⁰⁸, R. Mindur ³⁷ M. Mikuž⁷⁴, D.W. Miller³⁰, R.J. Miller⁸⁸, W.J. Mills¹⁶⁸, C. Mills⁵⁷, A. Milov¹⁷¹, D.A. Milstead^{146a,146b},
D. Milstein¹⁷¹, A.A. Minaenko¹²⁸, M. Miñano¹⁶⁷, I.A. Minashvili⁶⁵, A.I. Mincer¹⁰⁸, B. Mindur³⁷,
M. Mineev⁶⁵, Y. Ming¹³⁰, L.M. Mir¹¹, G. Mirabelli^{132a}, L. Miralles Verge¹¹, A. Misiejuk⁷⁶, J. Mitrevski¹³⁷,
G.Y. Mitrofanov¹²⁸, V.A. Mitsou¹⁶⁷, S. Mitsui⁶⁶, P.S. Miyagawa¹³⁹, K. Miyazaki⁶⁷, J.U. Mjörnmark⁷⁹,
T. Moa^{146a,146b}, P. Mockett¹³⁸, S. Moed⁵⁷, V. Moeller²⁷, K. Mönig⁴¹, N. Möser²⁰, S. Mohapatra¹⁴⁸,
W. Mohr⁴⁸, S. Mohrdieck-Möck⁹⁹, A.M. Moisseev^{128,*}, R. Moles-Valls¹⁶⁷, J. Molina-Perez²⁹, J. Monk⁷⁷,
E. Monnier⁸³, S. Montesano^{89a,89b}, F. Monticelli⁷⁰, S. Monzani^{19a,19b}, R.W. Moore², G.F. Moorhead⁸⁶,
C. Mora Herrera⁴⁹, A. Moraes⁵³, N. Morange¹³⁶, J. Morel⁵⁴, G. Morello^{36a,36b}, D. Moreno⁸¹,
M. Moreno Llácer¹⁶⁷, P. Morettini^{50a}, M. Morii⁵⁷, J. Morin⁷⁵, Y. Morita⁶⁶, A.K. Morley²⁹,
G. Mornacchi²⁹, S.V. Morozov⁹⁶, J.D. Morris⁷⁵, L. Morvaj¹⁰¹, H.G. Moser⁹⁹, M. Mosidze^{51b}, J. Moss¹⁰⁹,
R. Mount¹⁴³, E. Mountricha¹³⁶, S.V. Mouraviev⁹⁴, E.J.W. Moyse⁸⁴, M. Mudrinic^{12b}, F. Mueller^{58a},
J. Mueller¹²³, K. Mueller²⁰, T.A. Müller⁹⁸, D. Muenstermann²⁹, A. Muir¹⁶⁸, Y. Munwes¹⁵³,
W.J. Murray¹²⁹, I. Mussche¹⁰⁵, E. Musto^{102a,102b}, A.G. Myagkov¹²⁸, M. Myska¹²⁵, J. Nadal¹¹,
K. Nagai¹⁶⁰, K. Nagano⁶⁶, Y. Nagasaka⁶⁰, A.M. Nairz²⁹, Y. Nakahama²⁹, K. Nakamura¹⁵⁵, I. Nakano¹¹⁰,
G. Nanava²⁰, A. Napier¹⁶¹, M. Nash^{77,c}, N.R. Nation²¹, T. Nattermann²⁰, T. Naumann⁴¹, G. Navarro¹⁶²,
H.A. Neal⁸⁷, E. Nebot⁸⁰, P.Yu. Nechaeva⁹⁴, A. Negri^{119a,119b}, G. Negri²⁹, S. Nektarijevic⁴⁹, A. Nelson⁶⁴,
S. Nelson¹⁴³, T.K. Nelson¹⁴³, S. Nemecek¹²⁵, P. Nemethy¹⁰⁸, A.A. Nepomuceno^{23a}, M. Nessi^{29,u}, S. Nelson ¹⁴³, T.K. Nelson ¹⁴³, S. Nemecek ¹²⁵, P. Nemethy ¹⁰⁸, A.A. Nepomuceno ^{23a}, M. Nessi ^{29,u}, S.Y. Nesterov ¹²¹, M.S. Neubauer ¹⁶⁵, A. Neusiedl ⁸¹, R.M. Neves ¹⁰⁸, P. Nevski ²⁴, P.R. Newman ¹⁷, V. Nguyen Thi Hong ¹³⁶, R.B. Nickerson ¹¹⁸, R. Nicolaidou ¹³⁶, L. Nicolas ¹³⁹, B. Nicquevert ²⁹, F. Niedercorn ¹¹⁵, J. Nielsen ¹³⁷, T. Niinikoski ²⁹, N. Nikiforou ³⁴, A. Nikiforov ¹⁵, V. Nikolaenko ¹²⁸, K. Nikolaev ⁶⁵, I. Nikolic-Audit ⁷⁸, K. Nikolics ⁴⁹, K. Nikolopoulos ²⁴, H. Nilsen ⁴⁸, P. Nilsson ⁷, Y. Ninomiya ¹⁵⁵, A. Nisati ^{132a}, T. Nishiyama ⁶⁷, R. Nisius ⁹⁹, L. Nodulman ⁵, M. Nomachi ¹¹⁶, I. Nomidis ¹⁵⁴, M. Nordberg ²⁹, B. Nordkvist ^{146a,146b}, P.R. Norton ¹²⁹, J. Novakova ¹²⁶, M. Nozaki ⁶⁶, M. Nožička ⁴¹, L. Nozka ¹¹³, I.M. Nugent ^{159a}, A.-E. Nuncio-Quiroz ²⁰, G. Nunes Hanninger ⁸⁶, T. Nunnemann ⁹⁸, E. Nurse ⁷⁷, T. Nyman ²⁹, B.J. O'Brien ⁴⁵, S.W. O'Neale ^{17,*}, D.C. O'Neil ¹⁴², V. O'Shea ⁵³, F.G. Oakham ^{28,e}, H. Oberlack ⁹⁹, J. Ocariz ⁷⁸, A. Ochi ⁶⁷, S. Oda ¹⁵⁵, S. Odaka ⁶⁶, J. Odier ⁸³, H. Ogren ⁶¹, A. Oh ⁸², S.H. Oh ⁴⁴, C.C. Ohm ^{146a,146b}, T. Ohshima ¹⁰¹, H. Ohshita ¹⁴⁰, T.K. Ohska ⁶⁵, M. Oliveira ^{124a,i}, D. Oliveira Damazio ²⁴, E. Oliver Garcia ¹⁶⁷, D. Olivito ¹²⁰, A. Olszewski ³⁸, I. Olszowska ³⁸, C. Omachi ⁶⁷, A. Onofre ^{124a,v} E. Oliver Garcia ¹⁶⁷, D. Olivito ¹²⁰, A. Olszewski ³⁸, J. Olszowska ³⁸, C. Omachi ⁶⁷, A. Onofre ^{124a,v}, P.U.E. Onyisi ³⁰, C.J. Oram ^{159a}, M.J. Oreglia ³⁰, Y. Oren ¹⁵³, D. Orestano ^{134a,134b}, I. Orlov ¹⁰⁷, C. Oropeza Barrera ⁵³, R.S. Orr ¹⁵⁸, B. Osculati ^{50a,50b}, R. Ospanov ¹²⁰, C. Osuna ¹¹, G. Otero y Garzon ²⁶, J.P. Ottersbach ¹⁰⁵, M. Ouchrif ^{135d}, F. Ould-Saada ¹¹⁷, A. Ouraou ¹³⁶, Q. Ouyang ^{32a}, M. Owen ⁸², S. Owen¹³⁹, V.E. Ozcan^{18a}, N. Ozturk⁷, A. Pacheco Pages¹¹, C. Padilla Aranda¹¹, S. Pagan Griso¹⁴, E. Paganis¹³⁹, F. Paige²⁴, K. Pajchel¹¹⁷, G. Palacino^{159b}, C.P. Paleari⁶, S. Palestini²⁹, D. Pallin³³, A. Palma^{124a,b}, J.D. Palmer¹⁷, Y.B. Pan¹⁷², E. Panagiotopoulou⁹, B. Panes^{31a}, N. Panikashvili⁸⁷, S. Panitkin²⁴, D. Pantea^{25a}, M. Panuskova¹²⁵, V. Paolone¹²³, A. Papadelis^{146a}, Th.D. Papadopoulou⁹, A. Paramonov⁵, W. Park^{24,w}, M.A. Parker²⁷, F. Parodi^{50a,50b}, J.A. Parsons³⁴, U. Parzefall⁴⁸, E. Pasqualucci^{132a}, A. Passeri^{134a}, F. Pastore^{134a,134b}, Fr. Pastore⁷⁶, G. Pásztor^{49,x}, S. Pataraia¹⁷⁴, N. Patel¹⁵⁰, J.R. Pater⁸², S. Patricelli^{102a,102b}, T. Pauly²⁹, M. Pecsy^{144a}, M.I. Pedraza Morales¹⁷², S.V. Peleganchuk¹⁰⁷, H. Peng^{32b}, R. Pengo²⁹, A. Penson³⁴, J. Penwell⁶¹, M. Perantoni^{23a}, K. Perez^{34,y}, T. Perez Cavalcanti⁴¹, E. Perez Codina¹¹, M.T. Pérez García-Estañ¹⁶⁷, V. Perez Reale³⁴, L. Perini^{89a,89b}, H. Pernegger²⁹, R. Perrino^{72a}, P. Perrodo⁴, S. Persembe^{3a}, V.D. Peshekhonov⁶⁵, B.A. Petersen²⁹, J. Petersen²⁹, T.C. Petersen³⁵, E. Petit⁸³, A. Petridis¹⁵⁴, C. Petridou¹⁵⁴, E. Petrolo^{132a}, F. Petrucci^{134a,134b}, D. Petschull⁴¹, M. Petteni¹⁴², R. Pezoa^{31b}, A. Phan⁸⁶, A.W. Phillips²⁷, P.W. Phillips¹²⁹, G. Piacquadio²⁹, E. Piccaro⁷⁵, M. Piccinini^{19a,19b}, A. Pickford⁵³, S.M. Piec⁴¹, R. Piegaia²⁶, J.E. Pilcher³⁰, A.D. Pilkington⁸²,

J. Pina ^{124a,b}, M. Pinamonti ^{164a,164c}, A. Pinder ¹¹⁸, J.L. Pinfold ², J. Ping ^{32c}, B. Pinto ^{124a,b}, O. Pirotte ²⁹, C. Pizio ^{89a,89b}, R. Placakyte ⁴¹, M. Plamondon ¹⁶⁹, W.G. Plano ⁸², M.-A. Pleier ²⁴, A.V. Pleskach ¹²⁸, C. Pizio ^{89a,89b}, R. Placakyte⁴¹, M. Plamondon ¹⁶⁹, W.G. Plano ⁸², M.-A. Pleier ²⁴, A.V. Pleskach ¹²⁸, A. Poblaguev ²⁴, S. Poddar ^{58a}, F. Podlyski ³³, L. Poggioli ¹¹⁵, T. Poghosyan ²⁰, M. Pohl ⁴⁹, F. Polci ⁵⁵, G. Polesello ^{119a}, A. Policicchio ¹³⁸, A. Polini ^{19a}, J. Poll ⁷⁵, V. Polychronakos ²⁴, D.M. Pomarede ¹³⁶, D. Pomeroy ²², K. Pommès ²⁹, L. Pontecorvo ^{132a}, B.G. Pope ⁸⁸, G.A. Popeneciu ^{25a}, D.S. Popovic ^{12a}, A. Poppleton ²⁹, X. Portell Bueso ²⁹, R. Porter ¹⁶³, C. Posch ²¹, G.E. Pospelov ⁹⁹, S. Pospisil ¹²⁷, I.N. Potrap ⁹⁹, C.J. Potter ¹⁴⁹, C.T. Potter ¹¹⁴, G. Poulard ²⁹, J. Poveda ¹⁷², R. Prabhu ⁷⁷, P. Pralavorio ⁸³, S. Prasad ⁵⁷, R. Pravahan ⁷, S. Prell ⁶⁴, K. Pretzl ¹⁶, L. Pribyl ²⁹, D. Price ⁶¹, L.E. Price ⁵, M.J. Price ²⁹, P.M. Prichard ⁷³, D. Prieur ¹²³, M. Primavera ^{72a}, K. Prokofiev ¹⁰⁸, F. Prokoshin ^{31b}, S. Protopopescu ²⁴, J. Proudfoot ⁵, X. Prudent ⁴³, H. Przysiezniak ⁴, S. Psoroulas ²⁰, E. Ptacek ¹¹⁴, E. Pueschel ⁸⁴, J. Purdham ⁸⁷, M. Purohit ^{24,w}, P. Puzo ¹¹⁵, Y. Pylypchenko ¹¹⁷, J. Qian ⁸⁷, Z. Qian ⁸³, Z. Qin ⁴¹, A. Quadt ⁵⁴, D.R. Quarrie ¹⁴, W.B. Quayle ¹⁷², F. Quinonez ^{31a}, M. Raas ¹⁰⁴, V. Radescu ^{58b}, B. Radics ²⁰, T. Rador ^{18a}, F. Ragusa ^{89a,89b}, G. Rahal ¹⁷⁷, A.M. Rahimi ¹⁰⁹, D. Rahm ²⁴, S. Rajagopalan ²⁴, M. Rammensee ⁴⁸, M. Rammes ¹⁴¹, M. Ramstedt ^{146a,146b}, A.S. Randle-Conde ³⁹, K. Randrianarivony ²⁸, P.N. Ratoff ⁷¹, F. Rauscher ⁹⁸, E. Rauter ⁹⁹, M. Raymond ²⁹, A.L. Read ¹¹⁷, D.M. Rebuzzi ^{119a,119b}, A. Redelbach ¹⁷³, G. Redlinger ²⁴, R. Reece ¹²⁰, K. Reeves ⁴⁰, A. Reichold ¹⁰⁵, E. Reinherz-Aronis ¹⁵³, A. Reinsch ¹¹⁴, I. Reisinger ⁴², E. Rauter ⁹⁹, M. Raymond ²⁹, A.L. Read ¹¹⁷, D.M. Rebuzzi ^{119a,119b}, A. Redelbach ¹⁷³, G. Redlinger ²⁴, R. Reece ¹²⁰, K. Reeves ⁴⁰, A. Reichold ¹⁰⁵, E. Reinherz-Aronis ¹⁵³, A. Reinsch ¹¹⁴, I. Reisinger ⁴², D. Reljic ^{12a}, C. Rembser ²⁹, Z.L. Ren ¹⁵¹, A. Renaud ¹¹⁵, P. Renkel ³⁹, M. Rescigno ^{132a}, S. Resconi ^{89a}, B. Resende ¹³⁶, P. Reznicek ⁹⁸, R. Rezvani ¹⁵⁸, A. Richards ⁷⁷, R. Richter ⁹⁹, E. Richter-Was ^{4,z}, M. Ridel ⁷⁸, S. Rieke ⁸¹, M. Rijpstra ¹⁰⁵, M. Rijssenbeek ¹⁴⁸, A. Rimoldi ^{119a,119b}, L. Rinaldi ^{19a}, R.R. Rios ³⁹, I. Riu ¹¹, G. Rivoltella ^{89a,89b}, F. Rizatdinova ¹¹², E. Rizvi ⁷⁵, S.H. Robertson ^{85,k}, A. Robichaud-Veronneau ¹¹⁸, D. Robinson ²⁷, J.E.M. Robinson ⁷⁷, M. Robinson ¹¹⁴, A. Robson ⁵³, J.G. Rocha de Lima ¹⁰⁶, C. Roda ^{122a,122b}, D. Roda Dos Santos ²⁹, S. Rodier ⁸⁰, D. Rodriguez ¹⁶², A. Roe ⁵⁴, S. Roe ²⁹, O. Røhne ¹¹⁷, V. Rojo ¹, S. Rolli ¹⁶¹, A. Romaniouk ⁹⁶, V.M. Romanov ⁶⁵, G. Romeo ²⁶, L. Roos ⁷⁸, E. Ros ¹⁶⁷, S. Rosati ^{132a,132b}, K. Rosbach ⁴⁹, A. Rose ¹⁴⁹, M. Rose ⁷⁶, G.A. Rosenbaum ¹⁵⁸, E.I. Rosenberg ⁶⁴, P.L. Rossendahl ¹³, O. Rosenthal ¹⁴¹, L. Rosselet ⁴⁹, V. Rossetti ¹¹, E. Rossi ^{132a,132b}, L.P. Rossi ^{50a}, L. Rossi ^{89a,89b}, M. Rotaru ^{25a}, I. Roth ¹⁷¹, J. Rothberg ¹³⁸, D. Rousseau ¹¹⁵, C.R. Royon ¹³⁶, A. Rozanov ⁸³, Y. Rozen ¹⁵², X. Ruan ¹¹⁵, I. Rubinskiy ⁴¹, B. Ruckert ⁹⁸, N. Ruckstuhl ¹⁰⁵, V.I. Rud ⁹⁷, C. Rudolph ⁴³, G. Rudolph ⁶², F. Rühr ⁶, F. Ruggieri ^{134a,134b}, A. Ruiz-Martinez ⁶⁴, E. Rulikowska-Zarebska ³⁷, V. Rumiantsev ^{91,*}, L. Rumyantsev ⁶⁵, K. Runge ⁴⁸, O. Runolfsson ²⁰, Z. Rurikova ⁴⁸, N.A. Rusakovich ⁶⁵, D.R. Rust ⁶¹, I.P. Rutherfoord ⁶, I. Rubinskiy⁴¹, B. Ruckert⁹⁸, N. Ruckstuhl¹⁰⁵, V.I. Rud⁹⁷, C. Rudolph⁴⁵, G. Rudolph⁴⁴, F. Rühr⁴⁶, F. Ruggieri ^{134a,134b}, A. Ruiz-Martinez⁶⁴, E. Rulikowska-Zarebska³⁷, V. Rumiantsev^{91,*}, L. Rumyantsev⁶⁵, K. Runge⁴⁸, O. Runolfsson²⁰, Z. Rurikova⁴⁸, N.A. Rusakovich⁶⁵, D.R. Rust⁶¹, J.P. Rutherfoord⁶, C. Ruwiedel¹⁴, P. Ruzicka¹²⁵, Y.F. Ryabov¹²¹, V. Ryadovikov¹²⁸, P. Ryan⁸⁸, M. Rybar¹²⁶, G. Rybkin¹¹⁵, N.C. Ryder¹¹⁸, S. Rzaeva¹⁰, A.F. Saavedra¹⁵⁰, I. Sadeh¹⁵³, H.F.-W. Sadrozinski¹³⁷, R. Sadykov⁶⁵, F. Safai Tehrani^{132a,132b}, H. Sakamoto¹⁵⁵, G. Salamanna⁷⁵, A. Salamon^{133a}, M. Saleem¹¹¹, D. Salihagic⁹⁹, A. Salnikov¹⁴³, J. Salt¹⁶⁷, B.M. Salvachua Ferrando⁵, D. Salvatore^{36a,36b}, F. Salvatore¹⁴⁹, A. Salvucci¹⁰⁴, A. Salzburger²⁹, D. Sampsonidis¹⁵⁴, B.H. Samset¹¹⁷, A. Sanchez^{102a,102b}, H. Sandakr¹³, H.G. Sander⁸¹, M.P. Sanders⁹⁸, M. Sandhoff¹⁷⁴, T. Sandoval²⁷, C. Sandoval¹⁶², R. Sandstroem⁹⁹, S. Sandvoss¹⁷⁴, D.P.C. Sankey¹²⁹, A. Sansoni⁴⁷, C. Santamarina Rios⁸⁵, C. Santoni³³, R. Santonico^{133a,133b}, H. Santos^{124a}, J.G. Saraiva^{124a,b}, T. Sarangi¹⁷², E. Sarkisyan-Grinbaum⁷, F. Sarri^{122a,122b}, G. Sartisohn¹⁷⁴, O. Sasaki⁶⁶, T. Sasaki⁶⁶, N. Sasao⁶⁸, I. Satsounkevitch⁹⁰, G. Sauvage⁴, E. Sauvat⁴, J.B. Sauvan¹¹⁵, P. Savard^{158,e}, V. Savinov¹²³, D.O. Savu²⁹, P. Sava⁹, L. Sawyer^{24,m}, D.H. Saxon⁵³, L.P. Says³³, C. Sbarra^{19a,19b}, A. Sbrizzi^{19a,19b}, O. Scallon³³, D.A. Scannicchio¹⁶³, J. Schaarschmidt¹¹⁵, P. Schacht⁹⁹, U. Schäfer⁸¹, S. Schaepe²⁰, S. Schaetzel^{58b}, A.C. Schaffer¹¹⁵, D. Schaile⁹⁸, R.D. Schamberger¹⁴⁸, A.G. Schamov¹⁰⁷, V. Schaff^{58a}, M. Schiopa^{36a,36b}, S. Schlenker²⁹, J.L. Schleret⁵, S. Schult⁴⁸, K. Schmieden²⁰, C. Schmitt⁸¹, S. Schnitt⁵⁸, M. Schnitz²⁰, A. Schöning^{58b}, M. Schott²⁹, D. Schouten^{159a}, J. Schovancova¹²⁵, M. Schnaft⁵⁵, J.W. Schumacher²⁰, M. Schumacher⁴⁸, B.A. Schumm¹³⁷, Ph. Schuue¹³⁶, C. Schuret³⁵

81

P. Sherwood ⁷⁷, A. Shibata ¹⁰⁸, H. Shichi ¹⁰¹, S. Shimizu ²⁹, M. Shimojima ¹⁰⁰, T. Shin ⁵⁶, A. Shmeleva ⁹⁴, M.J. Shochet ³⁰, D. Short ¹¹⁸, M.A. Shupe ⁶, P. Sicho ¹²⁵, A. Sidoti ^{132a,132b}, A. Siebel ¹⁷⁴, F. Siegert ⁴⁸, J. Siegrist ¹⁴, Dj. Sijacki ^{12a}, O. Silbert ¹⁷¹, J. Silva ^{124a,b}, Y. Silver ¹⁵³, D. Silverstein ¹⁴³, S.B. Silverstein ^{146a}, V. Simak ¹²⁷, O. Simard ¹³⁶, Lj. Simic ^{12a}, S. Simion ¹¹⁵, B. Simmons ⁷⁷, M. Simonyan ³⁵, P. Sinervo ¹⁵⁸, N.B. Sinev ¹¹⁴, V. Sipica ¹⁴¹, G. Siragusa ¹⁷³, A. Sircar ²⁴, A.N. Sisakyan ⁶⁵, S.Yu. Sivoklokov ⁹⁷, J. Sjölin ^{146a,146b}, T.B. Sjursen ¹³, L.A. Skinnari ¹⁴, K. Skovpen ¹⁰⁷, P. Skubic ¹¹¹, N. Skvorodnev ²², M. Gierer ¹⁷, T. Gleger ¹⁶, T.B. Siner ¹⁶, T.B. J. Sjölin ^{146a, 146b}, T.B. Sjursen ¹³, L.A. Skinnari ¹⁴, K. Skovpen ¹⁰⁷, P. Skubic ¹¹¹, N. Skvorodnev ²², M. Slater ¹⁷, T. Slavicek ¹²⁷, K. Sliwa ¹⁶¹, T.J. Sloan ⁷¹, J. Sloper ²⁹, V. Smakhtin ¹⁷¹, S.Yu. Smirnov ⁹⁶, L.N. Smirnova ⁹⁷, O. Smirnova ⁷⁹, B.C. Smith ⁵⁷, D. Smith ¹⁴³, K.M. Smith ⁵³, M. Smizanska ⁷¹, K. Smolek ¹²⁷, A.A. Snesarev ⁹⁴, S.W. Snow ⁸², J. Snow ¹¹¹, J. Snuverink ¹⁰⁵, S. Snyder ²⁴, M. Soares ^{124a}, R. Sobie ^{169,k}, J. Sodomka ¹²⁷, A. Soffer ¹⁵³, C.A. Solans ¹⁶⁷, M. Solar ¹²⁷, J. Solc ¹²⁷, E. Soldatov ⁹⁶, U. Soldevila ¹⁶⁷, E. Solfaroli Camillocci ^{132a, 132b}, A.A. Solodkov ¹²⁸, O.V. Solovyanov ¹²⁸, J. Sondericker ²⁴, N. Soni², V. Sopko ¹²⁷, B. Sopko ¹²⁷, M. Sorbi ^{89a, 89b}, M. Sosebee ⁷, A. Soukharev ¹⁰⁷, S. Spagnolo ^{72a, 72b}, F. Spanò ⁷⁶, R. Spighi ^{19a}, G. Spigo ²⁹, F. Spila ^{132a, 132b}, E. Spiriti ^{134a}, R. Spiwoks ²⁹, M. Spousta ¹²⁶, T. Spreitzer ¹⁵⁸, B. Spurlock ⁷, R.D. St. Denis ⁵³, T. Stahl ¹⁴¹, J. Stahlman ¹²⁰, R. Stamen ^{58a}, E. Stanecka ²⁹, R.W. Stanek ⁵, C. Stanescu ^{134a}, S. Stapnes ¹¹⁷, E.A. Starchenko ¹²⁸, J. Stark ⁵⁵, P. Staroba ¹²⁵, P. Starovoitov ⁹¹ A. Staude ⁹⁸ P. Stavina ^{144a} G. Stavropoulos ¹⁴ G. Steele ⁵³ P. Steinbach ⁴³ P. Starovoitov⁹¹, A. Staude⁹⁸, P. Stavina^{144a}, G. Stavropoulos¹⁴, G. Steele⁵³, P. Steinbach⁴³, P. Steinberg²⁴, I. Stekl¹²⁷, B. Stelzer¹⁴², H.J. Stelzer⁸⁸, O. Stelzer-Chilton^{159a}, H. Stenzel⁵², K. Stevenson ⁷⁵, G.A. Stewart ²⁹, J.A. Stillings ²⁰, T. Stockmanns ²⁰, M.C. Stockton ²⁹, K. Stoerig ⁴⁸, G. Stoicea ^{25a}, S. Stonjek ⁹⁹, P. Strachota ¹²⁶, A.R. Stradling ⁷, A. Straessner ⁴³, J. Strandberg ¹⁴⁷, S. Strandberg ^{146a, 146b}, A. Strandlie ¹¹⁷, M. Strang ¹⁰⁹, E. Strauss ¹⁴³, M. Strauss ¹¹¹, P. Strizenec ^{144b}, R. Ströhmer ¹⁷³, D.M. Strom ¹¹⁴, J.A. Strong ^{76,*}, R. Stroynowski ³⁹, J. Strube ¹²⁹, B. Stugu ¹³, I. Stumer ^{24,*}, J. Stupak ¹⁴⁸, P. Sturm ¹⁷⁴, D.A. Soh ^{151,r}, D. Su ¹⁴³, HS. Subramania ², A. Succurro ¹¹, Y. Sugaya ¹¹⁶, T. Sugimoto ¹⁰¹, C. Suhr ¹⁰⁶, K. Suita ⁶⁷, M. Suk ¹²⁶, V.V. Sulin ⁹⁴, S. Sultansoy ^{3d}, T. Sumida ²⁹, X. Sun ⁵⁵, J.E. Sundermann ⁴⁸, K. Suruliz ¹³⁹, S. Sushkov ¹¹, G. Susinno ^{36a,36b}, M.R. Sutton ¹⁴⁹, Y. Suzuki ⁶⁶, Y. Suzuki ⁶⁷, M. Svatos ¹²⁵, Yu.M. Sviridov ¹²⁸, S. Swedish ¹⁶⁸, I. Sykora ^{144a}, T. Sykora ¹²⁶, B. Szeless ²⁹, Y. Suzuki ⁶⁷, M. Svatos ¹²⁵, Yu.M. Sviridov ¹²⁸, S. Swedish ¹⁶⁸, I. Sykora ^{144a}, T. Sykora ¹²⁶, B. Szeless ²⁹, J. Sánchez ¹⁶⁷, D. Ta ¹⁰⁵, K. Tackmann ⁴¹, A. Taffard ¹⁶³, R. Tafirout ^{159a}, N. Taiblum ¹⁵³, Y. Takahashi ¹⁰¹, H. Takai ²⁴, R. Takashima ⁶⁹, H. Takeda ⁶⁷, T. Takeshita ¹⁴⁰, M. Talby ⁸³, A. Talyshev ¹⁰⁷, M.C. Tamsett ²⁴, J. Tanaka ¹⁵⁵, R. Tanaka ¹¹⁵, S. Tanaka ¹³¹, S. Tanaka ⁶⁶, Y. Tanaka ¹⁰⁰, K. Tani ⁶⁷, N. Tannoury ⁸³, G.P. Tappern ²⁹, S. Tapprogge ⁸¹, D. Tardif ¹⁵⁸, S. Tarem ¹⁵², F. Tarrade ²⁸, G.F. Tartarelli ^{89a}, P. Tas ¹²⁶, M. Tasevsky ¹²⁵, E. Tassi ^{36a, 36b}, M. Tatarkhanov ¹⁴, Y. Tayalati ^{135d}, C. Taylor ⁷⁷, F.E. Taylor ⁹², G.N. Taylor ⁸⁶, W. Taylor ^{159b}, M. Teinturier ¹¹⁵, M. Teixeira Dias Castanheira ⁷⁵, P. Teixeira-Dias ⁷⁶, K.K. Temming ⁴⁸, H. Ten Kate ²⁹, P.K. Teng ¹⁵¹, S. Terada ⁶⁶, K. Terashi ¹⁵⁵, J. Terron ⁸⁰, M. Terwort ^{41, p}, M. Testa ⁴⁷, R.J. Teuscher ^{158, k}, J. Thadome ¹⁷⁴, J. Therhaag ²⁰, T. Theveneaux-Pelzer ⁷⁸, M. Thioye ¹⁷⁵, S. Thoma ⁴⁸, J.P. Thomas ¹⁷, E.N. Thompson ⁸⁴, P.D. Thompson ¹⁷, P.D. Thompson ¹⁵⁸, A.S. Thompson ⁵³, E. Thomson ¹²⁰, M. Thomson ²⁷, R.P. Thun ⁸⁷, F. Tian ³⁴, T. Tic ¹²⁵, V.O. Tikhomirov ⁹⁴, Y.A. Tikhonov ¹⁰⁷, C.J.W.P. Timmermans ¹⁰⁴, P. Tipton ¹⁷⁵, F.J. Tique Aires Viegas ²⁹, S. Tisserant ⁸³, J. Tobias ⁴⁸, B. Toczek ³⁷, T. Todorov ⁴, S. Todorova-Nova ¹⁶¹, B. Toggerson ¹⁶³, J. Tojo ⁶⁶, S. Tokár ^{144a}, K. Tokunaga ⁶⁷, K. Tokushuku ⁶⁶, K. Tollefson ⁸⁸, M. Tomoto ¹⁰¹, L. Tompkins ¹⁴, K. Toms ¹⁰³, G. Tong ^{32a}, A. Tonoyan ¹³, C. Topfel ¹⁶, N.D. Topilin ⁶⁵, I. Torchiani ²⁹, E. Torrence ¹¹⁴, H. Torres ⁷⁸, E. Torró Pastor ¹⁶⁷, J. Toth ^{83, x}, F. Touchard ⁸³, D.R. Tovey ¹³⁹, D. Traynor ⁷⁵, T. Trefzger ¹⁷³, L. Tremblet ²⁹, A. Tricoli ²⁹, I.M. Trigger ^{159a}, S. Trincaz-Duvoid ⁷⁸, T.N. Trinh ⁷⁸, M.F. Tripiana ⁷⁰, W. Trischuk ¹⁵⁸, A. Trivedi ^{24,w}, B. Trocmé ⁵⁵ F. Touchard ⁶³, D.R. Tovey ¹⁵⁵, D. Traynor ⁷⁵, I. Tretzger ¹⁷⁵, L. Tremblet ²⁵, A. Tricoli ²⁵, I.M. Trigger ¹⁵⁵,
S. Trincaz-Duvoid ⁷⁸, T.N. Trinh ⁷⁸, M.F. Tripiana ⁷⁰, W. Trischuk ¹⁵⁸, A. Trivedi ^{24,w}, B. Trocmé ⁵⁵,
C. Troncon ^{89a}, M. Trottier-McDonald ¹⁴², A. Trzupek ³⁸, C. Tsarouchas ²⁹, J.C.-L. Tseng ¹¹⁸, M. Tsiakiris ¹⁰⁵,
P.V. Tsiareshka ⁹⁰, D. Tsionou ⁴, G. Tsipolitis ⁹, V. Tsiskaridze ⁴⁸, E.G. Tskhadadze ^{51a}, I.I. Tsukerman ⁹⁵,
V. Tsulaia ¹⁴, J.-W. Tsung ²⁰, S. Tsuno ⁶⁶, D. Tsybychev ¹⁴⁸, A. Tua ¹³⁹, J.M. Tuggle ³⁰, M. Turala ³⁸,
D. Turecek ¹²⁷, I. Turk Cakir ^{3e}, E. Turlay ¹⁰⁵, R. Turra ^{89a,89b}, P.M. Tuts ³⁴, A. Tykhonov ⁷⁴,
M. Tylmad ^{146a,146b}, M. Tyndel ¹²⁹, H. Tyrvainen ²⁹, G. Tzanakos ⁸, K. Uchida ²⁰, I. Ueda ¹⁵⁵, R. Ueno ²⁸,
M. Ugland ¹³, M. Uhlenbrock ²⁰, M. Uhrmacher ⁵⁴, F. Ukegawa ¹⁶⁰, G. Unal ²⁹, D.G. Underwood ⁵, A. Undrus²⁴, G. Unel¹⁶³, Y. Unno⁶⁶, D. Urbaniec³⁴, E. Urkovsky¹⁵³, P. Urrejola^{31a}, G. Usai⁷, M. Uslenghi^{119a,119b}, L. Vacavant⁸³, V. Vacek¹²⁷, B. Vachon⁸⁵, S. Vahsen¹⁴, J. Valenta¹²⁵, P. Valente^{132a}, S. Valentinetti^{19a,19b}, S. Valkar¹²⁶, E. Valladolid Gallego¹⁶⁷, S. Vallecorsa¹⁵², J.A. Valls Ferrer¹⁶⁷, H. van der Graaf¹⁰⁵, E. van der Kraaij¹⁰⁵, R. Van Der Leeuw¹⁰⁵, E. van der Poel¹⁰⁵, D. van der Ster²⁹, B. Van Eijk¹⁰⁵, N. van Eldik⁸⁴, P. van Gemmeren⁵, Z. van Kesteren¹⁰⁵, I. van Vulpen¹⁰⁵, W. Vandelli²⁹,

G. Vandoni²⁹, A. Vaniachine⁵, P. Vankov⁴¹, F. Vannucci⁷⁸, F. Varela Rodriguez²⁹, R. Vari^{132a}, D. Varouchas¹⁴, A. Vartapetian⁷, K.E. Varvell¹⁵⁰, V.I. Vassilakopoulos⁵⁶, F. Vazeille³³, G. Vegni^{89a,89b}, D. Varouchas¹⁴, A. Vartapetian⁷, K.E. Varvell¹⁵⁰, V.I. Vassilakopoulos⁵⁶, F. Vazeille³³, G. Vegni^{89a,89b}, J.J. Veillet¹¹⁵, C. Vellidis⁸, F. Veloso^{124a}, R. Veness²⁹, S. Veneziano^{132a}, A. Ventura^{72a,72b}, D. Ventura¹³⁸, M. Venturi⁴⁸, N. Venturi¹⁶, V. Vercesi^{119a}, M. Verducci¹³⁸, W. Verkerke¹⁰⁵, J.C. Vermeulen¹⁰⁵, A. Vest⁴³, M.C. Vetterli^{142,e}, I. Vichou¹⁶⁵, T. Vickey^{145b,aa}, O.E. Vickey Boeriu^{145b}, G.H.A. Viehhauser¹¹⁸, S. Viel¹⁶⁸, M. Villa^{19a,19b}, M. Villaplana Perez¹⁶⁷, E. Vilucchi⁴⁷, M.G. Vincter²⁸, E. Vinek²⁹, V.B. Vinogradov⁶⁵, M. Virchaux^{136,*}, J. Virzi¹⁴, O. Vitells¹⁷¹, M. Viti⁴¹, I. Vivarelli⁴⁸, F. Vives Vaque², S. Vlachos⁹, M. Vlasak¹²⁷, N. Vlasov²⁰, A. Vogel²⁰, P. Vokac¹²⁷, G. Volpi⁴⁷, M. Volpi⁸⁶, G. Volpini^{89a}, H. von der Schmitt⁹⁹, J. von Loeben⁹⁹, H. von Radziewski⁴⁸, E. von Toerne²⁰, V. Vorobel¹²⁶, A.P. Vorobiev¹²⁸, V. Vorwerk¹¹, M. Vos¹⁶⁷, R. Voss²⁹, T.T. Voss¹⁷⁴, J.H. Vossebeld⁷³, N. Vranjes^{12a}, M. Vranjes Milosavljevic¹⁰⁵, V. Vrba¹²⁵, M. Vreeswijk¹⁰⁵, T. Vu Anh⁸¹, R. Vuillermet²⁹, I. Vukotic¹¹⁵, W. Wagner¹⁷⁴, P. Wagner¹²⁰, H. Wahlen¹⁷⁴, J. Wakabayashi¹⁰¹, J. Walbersloh⁴², S. Walch⁸⁷, J. Walder⁷¹, R. Walker⁹⁸, W. Walkowiak¹⁴¹, R. Wall¹⁷⁵, P. Waller⁷³, C. Wang⁴⁴, H. Wang¹⁷², H. Wang^{32b,ab}, J. Wang¹⁵¹, J. Wang^{32d}, J.C. Wang¹³⁸, R. Wang¹⁰³, S.M. Wang¹⁵¹, A. Warburton⁸⁵, C.P. Ward²⁷, M. Warsinsky⁴⁸, P.M. Watkins¹⁷, A.T. Watson¹⁷, M.F. Watson¹⁷, G. Watts¹³⁸, S. Watts⁸², H. Wang ^{526,40}, J. Wang ¹⁵¹, J. Wang ⁵²⁴, J.C. Wang ¹⁵⁶, R. Wang ¹⁵⁵, S.M. Wang ¹⁵¹, A. Warburton ⁵⁵, C.P. Ward ²⁷, M. Warsinsky ⁴⁸, P.M. Watkins ¹⁷, A.T. Watson ¹⁷, M.F. Watson ¹⁷, G. Watts ¹³⁸, S. Watts ⁸², A.T. Waugh ¹⁵⁰, B.M. Waugh ⁷⁷, J. Weber ⁴², M. Weber ¹²⁹, M.S. Weber ¹⁶, P. Weber ⁵⁴, A.R. Weidberg ¹¹⁸, P. Weigell ⁹⁹, J. Weingarten ⁵⁴, C. Weiser ⁴⁸, H. Wellenstein ²², P.S. Wells ²⁹, M. Wen ⁴⁷, T. Wenaus ²⁴, S. Wendler ¹²³, Z. Weng ^{151,r}, T. Wengler ²⁹, S. Wenig ²⁹, N. Wermes ²⁰, M. Werner ⁴⁸, P. Werner ²⁹, M. Werth ¹⁶³, M. Wessels ^{58a}, C. Weydert ⁵⁵, K. Whalen ²⁸, S.J. Wheeler-Ellis ¹⁶³, S.P. Whitaker ²¹, A. White ⁷, M.J. White ⁸⁶, S.R. Whitehead ¹¹⁸, D. Whiteson ¹⁶³, D. Whittington ⁶¹, F. Wicek ¹¹⁵, D. Wicke ¹⁷⁴, F.J. Wickens ¹²⁹, W. Wiedenmann ¹⁷², M. Wielers ¹²⁹, P. Wienemann ²⁰, C. Wiglesworth ⁷⁵, L.A.M. Wiik⁴⁸, P.A. Wijeratne ⁷⁷, A. Wildauer ¹⁶⁷, M.A. Wildt ^{41,p}, I. Wilhelm ¹²⁶, H.G. Wilkens ²⁹, J.Z. Will⁹⁸, E. Williams³⁴, H.H. Williams¹²⁰, W. Willis³⁴, S. Willocq⁸⁴, J.A. Wilson¹⁷, M.G. Wilson¹⁴³, A. Wilson⁸⁷, I. Wingerter-Seez⁴, S. Winkelmann⁴⁸, F. Winklmeier²⁹, M. Wittgen¹⁴³, M.W. Wolter³⁸, A. Wilson ⁸⁷, I. Wingerter-Seez⁴, S. Winkelmann⁴⁸, F. Winklmeier²⁹, M. Wittgen¹⁴³, M.W. Wolter³⁸, H. Wolters^{124a,i}, W.C. Wong⁴⁰, G. Wooden⁸⁷, B.K. Wosiek³⁸, J. Wotschack²⁹, M.J. Woudstra⁸⁴, K. Wraight⁵³, C. Wright⁵³, B. Wrona⁷³, S.L. Wu¹⁷², X. Wu⁴⁹, Y. Wu^{32b,ac}, E. Wulf³⁴, R. Wunstorf⁴², B.M. Wynne⁴⁵, L. Xaplanteris⁹, S. Xella³⁵, S. Xie⁴⁸, Y. Xie^{32a}, C. Xu^{32b,ad}, D. Xu¹³⁹, G. Xu^{32a}, B. Yabsley¹⁵⁰, S. Yacoob^{145b}, M. Yamada⁶⁶, H. Yamaguchi¹⁵⁵, A. Yamamoto⁶⁶, K. Yamamoto⁶⁴, S. Yamamoto¹⁵⁵, T. Yamamura¹⁵⁵, T. Yamanaka¹⁵⁵, J. Yamaoka⁴⁴, T. Yamazaki¹⁵⁵, Y. Yamazaki⁶⁷, Z. Yan²¹, H. Yang⁸⁷, U.K. Yang⁸², Y. Yang⁶¹, Y. Yang^{32a}, Z. Yang^{146a,146b}, S. Yanush⁹¹, Y. Yao¹⁴, Y. Yasu⁶⁶, G.V. Ybeles Smit¹³⁰, J. Ye³⁹, S. Ye²⁴, M. Yilmaz^{3c}, R. Yoosoofmiya¹²³, K. Yorita¹⁷⁰, R. Yoshida⁵, C. Young¹⁴³, S. Youssef²¹, D. Yu²⁴, J. Yu⁷, J. Yu^{32c,ad}, L. Yuan^{32a,ae}, A. Yurkewicz¹⁴⁸, V.G. Zaets¹²⁸, R. Zaidan⁶³, A.M. Zaitsev¹²⁸, Z. Zajacova²⁹, Yo.K. Zalite¹²¹, L. Zanello^{132a,132b}, P. Zarzhitsky³⁹, A. Zaytsev¹⁰⁷, C. Zeitnitz¹⁷⁴, M. Zeller¹⁷⁵, M. Zeman¹²⁵, A. Zemla³⁸, C. Zendler²⁰, O. Zenin¹²⁸, T. Ženiš^{144a}, Z. Zenonos^{122a,122b}, S. Zenz¹⁴, D. Zerwas¹¹⁵, G. Zevi della Porta⁵⁷, Z. Zhan^{32d}, D. Zhang^{32b,ab}, H. Zhang⁸⁸, J. Zhang⁵, X. Zhang^{32d}, Z. Zhang¹¹⁵, J. Zhao¹⁰⁸, T. Zhao¹³⁸, Z. Zhao^{32b}, D. Zhang ^{32b,ab}, H. Zhang ⁸⁸, J. Zhang ⁵, X. Zhang ^{32d}, Z. Zhang ¹¹⁵, L. Zhao ¹⁰⁸, T. Zhao ¹³⁸, Z. Zhao ^{32b}, A. Zhemchugov ⁶⁵, S. Zheng ^{32a}, J. Zhong ^{151,af}, B. Zhou ⁸⁷, N. Zhou ¹⁶³, Y. Zhou ¹⁵¹, C.G. Zhu ^{32d}, H. Zhu ⁴¹, J. Zhu ⁸⁷, Y. Zhu ¹⁷², X. Zhuang ⁹⁸, V. Zhuravlov ⁹⁹, D. Zieminska ⁶¹, R. Zimmermann ²⁰, S. Zimmermann ²⁰, S. Zimmermann ⁴⁸, M. Ziolkowski ¹⁴¹, R. Zitoun ⁴, L. Živković ³⁴, V.V. Zmouchko ^{128,*}, G. Zobernig ¹⁷², A. Zoccoli ^{19a,19b}, Y. Zolnierowski ⁴, A. Zsenei ²⁹, M. zur Nedden ¹⁵, V. Zutshi ¹⁰⁶, L. Zwalinski ²⁹

- ¹ University at Albany, Albany, NY, United States
- ² Department of Physics, University of Alberta, Edmonton, AB, Canada
- ³ (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupinar University, Kutahya; (c) Department of Physics, Gazi University, Ankara;
- ^(d) Division of Physics, TOBB University of Economics and Technology, Ankara; ^(e) Turkish Atomic Energy Authority, Ankara, Turkey
- ⁴ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
- ⁵ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
- ⁶ Department of Physics, University of Arizona, Tucson, AZ, United States
- ⁷ Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
- ⁸ Physics Department, University of Athens, Athens, Greece
- ⁹ Physics Department, National Technical University of Athens, Zografou, Greece
- ¹⁰ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ¹¹ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
- ¹² ^(a) Institute of Physics, University of Belgrade, Belgrade; ^(b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- ¹³ Department for Physics and Technology, University of Bergen, Bergen, Norway
- ¹⁴ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
- ¹⁵ Department of Physics, Humboldt University, Berlin, Germany
- ¹⁶ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
- ¹⁷ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

ATLAS Collaboration / Physics Letters B 710 (2012) 67-85

18 (d) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (C) Department of Physics Engineering, Gaziantep University, Gaziantep; ^(d) Department of Physics, Istanbul Technical University, Istanbul, Turkey ¹⁹ ^(a) INFN Sezione di Bologna; ^(b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy ²⁰ Physikalisches Institut, University of Bonn, Bonn, Germany ²¹ Department of Physics, Boston University, Boston, MA, United States ²² Department of Physics, Brandeis University, Waltham, MA, United States 23 (a) Universidade Federal do Rio De Janeiro COPPE/EE/JF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei: ^(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil ²⁴ Physics Department, Brookhaven National Laboratory, Upton, NY, United States 25 @National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania ²⁶ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina ²⁷ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom ²⁸ Department of Physics, Carleton University, Ottawa, ON, Canada ²⁹ CERN, Geneva, Switzerland ³⁰ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States ³¹ (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
 ³² (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Departament of Modern Physics, University of Science and Technology of China, Anhui;
 ^(c) Department of Physics, Nanjing University, Jiangsu; ^(d) High Energy Physics Group, Shandong University, Shandong, China ³³ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France ³⁴ Nevis Laboratory, Columbia University, Irvington, NY, United States ³⁵ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark ³⁶ ^(a) INFN Gruppo Collegato di Cosenza; ^(b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy ³⁷ Faculty of Physics and Applied Computer Science, AGH – University of Science and Technology, Krakow, Poland ³⁸ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland ³⁹ Physics Department, Southern Methodist University, Dallas, TX, United States ⁴⁰ Physics Department, University of Texas at Dallas, Richardson, TX, United States ⁴¹ DESY, Hamburg and Zeuthen, Germany ⁴² Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund. Germanv ⁴³ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany ⁴⁴ Department of Physics, Duke University, Durham, NC, United States ⁴⁵ SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom ⁴⁶ Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria ⁴⁷ INFN. Laboratori Nazionali di Frascati, Frascati, Italy ⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany ⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland ⁵⁰ ^(a) INFN Sezione di Genova; ^(b) Dipartimento di Fisica, Università di Genova, Genova, Italy ⁵¹ (a) E. Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia ⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany ⁵³ SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom ⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany 55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France ⁵⁶ Department of Physics, Hampton University, Hampton, VA, United States ⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States 58 (@ Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ^(c) ZITI Institut für Technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany ⁵⁹ Faculty of Science, Hiroshima University, Hiroshima, Japan ⁶⁰ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan ⁶¹ Department of Physics, Indiana University, Bloomington, IN, United States ⁶² Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria 63 University of Iowa, Iowa City, IA, United States ⁶⁴ Department of Physics and Astronomy, Iowa State University, Ames, IA, United States ⁶⁵ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia ⁶⁶ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan ⁶⁷ Graduate School of Science, Kobe University, Kobe, Japan 68 Faculty of Science, Kyoto University, Kyoto, Japan ⁶⁹ Kyoto University of Education, Kyoto, Japan ⁷⁰ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina ⁷¹ Physics Department, Lancaster University, Lancaster, United Kingdom ⁷² ^(a) INFN Sezione di Lecce; ^(b) Dipartimento di Fisica, Università del Salento, Lecce, Italy 73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom ⁷⁴ Department of Physics, Jožef Stefan Institute and University of Ljubliana, Ljubliana, Slovenia ⁷⁵ Department of Physics, Queen Mary University of London, London, United Kingdom ⁷⁶ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom ⁷⁷ Department of Physics and Astronomy, University College London, London, United Kingdom ⁷⁸ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France ⁷⁹ Fysiska Institutionen, Lunds Universitet, Lund, Sweden ⁸⁰ Departamento de Fisica Teorica, C-15, Universidad Autonoma de Madrid, Madrid, Spain ⁸¹ Institut für Physik, Universität Mainz, Mainz, Germany ⁸² School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom 83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France ⁸⁴ Department of Physics, University of Massachusetts, Amherst, MA, United States ⁸⁵ Department of Physics, McGill University, Montreal, QC, Canada ⁸⁶ School of Physics, University of Melbourne, Victoria, Australia ⁸⁷ Department of Physics, The University of Michigan, Ann Arbor, MI, United States

⁸⁸ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States

⁸⁹ ^(a) INFN Sezione di Milano; ^(b) Dipartimento di Fisica, Università di Milano, Milano, Italy

⁹⁰ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

⁹¹ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus

⁹² Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States

- 93 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
- ⁹⁴ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
- ⁹⁵ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
- ⁹⁶ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
- ⁹⁷ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- 98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
- 99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
- ¹⁰⁰ Nagasaki Institute of Applied Science, Nagasaki, Japan
- ¹⁰¹ Graduate School of Science, Nagoya University, Nagoya, Japan
 ¹⁰² (^a) INFN Sezione di Napoli, ^(b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
- ¹⁰³ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
- ¹⁰⁴ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
- ¹⁰⁵ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
- ¹⁰⁶ Department of Physics, Northern Illinois University, DeKalb, IL, United States
- ¹⁰⁷ Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
- ¹⁰⁸ Department of Physics, New York University, New York, NY, United States
- ¹⁰⁹ Ohio State University, Columbus, OH, United States
- ¹¹⁰ Faculty of Science, Okayama University, Okayama, Japan
- ¹¹¹ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
- ¹¹² Department of Physics, Oklahoma State University, Stillwater, OK, United States
- ¹¹³ Palacký University, RCPTM, Olomouc, Czech Republic
- ¹¹⁴ Center for High Energy Physics, University of Oregon, Eugene, OR, United States
- ¹¹⁵ LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
- ¹¹⁶ Graduate School of Science, Osaka University, Osaka, Japan
- ¹¹⁷ Department of Physics, University of Oslo, Oslo, Norway
- ¹¹⁸ Department of Physics, Oxford University, Oxford, United Kingdom
- ¹¹⁹ ^(a) INFN Sezione di Pavia; ^(b) Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
- ¹²⁰ Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
- ¹²¹ Petersburg Nuclear Physics Institute, Gatchina, Russia
- ¹²² ^(d) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
- ¹²³ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
- 124 (a) Laboratorio de Instrumentacao e Física Experimental de Particulas LIP, Lisboa, Portugal; (b) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
- ¹²⁵ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
- ¹²⁶ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
- ¹²⁷ Czech Technical University in Prague, Praha, Czech Republic
- ¹²⁸ State Research Center Institute for High Energy Physics, Protvino, Russia
- ¹²⁹ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
- ¹³⁰ Physics Department, University of Regina, Regina, SK, Canada
- ¹³¹ Ritsumeikan University, Kusatsu, Shiga, Japan
- ¹³² ^(a) INFN Sezione di Roma I; ^(b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
- ¹³³ ^(d) INFN Sezione di Roma Tor Vergata; ^(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
- ¹³⁴ ^(d) INFN Sezione di Roma Tre; ^(b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
- 135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (⁽⁾ Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Physique, B.P. 2390, Marrakech 40000; ^(d) Faculté des Sciences, Université Mohamed Premier and
- LPTPM, Oujda; ^(e) Faculté des Sciences, Université Mohammed V, Rabat, Morocco
- 136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
- ¹³⁷ Santa Cruz, Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
- ¹³⁸ Department of Physics, University of Washington, Seattle, WA, United States
- ¹³⁹ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- 140 Department of Physics, Shinshu University, Nagano, Japan
- ¹⁴¹ Fachbereich Physik, Universität Siegen, Siegen, Germany
- ¹⁴² Department of Physics, Simon Fraser University, Burnaby, BC, Canada
- ¹⁴³ SLAC National Accelerator Laboratory, Stanford, CA, United States
- 144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
- 145 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
- ¹⁴⁶ ^(a) Department of Physics, Stockholm University; ^(b) The Oskar Klein Centre, Stockholm, Sweden
- ¹⁴⁷ Physics Department, Royal Institute of Technology, Stockholm, Sweden
- ¹⁴⁸ Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, United States
- ¹⁴⁹ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
- ¹⁵⁰ School of Physics, University of Sydney, Sydney, Australia
- ¹⁵¹ Institute of Physics, Academia Sinica, Taipei, Taiwan
- ¹⁵² Department of Physics, Technion Israel Inst. of Technology, Haifa, Israel
- ¹⁵³ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ¹⁵⁴ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- ¹⁵⁵ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
- ¹⁵⁶ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- ¹⁵⁷ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- ¹⁵⁸ Department of Physics, University of Toronto, Toronto, ON, Canada
- ¹⁵⁹ ^(a) TRIUMF, Vancouver, BC; ^(b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
- ¹⁶⁰ Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
- ¹⁶¹ Science and Technology Center, Tufts University, Medford, MA, United States
- ¹⁶² Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
- ¹⁶³ Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
 ¹⁶⁴ ^(a) INFN Gruppo Collegato di Udine; ^(b) ICTP, Trieste; ^(c) Dipartimento di Fisica, Università di Udine, Udine, Italy
 ¹⁶⁵ Department of Physics, University of Illinois, Urbana, IL, United States
- ¹⁶⁶ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

- ¹⁶⁷ Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
- ¹⁶⁸ Department of Physics, University of British Columbia, Vancouver, BC, Canada
- ¹⁶⁹ Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- ¹⁷⁰ Waseda University, Tokyo, Japan
- ¹⁷¹ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- ¹⁷² Department of Physics, University of Wisconsin, Madison, WI, United States
- ¹⁷³ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- ¹⁷⁴ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- ¹⁷⁵ Department of Physics, Yale University, New Haven, CT, United States
- ¹⁷⁶ Yerevan Physics Institute, Yerevan, Armenia
- 177 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
- ^a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal.
- ^b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
- ^c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
- ^d Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
- ^e Also at TRIUMF, Vancouver, BC, Canada.
- ^f Also at Department of Physics, California State University, Fresno, CA, United States.
- g Also at Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland.
- ^h Also at Fermilab, Batavia, IL, United States.
- ⁱ Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
- j Also at Università di Napoli Parthenope, Napoli, Italy.
- ^k Also at Institute of Particle Physics (IPP), Canada.
- ¹ Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
- ^m Also at Louisiana Tech University, Ruston, LA, United States.
- ⁿ Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
- ^o Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
- ^p Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
- ^{*q*} Also at Manhattan College, New York, NY, United States.
- ^r Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
- ^s Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
- ^t Also at High Energy Physics Group, Shandong University, Shandong, China.
- ^u Also at Section de Physique, Université de Genève, Geneva, Switzerland.
- $^{\nu}$ Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
- ^w Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
- ^x Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
- ^y Also at California Institute of Technology, Pasadena, CA, United States.
- ^z Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
- aa Also at Department of Physics, Oxford University, Oxford, United Kingdom.
- ^{*ab*} Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
- ac Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
- ad Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France,
- ^{ae} Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
- ^{af} Also at Department of Physics, Nanjing University, Jiangsu, China.
- * Deceased.