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Abstract

The CP-conserving triple-gauge-boson couplings, gZ
1 , κγ , λγ , gZ

5 , κZ and λZ are measured using hadronic and semi-leptonic
W-pair events selected in 629 pb−1 of data collected at LEP with the L3 detector at centre-of-mass energies between 189 and
209 GeV. The results are combined with previous L3 measurements based on data collected at lower centre-of-mass energies and
with the results from single-W production and from events with a single-photon and missing energy. Imposing the constraints
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κZ = gZ
1 − tan2 θW(κγ − 1) and λZ = λγ , we obtain for the C and P conserving couplings the results:

gZ
1 = 0.966 ± 0.033(stat) ± 0.015(syst),

κγ = 1.013 ± 0.066(stat) ± 0.026(syst),

λγ = −0.021 ± 0.035(stat) ± 0.017(syst).

Results from the analysis of fully leptonic W-pair decays are also given. All results are in agreement with the Standard Model
expectations and confirm the existence of self-couplings among electroweak gauge bosons.
 2004 Published by Elsevier B.V.
1. Introduction

The non-Abelian structure of the electroweak the-
ory [1] implies the existence of trilinear self couplings
among gauge bosons. The vertices γ WW and ZWW
are accessible at LEP through W-pair, single-W and
single-photon production [2].

To lowest order, three Feynman diagrams con-
tribute to W-pair production: the s-channel γ and Z ex-
change and the t-channel νe exchange. The s-channel
diagrams contain the γ WW and ZWW vertices. The
γ WW vertex appears in one of the t-channel Feyn-
man diagrams contributing to single-W production,
e+e− → Weν; at LEP centre-of-mass energies,

√
s,

the contribution from the similar diagram containing
the ZWW vertex is negligible. The γWW vertex also
contributes to the e+e− → νeν̄eγ process through pho-
ton production in W-boson fusion.

Assuming only Lorentz invariance, the most gen-
eral form of the γ WW and ZWW vertices is para-
metrised in terms of seven complex triple-gauge-
boson couplings (TGCs) each [3]. Retaining only CP-
conserving couplings and assuming electromagnetic
gauge invariance, six real TGCs remain, namely gZ

1 ,
κγ , λγ , gZ

5 , κZ and λZ. At tree level within the Stan-
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dard Model, gZ
1 = κγ = κZ = 1 and gZ

5 = λγ = λZ = 0.
Except gZ

5 , these TGCs also conserve C and P sep-
arately. The requirement of custodial SU(2) symme-
try leads to the relations κZ = gZ

1 − tan2 θW(κγ − 1)
and λZ = λγ [4,5], where θW is the weak mixing an-
gle. When these constraints are applied, gZ

1 , κγ and λγ

correspond to the operators in a linear realisation of a
gauge-invariant effective Lagrangian that do not affect
the gauge-boson propagators at tree level [5]. The gZ

1 ,
κγ and λγ couplings are studied assuming these con-
straints. The analysis is based on the study of multi-
differential cross sections measured in hadronic and
semi-leptonic W-pair events. Measurements at lower√
s [6] are included, as well as events selected by the

single-W analysis [7] and events with a single photon
and missing energy [8]. Results from the analyses of
fully leptonic W-pair decays are also given. Results on
TGCs were also published by experiments at hadron
colliders [9] and at LEP [10].

2. Data and Monte Carlo samples

The data sample collected by the L3 detector [11] in
the years from 1998 through 2000 is used in the W-pair
analysis. It corresponds to an integrated luminosity
of 629.2 pb−1 at

√
s = 189–209 GeV, detailed in

Table 1. An additional 76.4 pb−1 of data at
√
s = 161–

183 GeV is used for the single-W analysis.
The following Monte Carlo event generators are

used to simulate the signal and background reac-
tions: KandY [12] and EXCALIBUR [13] for e+e− →
ffff (γ ); PYTHIA [14] for e+e− → qq̄(γ ), e+e− →
ZZ(γ ) and e+e− → Ze+e−; KK2f [15] for e+e− →
qq̄(γ ), e+e− → µ+µ−(γ ) and e+e− → τ+τ−(γ );
BHAGENE3 [16], BHWIDE [17] and TEEGG [18]
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Table 1
The average centre-of-mass energies, h√s i, and total integrated luminosities, L, used for the W-pair analysis

h√s i [GeV] 188.6 191.6 195.5 199.6 201.8 204.8 206.5 208.0
L [pb−1] 176.8 29.8 84.1 83.3 37.1 79.0 130.5 8.6
for e+e− → e+e−(γ ) and DIAG36 [19] and PHO-
JET [20] for lepton and hadron production in two-
photon collisions, respectively. The KandY program,
used to generate W-pair events, combines the four-
fermion generator KORALW [21] with the O(α) ra-
diative corrections in the leading-pole approxima-
tion [22] implemented in the YFSWW program [23].

The response of the L3 detector is modelled with
the GEANT [24] program which includes effects of
energy loss, multiple scattering and showering in
the detector materials and in the beam pipe. Time-
dependent detector inefficiencies, as monitored during
the data taking period, are included in the simulations.

3. Event selection

3.1. W-pair events

The event selection is based on that described in
Ref. [25] and its results are detailed in Ref. [26]. The
visible fermions in the final state are reconstructed as
electrons, muons, jets corresponding to decay prod-
ucts of τ leptons, and hadronic jets corresponding to
quarks. Only events containing leptons with an unam-
biguous charge assignment are retained. The numbers
of selected hadronic, semi-leptonic and fully leptonic
W-pair events and the expected background are given
in Table 2.

Kinematic fits are performed to improve the reso-
lution of the measured fermion energies and angles
and to determine neutrino momenta in semi-leptonic
events. Four-momentum conservation and equal mass
of the two W bosons are imposed as constraints. In
qqτν events, the energies of the two hadronic jets are
rescaled by a common factor so that their sum equals√
s/2. The four jets in hadronic events are paired to

form W bosons by a neural network based on the dif-
ference and sum of the masses of the jet pairs, the sum
and the minimum of the angles between paired jets, the
energy difference between the jet pairs and between
the paired jets, the value of the matrix element for the
process e+e− → W+W− → ffff as calculated with
Table 2
Numbers of selected data events, Ndata, and expected background
events, Nbg, for the W-pair analysis at

√
s = 189–209 GeV and for

the single-W analysis at
√
s = 161–209 GeV

Process Ndata Nbg

WW → `ν`ν 207 28.1
WW → qqeν 1263 118.1
WW → qqµν 1187 118.0
WW → qqτν 1017 348.4
WW → qqqq 5219 1109.2
Weν,W → `ν 121 10.4
Weν,W → qq̄ 584 342.2

EXCALIBUR from the jet four-momenta, and the dif-
ference between the charges of the jet pairs as deter-
mined from the jet charges [6]. The correct pairing is
found for 77% of the selected Monte Carlo events.

3.2. Single-W events

The e+e− → Weν process typically has an electron
scattered at very low polar angle, so that only the
decay products of the W boson are observed as single-
lepton events or acoplanar jets. Single-lepton events
are selected by exploiting their peculiar signature in
the detector, while a neural network is used to isolate
hadronic single-W events from the background [7].
The hadronic sample consists of 740 events out of
which 156 are also accepted by the semi-leptonic W-
pair selections. From Monte Carlo studies, about 75%
of this overlap consists of W-pair events, mostly qqτν
events, while only 7% consists of single-W events, the
remainder being e+e− → qq̄(γ ) events. In order to
avoid double counting, these events are considered in
the W-pair sample only.

The numbers of selected single-W events and
the expected background, after the removal of the
overlapping events, are reported in Table 2.

4. Event reconstruction

For unpolarised initial states, summing over final-
state fermion helicities, fixing the mass of the W bo-
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Fig. 1. Distributions of the reconstructed W− production angle, cosΘW− , in (a) hadronic and (b) semi-leptonic W-pair events. Data are shown,
together with the expectations for the Standard Model and for anomalous values of TGCs.
son and neglecting photon radiation, five angles com-
pletely describe the four-fermion final state originat-
ing from W-pair decay. These angles are the produc-
tion angle of the W− boson, ΘW− , and the polar and
the azimuthal decay angles of the fermion in W− de-
cays and the anti-fermion in W+ decays, calculated in
the rest frame of the W boson. TGCs affect the total
production cross section, the W production angle, and
the polarisations of the two W bosons, which in turn
determine the W decay angles.

For semi-leptonic W-pair events, the W− produc-
tion angle is reconstructed from the hadronic part of
the event, and the sign of cosΘW− is determined
from the lepton charge. If both W bosons decay into
hadrons, the W charge assignment follows from jet-
charge technique [6]. This charge assignment is found
to be correct for 69% of Monte Carlo events with cor-
rectly paired jets. The distributions of cosΘW− for
hadronic and semi-leptonic events are shown in Fig. 1
where, for illustrative purposes, all data are combined.

The charge of the lepton allows the reconstruction
of the decay angles θ` and φ`. Jet-charge determina-
tion is not adequate to determine the quark charge
and a two-fold ambiguity arises for the decay angles
of W bosons decaying into hadrons, (cosθq, φq) ↔
(− cosθq,π + φq). The φq distribution is restricted to
the interval (0,π] and the jet with φq ∈ (0,π] is as-
signed to the quark or the anti-quark originating from
the decay of W− or W+, respectively. The absolute
value of the cosine of the polar decay angle is consid-
ered. The distributions of the hadronic decay angles
for the hadronic channel and the leptonic and hadronic
decay angles for the semi-leptonic channels are shown
in Figs. 2 and 3, respectively.

Fully leptonic W-pair decay channels with final
state muons and electrons are also analysed. The pres-
ence of two neutrinos prevents an unambiguous recon-
struction of the event. Assuming no initial-state radia-
tion, and fixing the mass of the W boson, the produc-
tion angle of the latter is kinematically derived with
a two-fold ambiguity [5]. Due to resolution effects,
about 40% of the events yield complex solutions and
are not considered. A weight of one half is given to
each solution of the retained events.

5. Data analysis

5.1. Fit method

Binned maximum likelihood fits are used to per-
form the TGC measurement. Bin sizes are chosen so
as to optimise sensitivity for the given Monte Carlo
statistics. For hadronic and semi-leptonic W-pairs, the
likelihoods depend on the W production and decay
angles. For cosΘW− , 12 bins are considered in the
hadronic channel, 10 bins for qqeν and qqµν events
and 8 bins in the qqτν channel. For the leptonic decay
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Fig. 2. Distributions of the reconstructed W decay angles in hadronic W-pair events, (a) | cos θq| and (b) φq. Distributions for W+ and W−
bosons are combined. Data are shown, together with the expectations for the Standard Model and for anomalous values of the TGCs.
angles cos θ` and φ`, 4 bins are used, while 3 bins are
considered for the hadronic decay angles | cosθq| and
φq. For leptonic single-W events, the lepton energy is
used in the fit, with bins of 5 GeV. Its distribution is
shown in Fig. 4(a). For hadronic single-W events the
neural network output, whose distribution is shown in
Fig. 4(b), is used in the fit. It is divided in bins of 0.01.

For each decay channel and value of
√
s, the

likelihood is defined as the product of the Poisson
probabilities of occupation in each bin of the phase
space as a function of a given set of couplings Ψ :

(1)L(Ψ ) =
binsY
i

e−µi(Ψ )µi(Ψ )Ni

Ni ! ,

where µi is the expected number of signal and back-
ground events in the ith bin and Ni is the correspond-
ing observed number of events. The dependence of
µi on Ψ is determined by a generator level reweight-
ing procedure applied to fully simulated Monte Carlo
events. For any value of Ψ , the weight R of the nth
event generated with TGC value Ψgen is:

(2)R(Ωn,Ψ,Ψgen) = |M(Ωn,Ψ )|2
|M(Ωn,Ψgen)|2 ,

where M is the matrix element of the final state
considered, evaluated [13] for the generated phase
space Ωn, which includes radiated photons.
The expected number of events in the ith bin is:

(3)µi(Ψ ) =
sig+bgX

l

 
σ

gen
l L
N

gen
l

niX
j

Rl(Ωj,Ψ,Ψgen)

!
,

where the first sum runs over all signal and back-
ground samples, and σ

gen
l denotes the cross section

corresponding to the total Monte Carlo sample con-
taining N

gen
l events and L is the integrated luminos-

ity. The second sum extends over the number ni of
accepted Monte Carlo events in the ith bin. This defi-
nition takes properly into account detector effects and
Ψ -dependent efficiencies and purities. For background
sources which are independent of TGCs, Rl = 1. The
fitting method described above determines the TGCs
without any bias as long as the Monte Carlo cor-
rectly describes photon radiation and detector effects
such as resolution and acceptance functions. Different
channels and centre-of-mass energies are combined by
multiplying together the corresponding likelihoods.

The following results are obtained for hadronic
and semi-leptonic W-pairs and for their combination,
allowing one coupling to vary while fixing the others
to their Standard Model values:

gZ
1 = 0.914+0.065

−0.056 (qqqq),

κγ = 0.89+0.12
−0.10 (qqqq),

λγ = −0.102+0.069
−0.058 (qqqq),
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Fig. 3. Distributions of the reconstructed W decay angles in semi-leptonic events: the production angles of the lepton, (a) cos θ` and (b) φ` , and
the decay angles of W bosons decaying into hadrons, (c) | cos θq| and (d) φq. Data are shown, together with the expectations for the Standard
Model and for anomalous values of the TGCs.
gZ
1 = 0.974+0.039

−0.038 (qq`ν),

κγ = 0.918+0.097
−0.085 (qq`ν),

λγ = −0.026+0.040
−0.038 (qq`ν),

gZ
1 = 0.959+0.034

−0.033 (combined),

κγ = 0.907+0.074
−0.067 (combined),

λγ = −0.044+0.036
−0.033 (combined).
These couplings are determined under the constraints
κZ = gZ

1 − tan2 θW(κγ − 1) and λZ = λγ . Relaxing
these constraints, and fixing all other couplings to their
Standard Model values, yields:

gZ
5 = 0.20+0.21

−0.22 (qqqq),

κZ = 0.856+0.108
−0.091 (qqqq),

λZ = −0.179+0.108
−0.085 (qqqq),

gZ
5 = −0.10+0.17

−0.17 (qq`ν),
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Fig. 4. Distribution of (a) the energy spectrum of the lepton in leptonic single-W events and (b) the output of the neural network used in the
selection of hadronic single-W events.
κZ = 0.957+0.068
−0.066 (qq`ν),

λZ = −0.038+0.066
−0.063 (qq`ν),

gZ
5 = 0.00+0.13

−0.13 (combined),

κZ = 0.921+0.059
−0.056 (combined),

λZ = −0.070+0.060
−0.057 (combined).

The fit to fully leptonic W-pair events yields:

gZ
1 = 0.91+0.22

−0.16, κγ = 1.07+0.61
−0.38,

λγ = −0.16+0.15
−0.12.

Due to the large statistical uncertainties of this chan-
nel, compared to the other W-pair decay channels,
these results are not considered in the following com-
binations.

5.2. Cross checks

The fitting procedure is tested to high accuracy by
fitting large Monte Carlo samples, typically a hundred
times the size of the data. TGC values are varied
in a range corresponding to three times the expected
statistical uncertainty and are correctly reproduced by
the fit [27,28].

The fit results are found to be independent of the
value Ψgen of the Monte Carlo sample subjected to the
reweighting procedure.
The statistical uncertainties given by the fit are
tested by fitting, for each final state, several hundreds
of small Monte Carlo samples of the size of the
data samples. The width of the distribution of the
fitted central values agrees well with the mean of the
distribution of the uncertainties.

An independent analysis, based on optimal ob-
servables technique [29], is performed for the W-pair
events and used as a cross check. Both the central val-
ues and the uncertainties agree with those from the
binned maximum likelihood fit.

5.3. Single-photon events

Single-photon events are mainly due to initial state
radiation (ISR) in neutrino-pair production through
s-channel Z-boson exchange or t-channel W-boson
exchange. A small fraction of events is due to W-
boson fusion through the WWγ vertex, which gives
access to κγ and λγ . Data at

√
s = 189–209 GeV

are analysed [8] and 1898 events are selected while
1905 are expected from the Standard Model. The
KK2f Monte Carlo program [15] is used to simulate
the e+e− → νν̄γ process and effects of TGCs are
obtained by a reweighting procedure [30].

Binned maximum likelihood fits to the photon
energy and polar angle yield the results given in
Table 4. The systematic uncertainties are dominated
by uncertainties on the selection efficiency [8], on the
cross section [31] and on the TGC modelling [32].
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6. Systematic uncertainties

The systematic uncertainties for W-pair events are
summarised in Table 3. The largest contributions
are due to the limited Monte Carlo statistics and to
uncertainties on the background modelling, the W-pair
cross section and the lepton charge reconstruction.

Systematic effects typically induce a shift in the po-
sition of the maximum of the likelihood as well as a
change of sensitivity. For sources of systematic uncer-
tainties evaluated by varying a parameter between two
extremes of a range, if the sensitivity loss is larger than
the gain, the total uncertainty is evaluated as the sum
in quadrature of the difference between the loss and
the gain and of the shift in the maximum of the likeli-
hood. If the gain in sensitivity is larger than the loss,
only the shift in the maximum is quoted as systematic
uncertainty.

An uncertainty of 0.5% on the e+e− → W+W−
cross section is assumed [33], based on the pre-
dictions of KandY and RacoonWW [34]. Both pro-
grams use either the leading-pole or the double-
pole approximation. The cosΘW− distribution ex-
pected for these O(α) calculations are compared and
found to agree, in average slope, up to 0.4%. This
value is assigned as systematic uncertainty. Com-
Table 3
Systematic uncertainties on TGCs determined from semi-leptonic and hadronic W-pairs. For each coupling the uncertainties are obtained in
one-parameter fits, by setting all other couplings to their Standard Model values. The constraints κZ = gZ

1 − tan2 θW(κγ − 1) and λZ = λγ are
imposed on the first three couplings

Source of uncertainty Systematic uncertainty

gZ
1 κγ λγ gZ

5 κZ λZ

Uncertainty on σWW 0.003 0.018 0.006 0.03 0.009 0.014
O(α) corrections on cosΘW− 0.004 0.004 0.003 0.01 0.011 0.007
Background modelling 0.005 0.019 0.006 0.02 0.009 0.014
Jet charge confusion 0.001 0.006 0.002 < 0.01 0.002 0.005
Lepton charge confusion 0.003 0.013 0.007 0.01 0.005 0.009
Jet and lepton measurement 0.001 0.003 0.002 0.01 0.002 0.004
Monte Carlo statistics 0.012 0.010 0.014 0.02 0.016 0.007
ISR and FSR 0.001 0.016 0.001 0.01 0.002 0.002
W mass and width 0.001 0.005 0.002 0.01 0.002 0.004
Fragmentation 0.003 0.002 0.001 0.02 0.004 0.001
Bose–Einstein correlations 0.001 0.001 0.001 < 0.01 0.001 0.003
Colour reconnection 0.001 0.004 0.001 0.02 0.002 0.003
Total systematic uncertainty 0.015 0.039 0.017 0.05 0.024 0.023

Table 4
Results of one-parameter fits to the TGCs gZ

1 , κγ , λγ , gZ
5 , κZ and λZ based on single-photon events, single-W events and hadronic and semi-

leptonic W-pairs, and their combination. The single-W results are obtained after removing events selected as W-pair. All results are at 68%
confidence level. For each TGC fit, all other parameters are set to their Standard Model values; for the set gZ

1 , κγ and λγ the constraints
κZ = gZ

1 − tan2 θW(κγ − 1) and λZ = λγ are imposed. The first uncertainty is statistical, the second systematic

Coupling gZ
1 κγ λγ

νe ν̄eγ 189–209 GeV 0.7 ± 0.5 ± 0.3 0.3 ± 0.7 ± 0.4
Weν 161–209 GeV 1.179+0.076

−0.080 ±0.068 0.30+0.11
−0.19 ± 0.08

WW 161–209 GeV 0.966+0.034
−0.032 ±0.015 0.910+0.074

−0.066 ±0.039 −0.024+0.035
−0.033 ±0.017

All channels combined 0.966+0.034
−0.032 ±0.015 1.013+0.067

−0.064 ±0.026 −0.021+0.035
−0.034 ±0.017

Standard Model value 1.0 1.0 0.0

Coupling gZ
5 κZ λZ

WW 189–209 GeV 0.00 ± 0.13 ± 0.05 0.924+0.059
−0.056 ±0.024 −0.088+0.060

−0.057 ±0.023
Standard Model value 0.0 1.0 0.0
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Fig. 5. Change in negative log-likelihoods with respect to their minimum for one-parameter TGC fits. Systematic uncertainties are included.
Contributions from different channels are indicated.
parable uncertainties were obtained by a dedicated
study [35]. Uncertainties from O(α) corrections on
the W-boson decay angles are found to be negligi-
ble [28].
Uncertainties in the background cross sections and
differential distributions are possible sources of sys-
tematic effects. The cross sections of the e+e− →
qq̄(γ ) and e+e− → ZZ(γ ) processes are varied within
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Fig. 6. Comparison of single- and multi-parameter TGC fits. The vertical and horizontal lines are the 68% confidence level intervals when all
couplings but one are fixed to their Standard Model values, indicated by a star. The shaded areas represent the 68% confidence level regions for
the two-parameter fits to the TGCs: (a) gZ

1 and κγ with λγ = 0, (b) λγ and κγ with gZ
1 = 1 and (c) gZ

1 and λγ with κγ = 1. The 95% confidence
level contours are also given as solid lines. The dashed lines represent two-dimensional projections of the three-parameter log-likelihoods. The
constraints κZ = gZ

1 − tan2 θW(κγ − 1) and λZ = λγ are imposed and all other couplings are set to their Standard Model values. Systematic
uncertainties are included.
the theoretical uncertainty [33] of ±2%. To repro-
duce the measured four-jet event rate of the e+e− →
qq̄(γ ) [26], the corresponding Monte Carlo is scaled
by 12.7%. Half of the effect is assigned as an addi-
tional systematic uncertainty. Moreover, the cosΘW−
distributions for these backgrounds are reweighted
with a linear function of slope ±5%, in order to ac-
count for possible inaccuracies of the Monte Carlo
predictions, giving a small additional contribution to
this systematic uncertainty.

The uncertainties on the lepton and jet charge as-
signment are derived from the statistical accuracy of
the two data sets used to check the charge measure-
ment [27,28]: lepton-pair events in Z-peak calibration
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Table 5
Results of two- and three-parameter fits of the couplings κγ , λγ and gZ

1 with the constraints κZ = gZ
1 − tan2 θW(κγ − 1) and λZ = λγ ; all other

couplings are set to their Standard Model values. Correlation coefficients are also shown. Systematic uncertainties are included

Fit parameter Standard Model Results Correlation coefficients

(68% CL) (95% CL) gZ
1 κγ λγ

Two-parameter fits
gZ

1 1.0 0.912+0.054
−0.044 [0.83,1.02] 1.00 −0.71

κγ 1.0 1.162+0.124
−0.129 [0.94,1.38] 1.00

κγ 1.0 1.061+0.089
−0.082 [0.91,1.24] 1.00 −0.42

λγ 0.0 −0.052+0.044
−0.042 [−0.13,0.03] 1.00

gZ
1 1.0 0.979+0.066

−0.065 [0.86,1.10] 1.00 −0.82

λγ 0.0 −0.025+0.071
−0.065 [−0.14,0.11] 1.00

Three-parameter fit
gZ

1 1.0 0.91+0.10
−0.07 [0.80,1.08] 1.00 −0.74 −0.80

κγ 1.0 1.15+0.13
−0.14 [0.92,1.38] 1.00 0.44

λγ 0.0 0.01+0.07
−0.08 [−0.14,0.14] 1.00
data for the measurement of the lepton charge and
semi-leptonic W-pair events with muons for the charge
of W bosons decaying into hadrons. Uncertainties
around 0.2% are found for single tracks used for elec-
tron and tau reconstruction in the barrel and between
1% and 12% in the endcaps, uncertainties around
0.06% for the charge of muons and around 1.3% for
the charge of W bosons decaying into hadrons.

The agreement of data and Monte Carlo in the re-
construction of angles and energies of jets and lep-
tons is tested with di-jet and di-lepton events collected
during Z-peak calibration runs. The uncertainties on
scales and resolutions of energy and angle measure-
ments are propagated in the Monte Carlo and their ef-
fect on the TGC results is assigned as a systematic un-
certainty.

The uncertainty caused by limited Monte Carlo sta-
tistics is evaluated by repeating the TGC fit with sub-
sets of the total reference sample, analysing the fit re-
sults as a function of the sample size and extrapolating
this shift to the full sample.

The modelling of initial-state radiation in KandY is
included up to O(α3) in the leading-logarithm approx-
imation. The systematic uncertainty is estimated by
comparing the fit results when only ISR up to O(α2)
is considered. A good description of final-state radi-
ation (FSR) is important to properly reconstruct the
phase space variables used in the TGC fit. This effect
is studied by repeating the TGC fit with Monte Carlo
samples from which the events with FSR photons of
energy above a cut-off, varied between 100 MeV and
1 GeV, are removed.

Systematic effects due to the uncertainty on the
measurement of the W mass and width are evaluated
by varying these parameters within the uncertainties of
the world averages [36].

High statistics Monte Carlo samples generated with
different hadronisation schemes, PYTHIA [14], HER-
WIG [37] and ARIADNE [38], are used to evaluate the
effect of hadronisation modelling uncertainties. The
average of the absolute value of the TGC shifts ob-
served between different models is assigned as sys-
tematic uncertainty.

Other final state phenomena which can influence
the TGC fit are colour reconnection [39] and Bose–
Einstein effects [40]. Monte Carlo samples with im-
plementation of different models of colour reconnec-
tion and Bose–Einstein correlations are used to fit
TGCs and evaluate the associated systematic uncer-
tainties by comparison with the reference sample. For
colour reconnection the following models are tested:
model II [41] in ARIADNE, the scheme implemented
in HERWIG and the SK I [42] model with full re-
connection probability in PYTHIA. Based on a study
of compatibility of SK I with colour flow between
jets [43], only half the effect is considered. The aver-
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ages of the absolute values of the shifts obtained using
different models are quoted as systematic uncertain-
ties. For Bose–Einstein correlation, the LUBOEI [44]
BE32 model as implemented in PYTHIA with and
without correlation between jets coming from differ-
ent W bosons is studied. The difference is taken as
systematic uncertainty.

Systematic uncertainties for the single-W results
are dominated by uncertainties on selection efficien-
cies and signal cross section [7] and amount to 0.068
for κγ and 0.08 for λγ .

7. Results and discussion

The results obtained from the study of W-pair
events collected at

√
s = 189–209 GeV are combined

taking into account correlations of systematic errors
between decay channels and between data sets col-
lected at different centre-of-mass energies.

Further, they are combined with W-pair results
obtained at lower

√
s [6], with the single-W re-

sults [7] recalculated after removing the overlap with
the W-pair selection and with the results from single-
photon events [8].

The results of one-parameter fits, in which only one
coupling is allowed to vary while the others are set
to their Standard Model values, are given in Table 4.
Negative log-likelihood curves are shown in Fig. 5.

Multi-parameter fits of TGCs allow a model-inde-
pendent interpretation of the data. Fits to two of the
couplings κγ , λγ and gZ

1 , keeping the third coupling
fixed at its Standard Model value, are performed, as
well as a simultaneous fit to all these couplings. In
each case the constraints κZ = gZ

1 − tan2 θW(κγ − 1)
and λZ = λγ are imposed. The results of these multi-
parameter fits are reported in Table 5. The contour
curves of 68% and 95% confidence level for the two-
parameter fits are shown in Fig. 6. They correspond to
a change in the negative log-likelihood with respect to
its minimum of 1.15 and 3.00, respectively. Contours
derived from three-parameter fits are also shown. They
are obtained requiring a log-likelihood change of 1.15,
but leaving the third coupling free to vary in the fit.
The comparison of the results derived from fits of
different dimensionality shows good agreement.

If the W boson were an extended object, e.g., an
ellipsoid of rotation with longitudinal radius a and
transverse radius b, its size and shape would be related
to the TGCs by RW ≡ (a + b)/2 = (κγ + λγ −
1)/mW [45] and ∆W ≡ (a2 − b2)/2 = (5/4)(κγ −
λγ − 1)/m2

W [46], where mW is the mass of the W
boson. The measurements show no evidence for the
W boson to be an extended object:

(4)RW = (0.3 ± 1.9)× 10−19 m,

(5)∆W = (0.89 ± 0.83)× 10−36 m2

with a correlation coefficient of −0.63.
In conclusion, TGC’s are measured with an accu-

racy of a few percent. All single- and multi-parameter
TGC results show good agreement with the Standard
Model expectation and confirm the existence of self-
couplings among the electroweak gauge bosons.
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