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1 Introduction

The transverse momentum distribution of W and Z bosons produced in hadronic collisions

is a traditional probe of strong interaction dynamics. The low transverse momentum

(pT) range is governed by initial-state parton radiation (ISR) and the intrinsic transverse

momentum of the initial-state partons inside the proton, and modeled using soft-gluon

resummation [1] or parton shower models [2, 3]. Quark-gluon scattering dominates at high

pT and is described by perturbative QCD [4–6]. The correct modelling of the vector boson

pT distribution is important in many physics analyses at the LHC for which the production

of W or Z bosons constitutes a significant background. Moreover, it is crucial for a precise

measurement of the W boson mass. The transverse momentum distribution also probes

the gluon density of the proton [7]. Vector boson pT distribution measurements were

published by ATLAS [8, 9] and CMS [10] based on 35–40 pb−1 of proton-proton collisions

at a centre-of-mass energy of
√
s = 7 TeV. The typical precision of these measurements is

4% to 10%.
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This paper presents a measurement of the normalized Z boson transverse momentum

distribution (pZT) with the ATLAS detector, in the Z/γ∗ → e+e− and Z/γ∗ → µ+µ−

channels, using LHC proton-proton collision data taken in 2011 at a centre-of-mass energy

of
√
s = 7 TeV and corresponding to an integrated luminosity of 4.7 fb−1 [11]. The large

integrated luminosity allows the measurement to be performed in three different Z boson

rapidity (yZ) bins, probing the transverse momentum dynamics over a wide range of the

initial-state parton momentum fraction. With respect to previous results, the present

analysis aims at reduced uncertainties, finer binning and extended measurement range.

Reconstructed from the final-state lepton kinematics, pZT is affected by lepton energy

and momentum measurement uncertainties. To minimize the impact of these uncertainties,

the φ?
η observable1 was introduced as an alternative probe of pZT [12], pioneered at the

Tevatron [13–15], and studied by ATLAS using the present data set [16] and LHCb [17].

The correlation between φ?
η and pZT is, however, only partial and the good experimental

resolution on φ?
η is counterbalanced by a reduced sensitivity to the underlying transverse

momentum distribution; in addition, interpreting φ?
η as a probe of pZT assumes that the

final-state lepton angular correlations are correctly modeled. The measurement presented

in this paper allows the effects of the Z boson transverse momentum and the lepton angular

correlations to be disentangled unambiguously.

QCD predictions for the pZT distribution are described in the next section. After a brief

description of the experiment in section 3, the measurement is presented in sections 4–8.

The results are compared to available QCD predictions in section 9 and used to constrain

phenomenological models describing the low-pZT region in section 10; the compatibility of

the φ?
η measurement with the pZT-constrained models is also tested. Section 11 concludes

the paper.

2 QCD predictions

The measurements are compared to a representative set of theoretical predictions. They

rely on perturbative QCD (pQCD) only, or include resummation of soft-gluon emissions.

Resummation is treated either analytically, or using Monte Carlo methods.

Fully differential inclusive boson-production cross sections can be obtained to sec-

ond order in the strong coupling constant αS (NNLO) using the Fewz3.1 [4–6] and

Dynnlo1.3 [18, 19] programs. The O(α2
S) cross-section predictions are valid at large pZT,

where the cross section is dominated by the radiation of high-pT gluons. At low pZT, multiple

soft-gluon emissions predominate and fixed-order pQCD predictions are not appropriate.

The ResBos calculation relies on soft-gluon resummation at low pZT and matches the

O(α2
S) cross section at high pZT. It simulates the vector boson decays but does not include

a description of the hadronic activity in the event. Two versions are used here, which

differ in the non-perturbative parameterization used to perform the resummation. The

1φ?
η is defined as tan(φacop/2) sin θ?η, with φacop = π − ∆φ and θ?η = tanh[∆η/2], ∆φ the opening

angle between the Z boson decay leptons in the transverse plane, and ∆η = η− − η+ the difference in

pseudorapidity between the negatively and positively charged lepton.
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original parameterization [1] and a recent development [20] are referred to as ResBos-

BLNY (NLO+NNLL) and ResBos-GNW (NNLO+NNLL), respectively, in this paper.

Further predictions at O(α2
S) and including resummation terms at next-to-next-to-leading-

logarithmic accuracy (NNLO+NNLL) were also obtained [21], primarily focusing on the

φ?
η observable.

The Pythia [2] and Herwig [3] generators use the parton shower approach to describe

the low-pZT region and include an O(αS) matrix element for the emission of one hard parton.

The NLO Monte Carlo generators Mc@nlo [22] and Powheg [23] consistently incorporate

NLO QCD matrix elements into the parton shower frameworks of Herwig or Pythia.

The Alpgen [24] and Sherpa [25] generators implement tree-level matrix elements for

the generation of multiple hard partons in association with the boson for various parton

multiplicities. The generators listed above are used in performing the measurement, as

described in section 4.

The generators contain phenomenological parameters which are not constrained by

the theory but can be adjusted to improve their description of the measured distributions.

The ATLAS measurement is thus compared to the current state-of-the-art models. In

section 10, the low-pZT region is used to adjust the parton shower parameters in Pythia,

used as full event generator or interfaced to Powheg.

3 The ATLAS detector

ATLAS [26] is a multipurpose detector2 consisting of an inner tracking system (ID) inside a

2 T superconducting solenoid, electromagnetic and hadronic calorimeters and, outermost,

a toroidal large acceptance muon spectrometer (MS), surrounding the interaction point

with almost full coverage.

The ID allows precision tracking of charged particles for |η| < 2.5. The three innermost

layers constitute the pixel detector. The semiconductor tracker, at intermediate radii, con-

sists of four double-sided silicon strip layers allowing reconstruction of three-dimensional

space points. The outer layers, made of straw tubes sensitive to transition radiation, com-

plete the momentum measurement for |η| < 2 and provide ability to distinguish electrons

from pions.

The calorimeters between the ID and the MS measure the energy of particles in the

range |η| < 4.9. The high-granularity electromagnetic (EM) calorimeter is made of lead

absorbers immersed in a liquid-argon active medium, and is divided into barrel (|η| < 1.5)

and end-cap (1.4 < |η| < 3.2) regions. For |η| < 2.5, it is finely segmented in η and φ for

position measurement and particle identification purposes, and has three layers in depth

to enable longitudinal EM-shower reconstruction. The hadronic calorimeter surrounding

the EM calorimeter is divided into a central part covering |η| < 1.7, made of alternating

2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre

of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse

plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the

polar angle θ as η = − ln tan(θ/2).
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steel and plastic scintillator tiles, and end-cap (1.5 < |η| < 3.2) and forward (|η| < 4.9)

sections included in the liquid argon end-cap cryostats, and using copper and tungsten as

absorbing material, respectively.

The MS, covering a range of |η| < 2.7, consists of three stations of drift tubes and

cathode-strip chambers, which allow precise muon track measurements and of resistive-

plate and thin-gap chambers for muon triggers and additional measurements of the

φ coordinate.

4 Event simulation

The response of the ATLAS detector to generated Monte Carlo (MC) events is simu-

lated [27] using Geant4 [28] for the description of the ATLAS detector geometry, and the

interaction of particles with the material defined by that geometry. These samples are used

to model the signal, estimate the backgrounds and to correct the observed pZT spectrum for

detector effects back to the particle level, a procedure hereafter referred to as unfolding.

The MC signal samples used as baseline for the measurement are obtained using the

Powheg generator version r1556 interfaced with Pythia6.425 to model the parton shower,

hadronization and underlying event with parameters set according to tune AUET2B [29].

Powheg events are generated using the CT10 parton distribution function (PDF) set [30].

The predicted pZT distribution is then modified to match that of Pythia6.425 with the

AMBT1 tune [31], denoted by Pythia6-AMBT1, which agrees with the data within 5%

accuracy [8]. These samples are referred to as Powheg+Pythia6.

Additional signal samples, used for comparison, are based on Pythia6.425 with

tune AUET2B and PDF set MRSTMCal [32] (referred to as Pythia6-AUET2B);

Mc@nlo4.01 with the CT10 PDF set, interfaced to Herwig6.520 to model the parton

shower and hadronization, and to Jimmy4.31 [33] for the simulation of multiple interac-

tions, with parameters set according to tune AUET2 [34]; and finally Sherpa1.4.0 with

the CT10 PDFs. The MC generators used in tuning studies described in section 10 are

Pythia version 8.176 [35, 36] and Powheg version r2314.

Background processes include W± → `±ν, Z → τ+τ− and bb̄, cc̄ → `± + X and

are generated with Pythia6-AUET2B. The tt̄ background sample is based on Mc@nlo

interfaced to Herwig+Jimmy. Backgrounds from weak boson pair production are simu-

lated using Herwig+Jimmy, tuned with AUET2. All generators are interfaced to Pho-

tos2.154 [37] and Tauola2.4 [38] to simulate QED final-state radiation (FSR) and τ -lepton

decays, except Sherpa and Pythia8, which rely on their internal treatment. Photon-

induced dilepton production, i.e. the double dissociative process qq̄ → `+`− and inelastic

photon-induced pp → `+`−, is simulated using Horace [39] and Herwig++ [40], inter-

faced to the MRST2004qed PDFs [41].

The MC events are simulated with additional interactions in the same or neighbouring

bunch crossings to match the pile-up conditions during LHC operation, and are weighted

to reproduce the distribution of the average number of interactions per bunch crossing

in data.

– 4 –
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5 Event reconstruction and selection

Electrons are reconstructed from energy deposits measured in the EM calorimeter and

matched to ID tracks. They are required to have pT > 20 GeV and |η| < 2.47 excluding

1.37 < |η| < 1.52, which corresponds to the transition region between the barrel and

end-cap EM calorimeters. The electrons are identified using shower shape, track-cluster

matching and transition radiation criteria [42]. The Z/γ∗ → e+e− event trigger requires

two such electrons with pT > 12 GeV. Muons are reconstructed from high-quality MS

segments matched to ID tracks. They are required to have pT > 20 GeV, |η| < 2.4 and to

be isolated to suppress background from heavy-flavour decays. The isolation requires the

sum of transverse momenta of additional tracks with pT > 1 GeV and within a cone of

size ∆R ≡
p

(∆η)2 + (∆φ)2 = 0.2 around the muon to be less than 10% of the muon pT.

The Z/γ∗ → µ+µ− event trigger requires one muon with pT > 18 GeV.

Events are required to have at least one primary vertex reconstructed from at least

three tracks with pT > 500 MeV, and to contain exactly two oppositely charged same

flavour leptons, selected as described above, with invariant mass satisfying 66 GeV < m`` <

116 GeV (` = e, µ). This broad interval is chosen to minimize the impact of QED FSR on

the signal acceptance. The total selected sample consists of 1228863 Z/γ∗ → e+e− and

1816784 Z/γ∗ → µ+µ− candidate events.

Monte Carlo events are corrected to take into account differences with data in lep-

ton reconstruction, identification and trigger efficiencies, as well as energy and momentum

scale and resolution. The efficiencies are determined using a tag-and-probe method based

on reconstructed Z and W events [42]. The isolation requirement used in the muon chan-

nel induces significant pZT dependence in the muon selection efficiency, and the efficiency

determination is repeated in each pZT bin. The energy resolution and scale corrections

are obtained comparing the lepton pair invariant mass distribution in data and simula-

tion [43, 44].

6 Background estimation

The background to the observed Z signal includes contributions from Z/γ∗ → τ+τ−,

W → `ν, gauge boson pair production, single top quark and tt̄ production, and multi-

jet production. The electroweak and top quark background contributions are estimated

from simulation and normalized using theoretical cross sections calculated at NNLO accu-

racy. For the multijet background, which dominates at low pZT, the leptons originate from

semileptonic decays or from hadrons or photons misidentified as electrons, which cannot

be simulated accurately and are determined using data-driven methods.

In the electron channel, the multijet background fraction is determined from the elec-

tron isolation distribution observed in data. The isolation variable, x, is defined as the

transverse energy contained in a cone of size ∆R = 0.3 around the electron energy cluster

(excluding the electron itself), divided by the electron transverse energy. On average, iso-

lated electrons from Z/γ∗ → e+e− decays are expected at lower values of x than multijet

background events. The signal distribution, S(x), is given by the simulation and shifted to
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match the data in the signal-dominated low-x region. A jet-enriched sample is extracted

from data by requiring electron candidates to fail the track-cluster matching or shower

shape criteria in the first EM calorimeter layer, but otherwise pass the analysis selections,

giving B(x). This distribution is corrected for the residual contribution from electroweak

and top quark backgrounds, which are estimated using simulation. The multijet back-

ground normalization is then given by a fit of D(x) = qB(x) + (1 − q)S(x), where D(x)

is the isolation distribution observed in data and q is the fitted background fraction. The

above procedure is repeated, separating events with same charge sign (SS) and opposite

charge sign (OS) leptons in the background-enriched sample, and varying ∆R between

0.2 and 0.4. The average of the results and their envelope define the multijet background

fraction and its uncertainty, yielding q = (0.14+0.10
−0.05)%. The pZT shape of the background is

assumed to follow that of the background-enriched sample; this assumption is verified by

repeating the procedure in three coarse pZT bins. The uncertainty on the shape is defined

from the difference between the SS and OS samples.

In the muon channel, the multijet background is estimated using muon isolation infor-

mation in signal- and background-dominated invariant-mass regions. Four two-dimensional

regions are defined, characterized by a mass window and according to whether both muons

pass or fail the isolation cut described in section 5. The signal region (region A), the two

control regions (regions B and C) and the multijet region (region D) are defined as follows:

Region A (signal region): 66 GeV < mµµ < 116 GeV, isolated

Region B: 47 GeV < mµµ < 60 GeV, isolated

Region C: 66 GeV < mµµ < 116 GeV, non-isolated

Region D (multijet region): 47 GeV < mµµ < 60 GeV, non-isolated

Assuming the mµµ and isolation distributions are not correlated, the number of multijet

events in the signal region is determined from the number of events observed in regions

B, C and D, as nA = nB × nC/nD, where nB, nC and nD are corrected for the residual

contribution from electroweak and top processes. In an alternative method, the multijet

background is assumed to be dominated by heavy-flavour decays, and its normalization

is derived from the number of observed SS muon pairs, corrected by the expected OS/SS

ratio in heavy-flavour jet events, as predicted by Pythia. Since the results of the two

methods differ by more than their estimated uncertainty, the background normalization

used for this channel is defined as the average of the two computations, and its uncertainty

as their half difference, giving an expected fraction of (0.11 ± 0.06)%. The pZT shape of

the multijet background is defined from the control sample with the inverted isolation cut

(region D); using that obtained from the SS sample instead has negligible impact on the

measurement result.

Figure 1 shows the pZT distributions for data and Monte Carlo samples including the

experimental corrections discussed in section 5 as well as the background estimates, in the

electron and muon channels.

– 6 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
5

]
-1

 [
G

e
V

Z T
d

N
/d

p

-110

1

10

210

310

410

510

610

710

810

Data

ee→Z

ττ→Z

WW/WZ/ZZ

tt

νe→W

Multijet

-1
 Ldt=4.7 fb∫=7 TeV; sATLAS

 [GeV]Z

T
p

1 10 210

D
a

ta
/S

im
u

la
ti
o

n

0.8

1

1.2

]
-1

 [
G

e
V

Z T
d

N
/d

p

-110

1

10

210

310

410

510

610

710

810

Data

µµ→Z

ττ→Z

WW/WZ/ZZ

tt
νµ→W

Multijet

-1
Ldt=4.7 fb∫=7 TeV; sATLAS

 [GeV]Z

T
p

1 10 210

D
a

ta
/S

im
u

la
ti
o

n

0.8

1

1.2

Figure 1. Distributions of pZT for data and simulation, and their ratios, in the electron channel

(top) and muon channel (bottom). The plots show statistical uncertainties only.

7 Unfolding and systematic uncertainties

The normalized differential cross section as a function of pZT is defined as

(1/σfid)(dσfid/dpZT), where σfid is the inclusive pp → Z/γ∗ cross section measured within

the fiducial acceptance defined by requiring pT > 20 GeV and |η| < 2.4 for the decay

leptons; the invariant mass of the pair must satisfy 66 < m`` < 116 GeV. In addition

to the rapidity-inclusive measurement, the measurement is performed for 0 ≤ |yZ | < 1,

1 ≤ |yZ | < 2 and 2 ≤ |yZ | < 2.4.
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The measurement is performed for three definitions of the particle-level final-state

kinematics. The Born and bare kinematics are defined from the decay lepton kinematics

before and after FSR, respectively. The dressed kinematics are defined by combining the

bare momentum of each lepton with that of photons radiated within a distance smaller

than ∆R = 0.1. Conversion factors from the Born to the bare and dressed levels are

defined from the ratio of the corresponding particle-level pZT distributions and denoted by

kbare(p
Z
T) and kdressed(pZT), respectively.

The Z/γ∗ transverse momentum is reconstructed from the measured lepton four-

momenta. The pZT range is divided into 26 bins of varying width between 0 GeV and

800 GeV, with finer granularity in the low-pZT range, as shown in tables 1–3. The bin

purity, defined as the fraction of reconstructed events for which pZT falls in the same bin at

reconstruction and particle level, is everywhere above 50%.

The total background is subtracted from the observed pZT distribution. The electroweak

background cross sections are assigned a 5% uncertainty derived by varying the PDFs

within their uncertainties and from QCD renormalization and factorization scale variations;

in addition, a relative uncertainty of 1.8% on the total integrated luminosity is taken

into account. The normalization of the top background was verified comparing data and

simulation at high missing transverse energy (Emiss
T ), defined for each event as the total

transverse momentum imbalance of the reconstructed objects. An uncertainty of 12% is

assigned comparing data and simulation for Emiss
T > 100 GeV and 20 < pZT < 120 GeV,

where this background contribution dominates. The multijet background uncertainty is

discussed in section 6.

The pZT distribution is subsequently corrected for resolution effects and QED final-state

radiation back to the Born level, as well as for the differences between the reconstruction-

and particle-level fiducial acceptance, with an iterative Bayesian unfolding method [45–

47]; three iterations are used. The response matrix used for the unfolding is defined

as a two-dimensional histogram correlating the Born-level and reconstructed pZT distri-

butions. The prior probability distribution for the Born-level pZT distribution is defined

from the modified Powheg+Pythia6 prediction described in section 4, and matches that

of Pythia6-AMBT1.

The statistical uncertainty on the unfolded spectrum is obtained by generating ran-

dom replicas of the reconstruction-level pZT distribution. For each trial, Poisson-distributed

fluctuations are applied to the number of entries in each bin, and the measurement proce-

dure is repeated. The obtained ensemble of fluctuated measurement results is used to fill

a covariance matrix, including correlations between the bins introduced by the unfolding

and normalization procedure. The relative statistical uncertainty remains below 0.6% for

pZT < 30 GeV in both channels, and below 1.1% up to 150 GeV. The uncertainty induced

by the size of the MC samples is determined by applying the same method to the response

matrix, and stays below 0.4% and 0.5% up to pZT = 150 GeV in the muon and electron

channel, respectively, reaching 2% for the bin 300 < pZT < 800 GeV.

Systematic uncertainties from experimental sources such as trigger, reconstruction and

identification efficiency corrections, energy scale and resolution corrections, and the back-

ground normalization and pT distribution are evaluated by repeating the analysis varying
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the corresponding parameters within their uncertainties and comparing to the nominal

result. For each channel, the impact of a given source of uncertainty is evaluated preserv-

ing correlations across the measurement range. The uncertainty on the normalization of

the electroweak and top quark backgrounds is treated as fully correlated between the two

channels. The electron- and muon-specific uncertainties are uncorrelated between channels.

In the electron channel, the uncertainties on the trigger, reconstruction and identi-

fication efficiency corrections are propagated preserving their correlations across lepton

η and pT. These sources contribute a relative uncertainty of the order of 10−4 up to

pZT = 100 GeV and less than 0.2% over the full measurement range. The uncertainty in-

duced by the background subtraction is typically 0.1%, except around pZT = 100 GeV where

it reaches 0.3% because of the top quark background contribution. The uncertainty induced

by charge misidentification, estimated from the difference between the results obtained with

and without an opposite-sign requirement on the leptons, amounts to less than 0.2% over

the whole pZT range. The dominant experimental uncertainties in the electron channel

arise from the electron energy scale, resolution, mis-modelling of the electron energy tails

caused by uncertainties in the treatment of electron multiple scattering in Geant4 and

in passive detector material. The combined contribution from energy scale and resolution

uncertainties to the total systematic uncertainty is typically 0.3% per bin between 4 GeV

and 70 GeV, and reaches about 2% at the end of the spectrum. The uncertainty from the

energy tails amounts to 0.8% at most, contributing mainly at very low pZT and at very high

pZT where the statistical uncertainty dominates.

In the muon channel, the trigger, reconstruction and isolation efficiency corrections

contribute an uncertainty of 0.6% on average, spanning 0.2% to 1.7% across the measure-

ment range. The momentum scale and resolution uncertainties amount to 0.2%, except in

the last three pZT bins where they stay below 1.5%. The uncertainty contributed by the

background subtraction is below 0.1% over the whole pZT range except around pZT = 100 GeV

where it reaches 0.13% because of the top quark background contribution.

The dominant contribution to the systematic uncertainties for both channels comes

from the unfolding method. Two effects are addressed: the bias of the result towards the

prior, and the dependence of the result on the theoretical calculation used to determine

the response matrix. The first item is evaluated by repeating the measurement using the

nominal result as the prior. The difference between the nominal result and this iteration is

less than 0.1% up to 100 GeV, and less than 1.3% for the rest of the distribution. The second

effect is evaluated by unfolding the pZT distribution using an alternative response matrix,

constructed from a Z/γ∗ → `+`− sample obtained with Mc@nlo instead of Powheg,

and modified to match the Pythia6-AMBT1 spectrum as it was done for Powheg. A

systematic uncertainty of about 0.3% over the whole pZT range is assigned from the difference

between the two results. The PDF uncertainties are estimated by reweighting the baseline

sample to each of the CT10 PDF error sets [30] and repeating the unfolding. In each

bin, the sum in quadrature of deviations with respect to the nominal result is used to

define the associated uncertainty, which is below 0.1% up to 60 GeV and below 0.3% over

the remaining pZT range. The unfolding systematic uncertainties are assumed to be fully

correlated between the electron and muon channels.

– 9 –
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The uncertainty arising from the accuracy of the theoretical description of QED FSR

is obtained by comparing kbare(p
Z
T) and kdressed(pZT) as predicted by Photos and Sherpa.

The differences obtained for kbare(p
Z
T) are representative of the QED uncertainty in the

muon channel, and amount to 0.3% across the pZT distribution. From the differences ob-

tained for kdressed(pZT), a 0.1% uncertainty is assigned to the electron channel. Photon-

induced dilepton production is significant only in the lowest pZT bin (0-2 GeV), where

it contributes 0.4%. The cross sections obtained for this process when evaluating the

MRST2004qed PDFs in the current and constituent quark mass schemes differ by 30%,

and contribute an uncertainty of 0.1% to the measurement in this bin.

Figure 2 presents the contributions from the different uncertainties to the inclusive pZT
measurement integrated over the Z rapidity.

8 Results

The inclusive normalized cross sections (1/σfid)(dσfid/dpZT) measured in the Z/γ∗ → e+e−

and Z/γ∗ → µ+µ− channels are presented in table 1 including statistical, uncorrelated

and correlated systematic uncertainties. The sizes of the correlated uncertainties depend

on the channel because of different resolutions and background levels. The measurement

results are reported at Born level and factors kbare and kdressed are given to translate to

the bare and dressed levels. In each channel, the total uncertainty is between 0.5% and 1%

for pZT < 30 GeV, below 1.5% per bin up to pZT = 150 GeV and rises to 7% at the end of

the spectrum.

The electron- and muon-channel cross sections are combined using χ2 minimization,

following the best linear unbiased estimator prescription (BLUE) [48, 49]. The combination

is performed for the Born-level and dressed-level distributions. When building the χ2,

the measurement uncertainties are categorized into uncorrelated and correlated sources.

Table 2 presents the combined results for the inclusive measurement for Born level and

dressed lepton kinematics. The combined precision is between 0.5% and 1.1% for pZT < 150

GeV, rising to 5.5% towards the end of the spectrum. The combination has χ2/dof =

12.3/25 (χ2 per degree of freedom). The individual channels are compared to the combined

result in figure 3.

The measurements are repeated in three exclusive boson rapidity bins, namely 0 ≤
|yZ | < 1, 1 ≤ |yZ | < 2 and 2 ≤ |yZ | < 2.4. The combined results, corrected to the

Born level, are given in table 3 with statistical, correlated and uncorrelated systematic

uncertainties for the three rapidity bins. The measurement results in each channel and

their combination are illustrated in figures 4–6.

9 Comparison to QCD predictions

In figure 7, the Born-level combined result is compared to theoretical predictions at fixed or-

der from Fewz and Dynnlo, to ResBos and to the NNLO+NNLL calculation of ref. [21].

Fewz, Dynnlo and ResBos use the CT10 PDFs, while the NNLO+NNLL calculation of

ref. [21] uses the CTEQ6m PDFs [50].
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Born Dressed

pT range 1
σfid

dσfid

dpZT

1
σfid

dσfid

dpZT
δStat δuncor

Syst δcor
Syst

[ GeV] [1/ GeV] [1/ GeV] [%] [%] [%]

0–2 2.822 10−2 2.750 10−2 0.27 0.37 0.36

2–4 5.840 10−2 5.723 10−2 0.17 0.32 0.35

4–6 5.805 10−2 5.749 10−2 0.17 0.23 0.36

6–8 4.917 10−2 4.920 10−2 0.18 0.22 0.36

8–10 4.076 10−2 4.103 10−2 0.20 0.24 0.34

10–12 3.380 10−2 3.420 10−2 0.23 0.26 0.34

12–14 2.815 10−2 2.860 10−2 0.25 0.26 0.34

14–16 2.375 10−2 2.415 10−2 0.27 0.26 0.34

16–18 2.012 10−2 2.046 10−2 0.30 0.27 0.34

18–22 1.595 10−2 1.621 10−2 0.25 0.25 0.34

22–26 1.200 10−2 1.212 10−2 0.30 0.28 0.36

26–30 9.166 10−3 9.223 10−3 0.34 0.31 0.36

30–34 7.242 10−3 7.267 10−3 0.39 0.33 0.35

34–38 5.802 10−3 5.803 10−3 0.44 0.35 0.35

38–42 4.641 10−3 4.636 10−3 0.49 0.39 0.35

42–46 3.777 10−3 3.769 10−3 0.53 0.43 0.35

46–50 3.172 10−3 3.157 10−3 0.57 0.43 0.37

50–54 2.593 10−3 2.582 10−3 0.64 0.46 0.37

54–60 2.104 10−3 2.091 10−3 0.61 0.43 0.37

60–70 1.492 10−3 1.480 10−3 0.55 0.44 0.38

70–80 9.851 10−4 9.738 10−4 0.69 0.49 0.43

80–100 5.525 10−4 5.474 10−4 0.62 0.49 0.44

100–150 1.918 10−4 1.901 10−4 0.63 0.53 0.65

150–200 4.891 10−5 4.860 10−5 1.26 0.72 0.63

200–300 1.081 10−5 1.075 10−5 1.88 1.40 1.33

300–800 3.985 10−7 3.966 10−7 4.20 2.04 1.32

Table 2. The measured normalized combined (electron and muon channels) cross section

(1/σfid)(dσfid/dpZT), inclusive in rapidity. The cross sections at Born and dressed levels are given

as well as the relative statistical (δStat) and total systematic (δSyst) for uncorrelated and corre-

lated sources.
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Figure 2. Summary of uncertainties for the yZ-integrated measurement, given as a percentage of

the central value of the bin. Electron channel (top), muon channel (middle), correlated uncertainties

(bottom).

– 13 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
5

 [GeV]Z

T
p

1 10
210

]
-1

 [
G

e
V

Z T
/d

p
fi
d

σ
 d

fi
d

σ
1
/

-810

-710

-610

-510

-410

-310

-210

-110

1

 ee→Z 

µµ →Z 

 ll→Z 

/dof = 12.3 / 252χ

Inclusive

ATLAS
-1

 Ldt=4.7 fb∫=7 TeV; s

 [GeV]Z

T
p

1 10
210

C
h
a
n
n
e
l 
/ 
C

o
m

b
in

e
d

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

 ee→Z 

µµ →Z 

 ll→Z 

/dof = 12.3 / 252χ

Inclusive

ATLAS
-1

 Ldt=4.7 fb∫=7 TeV; s
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Figure 4. The measured normalized cross section (1/σfid)(dσfid/dpZT) for 0 ≤ |yZ | < 1, as a

function of pZT for the electron and muon channels and the combined result (top). Ratio of the

electron and muon channels to the combined result (bottom). The uncertainty bands represent the

statistical, total uncorrelated and total uncertainties, from light gray to dark gray respectively.
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Figure 5. The measured normalized cross section (1/σfid)(dσfid/dpZT) for 1 ≤ |yZ | < 2, as a

function of pZT for the electron and muon channels and the combined result (top). Ratio of the

electron and muon channels to the combined result (bottom). The uncertainty bands represent the

statistical, total uncorrelated and total uncertainties, from light gray to dark gray respectively.
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function of pZT for the electron and muon channels and the combined result (top). Ratio of the

electron and muon channels to the combined result (bottom). The uncertainty bands represent the

statistical, total uncorrelated and total uncertainties, from light gray to dark gray respectively.
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The uncertainty on the predictions, estimated from the PDF uncertainties and renor-

malization and factorization scale variations, are in all cases much larger than the mea-

surement uncertainties. The disagreement between the data and the Fewz and Dynnlo

predictions is larger than the data uncertainties, reaching 10% around 50 GeV and diverging

at low pZT as expected from the absence of resummation effects in these calculations. Fewz

and Dynnlo agree with each other when using QCD renormalization and factorization

scales, µR and µF, defined as µR = µF = mZ and leading-order electroweak perturbative

accuracy. The influence of the QCD scale choice is studied with Dynnlo by using the

alternative dynamic scale EZ
T , defined as the sum in quadrature of mZ and pZT. The result-

ing pZT shape is in better agreement with the data for pZT > 30 GeV, but the normalization

remains low by 10% in this region. NLO electroweak corrections to Z+jet production [51]

are applied to the dynamic-scale Dynnlo prediction and lead to a decrease of the cross

section of 10% in the highest pZT bin.

The ResBos-GNW prediction agrees with the data within 5–7%; the prediction un-

certainties are defined from PDF, renormalization scale and factorization scale variations.

The ResBos-BLNY prediction, to which the previous ATLAS measurements [8, 9, 16]

were compared, is included for reference. The NNLO+NNLL calculation following ref. [21]

matches the data within 10–12%. The uncertainties on this prediction are defined from

resummation, renormalization and factorization scale variations; PDF uncertainties are

neglected. In both cases, the prediction uncertainties are almost sufficient to cover the

difference with the data.

Figure 8 shows the ratio of the pZT distributions predicted by different generators to

the combined measurements performed inclusively in Z rapidity, and in the three exclusive

Z rapidity bins described above. The Pythia and Powheg generators agree with the

data to within 5% in the 2 < pZT < 60 GeV range, and to within 20% over the full range.

Mc@nlo shows a similar level of agreement with the data for pZT < 30 GeV but develops

a discrepancy up to around 40% at the end of the spectrum. Sherpa and Alpgen agree

with the data to within about 5% for 5 < pZT < 200 GeV, but tend to overestimate the

distribution near the end of the spectrum.

10 Tuning of PYTHIA8 and POWHEG + PYTHIA8

The parton shower tunes presented below are performed to determine the sensitivity of the

measured pZT cross sections presented here to parton shower model parameters in state-of-

the-art MC generators, and to constrain the models by trying to achieve precise predictions

of vector boson production. The ATLAS φ?
η measurement [16] is also exploited as it is highly

correlated to pZT and is hence sensitive to the same model components.

The Pythia8 generator with the pT-ordered, interleaved parton shower is chosen for

these studies. Pythia8 is used in standalone mode and in a configuration interfaced to

Powheg. To minimize dependence on QED final-state corrections, the tunes use the

dressed-level measurement results. The study is restricted to the low pZT range, where

parton shower effects dominate. The tunes are performed for pZT< 26 GeV, which is found

to be most sensitive to the model parameters described below, and φ?
η < 0.29, which covers
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Figure 7. Left: comparison of the pZT distributions predicted by different computations: Fewz

and Dynnlo (top), ResBos (middle) and the NNLO+NNLL calculation of ref. [21] (bottom) with

the Born-level combined measurement, inclusively in yZ . Right: ratios between these predictions

and the combined measurement.

a similar transverse momentum range. The measurement inclusive in rapidity is used for

the tuning, and the compatibility of the tuned predictions with the data in the separate

rapidity bins is then evaluated.

For Pythia8, the parton shower model components under consideration include the

strong coupling constant used for the parton shower evolution αISR
S (mZ), and the parton

shower lower cut-off pT0 in the non-perturbative regime, implemented as a smooth damping

factor p2
T/(p2

T0 + p2
T). To populate the region below pT0, the partons initiating the hard

scattering process are assumed to have a primordial transverse momentum kT following
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Figure 8. Ratio of the pZT distribution predicted by different MC generators to the Born-level

combined measurement, for the inclusive measurement and for 0 ≤ |yZ | < 1, 1 ≤ |yZ | < 2 and

2 ≤ |yZ | < 2.4.

a Gaussian distribution with tunable width. The Pythia8 parton shower also includes

QED emissions, but the corresponding cut-off values and coupling strength are left to the

program defaults. The steerable parameters not used in the tuning are set to the values

defined by the tune 4C [35].

Powheg calculates the hardest (highest pT) QCD radiation provided that it is above a

transverse momentum threshold p2
T,min, which is a steerable parameter in the program. Be-

low p2
T,min, Powheg generates events without extra radiation and the phase space is popu-

lated by Pythia8. Therefore, the upper limit of the Pythia8 parton shower should match

the Powheg cut-off value. The tunes are performed using p2
T,min = 4 GeV2, corresponding

to pZT = 2 GeV. In addition, in order to avoid discontinuities in the matched spectrum, the

αS(mZ) value used to calculate the QCD radiation in Powheg should match αISR
S (mZ) in

Pythia; αS(mZ) = 0.118 is used as in the CT10 PDFs. Correspondingly the running of αS

in the parton shower calculation is set to NLO. The tuning of Powheg+Pythia8 hence

only varies the shower cut-off and the primordial kT in Pythia8. The other steerable

parameters not used in the tuning are set to the values defined by the 4C tune.

The tunes are performed using the Professor [52] package, which interpolates the de-

pendence of MC predictions on the model parameters as originally proposed in ref. [53].

Predictions for the pZT distribution are generated at randomly chosen parameter settings
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Parameter Variation Range Variation Range

Pythia8 tune Pythia8+Powheg tune

Primordial kT [GeV] 1.0–2.5 0.5–2.5

ISR αISR
S (mZ) 0.120–0.140 0.118

ISR cut-off [GeV] 0.5–2.5 0.5–3.0

ISR αS order LO NLO

Pythia8 base tune tune 4C tune 4C

Powheg cut-off [GeV2] — 4.0

Table 4. Parameter ranges and model switches used in the tuning of Pythia8 and

Pythia8+Powheg described in section 10.

Pythia8 Powheg+Pythia8

pZT φ?
η pZT φ?

η

Primordial kT [GeV] 1.74± 0.03 1.73± 0.03 1.75± 0.03 1.75± 0.04

ISR αISR
S (mZ) 0.1233± 0.0003 0.1238± 0.0002 0.118 (fixed) 0.118 (fixed)

ISR cut-off [GeV] 0.66± 0.14 0.58± 0.07 2.06± 0.12 1.88± 0.12

χ2
min/dof 23.9/19 59.9/45 18.5/20 68.2/46

Table 5. Results of the Pythia8 and Powheg+Pythia8 tuning to the pZT and φ?
η data.

(anchor points) in the ranges indicated in table 4. A fourth-order polynomial is used to

approximate the generator predictions between the anchor points. The optimal parameter

values are determined using a χ2 minimization between the interpolated generator response

and the data.

The sensitivity of the generator parameters to the pZT and φ?
η measurements is probed

by performing tunes of Pythia8 and Powheg+Pythia8 to each measurement separately.

As shown in table 5 both measurements have comparable sensitivity and yield compatible

tuned parameter values. As a further check of the compatibility between the pZT and

φ?
η measurements, the pZT-tuned and φ?

η-tuned predictions are compared to the measured

pZT distribution. The tuning uncertainty is obtained from variations of the eigenvector

components of the parameters error matrix over a range covering ∆χ2 = χ2
min/dof. Figure 9

shows that the tuned predictions agree with the measured cross sections within 2% for

pZT < 50 GeV, and with each other within the tuned parameter uncertainties.

Since the pZT and φ?
η observables provide similar sensitivity to the parton shower pa-

rameters and to avoid correlations between these measurements, the final tune optimally

combines the most precise independent single measurements, namely the muon channel

pZT measurement, and the electron channel φ?
η measurement. The same tuning range is

used. Table 6 shows the tune results and figure 10 shows the comparison of the tuned

predictions to the data. The final tunes are referred to as AZ and AZNLO for Pythia8

and Powheg+Pythia8 respectively. The tuned predictions agree with the measurement
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Figure 9. Comparison of the Pythia8 (top) and Powheg+Pythia8 (bottom) tuned predictions

based on the φ?
η and pZT measurements with the data, for dressed kinematics. The vertical dashed

lines show the upper limit of the tuning range.

to better than 2% in the range used for the tuning, and below pZT = 50 GeV. The primor-

dial kT and ISR cut-off parameters are essentially constrained by the data in the region

pZT < 12 GeV and not affected by the choice of upper bound for the tuning range. In

contrast, αISR
S (mZ) is tightly constrained for a given choice of range but its tuned value

varies by 2% when increasing the upper bound to 50 GeV. At higher transverse momen-

tum, discrepancies of around 15% for Pythia8 and 20% for Powheg+Pythia8 remain,
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Pythia8 Powheg+Pythia8 Base tune

Tune Name AZ AZNLO 4C

Primordial kT [GeV] 1.71± 0.03 1.75± 0.03 2.0

ISR αISR
S (mZ) 0.1237± 0.0002 0.118 (fixed) 0.137

ISR cut-off [GeV] 0.59± 0.08 1.92± 0.12 2.0

χ2
min/dof 45.4/32 46.0/33 —

Table 6. Final Pythia8 and Powheg+Pythia8 tuning results, and comparison to the Pythia8

base tune.
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Figure 10. Comparison of tuned predictions to the pZT and φ?
η differential cross sections, for

dressed kinematics and in the full rapidity range. Comparison of the Pythia8 generator with the

4C and AZ tunes to the muon-channel pZT data and electron-channel φ?
η data (top). Comparison

of the Powheg+Pythia8 set-up with the 4C and AZNLO tunes to the same data (bottom). The

vertical dashed lines show the upper limit of the tuning range.

indicating the limited accuracy of the NLO signal matrix element and suggesting the need

for contributions from higher parton multiplicity.

Tuned predictions based on the parameter values given in table 6 are produced in

the different Z rapidity bins and compared to the measured cross sections with the aim

of assessing how accurately the tune based on the inclusive measurement reproduces the

data in each Z rapidity bin. The results are shown in figure 11. A satisfactory description
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Figure 11. Tuned predictions based on table 6 for Pythia8 (left) and Powheg+Pythia8 (right)

for 0 ≤ |yZ | < 1 (top), 1 ≤ |yZ | < 2 (middle) and 2 ≤ |yZ | < 2.4 (bottom), compared to the

corresponding combined measurements, for dressed kinematics. The vertical dashed lines show the

upper limit of the tuning range.

across rapidity is obtained in the case of Pythia8; in the case of Powheg+Pythia8, the

prediction at low pZT undershoots the data for 0 ≤ |yZ | < 1, and overshoots the data for

2 ≤ |yZ | < 2.4. The inclusive tune thus appears as a compromise between the different

|yZ | regions in this case.

The sensitivity of the parton shower tune to other model components provided in

Pythia8, such as multiple parton interactions (MPI), which affect the event overall

hadronic activity, was studied by varying the corresponding parameters. No effect on
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the parton shower parameters is found. In order to compensate for the changes in energy

and particle flow induced by the modifications in the parton shower and primordial kT pa-

rameters, the pT threshold for the QCD 2→ 2 scattering processes used in MPI is changed

from 2.085 GeV (tune 4C) to 2.18 GeV for Pythia8, following the underlying event data

measured in Drell-Yan events by ATLAS [54]. For the Powheg+Pythia8 configuration,

the interleaving of MPI in the parton shower model in Pythia8 is adapted to also prop-

erly take into account the Powheg emissions. It is tuned in the same way as Pythia8

in standalone mode and an optimized value of 2.00 for the low-pT regularization of MPI is

found. Finally, comparing tunes based on the native Pythia8 QED final-state corrections

with Pythia8 results using Photos for QED final-state radiation, the results are found

insensitive to the differences in the QED FSR implementations.

A consistent description of the pZT and φ?
η data is reached with a single tune. Both

observables are also found to provide similar sensitivity to the parameters of interest.

The inclusive tune provides an accurate description of the different rapidity bins in

the case of Pythia8, while the agreement versus |yZ | is slightly worse in the case of

Powheg+Pythia8.

11 Conclusion

A measurement of the Z/γ∗ transverse momentum spectrum in the Z/γ∗ → e+e− and

Z/γ∗ → µ+µ− channels with the ATLAS detector is presented, using 4.7 fb−1 of LHC

proton-proton collision data at a centre-of-mass energy of
√
s = 7 TeV. Normalized differ-

ential cross sections as a function of pZT are measured for the range 0 < pZT < 800 GeV and

the individual channel results are combined. The measurement is performed inclusively in

rapidity, and for 0 ≤ |yZ | < 1, 1 ≤ |yZ | < 2 and 2 ≤ |yZ | < 2.4. The large data sample

allows a fine binning in pZT with a typical uncertainty on the combined result better than

1% for pZT < 100 GeV, rising to 5% towards the end of the spectrum.

The cross-section measurements are compared to pQCD and resummed predictions.

While Fewz and Dynnlo do not include resummation and the observed disagreement at

low pZT is expected, ResBos and the NNLO+NNLL prediction of ref. [21] marginally

agree with the data given the large uncertainties on these predictions. The data are

also compared to predictions from Pythia6-AUET2B, Powheg+Pythia6-AUET2B,

MC@NLO, Alpgen and Sherpa. The Pythia and Powheg generators agree with the

data to within 5% in the range 2 < pZT < 60 GeV and to within 20% over the full range,

whereas Mc@nlo shows a deficit of about 40% at the end of the measured spectrum.

Alpgen and Sherpa provide good agreement over a larger range, pZT < 200 GeV, but

overestimate the high end of the distribution. These patterns are compatible with what

was observed for the φ?
η measurement. Electroweak corrections and the choice of a dynamic

QCD scale were found to have a significant impact on the predictions at high pZT; incor-

porating these improvements provides a better description of the measured distribution in

the high pZT region.

The pZT and φ?
η measurements were used to tune the Pythia8 and Powheg+Pythia8

generators. Both measurements can be interpreted consistently in terms of the Z/γ∗ bosons
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transverse momentum distribution and provide similar sensitivity to parton shower model

parameters. The tuned predictions are in agreement with the data within 2% for pZT below

50 GeV. The best description is provided by Pythia8, which is also able to describe the

different rapidity intervals with a single tune.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff

from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Aus-

tralia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP,

Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and

NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Re-

public; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF,

European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG,

HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MIN-

ERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan;

CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and

NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and

ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ,
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A.K. Kopp48, K. Korcyl39, K. Kordas155, A. Korn77, A.A. Korol108,r, I. Korolkov12,
E.V. Korolkova140, V.A. Korotkov129, O. Kortner100, S. Kortner100, V.V. Kostyukhin21,
V.M. Kotov64, A. Kotwal45, C. Kourkoumelis9, V. Kouskoura155, A. Koutsman160a,
R. Kowalewski170, T.Z. Kowalski38a, W. Kozanecki137, A.S. Kozhin129, V. Kral127,
V.A. Kramarenko98, G. Kramberger74, D. Krasnopevtsev97, M.W. Krasny79, A. Krasznahorkay30,
J.K. Kraus21, A. Kravchenko25, S. Kreiss109, M. Kretz58c, J. Kretzschmar73, K. Kreutzfeldt52,
P. Krieger159, K. Kroeninger54, H. Kroha100, J. Kroll121, J. Kroseberg21, J. Krstic13a,
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G. Mikenberg173, M. Mikestikova126, M. Mikuž74, D.W. Miller31, C. Mills46, A. Milov173,
D.A. Milstead147a,147b, D. Milstein173, A.A. Minaenko129, I.A. Minashvili64, A.I. Mincer109,
B. Mindur38a, M. Mineev64, Y. Ming174, L.M. Mir12, G. Mirabelli133a, T. Mitani172,
J. Mitrevski99, V.A. Mitsou168, S. Mitsui65, A. Miucci49, P.S. Miyagawa140, J.U. Mjörnmark80,
T. Moa147a,147b, K. Mochizuki84, V. Moeller28, S. Mohapatra35, W. Mohr48, S. Molander147a,147b,
R. Moles-Valls168, K. Mönig42, C. Monini55, J. Monk36, E. Monnier84, J. Montejo Berlingen12,
F. Monticelli70, S. Monzani133a,133b, R.W. Moore3, A. Moraes53, N. Morange62, D. Moreno82,
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S.Yu. Sivoklokov98, J. Sjölin147a,147b, T.B. Sjursen14, H.P. Skottowe57, K.Yu. Skovpen108,
P. Skubic112, M. Slater18, T. Slavicek127, K. Sliwa162, V. Smakhtin173, B.H. Smart46,
L. Smestad14, S.Yu. Smirnov97, Y. Smirnov97, L.N. Smirnova98,ae, O. Smirnova80, K.M. Smith53,
M. Smizanska71, K. Smolek127, A.A. Snesarev95, G. Snidero75, S. Snyder25, R. Sobie170,h,
F. Socher44, A. Soffer154, D.A. Soh152,ad, C.A. Solans30, M. Solar127, J. Solc127, E.Yu. Soldatov97,
U. Soldevila168, E. Solfaroli Camillocci133a,133b, A.A. Solodkov129, A. Soloshenko64,
O.V. Solovyanov129, V. Solovyev122, P. Sommer48, H.Y. Song33b, N. Soni1, A. Sood15,
A. Sopczak127, B. Sopko127, V. Sopko127, V. Sorin12, M. Sosebee8, R. Soualah165a,165c,
P. Soueid94, A.M. Soukharev108, D. South42, S. Spagnolo72a,72b, F. Spanò76, W.R. Spearman57,
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121 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
122 Petersburg Nuclear Physics Institute, Gatchina, Russia
123 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
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(IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, United Kingdom
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
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t Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
u Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
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