Upper Limit on the Diffuse Flux of Ultrahigh Energy Tau Neutrinos from the Pierre Auger Observatory

(Pierre Auger Collaboration)

1Centro de Investigaciones en Láseres y Aplicaciones, CITEFA and CONICET, Argentina
2Centro Atómico Constituyentes, CNEA, Buenos Aires, Argentina
3Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica and CONICET, Argentina
4Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica and UTN-FRBA, Argentina
5Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina
6Departamento de Física, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and CONICET, Argentina
7Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and Instituto Balseiro (CNEA-UNC), San Carlos de Bariloche, Argentina
8Departamento de Física, FCEyN, Universidad de Buenos Aires and CONICET, Argentina
9Departamento de Física, Universidad Nacional de La Plata and Fundación Universidad Tecnológica Nacional, Argentina
10IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
11Instituto de Astronomía y Física del Espacio (CONICET), Buenos Aires, Argentina
12Pierre Auger Southern Observatory, Malargüe, Argentina
13Pierre Auger Southern Observatory and Comisión Nacional de Energía Atómica, Malargüe, Argentina
14Universidad Tecnológica Nacional, FR-Mendoza, Argentina
15Universidad Tecnológica Nacional, FR-Mendoza and Fundación Universidad Tecnológica Nacional, Argentina
16University of Adelaide, Adelaide, S.A., Australia
17Universidad Católica de Bolivia, La Paz, Bolivia
18Universidad Mayor de San Andrés, Bolivia
19Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, Brazil
20Pontificia Universidad Católica, Rio de Janeiro, RJ, Brazil
21Universidade de Sao Paulo, Inst. de Física, Sao Paulo, SP, Brazil
22Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
23Univ. Estadual de Feira de Santana, Brazil
24Universidade Estadual do Sudoeste da Bahia, Vitoria da Conquista, BA, Brazil
25Universidade Federal da Bahia, Salvador, BA, Brazil
26Universidade Federal do ABC, Santo André, SP, Brazil
27Univ. Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
28Univ. Federal Fluminense, Inst. de Física, Niterói, RJ, Brazil
29Charles University, Institute of Particle & Nuclear Physics, Prague, Czech Republic
30Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
31Institut de Physique Nucléaire, Université Paris-Sud, IN2P3/CNRS, Orsay, France
32Laboratoire AstroParticule et Cosmologie, Université Paris 7, IN2P3/CNRS, Paris, France
33Laboratoire de l’Accélérateur Linéaire, Université Paris-Sud, IN2P3/CNRS, Orsay, France
34Laboratoire de Physique Nucléaire et de Hautes Energies, Universités Paris 6 & 7, IN2P3/CNRS, Paris Cedex 05, France
35Laboratoire de Physique Subatomique et de Cosmologie, IN2P3/CNRS, Université Grenoble 1 and INPG, Grenoble, France
36Bergische Universität Wuppertal, Wuppertal, Germany
37Forschungszentrum Karlsruhe, Institut für Kernphysik, Karlsruhe, Germany
38Forschungszentrum Karlsruhe, Institut für Prozessdatenverarbeitung und Elektronik, Germany
39Max-Planck-Institut für Radioastronomie, Bonn, Germany
40RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
41Universität Karlsruhe (TH), Institut für Experimentelle Kernphysik (IEKP), Karlsruhe, Germany

PRL 100, 211101 (2008) PHYSICAL REVIEW LETTERS week ending 30 MAY 2008
The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth’s crust. Tau leptons from ν_τ charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of ν_τ at EeV energies. Assuming an E_ν^{-2} differential energy spectrum the limit set at 90% C.L. is $E_\nu^2 dN_\nu_\tau / dE_\nu < 1.3 \times 10^{-7}$ GeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$ in the energy range 2×10^{17} eV $< E_\nu < 2 \times 10^{19}$ eV.

DOI: 10.1103/PhysRevLett.100.211101
PACS numbers: 95.85.Ry, 95.55.Vj, 98.70.Sa

The detection of ultrahigh energy (UHE) cosmic neutrinos at EeV (1 EeV $\equiv 10^{18}$ eV) energies and above is a long-standing experimental challenge. Many experiments are searching for such neutrinos, and there are several ongoing efforts to construct dedicated experiments to detect them [1–3]. Their discovery would open a new window to the universe [4], and provide an unique opportunity to test fundamental particle physics at energies well beyond current or planned accelerators. The observation of UHE cosmic rays (UHECRs) requires that there exist UHE cosmic neutrinos, even though the nature of the UHECR particles and their production mechanisms are still uncertain. All models of UHECR origin predict neutrino fluxes from the decay of charged pions which are produced either in interactions of the cosmic rays in their sources, or in their subsequent interactions with background radiation fields. For example, UHECR protons interacting with the cosmic microwave background (CMB) give rise to the so-called “cosmogenic” or GZK neutrinos [5]. The recently reported suppression of the cosmic ray flux above $\sim 4 \times 10^{19}$ eV [6–8] as well as the observed correlation of the highest energy cosmic rays with relatively nearby extragalactic objects [9] both point to UHECR interactions on the infrared or microwave backgrounds during extragalactic propagation. These interactions must result in UHE neutrinos although their flux is somewhat uncertain since this depends on the primary UHECR composition and on the nature and cosmological evolution of the sources as well as on their spatial distribution [10,11].

Tau neutrinos are suppressed in such production processes relative to ν_e or ν_μ, because they are not an end product of the charged pion decay chain and far fewer are made through the production and decay of heavy flavours such as charm. Nevertheless, because of neutrino flavor mixing, the usual 1:2 ratio of ν_e to ν_μ at production is altered to approximately equal fluxes for all flavours after travelling cosmological distances [12]. Soon after the discovery of neutrino oscillations [13] it was shown that ν_τ entering the Earth just below the horizon (Earth-skimming) [14–16] can undergo charged-current interactions and produce τ leptons. Since a τ lepton can travel tens of kilometers in the Earth at EeV energies, it can emerge into the atmosphere and decay in flight producing an nearly horizontal extensive air shower (EAS) above the detector. In this way the effective target volume for neutrinos can be rather large.

The Pierre Auger Observatory [17] has been designed to measure UHECRs with unprecedented precision. Detection of UHECRs is being achieved exploiting the two available techniques to detect EAS, namely, arrays of surface particle detectors and telescopes that detect fluorescence radiation. UHE particles such as protons or heavier nuclei interact high in the atmosphere, producing showers that contain muons and an electromagnetic component of electrons, positrons, and photons. This latter component reaches a maximum at an atmospheric depth of order 800 g cm$^{-2}$, after which it is gradually attenuated. Inclined showers that reach the ground after travelling through 2000 g cm$^{-2}$ or more of the atmosphere are dominated by muons arriving at the detector in a thin and flat shower front.

The surface detector (SD) array of the Pierre Auger Observatory can be used to identify neutrino-induced showers [18–20]. The fluorescence detectors can also be used for neutrino searches [21,22] but the nominal 10% duty cycle of the fluorescence technique reduces the sensitivity. The electromagnetic component of neutrino-induced showers might reach the ground if the shower develops close enough to the detector, producing a signal which has a longer time duration than for an inclined shower initiated by a nucleonic primary. Thus close examination of inclined showers enables showers developing near to the ground and those produced early in the atmosphere to be distinguished. This allows the clean identification of showers induced by neutrinos, and, in particular, those induced by ν_τ, with the SD [23–25].

Here we present the result of a search for deep, inclined, showers in the data collected with the SD of the Pierre Auger Observatory. Identification criteria have been developed to find EAS that are generated by τ leptons emerging from the Earth. No candidates have been found in the data collected between 1 January 2004 and 31 August 2007—equivalent to roughly 1 yr of operation of the planned full array.

The construction of the Southern Pierre Auger Observatory in Mendoza, Argentina, is currently close to being completed. It consists of an array of water Cherenkov tanks arranged in a hexagonal grid of 1.5 km covering an area of 3000 km2 that is overlooked by 24 fluorescence telescopes located at four sites around the perimeter. The array comprises 1600 cylindrical tanks of 10 m2 surface containing purified water, 1.2 m deep, each instrumented with 3×9^9 photomultiplier tubes sampled.
by 40 MHz Flash Analog Digital Converters (FADCs) [17]. Each tank is regularly monitored and calibrated in units of vertical equivalent muon (VEM) corresponding to the signal produced by a μ traversing the tank vertically [26].

The procedure devised to identify neutrino candidate events within the data set is based on an end-to-end simulation of the whole process, from the interaction of the ν_τ inside the Earth to the detection of the signals in the tanks. The first step is the calculation of the τ flux emerging from the Earth. This is done using a simulation of the coupled interplay between the τ and the ν_τ fluxes through charged-current weak-interactions and τ decay, taking into account also the energy losses due to neutral current interactions for both particles, and bremsstrahlung, pair production and nuclear interactions for the τ lepton. The emerging τ flux can be folded with the τ decay probability to give the differential probability of τ decaying in the atmosphere as a function of its energy and decay altitude, $d^2p_{\tau}/dE\tau dh_\tau$.

Modeling of the showers from τ decays in the atmosphere is performed using the AIRES code [27]. The TAUOLA package [28] is used to simulate τ decay and obtain the secondary particles and their energies. Showers induced by the products of decaying τs with energies between 10^{17} to 3×10^{20} eV are simulated at zenith angles ranging between 90.1° and 95.9° and at an altitude of the decay point above the Pierre Auger Observatory in the range 0–2500 m. Finally, to evaluate the response of the SD to such events, the particles reaching the ground in the simulation are stored and injected into a detailed simulation of the SD [29].

A set of conditions has been designed and optimized to select showers induced by Earth-skimming ν_τ, rejecting those induced by UHECR. The 25 ns time resolution of the FADC traces allows unambiguous distinction between the narrow signals induced by muons and the broad signals induced by the electromagnetic component (Fig. 1). For this purpose we tag the tanks for which the main segment of the FADC trace has 13 or more neighboring bins over a threshold of 0.2 VEM, and for which the ratio of the integrated signal over the peak height exceeds 1.4. A neutrino candidate is required to have over 60% of the triggered tanks satisfying these “young shower” conditions as well as fulfilling the central trigger condition [17] with these tanks. In addition the triggered tanks are required to have elongated patterns on the ground defining the azimuthal arrival direction (as expected for inclined events) by assigning a length and a width to the pattern and restricting its ratio (length/width > 5). Finally, we calculate the apparent speed of the signal moving across the ground along the azimuthal direction, using the arrival times of the signals at ground and the projected distances between tanks. The average speed, as measured between pairs of triggered stations, is required to be compatible with that expected for an event traveling close to the horizontal direction by requiring it to be very close to the speed of light, in the range (0.29, 0.31) m ns$^{-1}$ with an r.m.s. scatter below 0.08 m ns$^{-1}$. These conditions are found to retain about 80% of the simulated τ showers triggering the SD.

The final sample is expected to be free of background from UHECR-induced showers. In Fig. 2, we show the distributions of these discriminating variables for real events and simulated τ showers.

Over the period analyzed, no candidate events were found that fulfilled the selection criteria. Based on this, the Pierre Auger Observatory data can be used to place a limit on the diffuse flux of UHE ν_τ. For this purpose the exposure of the detector must be evaluated. The total exposure is the time integral of the instantaneous aperture which has changed as the detector has grown while it was being constructed and set into operation.

Calculation of the effective aperture for a fixed neutrino energy E_ν involves folding the aperture with the conversion probability and the identification efficiency. The identification efficiency ϵ_{ff} depends on the τ energy E_τ, the altitude above ground of the central part of the shower h_c (defined at 10 km after the decay point [19]), the position (x, y) of the shower in the surface S covered by the array, and the time t through the instantaneous configuration of the array. The expression for the exposure can be written as

$$\text{Exp} = \int d\Omega \int_{0}^{E_\nu} dE_\tau \int_{0}^{\infty} dh_c \frac{d^2p_{\tau}}{dE_{\tau}dh_c} B_\tau,$$

where

$$B_\tau(E_\tau, h_c) = \int dt \int_S dxdy \cos \theta \epsilon_{ff} [E_\tau, h_c, x, y, t],$$

where θ and Ω are the zenith and solid angles.
The exposure is calculated using standard Monte Carlo techniques (MC) in two steps. The first integral deals with the detector-dependent part, including the time evolution of the array over the period T considered [Eq. (2)]. The integral in E_{ν} and h_{ν} involves only the differential conversion probability and B_{ν} [Eq. (1)]. The estimated statistical uncertainty for the exposure is below 3%.

The MC simulations require some physical quantities that have not been experimentally measured in the relevant energy range, namely, the ν interaction cross-section, the τ energy loss, and the τ polarization. The main uncertainty in these comes from the QCD structure functions in the relevant kinematic range. We estimate the uncertainty in the τ energy losses are dominated by the τ photonicuclear cross section. The 40% difference among existing calculations for the τ energy losses [21,31,32], which use different structure functions, is used as the systematic uncertainty. The two extreme cases of polarization give 30% difference in exposure and we take this as the corresponding uncertainty. The relevant range of the structure functions in the allowed range explored in [30]. The uncertainties in the τ energy losses are dominated by the τ photonicuclear cross section. The 40% difference among existing calculations for the τ energy losses [21,31,32], which use different structure functions, is used as the systematic uncertainty.

The Earth-skimming technique used with data collected at the surface detector array of the Southern Pierre Auger Observatory, provides at present the most sensitive bound on neutrinos at EeV energies. This is the most relevant

The limit is applicable in the energy range $2 \times 10^{17} - 2 \times 10^{19}$ eV, with a systematic uncertainty of about 15%, over which 90% of the events are expected for $f(E_{\nu}) \propto E_{\nu}^{-2}$. In Fig. 3, we show our limit adopting the most pessimistic scenario for systematic uncertainties. It improves by a factor ~ 3 for the most optimistic one. For energies above 10^{20} eV, limits are usually quoted as $2.3/\text{Exp} \times E_{\nu}$ for different energy values (differential format), while at lower energies they are usually given assuming an E^{-2} flux (integrated format). We plot the differential format to demonstrate explicitly that the sensitivity of the Pierre Auger Observatory to Earth-skimming ν_{τ} peaks in a narrow energy range close to where the GZK neutrinos are expected.

![FIG. 3. Limits at 90% C.L. for a diffuse flux of ν_{τ} from the Pierre Auger Observatory. Limits from other experiments [36–43] are converted to a single flavor assuming a 1:1:1 ratio of the 3 neutrino flavours and scaled to 90% C.L. where needed. Two different formats are used: differential (squares) and integrated (constant lines). The shaded curve shows the range of expected fluxes of GZK neutrinos from Refs. [10,11], although predictions almost 1 order of magnitude lower and higher exist.](image-url)
energy to explore the predicted fluxes of GZK neutrinos. The Pierre Auger Observatory will continue to take data for about 20 years over which time the limit should improve by over an order of magnitude if no neutrino candidate is found.

The successful installation and commissioning of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Comisión Nacional de Energía Atómica, Fundación Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Ministério de Ciência e Tecnologia (MCT), Brazil; Ministry of Education, Youth and Sports of the Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Régional Ile-de-France, Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences de l’Univers (SDU-INSU/CNRS), France; Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Württemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium für Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium für Wissenschaft, Forschung und Kunst, Baden-Württemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grants No. 1 P03 D 014 30, No. N202 090 31/0623, and No. PAP/218/2006, Poland; Fundação para a Ciência e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejería de Educación de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Educación y Ciencia, Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract No. DE-AC02-07CH11359, National Science Foundation, Grant No. 0450996, The Grainger Foundation USA; ALFA-EC/HELEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, and UNESCO.