
CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

25 Years of Model-Driven Web Engineering.
What we achieved, What is missing

Gustavo Rossi1, Matias Urbieta1, Damiano Distante2, Jose Matias Rivero1, Sergio

Firmenich1
1LIFIA, F. de Informática, UNLP and Conicet, Argentina

[gustavo, matias.urbieta, jose.matias.rivero, sergio.firmenich]@lifia.info.unlp.edu.ar
2Unitelma Sapienza University, Rome, Italy

damiano.distante@unitelma.it

Abstract
Model-Driven Web Engineering (MDWE) approaches aim to improve the Web applications
development process by focusing on modeling instead of coding, and deriving the running
application by transformations from conceptual models to code. The emergence of the
Interaction Flow Modeling Language (IFML) has been an important milestone in the
evolution of Web modeling languages, indicating not only the maturity of the field but also
a final convergence of languages. In this paper we explain the evolution of modeling and
design approaches since the early years (the 90’s) detailing the forces which drove that

evolution and discussing the strengths and weaknesses of some of those approaches. A brief
presentation of IFML is accompanied with a thorough analysis of the most important
achievements of the MDWE community as well as the problems and obstacles that hinder
the dissemination of model-driven techniques in the Web engineering field.

1-Introduction and Motivation

The explosive growth of the Web as a platform for building software applications and as a
means for communication, entertainment, education and commerce has dramatically changed
the landscape of software development. “Conventional” (pre-Web) applications followed a
more or less clear life-cycle in which maintenance and evolution were measured in years,
end-users were well known by developers and were many times “captive”, and interface and

interaction issues were not decisive; meanwhile, the Web introduced a new set of challenges.
Web application requirements vary at a very fast pace, we have to deal with thousands of
unknown users which access millions of information items and who expect personalized
contents and functionality. These users are seldom loyal and they expect easy to use and
effective applications. At the same time, underlying technologies, frameworks, and
programming languages have been continuously evolving. To make matters worse, the new
generation of user devices, i.e., smart phones and tablets, pushed the set of challenges further.
As a consequence, development teams suffer more stress since they need to deliver running
applications with frequently unstable requirements in short time; moreover, these

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

applications must run in a huge variety of devices on top of different, and many times
immature, frameworks. Very different to the “old” days, developers have become polyglot

since they need to know many programming languages to build single high performance
applications, for which even emerging write once, deploy anywhere frameworks fall short.
Customers, meanwhile, have learned to use the Web and are each day more demanding, since
they have access to applications which are similar to what they need and therefore can easily
imagine new and many times more sophisticated features.
The first attempt to face the chaotic development of Web applications was the emergence of
the Web Engineering field [23]. Web engineering has been defined as the application of
systematic, disciplined and quantifiable approaches to development, operation, and
maintenance of Web-based applications.
While it is not the purpose of this paper to discuss the interesting relationships between
Software Engineering and Web Engineering, it is true that there has been debate about this.
Clearly Web Engineering uses (must use indeed) the techniques and principles that Software
Engineering developed during decades; at the same time, however, as said before, the Web
brings new kinds of problems that did not exist previously. In this sense, Web Engineering
uses techniques of information engineering, hypertext and hypermedia design, information
retrieval and data mining, graphic and interaction design, etc. Both Software Engineering and
Web Engineering involve software development and its life cycle (including maintenance
and evolution [47]), and so they share an important theoretical and practical corpus; however,
Web Engineering must go beyond this.
One of the most important common problems of both disciplines is the need to describe and
build systems using models as a way to solve some of the previously discussed problems. In
this direction, Model-Driven Software Engineering-MDSE [6] was defined as a software
development approach that focuses on the creation of domain models, highlighting abstract
representations of the knowledge and activities in an application domain rather than in the
algorithmic concepts. Models in the MDSE can be used to generate running applications in
general by means of incremental transformations of these models that end up with source
code generation. In this paper we discuss the main results of one specific sub-area of MDSE,
the so called Model-Driven Web Engineering (MDWE) [65].
MDWE (as well as its “father” discipline Model-Driven Software Engineering-MDSE) [9]
deals with those approaches which aim to generate running Web applications by transforming
conceptual models onto models which are understood by computers (e.g., programs). The
most important examples of this paradigm are Web application models, i.e., models which
describe different aspects of the Web application; therefore, one of the many facets of
MDWE has been the development of Web modeling languages, those languages that allow
building Web application models. These languages are usually accompanied by a set of
guidelines (methods) for their use and the tooling that support the previously-mentioned
transformations.
The most important contributions of MDWE approaches to the more general area have been
mainly the identification of modeling concerns which are specific to the Web domain, such

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

as navigation and user interface/interaction. Specifically, as we will show in this paper the
techniques for dealing with the latter concern (interface/interaction) while present in every
interactive application can be considered in some way the most important contribution of
MDWE approaches to the software engineering field. MDWE approaches have shown how
a clear separation of these concerns from the most “conventional” ones’ favor modularity
and hence evolution. Additionally, MDWE approaches brought to the surface several
concepts which had been “lost” after the emergence of the Web, particularly those related

with the hypermedia paradigm (from which the Web was inspired).
Additionally, and as described elsewhere [65], the MDWE discipline had to deal with a
myriad of new issues as well as the adaptation of some of the existing solutions in the
software engineering and in the MDSE field. Examples of this are: the relationships among
the concepts in the Model-Driven Architecture (MDA) approach and the architectural
variants in the Web, the need of different meta-models for specific concerns in Web
applications development, the emergence of service, social and cloud-computing and its
impact in the definition of models, the impact of multidisciplinary aspects in the development
of models, the emergence of new kinds of stakeholders for the definition of requirements,
etc..
Figure 1 summarizes in graphical form the containment relationships between the different
disciplines that we have mentioned so far.

SE

MDSE

MDWE

WE
MDA

UML

BPMN

HDM

OOHDM

WAE

IFML

UWE

RMM

MagicUWE

WebRatio

UWA

WebSpec

PSM

MOF M2M

PIM
MOF2T

QVT Integranova

Rux-Tool

User Stories
Software

Requirement

Specification

Eclipse Embedded

systems

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

Figure 1: Relationships between Software Engineering (SE), Web Engineering (WE),
Model-Driven Software Engineering (MDSE), Model-Driven Web Engineering (MDWE),

and Model-Driven Architecture (MDA)

Since the early 90’s many Web (at first Hypermedia) [37, 45, 94] modeling languages were
developed and a lively community arose among those groups working in Web modeling
issues. All these approaches tried to address the different features that Web applications
support; to name a few: varying users’ profiles, dynamic contents, rich user interaction,

business processes, personalization and later mobility, social features, etc.
While the availability of a great number of different and heterogeneous approaches enriched
the community understanding of the problem and helped to answer existing research
questions, it also hindered the adoption of these technologies by developers. Fortunately in
2013, the Object Management Group (OMG) [128] adopted the Interaction Flow Modeling
Language (IFML) [120] as the standard approach to describe the interaction features of Web
(and other kind of interactive) applications, making it part of the set of software modeling
standards like the Unified Modeling Language (UML) [134], the Business Process Modeling
Notation (BPMN) [114], etc.
This paper describes the long path since the early modeling languages to the current state of
the art, by focusing on which are the main achievements and what is still missing in the
MDWE discipline. We briefly discuss the forces which drove this interesting evolution
together with the most important milestones. The paper doesn’t pretend to be a survey of

existing methodologies and languages nor to describe any of those approaches with detail;
rather than that, we try to explain the why’s and how’s of the different steps made by the
community and the most outstanding products of the community knowledge. The reader can
refer to the many excellent surveys on the field such as [107] or to the enormous amount of
material describing specific approaches. A thorough literature review can be found in [32].
Also, and for the sake of conciseness we do not address quality issues which are of course
important to the field. A detailed presentation of these issues can be found in [73]. There are
other areas in the Web engineering field such as Web Services (specifically models for Web
services) that have been addressed elsewhere [87] .
The paper is divided in two major parts. In the first part we briefly review the most important
milestones to reach to the current state of the art. In Section 2 we detail the first modeling
approaches in the field, and briefly discuss the taxonomy of forces that drove evolution.
Section 3 discusses the first generation of specific Web modeling notations and methods. In
Section 4 we dive in the language jungle of the first ten years of the new century. Section 5
shows how the community followed the road to a modeling standard. The second part is
devoted to the achievements and problems to be solved. Section 6, lists the main
achievements of the community beyond the main product (the IFML standard), while Section
7 discusses what is still missing in MDWE. We present our conclusions in Section 8.

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

2-Context and Forces

In the late 80’s and early 90’s we witnessed an explosion of research in hypermedia; the

hypermedia paradigm, which gave birth to the Web, has been conceived many years before
but it was the advent of the CD-ROM and multimedia in the 80´s which allowed some
popularity of this way of accessing information.
Hypermedia (a multimedia extension to hypertext) has been defined as a paradigm for
representing and accessing information [70]. Information is represented and stored in nodes,
and nodes are related by links. The resulting graph can be then traversed by following these
links from node to node. Nodes contain anchors for links which indicate those nodes’ areas

from where navigation can proceed. Nodes can also be the host of access structures such as
indexes, which help to introduce hierarchical structures in the hypermedia graph.
Originally, hypermedia applications (i.e., specific hypermedia graphs in an application
domain, e.g., a museum) were developed in a handcrafted way; however, it soon became
apparent that this approach suffered the same kinds of problems that programs suffer
(difficult to detect errors, complicated maintenance, etc.). To address these issues, similar to
programming and database development, the hypermedia community developed several
approaches to raise the level of abstraction in which these systems were built.
It is interesting to mention here that these early approaches were originated in groups with
different backgrounds (e.g. databases, software engineering, human computer interaction and
artificial intelligence). All of them recognized immediately the impact of interface issues,
showing a first glance of the multidisciplinary aspects that were common a bit later in Web
applications development. Additionally, these approaches emerged from groups that were
used to the idea of models in their own disciplines and the differences between these
approaches had to do with the nature of these models, e.g., entity/relationship, object-
oriented, etc.
In this section, we briefly survey the main approaches for hypermedia design which were the
roots of the first generation of Web design methods. We also describe the interleaving of
forces which shaped all these methods.

2.1 Historical background: Early Hypermedia design approaches

Perhaps the first and most cited hypermedia design approach was the Hypermedia Design
Model (HDM) published in 1993 [38], inspired by the E/R approach. The most important
contribution of HDM was not the notation, which was not very expressive, but the ideas
behind the approach, mainly the need to model content navigation using the primitives of
node and link, and the need to separate design from implementation. The other relevant
hypermedia design approach was the Relation Management Methodology (RMM) [45],
which improved the ideas of HDM by enriching the entities with attributes and considering
relationships as first-class citizens. Additionally, RMM introduced for the first time the idea
that navigation and user interface were different concerns and that several interface issues

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

(e.g., how to limit the amount of information presented to the user in a screen) were critical
and should be dealt with during design, in this case using the concept of slice of an entity.
RMM was also the first approach to provide tool support for transforming a design model
into a running hypermedia application [24]. The systematic analysis and design of
relationships was also considered by other authors [110] which unfortunately was neither
adopted by other approaches, nor considered in the design of Web applications in which links
(the realization of relationships) are at the core of the applications’ functionality.

2.2 Forces

There are different forces that have driven the evolution of Web engineering methods. They
interleave in different ways and many times it is difficult to determine which of them caused
a particular step in the evolution, e.g., a new method or notation, new primitives in a specific
method or the identification of shortcomings in a particular approach. We can identify four
main types forces (that may be surely sub-classified):

1. Device and network advances (e.g., mobile phones, touch screens, network
connectivity).

2. Software technology evolution (e.g., new HTML versions, Web software frameworks
like JSF1 or AngularJS2).

3. User or market requirements (e.g., the need for personalization, support for business
processes, volatile functionalities, or the creation of contents by end-users).

4. Better understanding of the design process and concerns (e.g., recognizing the need
for separation of concerns, for more expressive notation, semantics, etc.).

If we observe how our field evolved in the last 20 years, it shows a similar pace regarding
these forces than what happened in other fields (e.g., the object-oriented field). The Web was
a research product which could exist because of the improvement of the internet and the
needs of researchers to share documents; meanwhile software and methodological support
for business processes was triggered by market and users’ requirements. Sometimes,
conceptual abstractions might have arisen even before the technology supported them
reasonably: this can explain how many of the ideas of the mobile or context-aware Web
(similar to the field of context-aware computing) such as [18, 33] which were previous to the
smart phones, tablets or even Wi-Fi connectivity have not been fully implemented in concrete
applications, as we will discuss later. However, similarly to what happened in other research
areas (such as databases and programming), we can observe that, in general, methods and
notations came after low level languages or tools support. And while in our field the first
three forces continue to evolve, it seems that we reached a point of stability in the
understanding of the design process.

1 Java Server Faces, https://jcp.org/aboutJava/communityprocess/final/jsr344/index.html
2 AngularJS, https://angularjs.org

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

3-First Generation of Model-Driven Web Engineering approaches

During the mid-90’s hypermedia design approaches evolved into Web design approaches;
this was caused by the rapid growth of the Web platform and by the understanding that Web
applications were much more dynamic than the hypermedia applications they were trying to
support, such as kiosks, or CD-ROM based systems.
The Object-Oriented Hypermedia Design Method (OOHDM) [93] formally introduced the
idea that domain, navigation and interface models should be separated (although related)
since they represented different concerns. Additionally, it introduced the idea that objects of
the same domain model could be navigated differently (by the definition of different
navigation models) and that different interaction and interface facilities could be built for the
same navigation model, e.g., to support varied presentation devices. OOHDM also
introduced a notation for navigational contexts [93] and considered access structures (such
as menu and indexes) as first-class citizens at the same level of nodes and links early
introduced by HDM. Interface and interaction issues beyond navigation were specified using
Abstract Data Views (ADVs) and ADV charts [19]. Though originally based on the Object
Management Technique (OMT) [88], it moved to UML when UML arose. However, the
notation was in part proprietary.
Finally, together with the new notation, OOHDM comprised a set of process heuristics
ranging from the typical waterfall to the iterative and incremental styles [52]. However, like
other model-driven approaches, the process was mostly thought to be used in a waterfall way.
The main contribution of OOHDM was not its object-oriented nature (which of course served
to cleanly describe relationships between modeling concerns) but the idea that a Web
application was a (navigational) view built on top of a domain model. This idea was used
subsequently by all Web design approaches. Further separation of interface and interaction
issues (in different models) was an issue under debate for years in the community.
Another contribution of OOHDM was the introduction of the Web patterns concept [84] as
a means to reuse navigation and interface designs. The idea that Web models comprise a
domain, a navigational and an interaction/interface model, helped to understand that Web
patterns might also exist in the three different design concerns. Therefore, it was a direct
consequence of a modeling strategy. Many Web patterns were discovered by different groups
[39, 67, 86]. Some of these patterns were later incorporated in different design notations
either as primitives or model annotations.
One of the main drawbacks of OOHDM was that it had poor support for automatic (or semi-
automatic) generation of running Web applications, although some support was later built in
the context of the Model-Driven Architecture (MDA) style [91].
The Web Applications Extension (WAE) [16] extended UML with some stereotypes to
represent client and server pages, forms, client script objects, links, etc. While WAE
recognized the software engineering issues behind Web applications, it did not address the
major concerns of these applications clearly. One of the main reasons of this drawback might

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

have been the fact that WAE was thought with implementation technologies (such as ASP or
JSP) in mind. As a consequence, the impact of WAE in the literature was minor and there
was no movement on this approach after its second version (WAE 2) in 2002 [17] .
Different to WAE, the Unified Web Engineering (UWE) [42] approach represented a major
step forward. It was also object-oriented but its notation was fully based on UML. While still
dividing the design process in three main activities: domain or application modeling,
navigation design, and presentation design, UWE extended UML in a conservative way (not
modifying the meta-model but using stereotypes) and used the whole UML notation starting
from requirements, with an extension to the use cases notation. The next major contribution
of UWE was its support for deriving a Web application from design models via model-to-
model and model-to-code transformations [62]. Additionally, UWE introduced the idea of
modeling the user in order to support different strategies of application adaptation [50].
Though originally published in 2000, we consider the Web Modeling Language (WebML)
[14] as a first generation language since it also helped to shape the subsequent approaches. It
also separated data modeling from navigation design (called hypertext design in WebML)
although interface and interaction models were not considered in its first version. WebML
privileged entity-relationship modeling and later moved to UML models. While its hypertext
notation was proprietary, it was simple and in many ways it was more expressive than
OOHDM and UWE, incorporating some features that the previous approaches relegated to
presentation models. WebML’s tool support, WebRatio [138] (which was also the name of
the spin-off company created to support the language) was easy to use, powerful and well-
advertised. Additionally, the WebML support group was very active and therefore many
extensions were built in the next few years (See Section 4). Moreover, as we will discuss
later, WebML evolved seamlessly into the IFML standard.
Summarizing, the first group of modeling approaches shaped the modeling space of Web
applications by defining the main concerns and the concepts that needed to be modeled in
each one. These approaches also showed that model-driven development was feasible and
provided tools (conceptual and technological) to support this process. Figure 2 shows a
timeline of these contributions.

Figure 2: Contributions of the first generation of MDWE approaches

1990 2001

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

1995

RMM

Relations as first-class

1991

HDM

Links abstractions

Design principle

1995

OOHDM

Navigational views and contexts

ADV

2000

WebML

Friendly Visual Language

Mature supporting tool

2001

UWE

UML-based approach

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

4-Modeling Languages in the New Century

From 2000 we witnessed an explosion of methods and modeling approaches for Web
application development as well as extensions to the abovementioned approaches. Many of
them were motivated by some combination of the forces presented in Section 2; others were
just different notations with the same features of the methods presented in the 90’s. Here, we

just enumerate some of them together with their motivations. A very thorough analysis of the
complete literature can be found in [107].
For the sake of clarity, we separate the methods in two groups: those which introduced new
features motivated by either new users’ requirements or technological advances (e.g.,
personalization, support for semantic Web applications, business processes, etc.), and those
which introduced better support for the life cycle (e.g., requirements specification, better
separation of concerns, improved meta-modeling and transformations, etc.). Of course it
might happen that some methods appear in the two sub-sections. Again, the intention is to
give meaningful examples rather than to mention all approaches.

4.1 Methods introducing new features

In the early 2000’s several methods introduced features for dealing with personalization and
some kind of context-awareness. OOHDM [83], WebML [13], and UWE [4] were slightly
improved in that direction. From the new methods, an outstanding role was played by the
Ubiquitous Web Applications approach (UWA) [33] since it claimed to consider ubiquity in
all design dimensions. The work on UWA was remarkable and many interesting extensions
were developed, such as UWA+ [6] and UWAT+ [26, 28]. As mentioned in Section 2.2, this
is an interesting case where computing abstractions and understanding of a technology came
much before the time in which this technology was widely available. This mismatch might
be the cause why many of the UWA concepts were not applied immediately or even re-
invented later. A complete and thorough survey on methods’ support for ubiquity can be
found in [95].

Another interesting achievement for methods was the introduction of Semantic Web features
(such as an extensive use of ontologies and the use of RDF3 to represent models). The more
representative approaches were Hera [105], the Semantic Hypermedia Design Method
(SHDM, an evolution of OOHDM) [96] and the Web Semantics Design Method (WSDM,
an evolution of the Web Site Design Method) [97].

The problem of designing complex workflows (typical in business processes) was discussed
very early in the MDWE community and therefore support for representing business

3 Resource Description Framework (RDF), https://www.w3.org/RDF/

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

processes was soon available in UWE [48], OOHDM [92] and WebML [10]; UWA+ [6] and
UWAT+ [6, 28] extended the UWA approach with better support for business processes.

To illustrate the expressive power of MDWE approaches and the maturity of the community,
almost each new technological possibility was soon supported by modeling approaches; we
illustrate here the case of RIA [29] and Mashups [22].

Many Web modeling approaches such as OOHDM [99], WebML [7] and OOH [43]
improved their modelling primitives to specify interaction features by embracing Rich
Internet Applications (RIA) features, those Web applications with advanced interaction
features. The RUX method [80] provided support for improving both WebML and UWE
with RIA features.

In the case of Mashups, almost when the first programming approaches (such as Yahoo’s)

for Mashups appeared, researchers in the MDWE field devised new modeling approaches
[21, 55, 81]. A thorough analysis of this topic is presented in [22]. Figure 3, summarizes the
contributions of the previously mentioned approaches.

Figure 3: Timeline describing contributions in the new century

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

4.2 Improving modeling and design issues

During the last decade, the MDWE community gained in understanding of the methods’

weaknesses regarding life cycle coverage. Many methods also improved their formal basis,
by incorporating concepts and techniques developed in the MDSE field.

4.2.1 Life cycle coverage

While most methods supported the modeling of the different Web application concerns and
the automatic (or semi-automatic) generation of running applications, they didn’t usually

cover requirement elicitation and specification. In some cases, the method assumed that
requirements were captured and represented using some existing technique (e.g., use cases
or user stories) but soon it became clear that certain requirements (e.g., navigation or
interface) could not be easily represented in this way.
As previously commented, UWE defined a specific UML profile [136] for improving use
case specifications. OOHDM incorporated User Interaction Diagrams (UIDs) [106], a state
machine like notation for navigation requirements. OOWS defined a model-driven approach
to map Web requirements onto design models [101]. Navigational Development Technique
(NDT) [30], meanwhile, was originally devised to deal with Web applications requirements,
and it later evolved into a full-fledged approach. WebSpec [58] provided support for
specifying navigation and interaction requirements and for mapping them onto WebML
models. Nice surveys of approaches for specifying requirements in Web applications can be
found in [32, 103].

In [63] the authors presented WebSA (Web Software Architecture), a novel approach to
address architectural issues in the model-driven process, “merging” them with the

application’s functional models, and applying the corresponding transformations to generate
the running application.

Testing (including early testing) and maintenance were not addressed in the first generation
of MDWE proposals but were later discussed in several approaches [35, 57, 69]; a thorough
survey can be found in [20].

Additionally, many MDWE approaches attacked different aspects of the realization of Web
applications; a remarkable aspect that was introduced during this new century is the
specification of Web Services (WS) in the context of MDWE (beyond the specification of
WS, their choreographies, etc.). WebML improved its notation to support Web Services [8];
similarly, OOWS incorporated WS in its design repertoire.

4.2.2 Improving conceptual support for MDWE

The continuous advance on model-driven engineering technology contributed with the
improvement of MDWE approaches. Perhaps the most important of these advances was the

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

emergence of the Model Driven Architecture (MDA) standard [123] defined in 2001 by the
OMG. In MDA, system functionality is defined using a Platform Independent Model (PIM)
described using an appropriate Domain-Specific Language (DSL), for example UML. The
PIM is then transformed into a Platform Specific Model (PSM) by means of model
transformations to finally generate the source code of the application. The PSM might be
different for different implementation platforms (e.g., Java, .Net, etc.). PIMs and PSMs are
defined using modeling languages that are described using a corresponding meta-model and
transformations are (or can be) described also using a transformation meta-model.
MDA is supported by a set of additional OMG standards, including the Meta-Object Facility
(MOF) standard [129] for metamodels definition, the MOF Query/View/Transformation
(QVT) language [131] for model-to-model (M2M) transformations, and the MOF Model to
Text Transformation (MOFM2T or MOF2T) language [125] for model-to-text
transformations (i.e., code generation).
Though the MDA approach was never considered mainstream in the industry, its
contributions to the understanding of the model-driven software engineering process were
outstanding.
UWE was perhaps the first proposal to describe the whole approach, including the process,
with a metamodel [136] using MOF, and to base the generation of running applications by
using model transformations [49], using a “pure” translationist approach; this allowed to

constantly improve application generation adding new target platforms.
OO-H [40] and OOWS [75] are two new evolutions of the formal object-oriented method
(OO-Method [76]) which arises to support automatic generation of Web applications. OOWS
introduced as specific contribution the implementation of a PIM compliant with the MDA
standard. The PIM allows OOWS models to be transformed into running code and the process
is supported by the commercial tool OlivaNova (provided by Integranova [119]).
Many research groups proposed metamodels for WebML [90] which meant a step forward
that was later profited to create the IFML standard.
The UWA approach also assisted to evolutions towards MDA and automatic generation of
application prototypes [5, 27] . In particular, the UWA-based MDWE approach presented in
[5] adopts MOF for the definition of the PIM and PSM metamodels used by the method, the
ATLAS Transformation Language (ATL) [113] for model-to-model transformations, and
Xpand [124] for code generation from models.
NDT defined a metamodel for requirements [31], which was interoperable with the UWE
approach. All these efforts contributed together to pave the way to a standard language.
Regarding the design process itself, some approaches recognized the need to improve
separation of concerns in their notations to make designs more evolvable. While separation
of design concerns had been implicitly recognized by all design approaches and also by
component-based approaches like the WebComposition Process Model [36], the addressed
concerns remained the “canonic” ones: content, navigation, interface, and interaction. In
some cases, additional concerns were business processes and personalization. However,

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

functional applications concerns were poorly considered by MDE, nor there was support for
this in MDWE approaches.
To address the lack of design support, OOHDM used advanced separation of concerns to
deal with volatile requirements [100]. Hera [12] used aspect-oriented concepts to deal with
crosscutting concerns. An aspect-oriented WebML was also presented in [89]. Unfortunately,
the momentum of aspect-oriented technology ended some years ago and these ideas were not
further explored beyond these academic works.

4.3 Towards a standard modeling language

The negative aspect of having a myriad of design approaches and notations was very early
recognized by the community. While it was natural that different actors proposed their own
approaches according to their understanding of the problem, the problems this caused to
potential users, educators and students learning MDWE became clear soon (e.g., how to
choose the design language for a project). Although the concepts in most approaches were
more or less similar, the differences in notation made difficult to organize learning materials.
The MDWE community organized a series of workshops in which this problem was
discussed: the International Workshop on Web Oriented Software Techniques (IWWOST)
[112], the Workshop on Model-Driven Web Engineering [111] and later a network of
institutions called MDWEnet [104] were created to, at least in part, discuss this issue.
There were mainly three ways to solve this problem. The first way was to achieve an
agreement among different methods and come out with a new one with the “best” of each of
them. This was the approach followed by the “three amigos” (Booch, Jacobson and

Rumbaugh) to create UML in the 90´s [46]. This approach failed, perhaps because there were
much more than three modeling approaches and because each involved scientist had a
different research target (neither Booch nor Jacobson and Rumbaugh were scientists). The
second way was to make all approaches interoperate in a way or another, allowing easy
portability from one design model to another or to bridge them easily. Many researchers tried
to define “common” meta-models and there were very interesting results. The most thorough
and systematic approach was the Web Engineering Interoperability (WEI) initiative which
aimed to provide easy exchange of models among existing tools but also to address the
incorporation of new concerns to existing methods. A very complete analysis of this
problems and the proposed solution can be found in [66].
Finally, the third possible way was to create a standard, either by the emergence of a brand
new approach or through the evolution of one of the existing ones. In 2013 when the OMG
announced that it has adopted IFML as the standard language for describing interaction
aspects of Web (and other kinds of) applications, we reached a new milestone, not necessarily
the end of the road, but definitively a step forward. In the next section we discuss our
achievements as a community, emphasizing on the IFML and its impact.

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

5-MDSE and MDWE Impact on Industry

MDWE approaches aim at providing tools and techniques for simplifying applications
design, development and evolution. Tools play an important role in MDWE adoption since
traditionally software engineers are used to rely on the use of CASE tools for boosting their
productivity.
Diverse works have studied the impact of MDSE in the industry highlighting the pros and
cons of its usage. Model Driven Engineering (MDE) has been widely adopted in diverse
industry domains. According to [109], software companies that successfully adopted MDSE
based their development on domain-specific models rather than on general purpose
languages such as UML. Surprisingly, the real benefit gained from code generation is
hindered by the training effort on MDSE techniques. However, the real benefit that
companies find in MDSE usage is the clear definition of the software architecture. The
process and the method behind MDSE adoption in a company are not always properly
supported by a tool; indeed, the immaturity, complexity, and usability are the major tool’s

barriers [108].
MDE for Web applications has been supported by both proprietary and open source solutions.
The Eclipse Modeling Tools suite is the leading open source technology for implementing
MDE used by IBM and Oracle. Other proprietary technologies are available with the same
purpose such as JetBrains Meta Programming System [126].
Web applications development can be performed using tools which rely on proprietary
approaches and languages such as Mendix [116] and OutSystem [130]. These solutions
support agile development processes comprising common phases such as requirement
gathering, requirement modelling, application generation (access to models transformation
tools are often not available to the designer), deployment and monitoring. There are also
UML-based tools such as Visual Paradigm [137] and IBM Rational Suite [117] that
exhaustively support the UML standards (i.e., Use Case, Class Diagrams, and Deployment
Diagrams) and provide code generation from models.
From the academic research effort, a lot of tools have been released in the last decades; many
of them are still active projects: NDT Suite [127], Integranova [119], MagicUWE [135], and
WebRatio [138]. To our knowledge there is still no survey presenting a state of art of these
tools.
The impact of MDWE approaches on the industry has not been studied properly so far.
Although some researches have thrown light on advantages and disadvantages of MDE
implementations [3, 64, 108], there is not rigorous evidence about the benefits of MDWE
approaches usage in real development contexts.

6-Achievements
In the last 25 years our community has got an enormous number of scientific and practical
results, including the dissemination of MDWE technologies in dozens of universities and

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

thousands of students and professionals of the Web field. Even though MDWE technology
has not been widely adopted yet, its advances have influenced many other fields. We next
describe the main achievements beginning with the IFML.

6.1 The IFML standard

The evolution from WebML to IFML is very interesting. The group in Politecnico di Milano
and the WebRatio spin-off identified that the problem of formal specification of user
interaction and interface was shared by every interactive application (not just Web) and
specifically those using the Model-View-Controller (MVC) architectural design pattern [53,
56]. For this reason, they decided to generalize WebML in such a way that it was not Web
specific but targeted to a broader set of applications (e.g. Desktop, Web and Mobile ones).
Additionally, and since UML (and BPMN) covered practically all aspects of software
development except the front-end aspects, they decided to narrow the scope of WebML in
such a way that IFML “only” focuses on these aspects, while the rest of the approaches in
some way pretend to cover the whole life-cycle. Instead of trying to adapt or extend UML to
the user interaction realm (as it has been done by UWE as described previously in this paper),
the IFML team decided to reuse the proprietary style of WebML (which had been successful)
and began the hard road to (technically and surely politically) convince the OMG that this
was a better approach.
Beyond the outstanding fact that the OMG adopted IFML as a standard, the language itself
has important merits (without delving into the specific notation itself which will surely evolve
and improve with its use). IFML inherits the simplicity and expressivity of its “parent”

WebML, improves it by removing notations which do not belong to the interaction concerns,
such as business process issues, and adds user interface events as first-class citizens in the
notation. Additionally, and with the aim of making IFML fit into the UML universe, the
language supports the same kind of extension mechanisms that UML already possesses (e.g.,
stereotypes, tagged values, etc.) and it is itself described by a clearly defined meta-model. Of
course, the impact of these features will be seen in practice, but the IFML team has already
shown some examples to illustrate the extensibility features.
However, from our point of view, the most relevant merit of IFML is the fact that it brings
to light a shocking fact, which had not been made explicit in this way before. After almost
30 years since the MVC appeared as a formal concept [51], developers building interactive
applications using this architectural pattern only modeled the Model features, while the View
and Controller components were not considered for its implementation-independent design
(except of course for MDWE approaches) and had to be addressed at the code level. Now,
the OMG offers a notation which allows specifying View and Controller features (and their
relationships between each other and with the Model) using a simple notation, while UML
continues to be the standard to model the Model component. Standards for specifying lay-
out or lower level detail presentation aspects are still to come.

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

6.2 A community and collective knowledge

The MDWE community evolved rapidly. After the first workshop on Web Engineering in
1998 [132] held in the context of the WWW conference [122], the IWWOST series [112],
held since 2001, targeted more specifically model-based Web development techniques. Most
researchers in this area gathered in the International Conference on Web Engineering (ICWE)
[118] held since 2002. The more specific MDWE workshop was held since 2005 [139] and
the MDWENet initiative [104] was launched soon after that in 2007.
These collective efforts involved dozens of institutions and researchers both from academia
and industry. As a result, the community acquired an important understanding of the
problems involved in the model-driven development of Web applications and a formidable
corpus of knowledge was produced and published in different venues, including journals and
conferences. As mentioned previously, this knowledge was disseminated in courses,
seminars and books [11, 14, 22, 85] and provides an excellent background both for new
scientists and practitioners, not only those who work using model-driven techniques, but also
for those developing Web applications in the “traditional” way.

6.3 Technical recognition

The prevalence of the Web as a development and deployment platform had also impact on
the research topics of the software engineering community. Before the Web, it was rare to
find many papers on software usability or accessibility, which of course were already
important problems, as well as on other topics, such as information retrieval, which have
become increasingly relevant today. The MDWE community not only brought to the scene
many new problems such as navigation and user interaction modeling, but also those related
with quality issues. Several researchers had already pointed out the importance of dealing
with these problems in a high-level, implementation independent way [54]. However, the
important number of new problems posed by the Web made this research increasingly critical
since the number of users exploded in orders of magnitude. This fact not only made these
subjects more popular, but also motivated new research. Many researchers in the MDWE
community proposed modifications to existing user interaction modeling approaches to face
the new problems [102]. Similarly, researchers in the user interaction field modified or
upgraded their proposals to solve these issues [77, 78].
Nowadays, not only the OMG recognizes the importance of modeling user interaction and
interface, which can be read in its presentation of the IFML (read for example the overview
and benefits in [120]), but most software engineering related conferences and journals have
incorporated these issues into the list of topics of interest. Dozens of workshops related with
MDWE research topics have been held in important conferences such as International
Conference on Software Engineering (ICSE) [121], International Conference on Model
Driven Engineering Languages and Systems (Models) [133], and Conference on Advanced
Information Systems Engineering (CAiSE) [115], and papers on the previously mentioned

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

approaches have been published in all the top journals of the field. Additionally, most of the
seminal research papers of the MDWE community have had an important impact in research
performed by other communities, such as the User interaction or User interface communities,
the Multimedia community, the Business Process community, among others. As an example
of this impact, it is worth mentioning the many research works that has been done and the
several approaches that have been proposed for the reverse engineering and the evolution of
existing Web applications adopting MDWE methods, models, and techniques. A survey on
this research can be found in [47].

7-What Is Missing

While the technical achievements of the MDWE community have been outstanding, there
are still many issues to be solved before MDWE becomes mainstream as a strategy for
building real Web applications. Many of these issues are shared with the large MDE
community. For the sake of comprehension, we explain these shared problems detailing the
specificities of the Web engineering field.

7.1. Adoption

The problem of the adoption of model-driven development (MDD) has been widely
discussed in the general software domain; specifically, many studies show that the problem
is more than technical and involves also cultural, organizational, and other kind of issues
[109]. In the Web engineering field, the situation is much worse indeed. While UML has
already more than 20 years of life and has been practically the unique object-oriented
modeling language since its birth, the myriad of Web modeling languages (briefly presented
in this paper) have in some way hindered adoption. Despite the fact that WebML has been
the most popular MDWE approach being used in the industry, IFML is far from being
mainstream. Indeed, this standard still needs to gain a supporting community. Additionally,
since the Web development activity is much more interdisciplinary than general software
development, there are a huge number of developers who barely program, and of course do
not model. Despite the empirical evidence presented in several works about how software
quality and team productivity improves when using MDWE approaches than code-based
ones [44, 61, 74], developers ignore the benefits of adopting an MDWE approach. Also, the
huge variety of programming languages and frameworks make the adoption of MDWE
approaches difficult since developers tend to think about modeling techniques as to an
obstacle for creativity, while in fact it is the contrary. One can reasonably argue that the lack
of good tool support and the absence of user communities have an important place in this
problem: some of the problems listed in the next sub-sections have also slowed down the
adoption of MDWE techniques.

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

7.2 Better support for non-functional requirements

While there has been considerable research on modeling functional requirements and
transforming them into design models and running applications, the transformation of Non-
Functional Requirements (NFRs) to code has been less explored in the literature. These kind
of requirements are particularly critical in Web applications, and some of them (like usability
and accessibility) appear once and again as weaknesses of even small Web sites. In a recent
research paper [2] the authors have clearly analyzed this deficit of model-driven approaches
in the general software field. The example they use (scalability) and the different solutions
(basically replication) they propose apply perfectly to show the problems in our field.
Most MDWE approaches are rigid regarding the details or specificities of the architecture
which will support the running application. At most, these details might be specified as after
thoughts during the last code generation process.
It should not be surprising that the two non-functional requirements that were most
systematically addressed in MDWE approaches are usability and accessibility, precisely
because they express themselves during user interaction. Accessibility was dealt with during
model construction in WSDM [79] and usability was also considered in OOWS [68]. IFML
itself provides some hint for improving usability, but specific usability or accessibility
features cannot be yet specified.

7.3 Agility

The very nature of Web applications, with very often ill-defined requirements that are
themselves very volatile, make agile approaches [59] the optimal choice to support the
development process. Agile methods have quickly developed in the last 15 years and today
one might say that they are pretty mature, well used in industry and with reasonable
productivity.
Meanwhile, model-driven approaches, in general on the Web field, tend to be “monolithic”

and thought more for a waterfall rather than agile, iterative style. Even though practically all
of them (from the first version of OOHDM to IFML) claim to support some kind of iterative,
incremental or agile styles, there is another “cultural” problem: agile approaches usually

assume (and so do developers) that the development process is more code-based than model-
based. Perhaps this is one of the biggest obstacles in the adoption of MDWE approaches.
Developers are more used to write small components to address some requirement (usually
expressed informally in a user story) and then iterate to the next requirement. Code
refactoring allows keeping this code more or less “clean”.
It is absolutely obvious that the same approach (e.g., in a Scrum [15] context) could be
performed using MDWE approaches (and of course UML in the general case), but this is not
the state of practice today.
We have been working to demonstrate different ways to introduce agility in a MDWE schema
with rather good results. In [57] we presented a test-driven approach (TDD) which combined
interaction tests (in the style of Selenium) with a model-driven schema to combine the agile

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

TDD style with the use of models instead of code. In [82] we show how to use partial
mockups to derive Web design models (in WebML). In this case, mockups were derived
from user stories, and each development cycle dealt with a single requirement as in most
agile methods but relying on automatic program derivation. In both cases the experiments
with users (developers) show acceptance and good performance.
However, being this topic more cultural or organizational than purely technical, the way to
solve it from the MDWE field might be tricky but need to be addressed soon if we expect
some kind of success.

7.4 Support for end-users

A very interesting and thorough survey on modern Web development practices [71] shows
that an important portion of Web sites are or have been developed by end-users using tools
such as Content Management Systems (CMSs) such as Drupal4 or WordPress5. These users
are grouped in communities sharing plugins, themes, designs, etc. At the same time, many
other users communities have emerged in the context of the so called Web augmentation
(WA) metaphor [25], where final users adapt their preferred applications by developing
scripts (usually JavaScript ones) that run on the browser. CMSs or WA communities are very
active and end-users crowdsource their projects to the community, benefiting from the
results. A very simple but effective reuse and sharing schema of page designs and
augmentation scripts has emerged in these communities.
However, and as it is cleverly indicated in [71], the MDWE community has ignored this
phenomenon. End-users often do not have the technical skills to apply the concepts
underlying the MDWE approaches; they might not even have the resources to use any of
them. And certainly this divorce has an important impact both in the spreading of MDWE
methods and also because many of the techniques that have been used in the context of the
MDWE community could be useful for end-users and at the same time end-users could enrich
the MDWE community.
We can mention two proposals coming from the research community to bridge this gap which
fall in the end-user development style; they both use extensively the same concepts that have
been developed by the MDWE community such as metamodels. The authors of [72] propose
a strategy to improve design by example in WordPress by allowing users to reuse WordPress
themes with a finer granularity style, by combining parts of them into new ones. CrowdMock
[34] allows end-users to specify their needs to the WA community by sketching a mockup
with the intended adaptation or augmentation of the intended site.

4 Drupal - https://www.drupal.org/
5 WordPress - https://en.wordpress.com/

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

7.5 Better coverage of Web engineering technologies

While, as shown in Section 4, most MDWE methodologies adapted and improved their
modeling primitives to the different technologies that arose in the century, all extensions
were in some ways “ad-hoc” and the impulse towards standardization did not cover all of

these technologies. To make some pending topics, we should mention that Web Engineering
conferences and workshops [112, 118] promote the innovation in new research lines such as
Web of things [41], Semantic Web [98, 105], and Social Web applications [1] (including of
course social networks). IFML is still in its infancy and it has not been demonstrated if these
kinds of Web software can be developed using the MDWE approach. Further research on
this topic is needed.

7.6 Improvement of architectural and implementation issues

The integration of different kinds of (heterogeneous) models has not received the needed
attention yet. Though this is not only a problem of MDWE approaches (since the same
happens in most OMG models), there is still space for improvement regarding different ways
to deal with models uniformly. This implies expressing this integration at the meta-model
level (e.g., BPMN and IFML), but also at the concrete application level where different points
of view of the same domain might be expressed. At the same time, and as mention in Section
7.1 and 7.2, adoption is hindered by the immaturity of tools. Specifically, most tools (not
only WebRatio) are very rigid in the transformation to code phase, leaving no space for
expressing the different variations that different implementation settings might have.
Architectural variations are also ignored, with the exception of WebSA [53].

7.7 Evaluation of MDWE approaches

As in other areas of MDSE, there has been scarce empirical research about the impact of
MDWE on developers’ productivity and application quality. While this evaluation might not
be the key for encouraging adoption, it represents a pending issue in this discipline. However,
we can cite two or three important research works “measuring” systematically the effect of
MDWE in different aspects of Web applications development [60, 61]. Another study
regarding MDD performance against code-based was performed at [74] and it focused on
verifying some of the most cited benefits of MDD. By means of empirical evaluations with
students, they analyzed quality, effort, productivity and satisfaction aspects on MDD and
code-based projects. The research throws as result that MDD does not always yield better
results than a traditional method but also highlighted that MDD provides better accuracy
when developing functional requirements.

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

8-Concluding Remarks

Model-Driven Web Engineering (MDWE) arose in the late 90’s to address the challenge of

developing complex Web applications by focusing on models instead of code. Since the early
days of MDWE the Web has continued its evolution and in the same way users became more
demanding; as a result, Web engineers have adapted their toolboxes to face these new
demands. MDWE has therefore evolved with new and fresh approaches. In these 25 years a
lively community has emerged and this community has contributed with the advance of the
general software engineering field. In this paper we presented a rapid overview of the road
followed by the community since the early, primitive modeling languages, to the
development of the new IFML standard. We showed that during this period MDWE
researchers built support for different Web technologies, such as RIA, Semantic Web, Mobile
Web and also improved application life cycle coverage by addressing requirement
specification, testing and maintenance. The emergence of IFML is certainly not the end of
the road but an important milestone; as we also discussed in this paper, there is still a lot of
work to be done in order to disseminate these ideas to assure that modern Web applications
are developed faster, safer, and with less errors and higher quality.

9-References
1. Abel, F. et al.: Leveraging User Modeling on the Social Web with Linked Data. In: Web

Engineering - 12th International Conference, {ICWE} 2012, Berlin, Germany, July 23-27,
2012. Proceedings. pp. 378–385 (2012) DOI:10.1007/978-3-642-31753-8_31.

2. Ameller, D. et al.: Dealing with Non-Functional Requirements in Model-Driven
Development. In: RE 2010, 18th IEEE International Requirements Engineering Conference,
Sydney, New South Wales, Australia, September 27 - October 1, 2010. pp. 189–198 (2010)
DOI:10.1109/RE.2010.32.

3. Baker, P. et al.: Model-Driven Engineering in a Large Industrial Context --- Motorola Case
Study. In: Briand, L. and Williams, C. (eds.) Model Driven Engineering Languages and
Systems: 8th International Conference, MoDELS 2005, Montego Bay, Jamaica, October 2-7,
2005. Proceedings. pp. 476–491 Springer Berlin Heidelberg, Berlin, Heidelberg (2005)
DOI:10.1007/11557432_36.

4. Baumeister, H. et al.: Modelling adaptivity with aspects. In: Lecture Notes in Computer
Science. pp. 406–416 (2005) DOI:10.1007/11531371_53.

5. Bernardi, M.L. et al.: A model-driven approach for the fast prototyping of web applications.
In: Proceedings - 13th IEEE International Symposium on Web Systems Evolution, WSE
2011. pp. 65–74 (2011) DOI:10.1109/WSE.2011.6081821.

6. Bochicchio, M.A., Longo, A.: UWA+: bridging Web systems design and Business process
modeling. In: Hypermedia Development & Web Engineering Principles and Techniques: Put
them in use International Workshop on Web Engineering. (2004).

7. Bozzon, A. et al.: Conceptual modeling and code generation for rich internet applications.

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

In: Proceedings of the 6th international conference on Web engineering ICWE 06. p. 353
(2006) DOI:10.1145/1145581.1145649.

8. Brambilla, M. et al.: Declarative specification of Web applications exploiting Web services
and workflows. In: Proceedings of the 2004 ACM SIGMOD international conference on
Management of data - SIGMOD ’04. p. 909 ACM Press, New York, New York, USA

(2004) DOI:10.1145/1007568.1007688.

9. Brambilla, M. et al.: Model-Driven Software Engineering in Practice. Morgan & Claypool
Publishers (2012) DOI:10.2200/S00441ED1V01Y201208SWE001.

10. Brambilla, M. et al.: Process modeling in Web applications. ACM Trans. Softw. Eng.
Methodol. 15, 4, 360–409 (2006) DOI:10.1145/1178625.1178627.

11. Brambilla, M., Fraternali, P.: Interaction Flow Modeling Language: Model-Driven UI
Engineering of Web and Mobile Apps with IFML. Morgan Kaufmann (2014).

12. Casteleyn, S. et al.: Aspect-oriented adaptation specification in web information systems: a
semantics-based approach. New Rev. Hypermedia Multimed. 15, 1, 39–71 (2009)
DOI:10.1080/13614560902818297.

13. Ceri, S. et al.: An Approach to User-Behavior-Aware Web Applications. In: International
Conference on Web Engineering (ICWE2005). pp. 417–428 (2005)
DOI:10.1007/11531371_54.

14. Ceri, S. et al.: Designing Data-Intensive Web Applications. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (2002).

15. Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Addison-Wesley
Professional (2009).

16. Conallen, J.: Building Web Applications with UML. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA (2000).

17. Conallen, J.: Building Web Applications with UML Second Edition. Addison-Wesley
(2003).

18. Consortium Uwa: Ubiquitous Web Applications. In: In Proc. of the eBusiness and eWork
Conference 2002. (2002).

19. Cowan, D.D., Lucena, C.J.P.: Abstract data views: an interface specification concept to
enhance design for reuse. IEEE Trans. Softw. Eng. 21, 3, 229–243 (1995)
DOI:10.1109/32.372150.

20. Cuaresma, M.J.E. et al.: An overview on test generation from functional requirements. J.
Syst. Softw. 84, 8, 1379–1393 (2011) DOI:10.1016/j.jss.2011.03.051.

21. Daniel, F., Matera, M.: Mashing Up Context-Aware Web Applications: A Component-
Based Development Approach. In: Web Information Systems Engineering - WISE 2008. pp.
250–263 Springer Berlin Heidelberg, Berlin, Heidelberg (2008) DOI:10.1007/978-3-540-
85481-4_20.

22. Daniel, F., Matera, M.: Mashups - Concepts, Models and Architectures. Springer (2014)
DOI:10.1007/978-3-642-55049-2.

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

23. Deshpande, Y. et al.: Web Engineering. J. Web Eng. 1, 1, 3–17 (2002).

24. Diaz, A., Isakowitz, T.: RMCase: Computer-aided support for hypermedia design and
development. In: Hypermedia Design. pp. 3–15 Springer (1996).

25. Díaz, O., Arellano, C.: The Augmented Web: Rationales, Opportunities, and Challenges on
Browser-Side Transcoding. TWEB. 9, 2, 8 (2015) DOI:10.1145/2735633.

26. Distante, D. et al.: A comprehensive design model for integrating business processes in web
applications. Int. J. Web Eng. Technol. 3, 1, 43–72 (2007)
DOI:10.1504/IJWET.2007.011527.

27. Distante, D. et al.: Model-Driven Development of Web Applications with UWA, MVC and
JavaServer Faces. In: Baresi, L. et al. (eds.) Web Engineering: 7th International Conference,
ICWE 2007 Como, Italy, July 16-20, 2007 Proceedings. pp. 457–472 Springer Berlin
Heidelberg, Berlin, Heidelberg (2007) DOI:10.1007/978-3-540-73597-7_38.

28. Distante, D., Tilley, S.: Conceptual Modeling of Web Application Transactions: Towards a
Revised and Extended Version of the UWA Transaction Design Model. In: 11th
International Multimedia Modelling Conference. pp. 439–445 (2005)
DOI:10.1109/MMMC.2005.28.

29. Driver, M. et al.: Rich Internet Applications are the next evolution of the Web. Gartner
Research (2005).

30. Escalona, M.J., Aragón, G.: NDT. A model-driven approach for web requirements. IEEE
Trans. Softw. Eng. 34, 3, 377–394 (2008) DOI:10.1109/TSE.2008.27.

31. Escalona, M.J., Koch, N.: Metamodeling the Requirements of Web Systems. Web Inf. Syst.
Technol. - Lect. Notes Bus. Inf. Process. - Springer. 1, 267–280 (2007) DOI:10.1007/978-3-
540-74063-6.

32. Escalona, M.J., Koch, N.: Requirements engineering for web applications: a comparative
study. J. Web Eng. 2, 3, 193–212 (2003).

33. Finkelstein, A. et al.: Ubiquitous Web Application Development - A Framework for
Understanding. In: Proc. of SCI2002. pp. 431–438 (2001).

34. Firmenich, D. et al.: CrowdMock: an approach for defining and evolving web augmentation
requirements. Requir. Eng. 1–29 (2016) DOI:10.1007/s00766-016-0257-3.

35. Fraternali, P., Tisi, M.: Multi-level Tests for Model Driven Web Applications. In:
Benatallah, B. et al. (eds.) Web Engineering: 10th International Conference, ICWE 2010,
Vienna Austria, July 5-9, 2010. Proceedings. pp. 158–172 Springer Berlin Heidelberg,
Berlin, Heidelberg (2010) DOI:10.1007/978-3-642-13911-6_11.

36. Gaedke, M., Gräf, G.: Development and Evolution of Web-Applications Using the
WebComposition Process Model. In: Web Engineering. pp. 58–76 (2001) DOI:10.1007/3-
540-45144-7.

37. Garzotto, F. et al.: HDM - A Model for the Design of Hypertext Applications. In: Hypertext
’91 Proceedings. pp. 313–328 (1991) DOI:10.1145/122974.123004.

38. Garzotto, F. et al.: HDM---a model-based approach to hypertext application design. ACM

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

Trans. Inf. Syst. 11, 1, 1–26 (1993) DOI:10.1145/151480.151483.

39. Garzotto, F. et al.: “modeling-by-patterns” of web applications. In: Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). pp. 293–306 (1999) DOI:10.1007/3-540-48054-4_24.

40. Gómez, J., Cachero, C.: OO-H Method : Extending UML to Model Web Interfaces. Inf.

Model. internet Appl. 144–173 (2003).

41. Guinard, D. et al.: A resource oriented architecture for the Web of Things. In: Internet of
Things (IOT), 2010. pp. 1–8 (2010) DOI:10.1109/iot.2010.5678452.

42. Hennicker, R., Koch, N.: A UML-based methodology for hypermedia design. UML 2000
Unified Model. Lang. 410–424 (2000) DOI:10.1007/3-540-40011-7_30.

43. Hermida, J.M. et al.: Developing Semantic Rich Internet Applications Using a Model-
Driven Approach. In: Web Information Systems Engineering - Wise 2010 Workshops. pp.
198–211 (2011) DOI:10.1007/978-3-642-24396-7_16.

44. Hutchinson, J. et al.: Empirical Assessment of MDE in Industry. In: Proceedings of the 33rd
International Conference on Software Engineering. pp. 471–480 ACM, New York, NY,
USA (2011) DOI:10.1145/1985793.1985858.

45. Isakowitz, T. et al.: RMM: a methodology for structured hypermedia design. Commun.
ACM. 38, 8, 34–44 (1995) DOI:10.1145/208344.208346.

46. Jacobson, I., Bylund, S.: The road to the unified software development process. Cambridge
University Press (2000).

47. Kienle, H.M., Distante, D.: Evolution of Web Systems. In: Mens, T. et al. (eds.) Evolving
Software Systems. pp. 201–228 Springer Berlin Heidelberg, Berlin, Heidelberg (2014)
DOI:10.1007/978-3-642-45398-4_7.

48. Knapp, A. et al.: Modeling Business Processes in Web Applications with ArgoUWE. In:
2004 - The Unified Modelling Language. pp. 69–83 (2004).

49. Koch, N.: Classification of model transformation techniques used in UML-based Web
engineering. IET Softw. 1, 3, 98–111 (2007) DOI:10.1049/iet-sen:20060063.

50. Koch, N.: Software Engineering for Adaptive Hypermedia Systems: Reference Model,
Modeling Techniques and Development Process. (2000).

51. Krasner, G.E. et al.: A description of the model-view-controller user interface paradigm in
the smalltalk-80 system. J. object oriented Program. 1, 3, 26–49 (1988).

52. Larman, C., Basili, V.R.: Iterative and incremental developments. A brief history. Computer
(Long. Beach. Calif). 36, 6, 47–56 (2003) DOI:10.1109/MC.2003.1204375.

53. Leff, A., Rayfield, J.T.: Web-application development using the model/view/controller
design pattern. In: Enterprise Distributed Object Computing Conference, 2001. EDOC’01.

Proceedings. Fifth IEEE International. pp. 118–127 (2001).

54. Limbourg, Q. et al.: USIXML: A Language Supporting Multi-path Development of User
Interfaces. In: Ehci/Ds-Vis. pp. 200–220 (2005) DOI:10.1007/11431879_12.

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

55. Liu, C. et al.: Mashroom+: An Interactive Data Mashup Approach with Uncertainty
Handling. J. Grid Comput. 12, 2, 221–244 (2014) DOI:10.1007/s10723-013-9280-5.

56. Lowe, D. et al.: Web extensions to UML: Using the MVC triad. In: International Conference
on Conceptual Modeling. pp. 105–119 (2002).

57. Luna, E.R. et al.: Bridging Test and Model-Driven Approaches in Web Engineering. In:
Web Engineering, 9th International Conference, ICWE 2009, San Sebastián, Spain, June 24-
26, 2009, Proceedings. pp. 136–150 (2009) DOI:10.1007/978-3-642-02818-2_10.

58. Luna Robles, E. et al.: WebSpec: A visual language for specifying interaction and
navigation requirements in web applications. Requir. Eng. 16, 297–321 (2011)
DOI:10.1007/s00766-011-0124-1.

59. Martin, R.C.: Agile software development: principles, patterns, and practices. Prentice Hall
PTR (2003).

60. Martinez, Y. et al.: Evaluating the Impact of a Model-Driven Web Engineering Approach on
the Productivity and the Satisfaction of Software Development Teams. In: Web Engineering
- 12th International Conference, {ICWE} 2012, Berlin, Germany, July 23-27, 2012.
Proceedings. pp. 223–237 (2012) DOI:10.1007/978-3-642-31753-8_17.

61. Martínez, Y. et al.: Empirical study on the maintainability of Web applications: Model-
driven Engineering vs Code-centric. Empir. Softw. Eng. 19, 6, 1887–1920 (2013)
DOI:10.1007/s10664-013-9269-5.

62. Melia, S. et al.: MDA transformations applied to Web application development. In: Lecture
Notes in Computer Science. pp. 465–471 (2005) DOI:10.1007/11531371_59.

63. Meliá, S., Gomez, J.: The WebSA Approach: Applying Model Driven Engineering to Web
Applications. J. Web Eng. - dl.acm.org. 5, 2, 121–149 (2006).

64. Mohagheghi, P. et al.: An empirical study of the state of the practice and acceptance of
model-driven engineering in four industrial cases. Empir. Softw. Eng. 18, 1, 89–116 (2013)
DOI:10.1007/s10664-012-9196-x.

65. Moreno, N. et al.: An overview of model-driven web engineering and the MDA. In: Web
Engineering: Modelling and Implementing Web Applications. pp. 353–382 Springer (2008).

66. Moreno, N., Vallecillo, A.: Towards Interoperable Web Engineering Methods. J. Am. Soc.
Inf. Sci. Technol. 59, 7, 1073–1092 (2008) DOI:10.1002/asi.

67. Nanard, M. et al.: Pushing Reuse in Hypermedia Design : Golden Rules , Design Patterns

and Constructive Templates. In: ACM Conference on Hypertext & Media. pp. 11–20 (1998)
DOI:10.1145/276627.276629.

68. Navarrete, J.I.P. et al.: Introducing Usability in a Conceptual Modeling-Based Software
Development Process. In: Atzeni, P. et al. (eds.) Conceptual Modeling - 31st International
Conference ER 2012, Florence, Italy, October 15-18, 2012. Proceedings. pp. 525–530
Springer (2012) DOI:10.1007/978-3-642-34002-4_41.

69. Nebut, C. et al.: Automatic test generation: A use case driven approach. IEEE Trans. Softw.
Eng. 32, 3, 140–155 (2006).

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

70. Nielsen, J.: Multimedia and Hypertext: The Internet and Beyond. AP Professional (1995).

71. Norrie, M.C. et al.: The Forgotten Many? A Survey of Modern Web Development Practices.
In: 14th International Conference, ICWE 2014, Toulouse, France, July 1-4, 2014.
Proceedings. pp. 290–307 Springer International Publishing (2014) DOI:10.1007/978-3-319-
08245-5_17.

72. Norrie, M.C. et al.: X-Themes: supporting design-by-example. In: Web Engineering. pp.
480–489 Springer (2014).

73. Olsina, L. et al.: Web quality. In: Web Engineering. pp. 109–142 (2006) DOI:10.1007/3-
540-28218-1_4.

74. Panach, J.I. et al.: In Search of Evidence for Model-Driven Development Claims: An
Experiment on Quality, Effort, Productivity and Satisfaction. Inf. Softw. Technol. 62, 164–

186 (2015) DOI:10.1016/j.infsof.2015.02.012.

75. Pastor, O. et al.: Conceptual modelling of web applications: The OOWS approach. In: Web
Engineering. pp. 277–302 (2006) DOI:10.1007/3-540-28218-1_9.

76. Pastor, O. et al.: The OO-Method approach for information systems modeling: From object-
oriented conceptual modeling to automated programming. Inf. Syst. 26, 7, 507–534 (2001)
DOI:10.1016/S0306-4379(01)00035-7.

77. Paternò, F. et al.: ConcurTaskTrees: A diagrammatic notation for specifying task models. In:
Human-Computer Interaction INTERACT’97. pp. 362–369 (1997).

78. Paternò, F., Santos, I.: Designing And Developing Multi-User, Multi-Device Web
Interfaces. In: Computer-Aided Design Of User Interfaces V, Proceedings of the Sixth
International Conference on Computer-Aided Design of User Interfaces, {CADUI} 2006 6-8
June 2006, Bucharest, Romania. pp. 111–122 (2006) DOI:10.1007/978-1-4020-5820-2_9.

79. Plessers, P. et al.: Accessibility: a Web engineering approach. World Wide Web. (2005).

80. Preciado, J.C. et al.: Designing rich internet applications combining UWE and RUX-
method. In: Proceedings - 8th International Conference on Web Engineering, ICWE 2008.
pp. 148–154 (2008) DOI:10.1109/ICWE.2008.26.

81. Prutsachainimmit, K. et al.: A Mashup Construction Approach for Cooperation of Mobile
Devices. In: Current Trends in Web Engineering - ICWE 2012 International Workshops:
MDWE, ComposableWeb, WeRE, QWE, and Doctoral Consortium, Berlin, Germany, July
23-27, 2012, Revised Selected Papers. pp. 97–108 Springer Berlin Heidelberg (2012)
DOI:10.1007/978-3-642-35623-0_11.

82. Rivero, J.M. et al.: Mockup-Driven Development: Providing agile support for Model-Driven
Web Engineering. Inf. Softw. Technol. 56, 6, 1–18 (2014)
DOI:10.1016/j.infsof.2014.01.011.

83. Rossi, G. et al.: Designing personalized web applications. In: Proceedings of the Tenth
International World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001.
pp. 275–284 (2001) DOI:10.1145/371920.372069.

84. Rossi, G. et al.: Improving Web information systems with navigational patterns. Comput.
Networks. 31, 11, 1667–1678 (1999) DOI:10.1016/S1389-1286(99)00015-8.

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

85. Rossi, G. et al.: Web Engineering: Modelling and Implementing Web Applications.
Springer-Verlag London (2008) DOI:10.1007/978-1-84628-923-1.

86. Rubart, J.: Hypermedia design patterns. In: Proceedings of the Nineteenth ACM Conference
on Hypertext and Hypermedia. pp. 243–244 (2008) DOI:10.1145/1379092.1379146.

87. Ruiz, M. et al.: Applying a web engineering method to design web services. In: International
Conference on Service-Oriented Computing. pp. 576–581 (2005).

88. Rumbaugh, J. et al.: Object-oriented modeling and design. Prentice-hall Englewood Cliffs,
NJ (1991).

89. Schauerhuber, A. et al.: Aspect-oriented modeling of ubiquitous Web applications: The
aspectWebML approach. In: Proceedings of the International Symposium and Workshop on
Engineering of Computer Based Systems. pp. 569–576 (2007) DOI:10.1109/ECBS.2007.20.

90. Schauerhuber, A. et al.: Bridging existing Web Modeling Languages to Model- Driven
Engineering : A Metamodel for WebML. In: Conceptual Modeling and Code Generation for
Rich Internet Applications (ICWE’06) Workshops. pp. 10–14 (2006) DOI:1-59593-435-
9/06/07.

91. Schmid, H.A., Donnerhak, O.: OOHDMDA – An MDA Approach for OOHDM. In: Web
Engineering. Springer Berlin Heidelberg. pp. 569–574 (2005).

92. Schmid, H.A., Rossi, G.: Modeling and designing processes in E-commerce applications.
IEEE Internet Comput. 8, 1, 19–27 (2004) DOI:10.1109/MIC.2004.1260699.

93. Schwabe, D., Rossi, G.: An Object Oriented Approach to Web-Based Application Design.
Theory Pract. Object Syst. 4, 207–225 (1998) DOI:10.1.1.29.57.

94. Schwabe, D., Rossi, G.: The object-oriented hypermedia design model. Commun. ACM. 38,
8, 45–46 (1995) DOI:10.1145/208344.208354.

95. Schwinger, W. et al.: A survey on web modeling approaches for ubiquitous web
applications. Int. J. Web Inf. Syst. 4, 3, 234–305 (2008) DOI:10.1108/17440080810901089.

96. de Souza Bomfim, M.H., Schwabe, D.: Design and Implementation of Linked Data
Applications Using SHDM and Synth. In: Proc. of the 11th International Conference on
Web Engineering. pp. 121–136 (2011) DOI:10.1007/978-3-642-22233-7_9.

97. Troyer, O. De et al.: Wsdm : Web Semantics Design Method. In: Web Engineering:

Modeling and Implementing Web Applications. pp. 303–351 (2008) DOI:10.1007/978-1-
84628-923-1_11.

98. Troyer, O. De et al.: Wsdm : Web Semantics Design Method. In: Web Engineering:

Modeling and Implementing Web Applications. pp. 303–351 (2008) DOI:10.1007/978-1-
84628-923-1_11.

99. Urbieta, M. et al.: Designing the Interface of Rich Internet Applications. In: 2007 Latin
American Web Conference (LA-WEB 2007). pp. 144–153 IEEE (2007) DOI:10.1109/LA-
Web.2007.14.

100. Urbieta, M. et al.: Modeling, Deploying, and Controlling Volatile Functionalities in Web
Applications. Int. J. Softw. Eng. Knowl. Eng. 22, 129–155 (2012)

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

DOI:10.1142/S0218194012500064.

101. Valderas, P. et al.: A transformational approach to produce web application prototypes from
a web requirements model. Int. J. Web Eng. Technol. 3, 1, 4–42 (2007)
DOI:10.1504/IJWET.2007.011526.

102. Valderas, P. et al.: Using Task Descriptions for the Specification of Web Application
Requirements. In: Anais do WER05 - Workshop em Engenharia de Requisitos, Porto,
Portugal, Junho 13-14, 2005. pp. 257–268 (2005).

103. Valderas, P., Pelechano, V.: A Survey of Requirements Specification in Model-Driven
Development of Web Applications. ACM Trans. Web. 5, 2, 1–51 (2011)
DOI:10.1145/1961659.1961664.

104. Vallecillo, A. et al.: MDWEnet: A practical approach to achieving interoperability of model-
driven web engineering methods. In: CEUR Workshop Proceedings. (2007).

105. Vdovjak, R. et al.: Engineering semantic web information systems in hera. J. Web Eng. 0, 0,
1–24 (2003).

106. Vilain, P. et al.: A Diagrammatic Tool for Representing User Interaction in UML. In: Evans,
A. et al. (eds.) International Conference on the Unified Modeling Language. pp. 133–147
Springer (2000) DOI:10.1007/3-540-40011-7_10.

107. Wakil, K., Jawawi, D.N.A.: Model Driven Web Engineering: A Systematic Mapping Study.
e-Informatica. 9, 1, 87–122 (2015).

108. Whittle, J. et al.: Industrial adoption of model-driven engineering: Are the tools really the
problem? In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 1–17 (2013)
DOI:10.1007/978-3-642-41533-3_1.

109. Whittle, J. et al.: The State of Practice in Model-Driven Engineering. IEEE Softw. 31, 3, 79–

85 (2014) DOI:10.1109/MS.2013.65.

110. Yoo, J., Bieber, M.: Finding Linking Opportunities Through Relationship-based Analysis.
In: Proceedings of the Eleventh ACM on Hypertext and Hypermedia. pp. 181–190 ACM,
New York, NY, USA (2000) DOI:10.1145/336296.336359.

111. 7th Model-Driven Web Engineering Workshop, http://mdwe2011.pst.ifi.lmu.de/.

112. 8th International Workshop on Web-Oriented Software Technologies (IWWOST),
https://www.irit.fr/recherches/ICS/events/conferences/iwwost/iwwost2009/.

113. ATL Transformation Language, http://www.eclipse.org/atl/.

114. BPMN Specification - Business Process Model and Notation, http://www.bpmn.org/.

115. Conference on Advanced Information Systems Engineering (CAiSE), http://dblp.uni-
trier.de/db/conf/caise/index.html.

116. Drive digital transformation & innovation with Mendix aPaaS,
https://www.mendix.com/.

CLEI ELECTRONIC JOURNAL, VOLUME 19, NUMBER 3, PAPER 1, DECEMBER 2016

117. IBM - Rational Unified Modeling Language - Products - UML, https://www-
01.ibm.com/software/rational/uml/products/.

118. ICWE Conference Series, http://www.iswe-ev.de/conferences/icwe/.

119. Integranova, http://www.integranova.com/.

120. Interaction Flow Modeling Language, http://www.omg.org/spec/IFML/.

121. International Conference on Software Engineering (ICSE), http://www.icse-
conferences.org/.

122. International World Wide Web Conference (WWW), http://www.iw3c2.org/.

123. MDA Specifications, http://www.omg.org/mda/specs.htm.

124. Model To Text (M2T), https://eclipse.org/modeling/m2t/?project=xpand.

125. MOFM2T, http://www.omg.org/spec/MOFM2T/.

126. MPS overview, https://www.jetbrains.com/mps/.

127. NDT Suite, http://iwt2.org/actividad-grupo/investigacion/resultados/ndt/ndt-suite/.

128. Object Management Group, http://www.omg.org.

129. OMG’s MetaObject Facility (MOF), http://www.omg.org/mof/.

130. OutSystems Platform, https://www.outsystems.com/.

131. Query/View/Transformation (QVT), http://www.omg.org/spec/QVT/.

132. Seventh International World-Wide Web Conference, http://www7.wwwconference.org/.

133. The Unified Modeling Language (UML) - Conferences and Workshops, http://dblp.uni-
trier.de/db/conf/uml/index.html.

134. Unified Modeling Language, http://www.omg.org/spec/UML/.

135. UWE - MagicUWE, http://uwe.pst.ifi.lmu.de/toolMagicUWE.html.

136. UWE Metamodel and Profile,
http://uwe.pst.ifi.lmu.de/publicationsMetamodelAndProfile.html.

137. Visual Paradigm, https://www.visual-paradigm.com/.

138. WebRatio Platform, http://www.webratio.com/site/content/en/web-application-development.

139. Workshop on Model-driven Web Engineering (MDWE 2005),
http://www.lcc.uma.es/~av/mdwe2005/.

