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H. Blümer al,ah, M. Boháčová ch,y, C. Bonifazi ad, R. Bonino aw, N. Borodai bh, J. Brack bw, P. Brogueira bj,
W.C. Brown bx, R. Bruijn bs, P. Buchholz am, A. Bueno bp, R.E. Burton bu, N.G. Busca ab, K.S. Caballero-Mora al,
L. Caramete aj, R. Caruso at, W. Carvalho p, A. Castellina aw, O. Catalano av, L. Cazon ai, R. Cester au,
J. Chauvin ae, A. Chiavassa aw, J.A. Chinellato q, A. Chou by,cb, J. Chudoba y, J. Chye ca, R.W. Clay j,
E. Colombo b, R. Conceição bj, B. Connolly cl, F. Contreras h, J. Coppens bd,bf, A. Cordier ac, U. Cotti bb, S. Coutu ce,
C.E. Covault bu, A. Creusot bl, A. Criss ce, J. Cronin ch, A. Curutiu aj, S. Dagoret-Campagne ac, R. Dallier af,
K. Daumiller ah, B.R. Dawson j, R.M. de Almeida q, M. De Domenico at, C. De Donato ap, S.J. de Jong bd,
G. De La Vega g, W.J.M. de Mello Junior q, J.R.T. de Mello Neto v, I. De Mitri aq, V. de Souza o, K.D. de Vries be,
G. Decerprit ab, L. del Peral bo, O. Deligny aa, A. Della Selva ar, C. Delle Fratte as, H. Dembinski ak,
C. Di Giulio as, J.C. Diaz ca, P.N. Diep co, C. Dobrigkeit q, J.C. D’Olivo bc, P.N. Dong co, D. Dornic aa,
A. Dorofeev bz, J.C. dos Anjos m, M.T. Dova e, D. D’Urso ar, I. Dutan aj, M.A. DuVernois ci, R. Engel ah,
M. Erdmann ak, C.O. Escobar q, A. Etchegoyen b, P. Facal San Luis ch,bq, H. Falcke bd,bg, G. Farrar cb,
A.C. Fauth q, N. Fazzini by, F. Ferrer bu, A. Ferrero b, B. Fick cb, A. Filevich b, A. Filipčič bk,bl, I. Fleck am,
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A. Horneffer bd, M. Hrabovský z,y, T. Huege ah, M. Hussain bl, M. Iarlori ao, A. Insolia at,
F. Ionita ch, A. Italiano at, S. Jiraskova bd, M. Kaducak by, K.H. Kampert ag, T. Karova y,
P. Kasper by, B. Kégl ac, B. Keilhauer ah, E. Kemp q, R.M. Kieckhafer cc, H.O. Klages ah,
M. Kleifges ai, J. Kleinfeller ah, R. Knapik bw, J. Knapp bs, D.-H. Koang ae, A. Krieger b,
O. Krömer ai, D. Kruppke-Hansen ag, D. Kuempel ag, N. Kunka ai, A. Kusenko cg,
G. La Rosa av, C. Lachaud ab, B.L. Lago v, P. Lautridou af, M.S.A.B. Leão u, D. Lebrun ae,
P. Lebrun by, J. Lee cg, M.A. Leigui de Oliveira u, A. Lemiere aa, A. Letessier-Selvon ad,
M. Leuthold ak, I. Lhenry-Yvon aa, R. López ay, A. Lopez Agüera bq, K. Louedec ac,
J. Lozano Bahilo bp, A. Lucero aw, R. Luna García ac, H. Lyberis aa, M.C. Maccarone av,
C. Macolino ao, S. Maldera aw, D. Mandat y, P. Mantsch by, A.G. Mariazzi e, I.C. Maris al,
0927-6505/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.astropartphys.2009.06.004

http://dx.doi.org/10.1016/j.astropartphys.2009.06.004
http://www.sciencedirect.com/science/journal/09276505
http://www.elsevier.com/locate/astropart


90 J. Abraham et al. / Astroparticle Physics 32 (2009) 89–99
H.R. Marquez Falcon bb, D. Martello aq, J. Martínez ba, O. Martínez Bravo ay, H.J. Mathes ah,
J. Matthews bz,cf, J.A.J. Matthews ck, G. Matthiae as, D. Maurizio au, P.O. Mazur by,
M. McEwen bo, R.R. McNeil bz, G. Medina-Tanco bc, M. Melissas al, D. Melo au,
E. Menichetti au, A. Menshikov ai, R. Meyhandan be, M.I. Micheletti b, G. Miele ar,
W. Miller ck, L. Miramonti ap, S. Mollerach a, M. Monasor bn, D. Monnier Ragaigne ac,
F. Montanet ae, B. Morales bc, C. Morello aw, J.C. Moreno e, C. Morris cb, M. Mostafá bw,
C.A. Moura ar, S. Mueller ah, M.A. Muller q, R. Mussa au, G. Navarra aw,
J.L. Navarro bp, S. Navas bp, P. Necesal y, L. Nellen be, C. Newman-Holmes by,
D. Newton bs, P.T. Nhung co, N. Nierstenhoefer ag, D. Nitz ca, D. Nosek x,
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Atmospheric parameters, such as pressure (P), temperature (T) and density ðq / P=TÞ, affect the develop-
ment of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmo-
spheric variations on extensive air showers by means of the surface detector of the Pierre Auger
Observatory. The rate of events shows a � 10% seasonal modulation and � 2% diurnal one. We find that
the observed behaviour is explained by a model including the effects associated with the variations of P
and q. The former affects the longitudinal development of air showers while the latter influences the
Molière radius and hence the lateral distribution of the shower particles. The model is validated with full
simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger
Observatory.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

High-energy cosmic rays (CRs) are measured by recording the
extensive air showers (EAS) of secondary particles they produce
in the atmosphere. As the atmosphere is the medium in which
the shower evolves, its state affects the lateral and longitudinal
development of the shower. Pressure (P) and air density ðqÞ are
the properties of the atmosphere that mostly affect the EAS. An in-
crease (or decrease) of the ground P corresponds to an increased
(or decreased) amount of matter traversed by the shower particles;
this affects the stage of the longitudinal development of the
shower when it reaches the ground. A decrease (or increase) of q
increases (or decreases) the Molière radius and thus broadens (or
narrows) the lateral extent of the EAS.

The properties of the primary CR, e.g., energy, mass and arrival
direction, have to be inferred from EAS, which can be sampled by
an array of detectors at ground level. Therefore, the study and
understanding of the effects of atmospheric variations on EAS in
general, and on a specific detector in particular, is very important
for the comprehension of the detector performances and for the
correct interpretation of EAS measurements.

We have studied the atmospheric effects on EAS by means of
the surface detector (SD) of the Pierre Auger Observatory, located
in Malargüe, Argentina (35.2�S, 69.5�W) at 1400 m a.s.l. [1]. The
Pierre Auger Observatory is designed to study CRs from
� 1018 eV up to the highest energies. The SD consists of 1600
water-Cherenkov detectors to detect the photons and the charged
particles of the showers. It is laid out over 3000 km2 on a triangular
grid of 1.5 km spacing [2] and is overlooked by four fluorescence
detectors (FD) [3]. The SD trigger condition, based on a 3-station
coincidence [4], makes the array fully efficient above about
3� 1018 eV. For each event, the signals in the stations are fitted
to find the signal at 1000 m from the shower core, Sð1000Þ, which
is used to estimate the primary energy [5]. The atmosphere is con-
tinuously monitored by different meteorological stations located at
the central part of the array and at each FD site. In addition,
l Salento and Sezione INFN, Lecce,

strofisica, Optica y Electronica.
balloon-borne sensors are launched at regular intervals to measure
the atmospheric temperature TðhÞ, pressure PðhÞ and humidity uðhÞ
as a function of the altitude h above the detector [6].

In Section 2, we develop a model of the expected atmospheric
effects on Sð1000Þ. The modulation is described by means of three
coefficients that depend on the EAS zenith angle ðhÞ. They are re-
lated to variations of P and q, measured at ground level, on slower
(daily-averaged) and faster (within a day) time scales. The depen-
dence of Sð1000Þ on P and q implies a modulation of the counting
rate of events. In Section 3, we study the behaviour of the recorded
rate of events as a function of P and q. On the base of the model
defined previously, we derive the P and q coefficients. In Section
4, we perform full simulations of EAS developing in various realis-
tic atmospheres (based on measurements from balloon soundings
above the site of the Pierre Auger Observatory) in order to com-
pare, in Section 5, the results from data and simulations with the
predictions of the model. We conclude in Section 6.
2. Model of atmospheric effects for the surface detector of the
Auger Observatory

2.1. Atmospheric effects on the measured signal

The water-Cherenkov detectors are sensitive to both the elec-
tromagnetic component and the muonic component of the EAS,
which are influenced to a different extent by atmospheric effects,
namely by variations of P and q. These in turn influence the signal
measured in the detectors: for the Auger Observatory, we are in
particular interested in the effects on the signal at 1000 m from
the core, Sð1000Þ.

The continuous measurement of atmospheric P and q is avail-
able only at ground level. We will show that the variation of
Sð1000Þ can be fully described in terms of variation of air pressure
and air density measured at the altitude of the Observatory site. If
not otherwise stated, P and q refer to the values at ground level.
Italy. Tel.: +39 0 832 297 465.
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Fig. 1. Average longitudinal profile of three hundred proton-initiated showers with
E ¼ 1019 eV, and zenith angle h ¼ 60� , simulated with CORSIKA-QGSJETII (open blue
circles represent the electromagnetic component, red bullets the muonic one). The
black continuous line is a fit of the electromagnetic profile with a Gaisser–Hillas
function.
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In the following, we first describe separately the effects on
Sð1000Þ due to P, Section 2.1.1, and q, Section 2.1.2, and then in
Section 2.1.3 we provide the full parameterisation of its variations
as a function of changes in P and q.

2.1.1. Effect of air pressure variations on the SD signal
From the point of view of P (which measures the vertical air col-

umn density above ground), an increase (decrease) corresponds to
an increased (decreased) matter overburden. This implies that the
shower is older (younger), i.e. in a more (less) advanced stage
when it reaches the ground level.

The longitudinal profile of the electromagnetic component of
the EAS is exponentially attenuated beyond the shower maximum
and can be described by a Gaisser–Hillas profile [7] (see Fig. 1). We
are interested in the value of the electromagnetic signal measured
at 1000 m from the core, referred hereafter as Sem. The longitudinal
development of the shower far from the core is delayed with re-
spect to the one at the core, and can be parameterised as

SemðE;XÞ / X
bX max=K exp½ðbXmax � XÞ=K�;

where E is the primary energy, X the slant depth, bX max � Xmax þ D
the average maximum of the shower at 1000 m from the core with
Xmax being the shower maximum,5 D ’ 150 g cm�2 is the typical in-
crease of the shower maximum at 1000 m from the core [8] and
K ’ 100 g cm�2 is the effective attenuation length after the maxi-
mum [9]. Therefore, a change in P affects Sem:

1
Sem

dSem

dP
’ �1

g
1�

bXmax

X

" #
sec h
K

; ð1Þ

where g dX ¼ dP sec h is used, with g the acceleration of gravity, and
h the shower zenith angle. Due to the flat longitudinal development
of the muons (see Fig. 1), no significant pressure dependence is ex-
pected for the muonic component.

2.1.2. Effect of air density variations on the SD signal
Regarding q, this affects the Molière radius rM

rM �
Es

Ec

X0

q
’ 91 m

q=ðkg m�3Þ ;
5 Xmax ’ 750 g cm�2 for 1019 eV showers according to the elongation rate mea-
surement with the FD at the Pierre Auger Observatory [10].
where Es � mec2
ffiffiffiffiffiffiffiffiffiffiffiffi
4p=a

p
’ 21 MeV is the energy constant character-

ising the energy loss due to multiple Coulomb scattering,
Ec ’ 86 MeV is the critical energy in air and X0 ’ 37:1 g cm�2 is
the radiation length in air. A variation in rM affects the lateral distri-
bution of the electromagnetic component of the EAS, which can be
approximately described with a Nishimura–Kamata–Greisen (NKG)
profile [11,12]. At a large distance r from the core, it behaves as
SemðrÞ / NemðrÞ / r�2

M ðr=rMÞ�g, where g ’ 6:5� 2s and s ¼ 3X=ðXþ
2XmaxÞ is the age of the shower. Hence, a change in q affects Sem:

1
Sem

dSem

dq
’ ð2� gÞ

q
: ð2Þ

In fact, the relevant value of rM is the one corresponding to the air
density q� two radiation lengths above ground [12] in the direction
of the incoming shower. This corresponds to ’ 700 m cos h above
the site of the Pierre Auger Observatory. On time scales of one
day or more, the temperature gradient ðdT=dhÞ in the lowest layers
of the atmosphere (the planetary boundary layer, which extends up
to about 1 km above ground level) can be described by an average
value of ’ �5:5 �C km�1 at the site of the Auger Observatory. There-
fore, the variation of q� on temporal scales of one day essentially
follows that of q. An additional effect is related to the diurnal vari-
ations of dT=dh, because during the day the surface of the Earth is
heated by solar radiation, producing a steeper dT=dh in the bound-
ary layer. On the other hand, during the night the surface is cooled
by the emission of long wavelength radiation: dT=dh becomes smal-
ler and even T inversions can be observed before sunrise. As a result,
the amplitude of the diurnal variation in T (and q) is smaller at two
radiation lengths above ground than at ground level. It is then use-
ful to separate the daily modulation from the longer term one intro-
ducing the average daily density qd and the instantaneous
departure from it, q� qd. Therefore, the dependence of Sem on q
can be modeled by

Sem ¼ S0
em 1þ aem

q ðqd � q0Þ þ bem
q ðq� qdÞ

h i
;

where q0 ¼ 1:06 kg m�3 is chosen as the reference value of q and is
the average value measured at the site of the Pierre Auger Observa-
tory over more than 3 years (1 January 2005 to 31 August 2008).

Concerning the muonic component of the signal at 1000 m from
the core, Sl, its dependence on q can be parameterised as

Sl ¼ S0
l 1þ al

qðqd � q0Þ
h i

:

The q dependence is written in terms of qd � q0 only because, as the
muons are produced high in the atmosphere, their contribution to
signal is not expected to depend on the daily modulations taking
place in the boundary layer.

2.1.3. Model of atmospheric effects on S(1000)
The dependence of the total signal at 1000 m from the core,

Sð1000Þ � S ¼ Sem þ Sl, upon P and q can hence be written as

S ¼ S0½1þ aPðP � P0Þ þ aqðqd � q0Þ þ bqðq� qdÞ�; ð3Þ

where P0 ¼ 862 hPa is the reference P at the site of the Pierre Auger
Observatory, S0 is the value of the total signal at reference pressure
and density (P ¼ P0 and q ¼ qd ¼ q0), and

aP ¼ Femaem
P ; aq ¼ Femaem

q þ ð1� FemÞal
q; bq ¼ Fembem

q ; ð4Þ

where Fem � Sem=S is the electromagnetic fraction of the signal at
1000 m from the core. The values of Fem are obtained by means of
proton-initiated showers simulated with CORSIKA–QGSJETII (see
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Section 4): they decrease approximately linearly with sec h for all
the simulated primary energies (see Fig. 2).

We will adopt hereafter

Fem ¼ Fv
em � 0:5ðsec h� 1Þ; ð5Þ

where Fv
em � Femðh ¼ 0Þ varies between 	 0:65 at 1018 eV and 	 0:7

at 1019 eV. We note that since the inferred electromagnetic fraction
depends on the hadronic model adopted and on the CR composition
assumed, the actual value of Fem may be different. As shown in [9],
for iron-induced showers the simulated Sl is 40% higher than in the
case of protons, while the SIBYLL model [13] predicts a muonic sig-
nal 13% lower than QGSJETII for both proton and iron primaries. The
corresponding variation Fv

em at a primary energy of 1019 eV would be
’ �11% for iron with respect to proton, and ’ þ4% for SIBYLL sim-
ulations with respect to QGSJETII.

Finally, with respect to the coefficients in Eq. (4):

(i) For the pressure coefficient, we have from Eq. (1)
aem
P ’ �

1
g

1�
bXmax

X

" #
sec h
K

;

where X ¼ Xv sec h and Xv ’ 880 g cm�2 is the atmospheric
depth at the site of the Pierre Auger Observatory.
(ii) From Eq. (2)
aem
q ’ �

4:5� 2s
q

;

where s ¼ 3=ð1þ 2 cos hXmax=XvÞ, with Xmax=Xv ’ 0:85 for
1019 eV primaries. Pressure effects associated to the change
in the slope of the lateral distribution function due to the X
dependence of s are negligible.
(iii) The coefficient bem
q should be smaller than aem

q (in absolute
value) reflecting the reduction in the amplitude of the
q� qd variations two radiation lengths above ground level.
The difference should also depend on h. For instance, assum-
ing an exponential decrease of the density amplitude with
the height h
qðhÞ � qdðhÞ ¼ exp �a
h

700 m

� �
½qð0Þ � qdð0Þ�

would lead to
bem
q ’ expð�a cos hÞaem

q ; ð6Þ
where a parameterises the amplitude of the daily density
variation in the lower atmosphere and is completely inde-
pendent of the shower development. It characterises the
scale height for the decrease of the daily thermal amplitude,
which becomes 1=e of its ground value at a height (700 m)/a.
The value of a is expected to be of order unity.
(iv) The coefficient al
q is expected to be small, and will be

assumed to be independent of h, because of the relatively flat
longitudinal development of the muons as shown in Fig. 1.
Its value will be taken to be zero since the air shower simu-
lations are consistent with a vanishing al

q coefficient (see
Section 4).

2.2. Atmospheric effects on the event rate

The dependence of the measured signal on variations of P and q
produces also a modulation of the rate of recorded events. The trig-
ger probability, Ptr , is a well-defined function of the signal [4]. As
atmospheric variations correspond to signal variations, this implies
that the same primary particle (in particular, with the same pri-
mary energy) will induce different signals depending on P and q.
This in turn affects the probability for the shower to trigger the
SD array.

The effect can be quantified starting from the relation
between Sð1000Þ and the energy of the primary cosmic ray. In
the case of the Pierre Auger Observatory, the primary energy is
reconstructed as

Er / ½Sð1000Þ�B;

where B ¼ 1:08
 0:01ðstatÞ 
 0:04ðsysÞ is derived from the calibra-
tion of the SD energy using the FD energy measurement [14]. Fol-
lowing Eq. (3), the primary energy E0ðh; P;qÞ that would have
been obtained for the same shower at the reference pressure P0

and density q0, is related to Er as follows:

E0 ¼ Er ½1� aPðP � P0Þ � aqðqd � q0Þ � bqðq� qdÞ�
B
: ð7Þ

In a zenith angle bin dh, the rate R of events per unit time and unit
solid angle above a given signal Smin can be written as

dR
dh
ðh; SminÞ ¼

dA
dh
ðhÞ
Z

Smin

dSPtrðSÞ
dJ
dS
;

where A is the geometrical aperture and J is the flux of cosmic rays.
Assuming that the cosmic ray spectrum is a pure power law, i.e.

dJ=dE0 / E�c
0 , using Eq. (7), and neglecting the small energy depen-

dence of the weather coefficients, we find that

dJ
dS
/ E�c

0
dE0

dS
/ S�BcþB�1½1þ Bðc� 1ÞðaPðP � P0Þ

þ aqðqd � q0Þ þ bqðq� qdÞÞ�:

From the dependence on the atmosphere of the measured CR flux
above a given signal, we derive the corresponding dependence of
the rate of events. If Smin is the minimum required signal at
1000 m from the core to trigger the array

dR
dh
/ ½1þ aPðP � P0Þ þ aqðqd � q0Þ þ bqðq� qdÞ�

�
Z

Smin

dSPtrðSÞS�BcþB�1 ð8Þ

with the integral on the right-hand side being independent of the
weather variations. The coefficients aP ; aq and bq are then related
to the coefficients describing the modulation of the signal by
aq;P ¼ Bðc� 1Þaq;P and bq ¼ Bðc� 1Þbq.
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3. Atmospheric effects on the experimental rate of events

To study the modulation of the rate of events, we use data taken
by the SD from 1 January 2005 to 31 August 2008. All events with
h < 60� are used, for a total of about 960000 showers with a med-
ian energy 6� 1017 eV. These are selected on the basis of the topol-
ogy and time compatibility of the triggered detectors [4]. The
station with the highest signal must be enclosed within an active
hexagon, in which all six surrounding detectors were operational
at the time of the event.

At the site of the Pierre Auger Observatory, the ground temper-
ature and pressure are measured every 5 min. The air density is gi-
ven by: q ¼ ðMm=RÞðP=TÞ where Mm is the molecular mass of air
and R is the gas constant. The daily average density qd is obtained
with a smoothing procedure consisting in taking, for each time, the
average value of q over a 24-h interval centered at the time of
interest. The daily and diurnal variations of the ground P and q
are shown in Fig. 3 (upper and lower panels respectively).

The pressure exhibits less than 
2% variation during the period
considered, while qd changes up to a maximum of 
8% with an
additional diurnal variation of density which is of 
3% on average
with maximum values of �8

þ6%.
In the period under study, the number of surface detectors stea-

dily increased from about 700 to about 1590. To take this into ac-
count, rather than using the raw number of triggering events, we
compute the rate every hour normalised to the sensitive area,
which is calculated every second from the total area of the active
hexagons. The daily and the diurnal rate of events are presented
in Fig. 4 (black points), where it is evident that they both follow
qualitatively the corresponding modulations of pressure and den-
sity from Fig. 3.

We use the expression given by Eq. (8) to fit the measured rate
of events. Assuming that the number of events ni observed in
each hour bin i follows a Poisson distribution of average li, a
maximum likelihood fit is performed to estimate the coefficients
aP; aq and bq.
The likelihood function is L ¼
Q lni

i
ni !

e�li . The expected number of
events in bin i is given by

li ¼ R0 � Ai � Ci;

where R0 is the average rate we would have observed if the atmo-

spheric parameters were always the reference ones, i.e. R0 ¼
P

niP
AiCi

,

with Ai the sensitive area in the ith bin and, according to Eq. (8),
Ci is

Ci ¼ ½1þ aPðPi � P0Þ þ aqðqdi
� q0Þ þ bqðqi � qdi

Þ�:

The fitted parameters are:

aP ¼ ð�0:0027
 0:0003Þ hPa�1
;

aq ¼ ð�1:99
 0:04Þ kg�1 m3;

bq ¼ ð�0:53
 0:05Þ kg�1 m3;

ð9Þ

corresponding to a reduced v2 of 1.06, where v2 ¼
P

iðni � liÞ
2=li.

The result of the fit is shown in Fig. 4, compared to the daily-aver-
aged and the shorter term modulations of the measured event rate.

To check the stability of the coefficients with respect to the en-
ergy, the same study has been done for the subset of events with a
reconstructed energy above 1018 eV, corresponding to ’ 20% of the
total statistics. The fitted coefficients are consistent within the fit
uncertainties. A more detailed study of the energy dependence of
the coefficients will become feasible in future with increased
statistics.

4. Atmospheric effects on simulated air showers

To complete the study of atmospheric effects, we performed full
EAS simulations in different atmospheric conditions. We simulated
proton-initiated showers using the CORSIKA code [15] with hadro-
nic interaction models QGSJETII [16] and Fluka [17].

We considered four fixed energies of the primary particle
(E ¼ 1018 eV;1018:5 eV;1019 eV and 1019:5 eV) and seven fixed zenith
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angles between h ¼ 0� and h ¼ 60�. For the air density profiles, we
used five parameterisations (shown in Fig. 5) of the seasonal aver-
age of radio sounding campaigns carried out at the site of the Pierre
Auger Observatory [6] over a wide range of variation in tempera-
ture.6 The set of simulations consists of 60 showers for each com-
bination of atmospheric profile, energy and angle with an optimal
statistical thinning level of 10�6 [18,19].

To compare with model predictions and data, we need to deter-
mine for each combination ðE; hÞ the dependence of Sð1000Þ on the
variations of P and q. The signal can be estimated through simpli-
6 The atmospheric profiles are implemented in the CORSIKA code through the
dependence of X on h. P;q and T profiles can be derived from: qðhÞ ¼ �dX=dh and
PðhÞ ¼ gXðhÞ. The ground values in Fig. 5 are computed at an observation level
h ¼ 1400 mð’ 880 g cm�2Þ, corresponding to the altitude of the Pierre Auger
Observatory.
fied assumptions about the energy deposited by particles on the
basis of their kinetic energy Ek:

(i) e�eþ deposit Ek � �th, where �th ¼ 260 keV is the energy
threshold for Cherenkov emission in water.

(ii) photons deposit Ek � 2me � 2�th.
(iii) muons deposit 240 MeV corresponding to the average

energy released by a vertical muon crossing a 1.2 m high
water-Cherenkov tank.

The contribution of each particle is multiplied by the weight as-
signed by the thinning algorithm. We obtain the Cherenkov signal
per unit area perpendicular to the shower plane CspðrÞ. For the
muons, the Cherenkov signal is proportional to the track length
in the station so that: Cl ¼ Cl

sp, whereas for the electromagnetic
component: Cem ¼ cos hCem

sp .
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The left panel of Fig. 6 shows the lateral distribution
CðrÞ ¼ CemðrÞ þ ClðrÞ, which is proportional to Sð1000Þ, for four
atmospheres (relative to the Spring one) in the case of
E ¼ 1019 eV and h ¼ 18�. The effect related to the Molière radius
can be clearly seen as a broadening of the lateral distribution with
increasing temperature.
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To derive the atmospheric coefficients, we correlate the simu-
lated Cð1000Þ (taken as the average signal between 950 m and
1050 m) with P and q (see Eq. (3)). Since we are using seasonal
atmospheric profiles, we do not have access to the diurnal varia-
tion of T and thus we cannot determine the coefficient bq related
to the diurnal variation of q. The two coefficients aq and aP can
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be determined for each fixed energy and angle with a two dimen-
sional fit of the Cð1000Þ, obtained for the five atmospheric profiles,
as function of q and P. As an example, we show in Fig. 6 (right) the
results of the fit for the case of E ¼ 1019 eV and h ¼ 18�, projected
on the ðCð1000Þ;qÞ plane for the sake of clarity. Moreover, in the
case of simulations we are able to separate the electromagnetic
and the muonic contribution to the signal and thus to determine
the atmospheric coefficients for each component (see Fig. 7).

5. Comparison among model, data and simulations

In this section, we compare the atmospheric coefficients de-
rived from data with those expected from the model and simula-
tions. We recall that with the simulations we cannot access the
coefficient bq, as we use average seasonal profiles for the atmo-
sphere, while we can investigate the behaviour of separate coeffi-
cients for the electromagnetic and muonic components of EAS. On
the other hand, with experimental data we cannot separate the
electromagnetic and muonic components, while we can fully
investigate the diurnal effects of atmospheric changes and
compare measurements and expectations for all of the three
coefficients.

The comparison between atmospheric coefficients for the elec-
tromagnetic and muonic components of EAS from simulations and
model is shown in Fig. 7, as a function of sec h. With respect to the
electromagnetic part, the model predictions for both the P and q
coefficients, and their dependence on the shower zenith angle,
are reasonable at all energies. Concerning the muonic component
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of the signal and its dependence on P;al
P is compatible with zero

at all energies, as expected from the flat longitudinal development
of the number of muons. For the dependence on q, the model is not
predictive but from the simulations we get a value of al

q compati-
ble with zero. This justifies the adoption in the model of vanishing
coefficients for the muonic component.

The comparison of the global coefficients as a function of sec h is
done for aP;aq and bq in Figs. 8 and 9. In the case of the data, the
dependence on h has been studied by dividing the data set in sub-
sets corresponding to five bins of equal width in sec h. For each
subset the same fitting procedure as illustrated in Section 3 is used.
The signal coefficients are then derived by dividing the rate coeffi-
cients by Bðc� 1Þ (see the end of Section 2.2). Since the bulk of the
triggering events have an energy < 1018 eV, we used
c ¼ 3:30
 0:06, as measured with the Auger Observatory below
1018:65 eV [20].

The comparison among data, simulations and model is shown
for the pressure coefficient aP and the daily component of the den-
sity coefficient aq in Fig. 8 (top and bottom, respectively). In the
model, we use the value of Xmax measured by the Auger Observa-
tory at the median energy of the triggering events [10], and a
Fv

em, corresponding at the same energy, obtained under the
assumption that Fv

em scales linearly with the logarithm of the pri-
mary energy. The reduced v2 for the data-model comparison is
3.3 for aP and 11.0 for aq. For the instantaneous density coefficient
bq, the comparison between data and model is shown in Fig. 9. The
data-model comparison gives in this case a reduced v2 of 0.6.

6. Conclusions

We have studied the effect of atmospheric variations (in P; T
and q) on extensive air showers using about 960000 events col-
lected by the surface detector of the Pierre Auger Observatory from
1 January 2005 to 31 August 2008. We observe a significant mod-
ulation of the rate of events with the atmospheric variables, both
on a seasonal scale ð� 10%Þ and on a shorter time scale (� 2% on
average during a day). This modulation can be explained as due
to the impact of the density and pressure changes on the shower
development, which affects the energy estimator Sð1000Þ, the size
of the shower signal 1000 m from the shower axis. This affects the
trigger probability and the rate of events above a fixed energy.

The dominant effect is due to the change with the air density
of the Molière radius near ground. It induces a variation of the rate
of events with associated correlation coefficients of ð�1:99

0:04Þ kg�1 m3 and ð�0:53
 0:05Þ kg�1 m3 on long and short time
scales, respectively.
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The second effect is due to the pressure changes, which affect,
through the variation of the amount of matter traversed, the stage
of development of the showers when they reach ground. The im-
pact of the pressure variation on the rate amounts to ð�2:7

0:3Þ � 10�3 hPa�1.

Comparing the coefficients obtained from data, shower simula-
tions in different atmospheric profiles and expectations from the
model built, a good agreement is obtained, not only for the overall
size of the effect but also for the zenith angle dependence.

Taking into account the atmospheric effects will allow to reduce
the systematics in the energy reconstruction. Furthermore, it will
be possible to correct for the seasonal modulation, which can affect
the search for large scale anisotropies.
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