Physics Letters B 714 (2012) 197-214

Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

PHYSICS LETTERS 8

Search for supersymmetry with jets, missing transverse momentum and at least one hadronically decaying τ lepton in proton–proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector \approx

ATLAS Collaboration*

ARTICLE INFO

Article history: Received 17 April 2012 Received in revised form 19 June 2012 Accepted 23 June 2012 Available online 27 June 2012 Editor: H. Weerts

Keywords: Supersymmetry GMSB Tau lepton

ABSTRACT

A search for production of supersymmetric particles in final states containing jets, missing transverse momentum, and at least one hadronically decaying τ lepton is presented. The data were recorded by the ATLAS experiment in $\sqrt{s} = 7$ TeV proton–proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 2.05 fb⁻¹ of data. The results are interpreted in the context of gauge mediated supersymmetry breaking models with $M_{\rm mess} = 250$ TeV, $N_5 = 3$, $\mu > 0$, and $C_{\rm grav} = 1$. The production of supersymmetric particles is excluded at 95% C.L. up to a supersymmetry breaking scale $\Lambda = 30$ TeV, independent of tan β , and up to $\Lambda = 43$ TeV for large tan β . Published by Elsevier B.V. Open access under CC BY license.

1. Introduction

Supersymmetry (SUSY) [1–9] is a well-motivated theoretical concept that introduces a symmetry between bosons and fermions. As a consequence, every Standard Model (SM) particle has a SUSY partner with the same mass and quantum numbers except for the spin which differs by half a unit. Since none of these partners has been observed SUSY must be a broken symmetry if realized in nature. If R-parity is conserved [10-14], SUSY particles can only be produced in pairs and would decay through cascades involving lighter SUSY particles. These decay cascades end in the production of the lightest supersymmetric particle (LSP), which is stable and escapes the detector unseen, giving rise to missing transverse momentum in the detector. SUSY can remedy various shortcomings of the Standard Model, such as the hierarchy problem [14–19], the lack of a dark matter candidate [20,21] and the non-unification of the gauge couplings [22–25]. To achieve this, the masses of at least some SUSY particles must be near the weak scale, and therefore, if weak-scale SUSY is realized in nature, there are good prospects to discover it at the Large Hadron Collider (LHC).

In certain SUSY models, large mixing between left and right sfermions, the partners of the left-handed and right-handed SM fermions, implies that the lightest sfermions belong to the third generation. This leads to a large production rate of τ leptons from decays of $\tilde{\tau}$ sleptons and gauginos, the partners of the SM gauge bosons, in SUSY cascade decays. For example, in the context of Gauge Mediated SUSY Breaking (GMSB) [26–31] the lighter of the two $\tilde{\tau}$ sleptons is the next-to-lightest supersymmetric particle (NLSP) for a large part of the parameter space, and the very light gravitino, \tilde{G} , is the LSP. Hence $\tilde{\tau}$ sleptons decay to a τ lepton and a gravitino. While this $\tilde{\tau} \to \tau \tilde{G}$ process is the dominant source of τ leptons from SUSY decays in certain regions of GMSB model parameter space, the analysis presented here is sensitive to any process producing τ leptons in association with jets and missing transverse momentum.

This Letter presents a search for supersymmetry in final states with at least one hadronically decaying τ lepton, missing transverse momentum and jets with the ATLAS detector at the LHC. The results of the search are interpreted within the GMSB model. Previous experiments at LEP [32–34] have placed constraints on $\tilde{\tau}$ and \tilde{e} masses and on more generic GMSB signatures. Among these the limits from the OPAL experiment [32] were the most stringent, excluding $\tilde{\tau}$ NLSPs with masses below 87.4 GeV. The D0 Collaboration performed a search for squark production in events with hadronically decaying τ leptons, jets, and missing transverse momentum [35], and the CMS Collaboration performed searches for new physics in same-sign ditau events [36] and multi-lepton events [37] including τ pairs, but the GMSB model was not specifically considered in any of these results. A search for supersymmetry in final states containing at least two hadronically decaying

 $^{^{\}star}$ © CERN for the benefit of the ATLAS Collaboration.

^{*} E-mail address: atlas.publications@cern.ch,

⁰³⁷⁰⁻²⁶⁹³ Published by Elsevier B.V. Open access under CC BY license. http://dx.doi.org/10.1016/j.physletb.2012.06.061

 τ leptons, missing transverse momentum, and jets with the ATLAS detector is presented in another Letter [38].

2. ATLAS detector

The ATLAS detector [39] is a multipurpose particle physics apparatus with a forward-backward symmetric cylindrical geometry and nearly 4π coverage in solid angle.¹ The inner tracking detector consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The inner detector is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field and by high-granularity liquid-argon sampling calorimeters. An iron-scintillator tile calorimeter provides hadronic coverage in the central rapidity range. A muon spectrometer consisting of large superconducting toroids and a system of precision tracking chambers surrounds the calorimeters.

3. Data and simulated samples

The analysis is based on data collected by the ATLAS detector in proton–proton collisions at a center-of-mass energy of 7 TeV between March and August 2011. Application of beam, detector, and data-quality requirements resulted in an integrated luminosity of 2.05 ± 0.08 fb⁻¹ [40,41]. The data were collected using triggers based on one jet with transverse momentum $p_T > 75$ GeV, measured at the raw electromagnetic scale, and missing transverse momentum above 45 GeV.

In GMSB models, the breaking of SUSY is mediated through flavor-blind SM gauge interactions of messenger fields with mass scale $M_{\rm mess}$ which is small compared to the Planck mass. In addition to $M_{\rm mess}$, the free parameters in GMSB models are the scale of the SUSY breaking, A, the number of messenger fields, N_5 , the sign of the Higgsino mixing parameter, sign(μ), the scale factor for the gravitino mass, $C_{\rm grav}$, and the ratio of the vacuum expectation values of the two Higgs doublets, $\tan \beta$. In this analysis, GMSB models are studied in the A-tan β plane for fixed $M_{\rm mess} = 250$ TeV, $N_5 = 3$, sign(μ) = +1 and $C_{\rm grav} = 1$. The chosen set of parameter values restricts the analysis to specific final states relevant for the search with τ leptons and to promptly decaying NLSPs. For $N_5 \ge 2$ and large tan β the lightest $\tilde{\tau}$ slepton, $\tilde{\tau}_1$, is the NLSP.

Samples of simulated GMSB events are generated with the Herwig++ [42] generator for ten values of Λ in the range $10 \leq \Lambda \leq 85$ TeV and ten values of $\tan \beta$ in the range $2 \leq \tan \beta \leq 45$, with the SUSY mass spectra generated using ISAJET 7.80 [43]. The MRST2007 LO* [44] parton distribution functions (PDFs) are used. The production cross sections are calculated with PROSPINO [45–48] to next-to-leading order in the QCD coupling using the next-to-leading-order CTEQ6.6 [49] PDF set. The two samples with $\Lambda = 30$ (40) TeV and $\tan \beta = 20$ (30), which have cross sections of 1.95 (0.41) pb, are used as representative points for the optimization of the event selection.

The dominant background processes in this search are production of *W* and *Z* bosons in association with jets (*W* + jets and *Z* + jets), top quark pair ($t\bar{t}$) and single top quark production. The *W* + jets and *Z* + jets production processes are simulated with the ALPGEN [50] generator, using the CTEQ6L1 [51] PDF set, and are normalized to a cross section of 31.4 nb and 9.02 nb [52–54], respectively. The $t\bar{t}$, single-top and diboson production processes are generated with MC@NLO [55] and the CTEQ6.6 [49] PDF set, and are normalized using a cross section of 0.165 nb, 0.085 nb [56-58] and 0.071 nb [59,60], respectively. Parton showers and hadronization are simulated with HERWIG and the underlying event is modeled with JIMMY [61]. The programs TAUOLA [62.63] and PHOTOS [64] are used to model the decays of τ leptons and the radiation of photons, respectively. The production of multijet events is simulated with PYTHIA [65], though the multijet background yield in this analysis is estimated using data. All simulated samples are processed through a full simulation of the ATLAS detector [66] based on GEANT4 [67]. To match the pileup (overlap of several interactions in the same bunch crossing) observed in the data, the generated signal and background events are overlaid with minimum-bias events [68,69] and the resulting events are reweighted so that the distribution of the number of interactions per bunch crossing agrees with the data.

4. Object reconstruction

Jet candidates are reconstructed with the anti- k_t clustering algorithm [70] with radius parameter R = 0.4. The inputs to this algorithm are clusters of calorimeter cells seeded by cells with energy significantly above the measured noise. Jets are constructed by performing a four-vector sum over these clusters, treating each cluster as a four-vector with zero mass. Jets are corrected for calorimeter non-compensation, upstream material, and other effects using p_{T} - and η -dependent correction factors obtained from Monte Carlo simulation and validated with extensive test-beam and collision-data studies [71]. Only jet candidates with $p_T > 30$ GeV, $|\eta| < 2.8$ and a distance $\Delta R > 0.2$ with respect to the nearest identified electron are considered as real hadronic jets, where the distance is defined as $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

The electron and muon identification criteria are identical to those in Ref. [72]. Electrons and muons are only considered if they satisfy $p_T > 20$ GeV and $\Delta R > 0.4$ with respect to the nearest identified jet.

The magnitude of the missing transverse momentum, E_T^{miss} , is computed from the vector sum of the transverse momenta of all identified electrons and muons, all jets, and remaining clusters of calorimeter cells with $|\eta| < 4.5$ [73].

Hadronically decaying τ leptons are reconstructed from jet candidates with $p_{\rm T} > 10$ GeV and are distinguished from quark- or gluon-initiated jets using a boosted decision tree (BDT) based on eleven discriminating shower-shape and tracking variables [74]. Electrons are further rejected using transition radiation and calorimetric information. An energy calibration factor for hadronically decaying τ leptons is applied as function of p_{T} and η . Candidates are required to satisfy $p_{\mathrm{T}}^{ au} > 20$ GeV and $|\eta| < 2.5$ and to have one or three associated reconstructed tracks (prongs) with total charge ± 1 . The τ candidates are required to satisfy a $p_{\rm T}$ dependent BDT output criterion [74] chosen to give \sim 30% (\sim 50%) signal efficiency for one-prong (three-prong) τ candidates as estimated in $Z(\rightarrow \tau \tau)$ + jets events. The BDT selection has a corresponding background acceptance of $\sim 0.5\%$ ($\sim 3\%$), estimated in dijet events, and the different selection criteria reflect different abundances of one- and three-prong jets in background samples.

During a part of the data-taking period, an electronics failure in the liquid-argon calorimeter created a dead region in the second and third layer of the calorimeter, corresponding to approximately 1.4×0.2 rad in $\Delta \eta \times \Delta \phi$. A correction is made to the jet energy using energy depositions in cells neighboring the dead region; events having at least one jet, including the leading τ candidate, in this region for which the corrected energy is above 30 GeV are discarded, resulting in a loss of ~ 6% of the data sample.

¹ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and the *z*-axis coinciding with the axis of the beam pipe. The *x*-axis points from the interaction point to the center of the LHC ring, and the *y*-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

5. Event selection

Events are required to have a reconstructed primary vertex with at least five associated tracks with $p_T > 500$ MeV. Events are rejected if they contain identified electrons or muons or if any jet or τ candidate is consistent with arising from detector noise or non-collision background [71]. Events are required to contain one or more identified τ candidates, at least two jets, one with $p_T > 30$ GeV and another with $p_T > 130$ GeV, and missing transverse momentum $E_T^{miss} > 130$ GeV. The latter two requirements ensure that the trigger efficiency is above 98% in both data and simulation.

The two jets leading in $p_{\rm T}$ are required to be separated in azimuth from the direction of the missing transverse momentum by more than 0.3 rad. This requirement reduces multijet events, which typically have instrumental missing transverse momentum aligned with the leading jets. Multijet events are further suppressed by requiring $E_{\rm T}^{\rm miss}/m_{\rm eff} > 0.25$, where the effective mass, $m_{\rm eff}$, is defined as the scalar sum of $E_{\rm T}^{\rm miss}$, the $p_{\rm T}$ of the two leading jets, and the $p_{\rm T}^{\tau}$ of the leading τ candidate.

Events are required to have a transverse mass, $m_{\rm T}$, above 110 GeV. The transverse mass is defined as

$$m_{\mathrm{T}} = \sqrt{m_{\tau}^2 + 2p_{\mathrm{T}}^{\tau} E_{\mathrm{T}}^{\mathrm{miss}} (1 - \cos \Delta \phi (p_{\mathrm{T}}^{\tau}, E_{\mathrm{T}}^{\mathrm{miss}}))},$$

where $\Delta \phi(p_{T}^{\tau}, E_{T}^{\text{miss}})$ is the azimuthal angle between the τ and the direction of the missing transverse momentum. This requirement suppresses backgrounds due to W + jets and top-quark production. The remaining SM backgrounds are further suppressed by requiring $m_{\text{eff}} > 600$ GeV. This is the final selection defining the signal region for the analysis. The m_{T} and m_{eff} requirements as well as the criteria used for the suppression of multijet events are chosen to maximize the signal significance computed with the Asimov approximation [75].

6. Background estimation

Background processes are divided into three classes which are estimated separately: events with true τ leptons from $t \rightarrow b\tau\nu$ decays (both top-quark-pair and single top quark production) and $W(\rightarrow \tau\nu)$ + jets events; events with misidentified ('fake') τ candidates in top, W + jets, and Z + jets events; and events with fake τ candidates in multijet events. The two fake- τ classes are treated separately to account for differences in τ misidentification probabilities due to different event topologies and jet composition.

Events with true τ leptons are estimated in a control region defined by replacing the requirement on the transverse mass in the final selection with the requirement $m_{\rm T} < 70$ GeV. For events with a correctly reconstructed τ lepton and with $E_{\rm T}^{\rm miss}$ entirely due to a single neutrino, $m_{\rm T}$ is kinematically bounded from above by the W mass, within the detector resolution; by requiring $m_{\rm T} < 70$ GeV, more than 90% of the events in the resulting control region are expected to contain true τ leptons from top-quark and W decays. The composition of the event sample in this control region is given in Table 1. Within this control region, the background due to Z decays is estimated from simulation and the remaining small background due to multijet events is estimated using a procedure similar to that used to estimate the multijet background in the signal region, described below.

Within the $m_{\rm T} < 70$ GeV control region, top-quark and W + jets yields are estimated individually with a maximum-likelihood fit to the output distribution of a BDT built from four variables: the number of *b*-quark jets, the total jet multiplicity, the transverse momentum of the second-leading jet, and the transverse thrust *T* of the event, defined as $T = \max_{\hat{n}} \{\sum_i \hat{n} \cdot \vec{p}_{{\rm T},i} | \sum_i \vec{p}_{{\rm T},i} |\}$, where *i*

Table 1

Numbers of observed and expected events in the true- τ -dominated *W*/top control region, defined as $m_T < 70$ GeV. The numbers shown for *W* + jets and top are from Monte Carlo simulation and do not include the correction factors derived from this control region. The correction factors obtained from a fit to data are 1.22 ± 0.13 for top and 0.71 ± 0.03 for *W* + jets. The true- τ purity is 97% for top, 96% for *W* + jets.

Тор	W + jets	Z + jets	Multijet	Data
186.4 ± 8.4	919 ± 40	$\textbf{62.2} \pm \textbf{6.7}$	1.8 \pm 1.8	951

Fig. 1. Output distribution of the BDT used to discriminate W + jets from top-quark events in the low- m_T control region, defined as $m_T < 70$ GeV. Background distributions are taken from simulation. The yield for W + jets and top backgrounds are taken from a maximum-likelihood fit to this distribution. The solid (red) line with shaded (yellow) error band corresponds to the total SM prediction, while the points are data. (For interpretation of the references to color in this figure, the reader is referred to the web version of this Letter.)

runs over the missing transverse momentum and all jets, excluding the tau candidates, with transverse momentum vectors $\vec{p}_{T,i}$, and the transverse thrust axis is given by the unit vector \hat{n} for which the maximum is attained. Top-quark events have more reconstructed *b*-quark jets, a higher jet multiplicity, higher jet momenta, and tend to be more spherical than W + jets events. Jets containing b quarks are identified with about 60% efficiency, evaluated with top-quark events, using secondary vertex reconstruction and three-dimensional impact parameters of tracks associated with the jet [76]. The output distribution of this BDT is shown in Fig. 1 along with the results of the fit. The results of the fit are scale factors for W + jets and top quark backgrounds which reflect differences in cross sections and reconstruction efficiencies between data and simulation. The measured scale factors are 1.22 ± 0.13 for top events and 0.71 ± 0.03 for W + jets events. These scale factors are applied to simulated event samples in the signal region to derive the final expected true- τ yields from background processes.

For the estimation of backgrounds due to fake τ candidates in top-quark, W + jets, and Z + jets events, a second control sample is defined by selecting events that fulfill the event selection but with modified criteria on $m_{\rm T}$ and $m_{\rm eff}$: $m_{\rm T} > 70$ GeV and either $m_{\rm T} < 110$ GeV or $m_{\rm eff} < 600$ GeV. Since the $m_{\rm T}$ distribution falls off rapidly above the W mass for true- τ events, the intermediate $m_{\rm T}$ region selected here is relatively enhanced in fake- τ events, and the overall composition of this region is expected to be very similar to that of the signal region. Multijet events are expected to make up less than 3% of this sample and are estimated from

Table 2

Numbers of observed and expected events in the fake- τ -enhanced control region. The numbers of expected W + jets and top-quark events have been corrected by the correction factors measured in the true- τ -dominated region. The fake- τ correction factor obtained from data is 0.50 ± 0.08 .

	True τ	Fake τ	Total
Тор	53.3 ± 7.5	37.8 ± 5.8	91.1 ± 9.4
W + jets	80.5 ± 6.9	33.3 ± 4.1	113.8 ± 8.0
Z + jets	5.1 ± 1.6	41.5 ± 10.8	46.6 ± 10.9
Multijet	0 ± 0	2.9 ± 1.0	2.9 ± 1.0
Total	139 ± 10	116 ± 13	254 ± 17
Data			197

simulation. The composition of the fake- τ -enhanced sample in this control region is shown in Table 2. Within this control region, true- τ backgrounds are subtracted using estimates derived from the true- τ -dominated control region. The numbers of events remaining after the true- τ subtraction are used to determine a scale factor, 0.50 ± 0.08 , which is then applied to simulated samples of fake- τ events in the signal region to obtain a final background estimate. While this scale factor differs significantly from unity, it is consistent with other ATLAS studies of the performance of τ fake rates in simulation.

Backgrounds due to multijet events are estimated in a third control region in which either $E_{\rm T}^{\rm miss}/m_{\rm eff} < 0.25$ or one of the two leading jets is aligned in azimuth with the missing transverse momentum direction. Within this sample, the probability for jets (which contain very few true τ leptons) to satisfy the τ selection criteria is estimated by applying the selection to randomly chosen jet candidates. This probability is then applied to a complementary sample of multijet events, where the azimuthal separation and $E_{\rm T}^{\rm miss}/m_{\rm eff}$, as well as all other event selection requirements, match those of the signal region, but where the τ candidate is again randomly chosen from among the jet candidates. This provides an estimate of the multijet background yield in the signal region. It is found that the multijet background makes up only a few percent of the total SM background in the signal region.

Possible contamination from SUSY signals has been considered in all three background-estimation control regions and is found to have a negligible effect on the results presented below.

7. Systematic uncertainties

Dominant systematic uncertainties on the estimated background yields are due to uncertainties in the jet energy scale (3-8%) [71], jet energy resolution (6-13%) [71], τ energy scale (2-10%) [74], statistical uncertainties in the data control regions (5–15%), and Monte Carlo uncertainties related to the extrapolation from the control regions to the signal region (10-20%). This last term includes statistical uncertainties in the simulation, variations in the in the assumed W + jets/top/Z + jets mixture in the fake- τ control region, and Monte Carlo generator uncertainties (estimated by varying the shower matching, factorization and renormalization scales, α_s , and the amount of initial-state and final-state radiation) [77]. Additional uncertainties on W + jets and top-quark backgrounds are estimated by varying the assumed *b*-quark identification efficiency within measured uncertainties (4-11%) [76]. Uncertainties on the multijet background yield are estimated by studying correlations between $m_{\rm eff}$ and the azimuthal separation between the leading two jets and the missing transverse momentum. Additional systematic uncertainties, including those on the pile-up description in the simulation, are considered and found to be negligible.

Fig. 2. Distributions of $E_{\text{T}}^{\text{miss}}$, p_{T}^{T} , and m_{eff} for data with all selection requirements except for that on m_{eff} , along with the corresponding estimated backgrounds. Backgrounds are taken from simulation and normalized with control regions in data. The solid (red) line with shaded (yellow) error band corresponds to the total SM prediction, while the points are data. The error bands indicate the size of the total (statistical and systematic) uncertainty. The notation GMSB(40, 30) stands for the GMSB model with A = 40 TeV and $\tan \beta = 30$ and analogously for GMSB(30, 20). (For interpretation of the references to color in this figure, the reader is referred to the web version of this Letter.)

In addition to the sources described above, systematic uncertainties on the SUSY signal cross section are estimated by varying the factorization and renormalization scales in PROSPINO up and down by a factor of two, by considering variations in α_s , and by varying the proton PDFs within their uncertainties. These theoretical uncertainties total typically 8–12% across the relevant region of parameter space. Uncertainties are calculated separately for individual SUSY production processes.

8. Results

Fig. 2 shows the distributions of $E_{\rm T}^{\rm miss}$, $p_{\rm T}^{\tau}$, and $m_{\rm eff}$ for data with all selection requirements applied except for that on $m_{\rm eff}$, along with the corresponding estimated backgrounds. The numbers of expected SM background events and the observed number of events after the $m_{\rm eff}$ requirement are shown in Table 3. The data agree with the background expectation.

Based on these results, limits are placed on contributions beyond the SM to the signal region. With 11 events observed and

Table 3
Expected SM background event yields and number of events observed in data after
the final requirement on $m_{\rm eff}$. All systematic uncertainties are included here, and
the uncertainty on $\Sigma_{\rm SM}$, the sum of all SM backgrounds, takes correlations between
the individual background uncertainties into account. The true- τ purities are 53%
and 64% for the top and W + jets backgrounds, respectively, and are negligible for
the Z + jets and multijet backgrounds. For comparison, the estimated event yield
for a GMSB signal with $A = 40$ TeV, $\tan \beta = 30$ is an additional 9.1 ± 1.7 events.

Тор	W + jets	Z + jets	Multijet	\varSigma_{SM}	Data
5.6 ± 1.4	4.7 ± 1.5	2.4 ± 0.7	0.5 ± 0.6	13.2 ± 4.2	11

Fig. 3. Expected and observed 95% C.L. exclusion limits in the $M_{\rm mess} = 250$ TeV, $N_5 = 3$, $\mu > 0$, $C_{\rm grav} = 1$ slice of GMSB, together with the most stringent previous limits from OPAL [32]. The identity of the NLSP is indicated, with CoNLSP the region where the $\tilde{\tau}$ and $\tilde{\ell}$ are nearly degenerate.

 13.2 ± 4.2 expected, an upper limit of 8.5 on the number of events observed due to non-SM sources is derived at 95% confidence level (C.L.). This limit corresponds to an upper limit on the visible cross section of 4.0 fb, where the visible cross section is defined as the product of production cross section, branching fraction to at least one τ lepton, acceptance, and efficiency using the event selection defined in Section 5. For the two benchmark points $\Lambda = 30$, tan $\beta = 20$ and $\Lambda = 40$, tan $\beta = 30$ the product of branching ratio to τ -leptons, the acceptance and the efficiency for this selection amounts to 1.47% and 1.69%, respectively. Fig. 3 shows an interpretation of the result as a 95% C.L. exclusion limit in the $M_{\rm mess}=$ 250 TeV, $N_5=$ 3, $\mu>$ 0, $C_{
m grav}=$ 1 slice of the GMSB model. Fig. 3 also shows the variation of the expected limit in response to $\pm 1\sigma$ fluctuations in the expected SM background and the SUSY cross sections. The excluded regions are calculated using a profile likelihood method with systematic uncertainties modeled as varying Gaussian-distributed nuisance parameters [78,79]. The resulting limit is compared with previous exclusion limits from searches for $\tilde{\tau}$ and \tilde{e} production and GMSB topologies at LEP. The region of small Λ and large tan β is theoretically excluded since it leads to tachyonic states. In this model, the production of supersymmetric particles can be excluded at 95% C.L. up to $\Lambda = 30$ TeV, independent of tan β , and up to $\Lambda = 43$ TeV for large values of $\tan\beta$.

9. Conclusions

In conclusion, this Letter presents a search for supersymmetry in final states containing jets, missing transverse momentum, and at least one τ lepton with the ATLAS experiment in $\sqrt{s} = 7$ TeV proton–proton collisions at the LHC. This is the first search in these final states at the LHC that includes events with one τ lepton. No excess of events is seen beyond the expected Standard Model backgrounds in 2.05 fb⁻¹ of data. Limits are placed on the visible cross section and in the context of GMSB models. The limits obtained extend the results from previous experiments.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Gerece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

- [1] H. Miyazawa, Prog. Theor. Phys. 36 (6) (1966) 1266.
- [2] P. Ramond, Phys. Rev. D 3 (1971) 2415.
- [3] Y.A. Golfand, E.P. Likhtman, JETP Lett. 13 (1971) 323.
- [4] A. Neveu, J.H. Schwarz, Nucl. Phys. B 31 (1971) 86.
- [5] A. Neveu, J.H. Schwarz, Phys. Rev. D 4 (1971) 1109.
- [6] J. Gervais, B. Sakita, Nucl. Phys. B 34 (1971) 632.
- [7] D.V. Volkov, V.P. Akulov, Phys. Lett. B 46 (1973) 109.
- [8] J. Wess, B. Zumino, Phys. Lett. B 49 (1974) 52.
- [9] J. Wess, B. Zumino, Nucl. Phys. B 70 (1974) 39.
- [10] P. Fayet, Phys. Lett. B 64 (1976) 159.
- [11] P. Fayet, Phys. Lett. B 69 (1977) 489.
- [12] G.R. Farrar, P. Fayet, Phys. Lett. B 76 (1978) 575.
- [13] P. Fayet, Phys. Lett. B 84 (1979) 416.
- [14] S. Dimopoulos, H. Georgi, Nucl. Phys. B 193 (1981) 150.
- [15] E. Witten, Nucl. Phys. B 188 (1981) 513.

- [16] M. Dine, W. Fischler, M. Srednicki, Nucl. Phys. B 189 (1981) 575.
- [17] S. Dimopoulos, S. Raby, Nucl. Phys. B 192 (1981) 353.
- [18] N. Sakai, Zeit. Phys. C 11 (1981) 153.
- [19] R. Kaul, P. Majumdar, Nucl. Phys. B 199 (1982) 36.
- [20] H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419.
- [21] J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive, M. Srednicki, Nucl. Phys. B 238 (1984) 453.
- [22] C. Giunti, C.W. Kim, U. Lee, Mod. Phys. Lett. A 6 (1991) 1745.
- [23] J. Ellis, S. Kelley, D. Nanopoulos, Phys. Lett. B 260 (1991) 131.
- [24] U. Amaldi, W. de Boer, H. Furstenau, Phys. Lett. B 260 (1991) 447.
- [25] P. Langacker, M.-X. Luo, Phys. Rev. D 44 (1991) 817.
- [26] M. Dine, W. Fischler, Phys. Lett. B 110 (1982) 227.
- [27] L. Alvarez-Gaume, M. Claudson, M. Wise, Nucl. Phys. B 207 (1982) 96.
- [28] C.R. Nappi, B.A. Ovrut, Phys. Lett. B 113 (1982) 175.
- [29] M. Dine, A.E. Nelson, Phys. Rev. D 48 (1993) 1277.
- [30] M. Dine, A.E. Nelson, Y. Shirman, Phys. Rev. D 51 (1995) 1362.
- [31] M. Dine, A.E. Nelson, Y. Nir, Y. Shirman, Phys. Rev. D 53 (1996) 2658.
- [32] OPAL Collaboration, G. Abbiendi, et al., Eur. Phys. J. C 46 (2006) 307.
- [33] ALEPH Collaboration, A. Heister, et al., Eur. Phys. J. C 25 (2002) 339.
- [34] DELPHI Collaboration, J. Abdallah, et al., Eur. Phys. J. C 27 (2003) 153.
- [35] D0 Collaboration, V.M. Abazov, et al., Phys. Lett. B 680 (2009) 24.
- [36] CMS Collaboration, JHEP 1106 (2011) 077.
- [37] CMS Collaboration, Phys. Lett. B 704 (2011) 411.
- [38] ATLAS Collaboration, Phys. Lett. B 714 (2-5) (2012) 180 (in this issue).
- [39] ATLAS Collaboration, JINST 3 (2008) S08003.
- [40] ATLAS Collaboration, ATLAS-CONF-2011-116, 2011.
- [41] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630.
- [42] M. Bahr, et al., Eur. Phys. J. C 58 (2008) 639.
- [43] F. Paige, et al., arXiv:hep-ph/0312045, 2003.
- [44] A. Sherstnev, R.S. Thorne, Eur. Phys. J. C 55 (2008) 553.
- [45] M. Beeneldter, et al. Nucl. Dhys. B 402 (1007) 51
- [45] W. Beenakker, et al., Nucl. Phys. B 492 (1997) 51.
- [46] W. Beenakker, et al., Nucl. Phys. B 515 (1998) 3.
- [47] W. Beenakker, et al., Phys. Rev. Lett. 83 (1999) 3780.
- [48] T. Plehn, Czech. J. Phys. 55 (2005) B213.

- [49] P. Nadolsky, et al., Phys. Rev. D 78 (2008) 013004.
- [50] M.L. Mangano, et al., JHEP 0307 (2003) 001.
- [51] J. Pumplin, et al., JHEP 0207 (2002) 012.
- [52] R. Hamberg, W.L. van Neerven, T. Matsuura, Nucl. Phys. B 359 (1991) 343.
- [53] K. Melnikov, F. Petriello, Phys. Rev. Lett. 96 (2006) 231803.
- [54] K. Melnikov, F. Petriello, Phys. Rev. D 74 (2006) 114017.
- [55] S. Frixione, B.R. Webber, JHEP 0206 (2002) 029.
- [56] R. Bonciani, S. Catani, M.L. Mangano, P. Nason, Nucl. Phys. B 529 (1998) 424.
- [57] M. Beneke, M. Czakon, P. Falgari, A. Mitov, C. Schwinn, Phys. Lett. B 690 (2010) 483.
- [58] S. Moch, P. Uwer, Phys. Rev. D 78 (2008) 034003.
- [59] J.M. Campbell, R.K. Ellis, Phys. Rev. D 60 (1999) 113006.
- [60] J.M. Campbell, R.K. Ellis, C. Williams, JHEP 1107 (2011) 018.
- [61] J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Z. Phys. C 72 (1996) 637.
- [62] S. Jadach, et al., Comput. Phys. Commun. 76 (1993) 361.
- [63] P. Golonka, et al., Comput. Phys. Commun. 174 (2006) 818.
- [64] E. Barberio, Z. Was, Comput. Phys. Commun. 79 (1994) 291.
- [65] T. Sjöstrand, S. Mrenna, P. Skands, JHEP 0605 (2006) 026.
- [66] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823.
- [67] S. Agostinelli, et al., Nucl. Instrum. Meth. A 506 (2003) 250.
- [68] ATLAS Collaboration, ATL-PHYS-PUB-2010-014, 2010.
- [69] ATLAS Collaboration, ATLAS-CONF-2010-031, 2010.
- [70] M. Cacciari, et al., JHEP 0804 (2008) 063.
- [71] ATLAS Collaboration, arXiv:1112.6426 [hep-ex], Eur. Phys. J. C, submitted for publication.
- [72] ATLAS Collaboration, Phys. Rev. D 85 (2012) 012006.
- [73] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1844.
- [74] ATLAS Collaboration, ATLAS-CONF-2011-152, 2011.
- [75] E. Gross, G. Cowan, K. Cranmer, O. Vitellis, Eur. Phys. J. C 71 (2011) 1554.
- [76] ATLAS Collaboration, ATLAS-CONF-2011-102, 2011.
- [77] ATLAS Collaboration, arXiv:1203.6193 [hep-ex].
- [78] G. Cowan, et al., Eur. Phys. J. C 71 (2011) 1554.
- [79] A. Read, Journal of Physics G: Nucl. Part. Phys. 28 (2002) 2693.

ATLAS Collaboration

G. Aad ⁴⁸, B. Abbott ¹¹⁰, J. Abdallah ¹¹, S. Abdel Khalek ¹¹⁴, A.A. Abdelalim ⁴⁹, A. Abdesselam ¹¹⁷, O. Abdinov ¹⁰, B. Abi ¹¹¹, M. Abolins ⁸⁷, O.S. AbouZeid ¹⁵⁷, H. Abramowicz ¹⁵², H. Abreu ¹¹⁴, E. Acerbi ⁸⁸a, ⁸⁸b, B.S. Acharya ¹⁶³a, ¹⁶³b, L. Adamczyk ³⁷, D.L. Adamsz ²⁴, T.N. Addy ⁵⁶, J. Adelman ¹⁷⁴, M. Aderholz ⁹⁸, S. Adomeit ⁹⁷, P. Adragna ⁷⁴, T. Adye ¹²⁸, S. Aefsky ²², J.A. Aguilar-Saavedra ¹²³b,a, M. Aharrouche ⁸⁰, S.P. Ahlen ²¹, F. Ahles ⁴⁸, A. Ahmad ¹⁴⁷, M. Ahsan ⁴⁰, G. Aielli ¹³²a, ¹³²b, T. Akdogan ¹⁸a, T.P.A. Åkesson ⁷⁸, G. Akimoto ¹⁵⁴, A.V. Akimov ⁹³, A. Akiyama ⁶⁶, M.S. Alam ¹, M.A. Alam ⁷⁵, J. Albert ¹⁶⁸, S. Albrand ⁵⁵, M. Aleksa ²⁹, I.N. Aleksandrov ⁶⁴, F. Alessandria ^{88a}, C. Alexa ^{25a}, G. Alexandre ¹⁵², G. Alexandre ⁴⁹, T. Alexopoulos ⁹, M. Alhroob ²⁰, M. Aliev ¹⁵, G. Alimonti ^{88a}, J. Alison ¹¹⁹, M. Aliyev ¹⁰, B.M.M. Allbrooke ¹⁷, P. Allport ⁷², S.E. Allwood-Spiers ⁵³, J. Almond ⁸¹, A. Aloisio ¹⁰¹a, ¹⁰¹b, R. Alon ¹⁷⁰, A. Alonso ⁷⁸, B. Alvarez Gonzalez ⁸⁷, M.G. Alviggi ¹⁰¹a, ¹⁰¹b, K. Amako ⁶⁵, P. Amaral ²⁹, C. Amelung ²², V.V. Ammosov ¹²⁷, A. Amorim ¹²³a, b, G. Amorós ¹⁶⁶, N. Amtram ¹⁵², C. Anastopoulos ²⁹, L.S. Ancu ¹⁶, N. Andrai ¹¹⁴, T. Andeen ³⁴, C.F. Anders ²⁰, G. Anders ⁵⁸a, K.J. Anderson ³⁰, A. Andreazza ⁸⁸a, ^{88b}, V. Andrei ^{58a}, M.-L. Andrieux ⁵⁵, X.S. Anduaga ⁶⁹, A. Angerami ³⁴, F. Anghinolfi ²⁹, A. Anisenkov ¹⁰⁶, N. Anjos ^{123a}, A. Annovi⁴⁷, A. Antonaki ⁸, M. Antonelli ⁴⁷, A. Antonov ⁹⁵, J. Antos ¹³¹b, F. Anulli ^{131a}, S. Aoun ⁸², L. Aperio Bella ⁴, R. Apolle ^{117,c}, G. Arabidze ⁸⁷, I. Aracena ¹⁴², Y. Arai ⁶⁵, A.T.H. Arce ⁴⁴, S. Arfaoui ¹⁴⁷, J.-F. Arguin ¹⁴, E. Argilth ¹⁵, K. Assamagan ²⁴, A. Astbury ¹⁶⁸, B. Aubert ⁴, F. Auge ¹¹⁴, K. Augsten ¹²⁶, M. Aurousseau ¹⁴⁴, G. Avolio ¹⁶², R. Avramidou ⁹, D. Axan ¹⁶⁷, C. Ay ⁵⁴, G. Azuelos ^{92,d}, Y. Azuma ¹⁵⁴, M.A. Baak ²⁹, G.

R.L. Bates ⁵³, L. Batkova ^{143a}, J.R. Batley ²⁷, A. Battaglia ¹⁶, M. Battistin ²⁹, F. Bauer ¹³⁵, H.S. Bawa ^{142,e}, S. Beale ⁹⁷, T. Beau ⁷⁷, P.H. Beauchemin ¹⁶⁰, R. Beccherle ^{50a}, P. Bechtle ²⁰, H.P. Beck ¹⁶, S. Becker ⁹⁷, S. Beale⁵⁷, I. Beau⁷⁷, P.H. Beaucnemin¹⁰⁵, K. Beccherle⁵⁰³, P. Bechue²⁵, H.P. Beck⁷⁵, S. Beck⁷⁵, S. Beck⁷⁵, S. Beck⁷⁵, S. Beck⁷⁵, K. Beck⁸², M. Begel²⁴, S. Behar Harpaz¹⁵¹, P.K. Behera⁶², M. Beimforde⁹⁸, C. Belanger-Champagne⁸⁴, P.J. Bell⁴⁹, W.H. Bell⁴⁹, G. Bella¹⁵², L. Bellagamba^{19a}, F. Bellina²⁹, M. Bellomo²⁹, A. Belloni⁵⁷, O. Beloborodova^{106, f}, K. Belotskiy⁹⁵, O. Beltramello²⁹, O. Benary¹⁵², D. Benchekroun^{134a}, M. Bendel⁸⁰, K. Bendtz^{145a,145b}, N. Benekos¹⁶⁴, Y. Benhammou¹⁵², E. Benhar Noccioli⁴⁹, J.A. Benitez Garcia^{158b}, C. Bender and S. K. Bendtz⁴⁴, M. Benekos¹⁶⁴, Y. Benhammou¹⁵², Benchekroun¹⁰⁴, D. Benet, 29 K. Bendtz ^{145a}, ^{145b}, N. Benekos ¹⁶⁴, Y. Benhammou ¹⁵², E. Benhar Noccioli ⁴⁹, J.A. Benitez Garcia ^{158b}, D.P. Benjamin ⁴⁴, M. Benoit ¹¹⁴, J.R. Bensinger ²², K. Benslama ¹²⁹, S. Bentvelsen ¹⁰⁴, D. Berge ²⁹, E. Bergeaas Kuutmann ⁴¹, N. Berger ⁴, F. Berghaus ¹⁶⁸, E. Berglund ¹⁰⁴, J. Beringer ¹⁴, P. Bernat ⁷⁶, R. Bernhard ⁴⁸, C. Bernius ²⁴, T. Berry ⁷⁵, C. Bertella ⁸², A. Bertin ^{19a,19b}, F. Bertinelli ²⁹, F. Bertolucci ^{121a,121b}, M.I. Besana ^{88a,88b}, N. Besson ¹³⁵, S. Bethke ⁹⁸, W. Bhimji ⁴⁵, R.M. Bianchi ²⁹, M. Bianco ^{71a,71b}, O. Biebel ⁹⁷, S.P. Bieniek ⁷⁶, K. Bierwagen ⁵⁴, J. Biesiada ¹⁴, M. Biglietti ^{133a}, H. Bilokon ⁴⁷, M. Bindi ^{19a,19b}, S. Binet ¹¹⁴, A. Bingul ^{18c}, C. Bini ^{131a,131b}, C. Biscarat ¹⁷⁶, U. Bitenc ⁴⁸, K.M. Black ²¹, R.E. Blair ⁵, J.-B. Blanchard ¹³⁵, G. Blanchot ²⁹, T. Blazek ^{143a}, C. Blocker ²², J. Blocki ³⁸, A. Blondel ⁴⁹, W. Blum ⁸⁰, U. Blumenschein ⁵⁴, G.J. Bobbink ¹⁰⁴, V.B. Bobrovnikov ¹⁰⁶, S.S. Bocchetta ⁷⁸, A. Bocci ⁴⁴, W. Bidhi ⁴⁷, O. Bidhlenschein ⁴⁷, G.J. Bobbink ⁴⁴, V.B. Boblovinkov ⁴⁴, S.S. Bocchetta ⁴⁴, A. Bocch⁴⁷, C.R. Boddy ¹¹⁷, M. Boehler ⁴¹, J. Boek ¹⁷³, N. Boelaert ³⁵, J.A. Bogaerts ²⁹, A. Bogdanchikov ¹⁰⁶, A. Bogouch ^{89,*}, C. Bohm ^{145a}, J. Bohm ¹²⁴, V. Boisvert ⁷⁵, T. Bold ³⁷, V. Boldea ^{25a}, N.M. Bolnet ¹³⁵, M. Bomben ⁷⁷, M. Bona ⁷⁴, V.G. Bondarenko ⁹⁵, M. Bondioli ¹⁶², M. Boonekamp ¹³⁵, C.N. Booth ¹³⁸, S. Bordoni ⁷⁷, C. Borer ¹⁶, A. Borisov ¹²⁷, G. Borissov ⁷⁰, I. Borjanovic ^{12a}, M. Borri ⁸¹, S. Borroni ⁸⁶, V. Bortolotto ^{133a,133b}, K. Bos ¹⁰⁴, D. Boscherini ^{19a}, M. Bosman ¹¹, H. Boterenbrood ¹⁰⁴, D. Botterill ¹²⁸, V. Bortolotto ^{133a, 133b}, K. Bos¹⁰⁴, D. Boscherini ^{19a}, M. Bosman¹¹, H. Boterenbrood ¹⁰⁴, D. Botterill ¹²⁸, J. Bouchami ⁹², J. Boudreau ¹²², E.V. Bouhova-Thacker ⁷⁰, D. Boumediene ³³, C. Bourdarios ¹¹⁴, N. Bousson ⁸², A. Boveia ³⁰, J. Boyd ²⁹, I.R. Boyko ⁶⁴, N.I. Bozhko ¹²⁷, I. Bozovic-Jelisavcic ^{12b}, J. Bracinik ¹⁷, A. Braem ²⁹, P. Branchini ^{133a}, G.W. Brandenburg ⁵⁷, A. Brandt ⁷, G. Brandt ¹¹⁷, O. Brandt ⁵⁴, U. Bratzler ¹⁵⁵, B. Brau ⁸³, J.E. Brau ¹¹³, H.M. Braun ¹⁷³, B. Brelier ¹⁵⁷, J. Bremer ²⁹, K. Brendlinger ¹¹⁹, R. Brenner ¹⁶⁵, S. Bressler ¹⁷⁰, D. Britton ⁵³, F.M. Brochu ²⁷, I. Brock ²⁰, R. Brock ⁸⁷, T.J. Brodbeck ⁷⁰, E. Brodet ¹⁵², F. Broggi ^{88a}, C. Bromberg ⁸⁷, J. Bronner ⁹⁸, G. Brooijmans ³⁴, W.K. Brooks ^{31b}, G. Brown ⁸¹, H. Brown ⁷, P.A. Bruckman de Renstrom ³⁸, D. Bruncko ^{143b}, R. Bruneliere ⁴⁸, S. Brunet ⁶⁰, A. Bruni ^{19a}, G. Bruni ^{19a}, M. Bruschi ^{19a}, T. Buanes ¹³, Q. Buat ⁵⁵, F. Bucci ⁴⁹, J. Buchanan ¹¹⁷, N.J. Buchanan ², P. Buchholz ¹⁴⁰, R.M. Buckingham ¹¹⁷, A.G. Buckley ⁴⁵, S.I. Buda ^{25a}, I.A. Budagov ⁶⁴, B. Budick ¹⁰⁷, F. Buehrer ⁴⁸, Y. Büscher ⁸⁰ I. Bugge ¹¹⁶ O. Bulekoy ⁹⁵ A C. Bundock ⁷² M. Bupse ⁴² T. Buran ¹¹⁶ H. Burckhart ²⁹ R.M. Buckingham ¹¹⁷, A.G. Buckley ⁴⁵, S.I. Buda ²⁵a, I.A. Budagov ⁶⁴, B. Budick ¹⁰⁷, F. Buehrer ⁴⁸, V. Büscher ⁸⁰, L. Bugge ¹¹⁶, O. Bulekov ⁹⁵, A.C. Bundock ⁷², M. Bunse ⁴², T. Buran ¹¹⁶, H. Burckhart ²⁹, S. Burde ¹²⁸, E. Busato ³³, P. Bussey ⁵³, C.P. Buszello ¹⁶⁵, F. Butin ²⁹, B. Butler ¹⁴², J.M. Butler ²¹, C.M. Buttar ⁵³, J.M. Butterworth ⁷⁶, W. Buttinger ²⁷, S. Cabrera Urbán ¹⁶⁶, D. Caforio ^{19a,19b}, O. Cakir ^{3a}, P. Calafiura ¹⁴, G. Calderini ⁷⁷, P. Calfayan ⁹⁷, R. Calkins ¹⁰⁵, L.P. Caloba ^{23a}, R. Caloi ^{131a,131b}, D. Calvet ³³, S. Calvet ³³, R. Camacho Toro ³³, P. Camarri ^{132a,132b}, M. Cambiaghi ^{118a,118b}, D. Cameron ¹¹⁶, L.M. Caminada ¹⁴, S. Campana ²⁹, M. Campanelli ⁷⁶, V. Canale ^{101a,101b}, F. Canelli ^{30,g}, A. Canepa ^{158a}, J. Cantero ⁷⁹, L. Capasso ^{101a,101b}, M.D.M. Capeans Garrido ²⁹, I. Caprini ^{25a}, M. Caprini ^{25a}, D. Capriotti ⁹⁸, M. Capua ^{36a,36b}, R. Caputo ⁸⁰, R. Cardarelli ^{132a}, T. Carli ²⁹, G. Carlino ^{101a}, L. Carminati ^{88a,88b}, B. Caron ⁸⁴, S. Caron ¹⁰³, E. Carquin ^{31b}, G.D. Carrillo Montoya ¹⁷¹, A.A. Carter ⁷⁴, J.R. Carter ²⁷, J. Carvalho ^{123a,h}, D. Casadei ¹⁰⁷, M.P. Casado ¹¹, M. Cascella ^{121a,121b}, C. Caso ^{50a,50b,*}, A.M. Castaneda Hernandez ¹⁷¹, E. Castaneda-Miranda ¹⁷¹, V. Castillo Gimenez ¹⁶⁶, N.F. Castro ^{123a}, G. Catalidi ^{71a}, A. Catinaccio ²⁹, J.R. Catmore ²⁹, A. Cattai ²⁹, G. Cattini ^{132a,132b}, S. Caughron ⁸⁷, D. Cauz ^{163a,163c}, P. Cavalleri ⁷⁷, D. Cavalli ^{88a}, M. Cavalli-Sforza ¹¹, V. Cavasinni ^{121a,121b}, F. Ceradini ^{133a,133b}, A.S. Cerqueira ^{23b}, A. Cerri ²⁹, I. Carvino ¹²⁵, K. Chan ², B. Chapleau ⁸⁴, J.D. Chapman ²⁷, J.W. Chapman ⁸⁶, E. Chareyre ⁷⁷, D.G. Charlton ¹⁷, V. Chavda ⁸¹, C.A. Chavez Barajas ²⁹, S. Cheatham ⁸⁴, S. Chekanov ⁵, S.V. Chekulaev ^{158a}, G.A. Chelkov ⁶⁴, M.A. Chelstowska ¹⁰³, C. Chen ⁶³, H. Cher²⁴, S. Chen ^{32c}, T. Chen ^{32c}, X. Chen ¹⁷¹, S. Cheng ^{32a}, A. Cheplakov S. Cheng¹⁵⁷, L. Chevalier¹³⁵, G. Chiefari^{101a,101b}, L. Chikovani^{51a}, J.T. Childers²⁹, A. Chilingarov⁷⁰, G. Chiodini^{71a}, A.S. Chisholm¹⁷, R.T. Chislett⁷⁶, M.V. Chizhov⁶⁴, G. Choudalakis³⁰, S. Chouridou¹³⁶, I.A. Christidi⁷⁶, A. Christov⁴⁸, D. Chromek-Burckhart²⁹, M.L. Chu¹⁵⁰, J. Chudoba¹²⁴, G. Ciapetti^{131a,131b}, A.K. Ciftci^{3a}, R. Ciftci^{3a}, D. Cinca³³, V. Cindro⁷³, C. Ciocca^{19a}, A. Ciocio¹⁴, M. Cirilli⁸⁶, M. Citterio^{88a}, M. Ciubancan^{25a}, A. Clark⁴⁹, P.J. Clark⁴⁵, W. Cleland¹²², J.C. Clemens⁸², B. Clement⁵⁵,

C. Clement ^{145a,145b}, R.W. Clifft ¹²⁸, Y. Coadou ⁸², M. Cobal ^{163a,163c}, A. Coccaro ¹⁷¹, J. Cochran ⁶³, P. Coe ¹¹⁷, J.G. Cogan ¹⁴², J. Coggeshall ¹⁶⁴, E. Cogneras ¹⁷⁶, J. Colas ⁴, A.P. Colijn ¹⁰⁴, N.J. Collins ¹⁷, C. Collins-Tooth ⁵³, J. Collot ⁵⁵, G. Colon ⁸³, P. Conde Muiño ^{123a}, E. Coniavitis ¹¹⁷, M.C. Conidi ¹¹, M. Consonni ¹⁰³, S.M. Consonni ^{88a,88b}, V. Consorti ⁴⁸, S. Constantinescu ^{25a}, C. Conta ^{118a,118b}, G. Conti ⁵⁷, F. Conventi ^{101a,i}, J. Cook²⁹, M. Cooke¹⁴, B.D. Cooper⁷⁶, A.M. Cooper-Sarkar¹¹⁷, K. Copic¹⁴, T. Cornelissen¹⁷³, M. Corradi^{19a}, F. Corriveau^{84,j}, A. Cortes-Gonzalez¹⁶⁴, G. Cortiana⁹⁸, G. Costa^{88a}, M.J. Costa¹⁶⁶, D. Costanzo¹³⁸, T. Costin³⁰, D. Côté²⁹, R. Coura Torres^{23a}, L. Courneyea¹⁶⁸, G. Cowan⁷⁵, C. Cowden²⁷, B.E. Cox⁸¹, K. Cranmer¹⁰⁷, F. Crescioli^{121a,121b}, M. Cristinziani²⁰, G. Crosetti^{36a,36b}, R. Crupi^{71a,71b}, S. Crépé-Renaudin⁵⁵, C.-M. Cuciuc^{25a}, C. Cuenca Almenar¹⁷⁴, T. Cuhadar Donszelmann¹³⁸, S. Crepe-Kenaudin⁵⁵, C.-M. Cuciuc²⁵⁴, C. Cuenca Almenar¹⁷⁴, I. Cuhadar Donszelmann¹⁵⁶, M. Curatolo⁴⁷, C.J. Curtis¹⁷, C. Cuthbert¹⁴⁹, P. Cwetanski⁶⁰, H. Czirr¹⁴⁰, P. Czodrowski⁴³, Z. Czyczula¹⁷⁴, S. D'Auria⁵³, M. D'Onofrio⁷², A. D'Orazio^{131a,131b}, P.V.M. Da Silva^{23a}, C. Da Via⁸¹, W. Dabrowski³⁷, A. Dafinca¹¹⁷, T. Dai⁸⁶, C. Dallapiccola⁸³, M. Dam³⁵, M. Dameri^{50a,50b}, D.S. Damiani¹³⁶, H.O. Danielsson²⁹, D. Dannheim⁹⁸, V. Dao⁴⁹, G. Darbo^{50a}, G.L. Darlea^{25b}, W. Davey²⁰, T. Davidek¹²⁵, N. Davidson⁸⁵, R. Davidson⁷⁰, E. Davies^{117, c}, M. Davies⁹², A.R. Davison⁷⁶, Y. Davygora^{58a}, E. Dawe¹⁴¹, I. Dawson¹³⁸, J.W. Dawson^{5,*}, R.K. Daya-Ishmukhametova²², K. De⁷, R. de Asmundis^{101a}, I. Dawson ¹³⁸, J.W. Dawson ^{5,*}, R.K. Daya-Ishmukhametova ²², K. De⁷, R. de Asmundus ¹⁹¹⁸, S. De Castro ^{19a,19b}, P.E. De Castro Faria Salgado ²⁴, S. De Cecco ⁷⁷, J. de Graat ⁹⁷, N. De Groot ¹⁰³, P. de Jong ¹⁰⁴, C. De La Taille ¹¹⁴, H. De la Torre ⁷⁹, B. De Lotto ^{163a,163c}, L. de Mora ⁷⁰, L. De Nooij ¹⁰⁴, D. De Pedis ^{131a}, A. De Salvo ^{131a}, U. De Sanctis ^{163a,163c}, A. De Santo ¹⁴⁸, J.B. De Vivie De Regie ¹¹⁴, G. De Zorzi ^{131a,131b}, S. Dean ⁷⁶, W.J. Dearnaley ⁷⁰, R. Debbe ²⁴, C. Debenedetti ⁴⁵, B. Dechenaux ⁵⁵, D.V. Dedovich ⁶⁴, J. Degenhardt ¹¹⁹, C. Del Papa ^{163a,163c}, J. Del Peso ⁷⁹, T. Del Prete ^{121a,121b}, T. Delemontex ⁵⁵, M. Deliyergiyev ⁷³, A. Dell'Acqua ²⁹, L. Dell'Asta ²¹, M. Della Pietra ^{101a,i}, D. della Volpe ^{101a,101b}, M. Delmastro ⁴, N. Delruelle ²⁹, P.A. Delsart ⁵⁵, C. Deluca ¹⁴⁷, S. Demers ¹⁷⁴, M. Demichev⁶⁴, B. Demirkoz^{11,k}, J. Deng¹⁶², S.P. Denisov¹²⁷, D. Derendarz³⁸, J.E. Derkaoui^{134d}, M. Demicnev⁶¹, B. Demirkoz^{11,1,1}, J. Deng¹⁰², S.P. Denisov¹²⁷, D. Derendarz⁵⁰, J.E. Derkaoul¹⁵¹d⁷,
F. Derue⁷⁷, P. Dervan⁷², K. Desch²⁰, E. Devetak¹⁴⁷, P.O. Deviveiros¹⁰⁴, A. Dewhurst¹²⁸, B. DeWilde¹⁴⁷,
S. Dhaliwal¹⁵⁷, R. Dhullipudi^{24,1}, A. Di Ciaccio^{132a,132b}, L. Di Ciaccio⁴, A. Di Girolamo²⁹,
B. Di Girolamo²⁹, S. Di Luise^{133a,133b}, A. Di Mattia¹⁷¹, B. Di Micco²⁹, R. Di Nardo⁴⁷,
A. Di Simone^{132a,132b}, R. Di Sipio^{19a,19b}, M.A. Diaz^{31a}, F. Diblen^{18c}, E.B. Diehl⁸⁶, J. Dietrich⁴¹,
T.A. Dietzsch^{58a}, S. Diglio⁸⁵, K. Dindar Yagci³⁹, J. Dingfelder²⁰, C. Dionisi^{131a,131b}, P. Dita^{25a}, S. Dita^{25a}, F. Dittus²⁹, F. Djama⁸², T. Djobava^{51b}, M.A.B. do Vale^{23c}, A. Do Valle Wemans^{123a}, T.K.O. Doan⁴, F. Dittus ²⁹, F. Djama ⁸², T. Djobava ^{51b}, M.A.B. do Vale ^{23c}, A. Do Valle Wemans ^{123a}, T.K.O. Doan⁴, M. Dobbs ⁸⁴, R. Dobinson ^{29,*}, D. Dobos ²⁹, E. Dobson ^{29,m}, J. Dodd ³⁴, C. Doglioni ⁴⁹, T. Doherty ⁵³, Y. Doi ^{65,*}, J. Dolejsi ¹²⁵, I. Dolenc ⁷³, Z. Dolezal ¹²⁵, B.A. Dolgoshein ^{95,*}, T. Dohmae ¹⁵⁴, M. Donadelli ^{23d}, M. Donega ¹¹⁹, J. Donini ³³, J. Dopke ²⁹, A. Doria ^{101a}, A. Dos Anjos ¹⁷¹, M. Dosil ¹¹, A. Dotti ^{121a,121b}, M.T. Dova ⁶⁹, A.D. Doxiadis ¹⁰⁴, A.T. Doyle ⁵³, Z. Drasal ¹²⁵, J. Drees ¹⁷³, N. Dressnandt ¹¹⁹, H. Drevermann ²⁹, C. Driouichi ³⁵, M. Dris ⁹, J. Dubbert ⁹⁸, S. Dube ¹⁴, E. Duchovni ¹⁷⁰, G. Duckeck ⁹⁷, A. Dudarev ²⁹, F. Dudziak ⁶³, M. Dührssen ²⁹, I.P. Duerdoth ⁸¹, L. Duflot ¹¹⁴, M-A. Dufour ⁸⁴, M. Dunford ²⁹, H. Duran Yildiz ^{3a}, R. Duxfield ¹³⁸, M. Dwuznik ³⁷, F. Dydak ²⁹, M. Düren ⁵², W.L. Ebenstein ⁴⁴, J. Ebke ⁹⁷, S. Eckweiler ⁸⁰, K. Edmonds ⁸⁰, C.A. Edwards ⁷⁵, N.C. Edwards ⁵³, W. Ehrenfeld ⁴¹, T. Ehrich ⁹⁸, T. Eifert ¹⁴², G. Eigen ¹³, K. Einsweiler ¹⁴, E. Eisenhandler ⁷⁴, T. Ekelof ¹⁶⁵, M. El Kacimi ^{134c}, M. Ellert ¹⁶⁵, S. Elles ⁴, F. Ellinghaus ⁸⁰, K. Ellis ⁷⁴, N. Ellis ²⁹, J. Elmsheuser ⁹⁷, M. Elsing ²⁹, D. Emeliyanov ¹²⁸, R. Engelmann ¹⁴⁷, A. Engl ⁹⁷, B. Epp ⁶¹, A. Eppig ⁸⁶, L. Erdmann ⁵⁴, A. Ereditato ¹⁶, D. Eriksson ^{145a}, J. Ernst ¹, M. Ernst ²⁴. F. Ellinghaus⁸⁰, K. Ellis⁷⁴, N. Ellis²⁹, J. Elmsheuser⁹⁷, M. Elsing²⁹, D. Emeliyanov¹²⁸, R. Engelmann¹⁴⁷, A. Engl⁹⁷, B. Epp⁶¹, A. Eppig⁸⁶, J. Erdmann⁵⁴, A. Ereditato¹⁶, D. Eriksson^{145a}, J. Ernst¹, M. Ernst²⁴, J. Ernwein¹³⁵, D. Errede¹⁶⁴, S. Errede¹⁶⁴, E. Ertel⁸⁰, M. Escalier¹¹⁴, C. Escobar¹²², X. Espinal Curull¹¹, B. Esposito⁴⁷, F. Etienne⁸², A.I. Etienvre¹³⁵, E. Etzion¹⁵², D. Evangelakou⁵⁴, H. Evans⁶⁰, L. Fabbri^{19a,19b}, C. Fabre²⁹, R.M. Fakhrutdinov¹²⁷, S. Falciano^{131a}, Y. Fang¹⁷¹, M. Fanti^{88a,88b}, A. Farbin⁷, A. Farilla^{133a}, J. Farley¹⁴⁷, T. Farooque¹⁵⁷, S. Farrell¹⁶², S.M. Farrington¹¹⁷, P. Farthouat²⁹, P. Fassnacht²⁹, D. Fassouliotis⁸, B. Fatholahzadeh¹⁵⁷, A. Favareto^{88a,88b}, L. Fayard¹¹⁴, S. Fazio^{36a,36b}, R. Febbraro³³, P. Federic^{143a}, O.L. Fedin¹²⁰, W. Fedorko⁸⁷, M. Fehling-Kaschek⁴⁸, L. Feligioni⁸², D. Fellmann⁵, C. Feng^{32d}, E.J. Feng³⁰, A.B. Fenyuk¹²⁷, J. Ferencei^{143b}, J. Ferland⁹², W. Fernando¹⁰⁸, S. Ferrag⁵³, J. Ferrando⁵³, V. Ferrara⁴¹, A. Ferrari¹⁶⁵, P. Ferrari¹⁰⁴, R. Ferrari^{118a}, D.E. Ferreira de Lima⁵³, A. Ferrer⁴⁹, D. Ferrere⁴⁹, C. Ferretti⁸⁶, A. Ferretto Parodi^{50a,50b}, M. Fiascaris³⁰, F. Fieldler⁸⁰, A. Filipčič⁷³, A. Filippas⁹, F. Filthaut¹⁰³, M. Fincke-Keeler¹⁶⁸, M.C.N. Fiolhais^{123a,h}, L. Fiorini¹⁶⁶, A. Firan³⁹, G. Fischer⁴¹, P. Fischer²⁰, M.J. Fisher¹⁰⁸, M. Flechl⁴⁸, I. Fleck¹⁴⁰, J. Fleckner⁸⁰, P. Fleischmann¹⁷⁷, T. Flick¹⁷³, A. Floderus⁷⁸, L.R. Flores Castillo¹⁷¹,

M.J. Flowerdew⁹⁸, M. Fokitis⁹, T. Fonseca Martin¹⁶, D.A. Forbush¹³⁷, A. Formica¹³⁵, A. Forti⁸¹,

D. Fortin^{158a}, J.M. Foster⁸¹, D. Fournier¹¹⁴, A. Foussat²⁹, A.J. Fowler⁴⁴, K. Fowler¹³⁶, H. Fox⁷⁰, P. Francavilla¹¹, S. Franchino^{118a,118b}, D. Francis²⁹, T. Frank¹⁷⁰, M. Franklin⁵⁷, S. Franz²⁹, M. Fraternali^{118a,118b}, S. Fratina¹¹⁹, S.T. French²⁷, C. Friedrich⁴¹, F. Friedrich⁴³, R. Froeschl²⁹, D. Froidevaux ²⁹, J.A. Frost ²⁷, C. Fukunaga ¹⁵⁵, E. Fullana Torregrosa ²⁹, B.G. Fulsom ¹⁴², J. Fuster ¹⁶⁶, C. Gabaldon ²⁹, O. Gabizon ¹⁷⁰, T. Gadfort ²⁴, S. Gadomski ⁴⁹, G. Gagliardi ^{50a,50b}, P. Gagnon ⁶⁰, C. Galea ⁹⁷, E.J. Gallas ¹¹⁷, V. Gallo ¹⁶, B.J. Gallop ¹²⁸, P. Gallus ¹²⁴, K.K. Gan ¹⁰⁸, Y.S. Gao ^{142,e}, V.A. Gapienko ¹²⁷, A. Gaponenko ¹⁴, F. Garberson ¹⁷⁴, M. Garcia-Sciveres ¹⁴, C. García ¹⁶⁶, J.E. García Navarro ¹⁶⁶, R.W. Gardner³⁰, N. Garelli²⁹, H. Garitaonandia¹⁰⁴, V. Garonne²⁹, J. Garvey¹⁷, C. Gatti⁴⁷, G. Gaudio¹¹⁸, B. Gaur¹⁴⁰, L. Gauthier¹³⁵, P. Gauzzi^{131a,131b}, I.L. Gavrilenko⁹³, C. Gay¹⁶⁷, G. Gaycken²⁰, J-C. Gayde²⁹, E.N. Gazis⁹, P. Ge^{32d}, Z. Gecse¹⁶⁷, C.N.P. Gee¹²⁸, D.A.A. Geerts¹⁰⁴, Ch. Geich-Gimbel²⁰, E.N. Gazis ⁹, P. Ge^{32d}, Z. Gecse¹⁶⁷, C.N.P. Gee¹²⁸, D.A.A. Geerts¹⁰⁴, Ch. Geich-Gimbel²⁰, K. Gellerstedt ^{145a,145b}, C. Gemme^{50a}, A. Gemmell⁵³, M.H. Genest⁵⁵, S. Gentile^{131a,131b}, M. George⁵⁴, S. George⁷⁵, P. Gerlach¹⁷³, A. Gershon¹⁵², C. Geweniger^{58a}, H. Ghazlane^{134b}, N. Ghodbane³³, B. Giacobbe^{19a}, S. Giagu^{131a,131b}, V. Giakoumopoulou⁸, V. Giangiobbe¹¹, F. Gianotti²⁹, B. Gibbard²⁴, A. Gibson¹⁵⁷, S.M. Gibson²⁹, L.M. Gilbert¹¹⁷, V. Gilewsky⁹⁰, D. Gillberg²⁸, A.R. Gillman¹²⁸, D.M. Gingrich^{2,d}, J. Ginzburg¹⁵², N. Giokaris⁸, M.P. Giordani^{163c}, R. Giordano^{101a,101b}, F.M. Giorgi¹⁵, P. Giovannini⁹⁸, P.F. Giraud¹³⁵, D. Giugni^{88a}, M. Giunta⁹², P. Giusti^{19a}, B.K. Gjelsten¹¹⁶, L.K. Gladilin⁹⁶, C. Glasman⁷⁹, J. Glatzer⁴⁸, A. Glazov⁴¹, K.W. Glitza¹⁷³, G.L. Glonti⁶⁴, J.R. Goddard⁷⁴, J. Godfrey¹⁴¹, J. Godlewski²⁹, M. Goebel⁴¹, T. Göpfert⁴³, C. Goeringer⁸⁰, C. Gössling⁴², T. Göttfert⁹⁸, S. Goldfarb⁸⁶, T. Golling¹⁷⁴, A. Gomes^{123a,b}, L.S. Gomez Fajardo⁴¹, R. Gonçalo⁷⁵, J. Goncalves Pinto Firmino Da Costa⁴¹, L. Gonella²⁰, A. Gonidec²⁹, S. Gonzalez¹⁷¹, S. González de la Hoz¹⁶⁶, G. Gonzalez Parra¹¹, M.L. Gonzalez Silva²⁶, S. Gonzalez-Sevilla⁴⁹, I.J. Goodson¹⁴⁷, L. Goossens²⁹, P.A. Gorbounov⁹⁴, H.A. Gordon²⁴. I. Gorelov¹⁰². G. Gorfine¹⁷³. J.J. Goodson ¹⁴⁷, L. Goossens ²⁹, P.A. Gorbounov ⁹⁴, H.A. Gordon ²⁴, I. Gorelov ¹⁰², G. Gorfine ¹⁷³, B. Gorini ²⁹, E. Gorini ^{71a,71b}, A. Gorišek ⁷³, E. Gornicki ³⁸, V.N. Goryachev ¹²⁷, B. Gosdzik ⁴¹, A.T. Goshaw ⁵, M. Gosselink ¹⁰⁴, M.I. Gostkin ⁶⁴, I. Gough Eschrich ¹⁶², M. Gouighri ^{134a}, D. Goujdami ^{134c}, M.P. Goulette ⁴⁹, A.G. Goussiou ¹³⁷, C. Goy ⁴, S. Gozpinar ²², I. Grabowska-Bold ³⁷, P. Grafström ²⁹, K-J. Grahn ⁴¹, F. Grancagnolo ^{71a}, S. Grancagnolo ¹⁵, V. Grassi ¹⁴⁷, V. Gratchev ¹²⁰, N. Grau ³⁴, H.M. Gray ²⁹, J.A. Gray ¹⁴⁷, E. Graziani ^{133a}, O.G. Grebenyuk ¹²⁰, T. Greenshaw ⁷², Z.D. Greenwood ^{24,1}, K. Gregersen ³⁵, I.M. Gregor ⁴¹, P. Grenier ¹⁴², J. Griffiths ¹³⁷, N. Grigalashvili ⁶⁴, A.A. Grillo ¹³⁶, S. Grinstein ¹¹, Y.V. Grishkevich ⁹⁶, J.-F. Grivaz ¹¹⁴, E. Gross ¹⁷⁰, J. Grosse-Knetter ⁵⁴, J. Groth-Jensen ¹⁷⁰, K. Grybel ¹⁴⁰, V.J. Guarino ⁵, D. Guest ¹⁷⁴, C. Guicheney ³³, A. Guida ^{71a,71b}, S. Guindon ⁵⁴, H. Guler ^{84,n}, J. Gunther ¹²⁴, B. Guo ¹⁵⁷, J. Guo ³⁴, A. Gupta ³⁰, Y. Gusakov ⁶⁴, V.N. Gushchin ¹²⁷, P. Gutierrez ¹¹⁰, N. Guttman ¹⁵², O. Gutzwiller ¹⁷¹, C. Guyot ¹³⁵, C. Gwenlan ¹¹⁷, C.B. Gwilliam ⁷², A. Haas ¹⁴², S. Haas ²⁹, C. Haber ¹⁴, H.K. Hadavand ³⁹, D.R. Hadley ¹⁷, P. Haefner ⁹⁸, F. Hahn ²⁹, S. Haider ²⁹, Z. Hajduk ³⁸, H. Hakobyan ¹⁷⁵, D. Hall ¹¹⁷, J. Haller ⁵⁴, K. Hamacher ¹⁷³, P. Hamal ¹¹², M. Hamer ⁵⁴, A. Hamilton ^{144b,o}, S. Hamilton ¹⁶⁰, H. Han ^{32a}, L. Han ^{32b}, K. Hanagaki ¹¹⁵, K. Hanawa ¹⁵⁹, M. Hance ¹⁴, C. Handel ⁸⁰, P. Hanke ^{58a}, I.R. Hansen ³⁵, I.B. Hansen ³⁵, I.D. Hansen ³⁵, P.H. Hansen ³⁵, P. Hansson ¹⁴², K. Hara ¹⁵⁹, G.A. Hare ¹³⁶, M. Gosselink¹⁰⁴, M.I. Gostkin⁶⁴, I. Gough Eschrich¹⁶², M. Gouighri^{134a}, D. Goujdami^{134c}, J.R. Hansen³⁵, J.B. Hansen³⁵, J.D. Hansen³⁵, P.H. Hansen³⁵, P. Hansson¹⁴², K. Hara¹⁵⁹, G.A. Hare¹³⁶, J.R. Hansen ³⁵, J.B. Hansen ³⁵, J.D. Hansen ³⁵, P.H. Hansen ³⁵, P. Hansson ¹⁴², K. Hara ¹⁵⁹, G.A. Hare ¹³⁶, T. Harenberg ¹⁷³, S. Harkusha ⁸⁹, D. Harper ⁸⁶, R.D. Harrington ⁴⁵, O.M. Harris ¹³⁷, K. Harrison ¹⁷, J. Hartert ⁴⁸, F. Hartjes ¹⁰⁴, T. Haruyama ⁶⁵, A. Harvey ⁵⁶, S. Hasegawa ¹⁰⁰, Y. Hasegawa ¹³⁹, S. Hassani ¹³⁵, M. Hatch ²⁹, D. Hauff ⁹⁸, S. Haug ¹⁶, M. Hauschild ²⁹, R. Hauser ⁸⁷, M. Havranek ²⁰, B.M. Hawes ¹¹⁷, C.M. Hawkes ¹⁷, R.J. Hawkings ²⁹, A.D. Hawkins ⁷⁸, D. Hawkins ¹⁶², T. Hayakawa ⁶⁶, T. Hayashi ¹⁵⁹, D. Hayden ⁷⁵, H.S. Hayward ⁷², S.J. Haywood ¹²⁸, E. Hazen ²¹, M. He^{32d}, S.J. Head ¹⁷, V. Hedberg ⁷⁸, L. Heelan ⁷, S. Heimemann ¹⁴, S. Heisterkamp ³⁵, L. Helary ⁴, C. Heller ⁹⁷, M. Heller ²⁹, S. Hellman ^{145a, 145b}, D. Hellmich ²⁰, C. Helsens ¹¹, R.C.W. Henderson ⁷⁰, M. Henke ^{58a}, A. Henrichs ⁵⁴, A.M. Henriques Correia ²⁹, S. Henrot-Versille ¹¹⁴, F. Henry-Couannier ⁸², C. Hensel ⁵⁴, T. Henß ¹⁷³, C.M. Hernandez ⁷, Y. Hernández Jiménez ¹⁶⁶, R. Herrberg ¹⁵, G. Herten ⁴⁸, R. Hertenberger ⁹⁷, L. Hervas ²⁹, G.G. Hesketh ⁷⁶, N.P. Hessey ¹⁰⁴, E. Higón-Rodriguez ¹⁶⁶, D. Hill ^{5,*}, J.C. Hill ²⁷, N. Hill ⁵, K.H. Hiller ⁴¹, S. Hillert ²⁰, S.J. Hillier ¹⁷, I. Hinchliffe ¹⁴, E. Hines ¹¹⁹, M. Hirose ¹¹⁵, F. Hirsch ⁴², D. Hirschbuehl ¹⁷³, J. Hobbs ¹⁴⁷, N. Hod ¹⁵², M.C. Hodgkinson ¹³⁸, P. Hodgson ¹³⁸, A. Hoecker ²⁹, M.R. Hoeferkamp ¹⁰², J. Hoffman ³⁹, D. Hoffmann ⁸², M. Hohlfeld ⁸⁰, M. Holder ¹⁴⁰, S.O. Holmgren ^{145a}, T. Holy ¹²⁶, J.L. Holzbauer ⁸⁷, Y. Homma ⁶⁶, T.M. Hong ¹¹⁹, L. Hooft van Huysduynen ¹⁰⁷, T. Horazdovsky ¹²⁶, C. Horn ¹⁴², S. Horner ⁴⁸, J-Y. Hostachy ⁵⁵, S. Hou ¹⁵⁰, M.A. Houlden ⁷², A. Hoummada ^{134a}, J. Howarth ⁸¹, C. Horn¹⁴², S. Horner⁴⁸, J-Y. Hostachy⁵⁵, S. Hou¹⁵⁰, M.A. Houlden⁷², A. Hoummada^{134a}, J. Howarth⁸¹,

D.F. Howell ¹¹⁷, I. Hristova ¹⁵, J. Hrivnac ¹¹⁴, I. Hruska ¹²⁴, T. Hryn'ova ⁴, P.J. Hsu ⁸⁰, S.-C. Hsu ¹⁴, G.S. Huang ¹¹⁰, Z. Hubacek ¹²⁶, F. Hubaut ⁸², F. Huegging ²⁰, A. Huettmann ⁴¹, T.B. Huffman ¹¹⁷, D.F. Howell ¹¹⁷, J. Hristova¹³, J. Hrivnac¹¹⁴, I. Hruska¹²⁴, T. Hrynova⁴, P.J. Hsu⁵⁰, S.-C. Hsu¹⁴,
G.S. Huang¹¹⁰, Z. Hubacek¹²⁶, F. Hubaut⁸², F. Huegging²⁰, A. Huettmann⁴¹, T.B. Huffman¹¹⁷,
E.W. Hughes³⁴, G. Hughes⁷⁰, R.E. Hughes-Jones⁸¹, M. Huhtinen²⁹, P. Hurst⁵⁷, M. Hurwitz¹⁴,
U. Husemann⁴¹, N. Huseynov^{64,p}, J. Huston⁸⁷, J. Huth⁵⁷, G. Iacobucci⁴⁹, G. Iakovidis⁹, M. Ibbotson⁸¹,
I. Ibragimov¹⁴⁰, R. Ichimiya⁶⁶, L. Iconomidou-Fayard¹¹⁴, J. Idarraga¹¹⁴, P. Iengo^{101a}, O. Igonkina¹⁰⁴,
Y. Ikegami⁶⁵, M. Ikeno⁶⁵, Y. Ilchenko³⁹, D. Iliadis¹⁵³, N. Ilic¹⁵⁷, M. Imori¹⁵⁴, T. Ince²⁰, J. Inigo-Golfin²⁹,
P. Ioannou⁸, M. Iodice^{133a}, K. Iordanidou⁸, V. Ippolito^{131a,131b}, A. Irles Quiles¹⁶⁶, C. Isaksson¹⁶⁵,
A. Ishikawa⁶⁶, M. Ishino⁶⁷, R. Ishmukhametov³⁹, C. Issever¹¹⁷, S. Istin^{18a}, A.V. Ivashin¹²⁷,
W. Iwanski³⁸, H. Iwasaki⁶⁵, J.M. Izen⁴⁰, V. Izzo^{101a}, B. Jackson¹¹⁹, J.N. Jackson⁷², P. Jackson¹⁴²,
M.R. Jaekel²⁹, V. Jain⁶⁰, K. Jakobs⁴⁸, S. Jakobsen³⁵, J. Jakubek¹²⁶, D.K. Jana¹¹⁰, E. Jansen⁷⁶, H. Jansen²⁹,
A. Jantsch⁹⁸, M. Janus⁴⁸, G. Jarlskog⁷⁸, L. Jeanty⁵⁷, K. Jelen³⁷, I. Jen-La Plante³⁰, P. Jenni²⁹, A. Jeremie⁴,
P. Jež³⁵, S. Jézéquel⁴, M.K. Jha^{19a}, H. Ji¹⁷¹, W. Ji⁸⁰, J. Jia¹⁴⁷, Y. Jiang^{32b}, M. Jimenez Belenguer⁴¹,
G. Jin^{32b}, S. Jin^{32a}, O. Jinnouchi¹⁵⁶, M.D. Joergensen³⁵, D. Joffe³⁹, L.G. Johansen¹³, M. Johansen^{145a,145b}, K.E. Johansson^{145a}, P. Joons⁷⁷, C. Jonsson²⁹, C. Joram²⁹, P.M. Jorge^{123a}, J. Joseph¹⁴,
K.D. Joshi⁸¹, J. Jovicevic¹⁴⁶, T. Jovin^{12b}, X. Ju¹⁷¹, C.A. Jung⁴², R.M. Jungst²⁹, V. Juranek¹²⁴, P. Jussel⁶¹,
A. Juste Rozas¹¹, V.V. Kabachenko¹²⁷, S. Kabara¹⁶, M. Karagounis²⁰, M. Karagoz¹⁷⁷, M. Karnevskiy⁴¹,
K. Karuelishvili⁷⁰, A. Kaplu³⁰, J. Kaplon²⁹, D. Kar⁴³ S. Kersten¹⁷³, K. Kessoku¹⁵⁴, J. Keung¹⁵⁷, F. Khalil-zada¹⁰, H. Khandanyan¹⁶⁴, A. Khanov¹¹¹, D. Kharchenko⁶⁴, A. Khodinov⁹⁵, A.G. Kholodenko¹²⁷, A. Khomich^{58a}, T.J. Khoo²⁷, G. Khoriauli²⁰, A. Khoroshilov¹⁷³, N. Khovanskiy⁶⁴, V. Khovanskiy⁹⁴, E. Khramov⁶⁴, J. Khubua^{51b}, H. Kim^{145a,145b}, D. Kharchenko⁶⁴, A. Khodinov⁹⁵, A.G. Kholodenko¹²⁷, A. Khomich³⁸⁴, TJ. Khoo²⁷, G. Khoriauli²⁰, A. Khoroshilov¹⁷³, N. Khovanskiy⁶⁴, V. Khovanskiy⁹⁴, E. Khramov⁶⁴, J. Khubua^{51b}, H. Kim^{145a}, 145b, M.S. Kim², S.H. Kim¹⁵⁹, N. Kimura¹⁶⁹, O. Kind¹⁵, B.T. King⁷², M. King⁶⁶, R.S.B. King¹¹⁷, J. Kirk¹²⁸, L.E. Kirsch²², A.E. Kiryunin⁹⁸, T. Kishimoto⁶⁶, D. Kisielewska³⁷, T. Kittelmann¹²², A.M. Kiver¹²⁷, E. Kladiva^{143b}, M. Klein⁷², U. Klein⁷², K. Kleinknecht⁸⁰, M. Klemetti⁸⁴, A. Klier¹⁷⁰, P. Klimek^{145a,145b}, A. Klimentov²⁴, R. Klingenberg⁴², J.A. Klinge⁷⁸, E.B. Klinkby³⁵, T. Klioutchnikova²⁹, P.F. Klok¹⁰³, S. Klous¹⁰⁴, E.-E. Kluge^{38a}, T. Kluge⁷², P. Kluit¹⁰⁴, S. Kluth⁹⁸, N.S. Knecht¹⁵⁷, E. Kneringer⁶¹, J. Knobloch²⁹, E.B.F.G. Knoops⁸², A. Knue⁵⁴, B.R. Ko⁴⁴, T. Kobayashi¹⁵⁴, M. Kobel⁴³, M. Kocian¹⁴², P. Kodys¹²⁵, K. Köneke²⁹, A.C. König¹⁰³, S. Koenig⁸⁰, L. Köpke⁸⁰, F. Koetsvell¹⁰³, P. Koevesarki²⁰, T. Koffas²⁸, E. Koffeman¹⁰⁴, L.A. Kogan¹¹⁷, S. Kohlmann¹⁷³, F. Kohn⁵⁴, Z. Kohout¹²⁶, T. Kohriki⁶⁵, T. Koi¹⁴², T. Kokott²⁰, G.M. Kolachev¹⁰⁶, H. Kolanoski¹⁵, V. Kolesnikov⁶⁴, I. Koletsou^{88a}, J. Koll⁸⁷, M. Kollefrath⁴⁸, S.D. Kolya⁸¹, A.A. Komar⁹³, Y. Komori¹⁵⁴, T. Kondo⁶⁵, T. Korotsov¹²⁷, O. Kortner⁹⁸, S. Kortner⁹⁸, V.V. Kostyukhin²⁰, M.J. Kotamäki²⁹, S. Kotov⁹⁸, V.M. Kotov⁶⁴, A. Kotval⁴⁴, C. Kourkoumelis⁸, V. Kouskoura¹⁵³, A. Koutsman^{158a}, R. Kowalewski¹⁶⁸, T.Z. Kowalski³⁷, W. Kozanecki¹³⁵, A.S. Kozhin¹²⁷, J. Kraus²⁰, F. Krejci¹²⁶, J. Kretzschmar⁷², N. Krieger⁵⁴, P. Krieger¹⁵⁷, K. Kroeninger⁵⁴, H. Kroha⁹⁸, J. Kroll¹¹⁹, J. Kroseberg²⁰, J. Krstic^{12a}, U. Kruchonak⁶⁴, H. Kriger²⁰, T. Kruker¹⁶, N. Krumnack⁶³, Z.V. Krumshteyn⁶⁴, A. Kruth²⁰, T. Kubota⁸⁵, S. Kuday^{3a}, S. Kuehn⁴⁸, A. Kugel^{58c}, T. Kuhl⁴¹, D. Kuhn⁶¹, V. Kukhtin⁶⁴, Y. Kulchitsky⁸⁹, S. Kuleshov^{31b}, C. Kummer⁹⁷, M. Kuna⁷⁷, N. Kundu¹¹⁷, J. Ku J.L. Lane⁸¹, C. Lange⁴¹, A.J. Lankford¹⁶², F. Lanni²⁴, K. Lantzsch¹⁷³, S. Laplace⁷⁷, C. Lapoire²⁰,

J.F. Laporte¹³⁵, T. Lari^{88a}, A.V. Larionov¹²⁷, A. Larner¹¹⁷, C. Lasseur²⁹, M. Lassnig²⁹, P. Laurelli⁴⁷, V. Lavorini ^{36a, 36b}, W. Lavrijsen ¹⁴, P. Laycock ⁷², A.B. Lazarev ⁶⁴, O. Le Dortz ⁷⁷, E. Le Guirriec ⁸², V. Lavorini ^{36a, 36b}, W. Lavrijsen ¹⁴, P. Laycock ⁷², A.B. Lazarev ⁶⁴, O. Le Dortz ⁷⁷, E. Le Guirriec ⁸², C. Le Maner ¹⁵⁷, E. Le Menedeu ¹¹, C. Lebel ⁹², T. LeCompte ⁵, F. Ledroit-Guillon ⁵⁵, H. Lee ¹⁰⁴, J.S.H. Lee ¹¹⁵, S.C. Lee ¹⁵⁰, L. Lee ¹⁷⁴, M. Lefebvre ¹⁶⁸, M. Legendre ¹³⁵, A. Leger ⁴⁹, B.C. LeGeyt ¹¹⁹, F. Legger ⁹⁷, C. Leggett ¹⁴, M. Lehmacher ²⁰, G. Lehmann Miotto ²⁹, X. Lei ⁶, M.A.L. Leite ^{23d}, R. Leitner ¹²⁵, D. Lellouch ¹⁷⁰, M. Leltchouk ³⁴, B. Lemmer ⁵⁴, V. Lendermann ^{58a}, K.J.C. Leney ^{144b}, T. Lenz ¹⁰⁴, G. Lenzen ¹⁷³, B. Lenzi ²⁹, K. Leonhardt ⁴³, S. Leontsinis ⁹, C. Leroy ⁹², J-R. Lessard ¹⁶⁸, J. Lesser ^{145a}, C.G. Lester ²⁷, C.M. Lester ¹¹⁹, J. Levêque ⁴, D. Levin ⁸⁶, L.J. Levinson ¹⁷⁰, M.S. Levitski ¹²⁷, A. Lewis ¹¹⁷, G.H. Lewis ¹⁰⁷, A.M. Leyko ²⁰, M. Leyton ¹⁵, B. Li ⁸², H. Li ^{171,s}, S. Li ^{32b,t}, X. Li ⁸⁶, Z. Liang ^{117,u}, H. Liao ³³, B. Liberti ^{132a}, P. Lichard ²⁹, M. Lichtnecker ⁹⁷, K. Lie ¹⁶⁴, W. Liebig ¹³, C. Limbach ²⁰, A. Limosani ⁸⁵, M. Limper ⁶², S.C. Lin ^{150,v}, F. Linde ¹⁰⁴, J.T. Linnemann ⁸⁷, E. Lipeles ¹¹⁹, L. Lipinsky ¹²⁴, A. Lipniacka ¹³, T.M. Liss ¹⁶⁴, D. Lissauer ²⁴, A. Lister ⁴⁹, A.M. Litke ¹³⁶, C. Liu ²⁸, D. Liu ¹⁵⁰, H. Liu ⁸⁶, J.B. Liu ⁸⁶, M. Liu ^{32b}, Y. Liu ^{32b}, M. Livan ^{118a,118b}, S.S.A. Livermore ¹¹⁷, A. Lleres ⁵⁵, J. Llorente Merino ⁷⁹, S.L. Lloyd ⁷⁴, E. Lobodzinska ⁴¹, P. Loch ⁶, W.S. Lockman ¹³⁶, T. Loddenkoetter ²⁰, F.K. Loebinger ⁸¹, A. Loginov ¹⁷⁴. Y. Liu^{32b}, M. Livan^{118a,118b}, S.S.A. Livermore¹¹⁷, A. Lleres⁵⁵, J. Llorente Merino⁷⁹, S.L. Lloyd⁷⁴,
E. Lobodzinska⁴¹, P. Loch⁶, W.S. Lockman¹³⁶, T. Loddenkoetter²⁰, F.K. Loebinger⁸¹, A. Loginov¹⁷⁴,
C.W. Loh¹⁶⁷, T. Lohse¹⁵, K. Lohwasser⁴⁸, M. Lokajicek¹²⁴, J. Loken¹¹⁷, V.P. Lombardo⁴, R.E. Long⁷⁰,
L. Lopes^{123a}, D. Lopez Mateos⁵⁷, J. Lorenz⁹⁷, N. Lorenzo Martinez¹¹⁴, M. Losada¹⁶¹, P. Loscutoff¹⁴,
F. Lo Sterzo^{131a,131b}, M.J. Losty^{158a}, X. Lou⁴⁰, A. Lounis¹¹⁴, K.F. Loureiro¹⁶¹, J. Love²¹, P.A. Love⁷⁰,
A.J. Lowe^{142,e}, F. Lu^{32a}, H.J. Lubatti¹³⁷, C. Luci^{131a,131b}, A. Lucotte⁵⁵, A. Ludwig⁴³, D. Ludwig⁴¹,
I. Ludwig⁴⁸, J. Ludwig⁴⁸, F. Luehring⁶⁰, G. Luijckx¹⁰⁴, W. Lukas⁶¹, D. Lumb⁴⁸, L. Luminari^{131a},
E. Lund¹¹⁶, B. Lund-Jensen¹⁴⁶, B. Lundberg⁷⁸, J. Lundberg^{145a,145b}, J. Lundquist³⁵, M. Lungwitz⁸⁰,
G. Lutz⁹⁸, D. Lynn²⁴, J. Lys¹⁴, E. Lytken⁷⁸, H. Ma²⁴, L.L. Ma¹⁷¹, J.A. Macana Goia⁹², G. Maccarrone⁴⁷,
A. Macchiolo⁹⁸, B. Maček⁷³, J. Machado Miguens^{123a}, R. Mackeprang³⁵, R.J. Madaras¹⁴, W.F. Mader⁴³,
R. Maenner^{58c}, T. Maeno²⁴, P. Mättig¹⁷³, S. Mättig⁴¹, L. Magnoni²⁹, E. Magradze⁵⁴, Y. Mahalalel¹⁵²,
K. Mahboubi⁴⁸, S. Mahmoud⁷², G. Mahout¹⁷, C. Maiani^{131a,131b}, C. Maidantchik^{23a}, A. Maio^{123a,b},
S. Maiewski²⁴, Y. Makida⁶⁵, N. Makoyec¹¹⁴, P. Mal¹³⁵, B. Malaescu²⁹, Pa, Malecki³⁸, P. Malecki³⁸, S. Majewski²⁴, Y. Makida⁶⁵, N. Makovec¹¹⁴, P. Mal¹³⁵, B. Malaescu²⁹, Pa. Malecki³⁸, P. Malecki³⁸, V.P. Maleev¹²⁰, F. Malek⁵⁵, U. Mallik⁶², D. Malon⁵, C. Malone¹⁴², S. Maltezos⁹, V. Malyshev¹⁰⁶, S. Malyukov²⁹, R. Mameghani⁹⁷, J. Mamuzic^{12b}, A. Manabe⁶⁵, L. Mandelli^{88a}, I. Mandić⁷³, R. Mandrysch¹⁵, J. Maneira^{123a}, P.S. Mangeard⁸⁷, L. Manhaes de Andrade Filho^{23a}, I.D. Manjavidze⁶⁴, A. Mann⁵⁴, P.M. Manning¹³⁶, A. Manousakis-Katsikakis⁸, B. Mansoulie¹³⁵, A. Manz⁹⁸, A. Mapelli²⁹, L. Mapelli²⁹, L. March⁷⁹, J.F. Marchand²⁸, F. Marchese^{132a,132b}, G. Marchiori⁷⁷, M. Marcisovsky¹²⁴, C.P. Marino¹⁶⁸, F. Marroquim^{23a}, R. Marshall⁸¹, Z. Marshall²⁹, F.K. Martens¹⁵⁷, S. Marti-Garcia¹⁶⁶, L. Mapelli ²⁷, L. March ⁷⁷, J.F. Marchand ²⁸, F. Marchese ^{1524,1320}, G. Marchiori ⁷⁷, M. Marcisovsky ¹²⁴, C.P. Martino ¹⁶⁸, F. Martroquim ^{23a}, R. Marshall ⁸¹, Z. Marshall ²⁹, F.K. Martens ¹⁵⁷, S. Marti-Garcia ¹⁶⁶, A.J. Martin ¹⁷⁴, B. Martin ²⁹, B. Martin ⁸⁷, F.F. Martin ¹¹⁹, J.P. Martin ⁹², Ph. Martins ⁵⁷, T.A. Martin ¹⁷⁷, V.J. Martin ⁴⁵, B. Martin dit Latour ⁴⁹, S. Martin-Haugh ¹⁴⁸, M. Martinez ¹¹¹, V. Martinez Outschoorn ⁵⁷, A.C. Martyniuk ¹⁶⁸, M. Marx ⁸¹, F. Marzano ^{131a}, A. Marzin ¹¹⁰, L. Masetti ⁸⁰, T. Mashimo ¹⁵⁴, R. Mashinistov ⁹³, J. Masik ⁸¹, A.L. Maslennikov ¹⁰⁶, I. Massa ^{19a,19b}, G. Massaro ¹⁰⁴, N. Massol ⁴, P. Mastrandrea ^{131a,131b}, A. Mastroberardino ^{36a,36b}, T. Masubuchi ¹⁵⁴, P. Matricon ¹¹⁴, H. Matsumoto ¹⁵⁴, H. Matsumov ¹⁰⁶, F. N. May ⁵, A. Mastroberardino ^{36a,36b}, T. Masubuchi ¹⁵⁴, P. Matricon ¹¹⁴, H. Matsumoto ¹⁵⁴, M. Matsunov ¹⁰⁶, F. N. May ⁵, A. Mastroberardino ^{36a,36b}, T. Masubuchi ¹⁵⁰, M. Mazur ²⁰, L. Mazzaferro ^{132a,132b}, M. Mazzanti ^{86a}, S.P. Mc Kee ⁸⁶, A. McCarn ¹⁶⁴, R.L. McCarthy ¹⁴⁷, T.G. McCarthy²⁸, N.A. McCubbin ¹²⁸, K.W. McFarlane ⁵⁶, J.A. Mcfayden ¹³⁸, H. McGlone ⁵³, G. Mchedlidze ^{51b}, R.A. McLaren ²⁹, T. Mclaughlan ¹⁷, S.J. McMahon ¹²⁸, R.A. McPherson ^{168,j}, A. Meade ⁸³, J. Mechnich ¹⁰⁴, M. Mechtel ¹⁷³, M. Medinins ⁴¹, R. Meera-Lebbai ¹¹⁰, T. Meguro ¹¹⁵, R. Mehdiyev ⁹², S. Mehlhase ³⁵, A. Mehta⁷², K. Meier ^{58a}, B. Meirose ⁷⁸, C. Melachrinos ³⁰, B.R. Mellado Garcia ⁷¹, F. Meloni ^{188,88b}, L. Mendoza Navas ¹⁶¹, Z. Mergi ^{150,s}, A. Mengarelli ^{19a,19b}, S. Menke ⁹⁸, C. Menot²⁹, E. Meoni ¹¹, K.M. Mercurio ⁵⁷, P. Mermod ⁴⁹, L. Mercula ^{101a,101b}, C. Meroni ^{88a}, F.S. Merritt ³⁰, H. Merritt ¹⁰⁸, A. Messina ²⁹, J. Metcalfe ¹⁰², A.S. Mete⁶³, S. Migas ⁷², L. Mijović ⁴¹, G. Mikestel ¹⁷⁰, M. Mikestikova ¹²⁴, M. Mika ⁷³, D.W. Miller ³⁰, R.J. Miller ⁸⁷, W.J. Mills ¹⁶⁷, C. Mills ⁵⁷, A. Milov

S. Mohapatra ¹⁴⁷, W. Mohr ⁴⁸, S. Mohrdieck-Möck ⁹⁸, R. Moles-Valls ¹⁶⁶, J. Molina-Perez ²⁹, J. Monk ⁷⁶, E. Monnier ⁸², S. Montesano ^{88a,88b}, F. Monticelli ⁶⁹, S. Monzani ^{19a,19b}, R.W. Moore ², G.F. Moorhead ⁸⁵, C. Mora Herrera ⁴⁹, A. Moraes ⁵³, N. Morange ¹³⁵, J. Morel ⁵⁴, G. Morello ^{36a,36b}, D. Moreno ⁸⁰, M. Moreno Llácer ¹⁶⁶, P. Morettini ^{50a}, M. Morgenstern ⁴³, M. Morii ⁵⁷, J. Morin ⁷⁴, A.K. Morley ²⁹, C. Mola Heffeld A, A. Molaes A, N. Molalge A, J. Molef A, G. Molefio A. M. D. Molefiola, D. Molefiola, M. Moreno Llácer ¹⁶⁶, P. Morettini ^{50a}, M. Morgenstern ⁴³, M. Morii ⁵⁷, J. Morin ⁷⁴, A.K. Morley ²⁹, G. Mornacchi ²⁹, S.V. Morozov ⁹⁵, J.D. Morris ⁷⁴, L. Morvaj ¹⁰⁰, H.G. Moser ⁹⁸, M. Mosidze ^{51b}, J. Moss ¹⁰⁸, R. Mount ¹⁴², E. Mountricha ^{9,w}, S.V. Mouraviev ⁹³, E.J.W. Moyse ⁸³, M. Mudrinic ^{12b}, F. Mueller ^{58a}, J. Mueller ¹²², K. Mueller ²⁰, T.A. Müller ⁹⁷, T. Mueller ⁸⁰, D. Muenstermann ²⁹, Y. Munwes ¹⁵², W.J. Murray ¹²⁸, I. Mussche ¹⁰⁴, E. Musto ^{101a, 101b}, A.G. Myagkov ¹²⁷, M. Myska ¹²⁴, J. Nadal ¹¹, K. Nagai ¹⁵⁴, K. Nagano ⁶⁵, A. Nagarkar ¹⁰⁸, Y. Nagasaka ⁵⁹, M. Nagel ⁹⁸, A.M. Nairz ²⁹, Y. Nakahama ²⁹, K. Nakamura ¹⁵⁴, T. Nakamura ¹⁵⁴, I. Nakano ¹⁰⁹, G. Nanava ²⁰, A. Napier ¹⁶⁰, R. Narayan ^{58b}, M. Nash ^{76,c}, N.R. Nation ²¹, T. Nattermann ²⁰, T. Naumann ⁴¹, G. Navarro ¹⁶¹, H.A. Neal ⁸⁶, E. Nebot ⁷⁹, P.Yu. Nechaeva ⁹³, T.J. Neep ⁸¹, A. Negri ^{118a, 118b}, G. Negri ²⁹, S. Nektarijevic ⁴⁹, A. Nelson ¹⁶², T.K. Nelson ¹⁴², S. Nemecek ¹²⁴, P. Newski ²⁴, P.R. Newman ¹⁷, V. Nguyen Thi Hong ¹³⁵, R.B. Nickerson ¹¹⁷, R. Nicolaidou ¹³⁵, L. Nicolas ¹³⁸, B. Nicquevert ²⁹, F. Niedercorn ¹¹⁴, J. Nielsen ¹³⁶, T. Niinikoski ²⁹, N. Nikiforou ³⁴, A. Nikiforov ¹⁵, V. Nikolaenko ¹²⁷, K. Nikolaev ⁶⁴, I. Nikolic-Audit ⁷⁷, K. Nikolics ⁴⁹, K. Nikolopoulos ²⁴, H. Nilsen ⁴⁸, P. Nilsson ⁷, Y. Ninomiya ¹⁵⁴, A. Nisati ^{131a}, T. Nishiyama ⁶⁶, R. Nisus ⁹⁸, J. Ocariz ⁷⁷, A. Ochi⁶⁶, S. Oda ¹⁵⁴, S. Odaka ⁶⁵, J. Odier ⁸², H. Ogren ⁶⁰, A. Oh ⁸¹, S.H. Oh ⁴⁴, C.C. Ohm ^{145a, 145b}, T. Ohshima ¹⁰⁰, H. Ohshita ¹³⁹, S. Okada ⁶⁶, H. Okawa ¹⁶², Y. Okumura ¹⁰⁰, T. Okuyama ¹⁵⁴, A. Olariu ^{25a}, M. Olcese ^{50a}, A.G. Olchevski ⁶⁴, S.A. Olivares Pino ^{31a}, M. Oliveira ^{123a,h}, D. Oliveira Damazio ²⁴, E. Oliver Garcia ¹⁶⁶, D. Olivito ¹¹⁹, A. Olszewski J. Olszowska³⁸, C. Omachi⁶⁶, A. Onofre^{123a,y}, P.U.E. Onyisi³⁰, C.J. Oram^{158a}, M.J. Oreglia³⁰, Y. Oren¹⁵², D. Orestano^{133a,133b}, N. Orlando^{71a,71b}, I. Orlov¹⁰⁶, C. Oropeza Barrera⁵³, R.S. Orr¹⁵⁷, B. Osculati^{50a,50b}, R. Ospanov ¹¹⁹, C. Osuna ¹¹, G. Otero y Garzon ²⁶, J.P. Ottersbach ¹⁰⁴, M. Ouchrif ^{134d}, E.A. Ouellette ¹⁶⁸, F. Ould-Saada ¹¹⁶, A. Ouraou ¹³⁵, Q. Ouyang ^{32a}, A. Ovcharova ¹⁴, M. Owen ⁸¹, S. Owen ¹³⁸, V.E. Ozcan ^{18a}, R. Ospanov, C. Ostala, Y. G. Otero y Garzon, J.F. Oteroyachi, M. Ouenin, Y.A. Ouenin, Y.A. Ouenelletter, F. Oud-Saada ¹¹⁶, A. Ouraou ¹³⁵, Q. Ouyang ^{32a}, A. Ovcharova ¹⁴, M. Owen ⁸¹, S. Owen ¹³⁸, V.E. Ozcan ^{18a}, N. Ozturk⁷, A. Pacheco Pages ¹¹, C. Padilla Aranda ¹¹, S. Pagan Griso ¹⁴, E. Paganis ¹³⁸, F. Paige ²⁴, P. Fais ⁸³, K. Pajchel ¹¹⁶, G. Palacino ^{158b}, C.P. Paleari ⁶, S. Palestini ²⁹, D. Pallin ³³, A. Palma ^{123a}, J.D. Palmer ¹⁷, Y.B. Pan ¹⁷¹, E. Panagiotopoulou ⁹, B. Panes ^{31a}, N. Panikashvili ⁸⁶, S. Panitkin ²⁴, D. Pantea ^{25a}, M. Panuskova ¹²⁴, V. Paolone ¹²², A. Papadelis ^{145a}, Th.D. Papadopoulou ⁹, A. Paramonov ⁵, D. Paredes Hernandez ³³, W. Park ^{24,z}, M.A. Parker ²⁷, F. Parodi ^{50a,50b}, J.A. Parsons ³⁴, U. Parzefall ⁴⁸, S. Pashapour ⁵⁴, E. Pasqualucci ^{131a}, S. Passaggio ^{50a}, A. Passeri ^{133a}, F. Pastore ^{133a,133b}, Fr. Pastore ⁷⁵, G. Pásztor ^{49,aa}, S. Pataraia ¹⁷³, N. Patel ¹⁴⁹, J.R. Pater ⁸¹, S. Patricelli ^{101a,101b}, T. Pauly ²⁹, M. Pecsy ^{143a}, M.I. Pedraza Morales ¹⁷¹, S.V. Peleganchuk ¹⁰⁶, D. Pelikan ¹⁶⁵, H. Peng ^{32b}, B. Penning ³⁰, A. Penson ³⁴, J. Penwell ⁶⁰, M. Perantoni ^{23a}, K. Perez ^{34,ab}, T. Perez Cavalcanti ⁴¹, E. Perez Codina ^{158a}, M.T. Pérez García-Estañ ¹⁶⁶, V. Perez Reale ³⁴, L. Perinis ^{88a,88b}, H. Pernegger ²⁹, R. Perrino ^{71a}, P. Perrodo ⁴, S. Persembe ^{3a}, V.D. Peshekhonov ⁶⁴, K. Peters ²⁹, B.A. Petersen ²⁹, J. Petersen ²⁹, T.C. Petersen ³⁵, E. Petit ⁴, A. Petridis ¹⁵³, C. Petridou ¹⁵³, E. Petrolo ^{131a}, F. Petrucci ^{133a,133b}, D. Petschull ⁴¹, M. Petteni ¹⁴¹, R. Pezoa ^{31b}, A. Phan ⁸⁵, P.W. Phillips ¹²⁸, G. Piacquadio ²⁹, A. Picazio ⁴⁹, E. Piccaro ⁷⁴, M. Piccinni ^{19a,19b}, S.M. Piec ⁴¹, R. Piegaia ²⁶, D.T. Pignotti ¹⁰⁸, J.E. Pilcher ³⁰, A.D. Pilkington ⁸¹, J. Pina ^{123a,b}, M. Pianontni ^{163a,163c}, A. Pinder ¹¹⁷, J.L. Pinfold ², J. Ping ^{32c}, B. Pinto ^{123a}, O. Pirotze ²⁹, C. Pizio ^{88a,88b}, A. Pollin¹⁵³, J. Poll⁷⁷, V. Polychronakos²⁷, D.M. Pomarede¹⁵⁵, D. Pomeroy²², K. Pommes²⁵, L. Pontecorvo^{131a}, B.G. Pope⁸⁷, G.A. Popeneciu^{25a}, D.S. Popovic^{12a}, A. Poppleton²⁹, X. Portell Bueso²⁹, C. Posch²¹, G.E. Pospelov⁹⁸, S. Pospisil¹²⁶, I.N. Potrap⁹⁸, C.J. Potter¹⁴⁸, C.T. Potter¹¹³, G. Poulard²⁹, J. Poveda¹⁷¹, V. Pozdnyakov⁶⁴, R. Prabhu⁷⁶, P. Pralavorio⁸², A. Pranko¹⁴, S. Prasad²⁹, R. Pravahan⁷, S. Prell⁶³, K. Pretzl¹⁶, L. Pribyl²⁹, D. Price⁶⁰, J. Price⁷², L.E. Price⁵, M.J. Price²⁹, D. Prieur¹²², M. Primavera^{71a}, K. Prokofiev¹⁰⁷, F. Prokoshin^{31b}, S. Protopopescu²⁴, J. Proudfoot⁵, X. Prudent⁴³, M. Przybycien³⁷, H. Przysiezniak⁴, S. Psoroulas²⁰, E. Ptacek¹¹³, E. Pueschel⁸³, J. Purdham⁸⁶,

M. Purohit ^{24,z}, P. Puzo ¹¹⁴, Y. Pylypchenko ⁶², J. Qian ⁸⁶, Z. Qian ⁸², Z. Qin ⁴¹, A. Quadt ⁵⁴, D.R. Quarrie ¹⁴, W.B. Quayle ¹⁷¹, F. Quinonez ^{31a}, M. Raas ¹⁰³, V. Radescu ⁴¹, B. Radics ²⁰, P. Radloff ¹¹³, T. Rador ^{18a}, F. Ragusa ^{88a,88b}, G. Rahal ¹⁷⁶, A.M. Rahimi ¹⁰⁸, D. Rahm ²⁴, S. Rajagopalan ²⁴, M. Rammensee ⁴⁸, M. Rammes ¹⁴⁰, A.S. Randle-Conde ³⁹, K. Randrianarivony ²⁸, P.N. Ratoff ⁷⁰, F. Rauscher ⁹⁷, T.C. Rave ⁴⁸, M. Rammes ¹⁴⁰, A.S. Randle-Conde ⁵⁵, K. Randrianarivony ²⁵, P.N. Ratoff ⁷⁶, F. Rauscher ⁵⁷, I.C. Rave⁴⁶, M. Raymond ²⁹, A.L. Read ¹¹⁶, D.M. Rebuzzi ^{118a,118b}, A. Redelbach ¹⁷², G. Redlinger ²⁴, R. Reece ¹¹⁹, K. Reeves ⁴⁰, A. Reichold ¹⁰⁴, E. Reinherz-Aronis ¹⁵², A. Reinsch ¹¹³, I. Reisinger ⁴², C. Rembser ²⁹, Z.L. Ren ¹⁵⁰, A. Renaud ¹¹⁴, M. Rescigno ^{131a}, S. Resconi ^{88a}, B. Resende ¹³⁵, P. Reznicek ⁹⁷, R. Rezvani ¹⁵⁷, A. Richards ⁷⁶, R. Richter ⁹⁸, E. Richter-Was ^{4,ac}, M. Ridel ⁷⁷, M. Rijpstra ¹⁰⁴, M. Rijssenbeek ¹⁴⁷, A. Rimoldi ^{118a,118b}, L. Rinaldi ^{19a}, R.R. Rios ³⁹, I. Riu ¹¹, G. Rivoltella ^{88a,88b}, F. Rizatdinova ¹¹¹, E. Rizvi ⁷⁴, S.H. Robertson ^{84,j}, A. Robichaud-Veronneau ¹¹⁷, D. Robinson ²⁷, J.E.M. Robinson ⁷⁶, A. Robson ⁵³, S.H. Robertson ^{84,J}, A. Robichaud-Veronneau ¹¹⁷, D. Robinson ²⁷, J.E.M. Robinson ⁷⁶, A. Robson ⁵³, J.G. Rocha de Lima ¹⁰⁵, C. Roda ^{121a,121b}, D. Roda Dos Santos ²⁹, D. Rodriguez ¹⁶¹, A. Roe ⁵⁴, S. Roe ²⁹, O. Røhne ¹¹⁶, V. Rojo ¹, S. Rolli ¹⁶⁰, A. Romaniouk ⁹⁵, M. Romano ^{19a,19b}, V.M. Romanov ⁶⁴, G. Romeo ²⁶, E. Romero Adam ¹⁶⁶, L. Roos ⁷⁷, E. Ros ¹⁶⁶, S. Rosati ^{131a}, K. Rosbach ⁴⁹, A. Rose ¹⁴⁸, M. Rose ⁷⁵, G.A. Rosenbaum ¹⁵⁷, E.I. Rosenberg ⁶³, P.L. Rosendahl ¹³, O. Rosenthal ¹⁴⁰, L. Rosselet ⁴⁹, V. Rossetti ¹¹, E. Rossi ^{131a,131b}, L.P. Rossi ^{50a}, M. Rotaru ^{25a}, I. Roth ¹⁷⁰, J. Rothberg ¹³⁷, D. Rousseau ¹¹⁴, C.R. Royon ¹³⁵, A. Rozanov ⁸², Y. Rozen ¹⁵¹, X. Ruan ^{32a,ad}, F. Rubbo ¹¹, I. Rubinskiy ⁴¹, B. Ruckert ⁹⁷, N. Ruckstuhl ¹⁰⁴, V.I. Rud ⁹⁶, C. Rudolph ⁴³, G. Rudolph ⁶¹, F. Rühr ⁶, F. Ruggieri ^{133a,133b}, A. Ruiz-Martinez ⁶³, V. Rumiantsev ^{90,*}, L. Rumyantsev ⁶⁴, K. Runge ⁴⁸, Z. Rurikova ⁴⁸, N.A. Rusakovich ⁶⁴, J.P. Rutherfoord ⁶, C. Ruwiedel ¹⁴, P. Ruzicka ¹²⁴, Y.F. Ryabov ¹²⁰, V. Ryadovikov ¹²⁷, P. Ryan ⁸⁷, M. Rybar ¹²⁵, G. Rybkin ¹¹⁴, N.C. Rvder ¹¹⁷, S. Rzaeva ¹⁰, A.F. Saavedra ¹⁴⁹, I. Sadeh ¹⁵², H.F-W. Sadrozinski ¹³⁶, R. Sadykov ⁶⁴ N.C. Ryder¹¹⁷, S. Rzaeva¹⁰, A.F. Saavedra¹⁴⁹, I. Sadeh¹⁵², H.F-W. Sadrozinski¹³⁶, R. Sadykov⁶⁴, F. Safai Tehrani^{131a}, H. Sakamoto¹⁵⁴, G. Salamanna⁷⁴, A. Salamon^{132a}, M. Saleem¹¹⁰, D. Salek²⁹, D. Salihagic⁹⁸, A. Salnikov¹⁴², J. Salt¹⁶⁶, B.M. Salvachua Ferrando⁵, D. Salvatore^{36a,36b}, F. Salvatore¹⁴⁸, A. Salvucci¹⁰³, A. Salzburger²⁹, D. Sampsonidis¹⁵³, B.H. Samset¹¹⁶, A. Sanchez^{101a,101b}, V. Sanchez Martinez¹⁶⁶, H. Sandaker¹³, H.G. Sander⁸⁰, M.P. Sanders⁹⁷, M. Sandhoff¹⁷³, T. Sandoval²⁷, V. Sanchez Martinez ^{16b}, H. Sandaker ¹³, H.G. Sander ⁸⁰, M.P. Sanders ⁹⁷, M. Sandhoff ¹⁷³, T. Sandoval ²⁷, C. Sandoval ¹⁶¹, R. Sandstroem ⁹⁸, S. Sandvoss ¹⁷³, D.P.C. Sankey ¹²⁸, A. Sansoni ⁴⁷, C. Santamarina Rios ⁸⁴, C. Santoni ³³, R. Santonico ^{132a,132b}, H. Santos ^{123a}, J.G. Saraiva ^{123a}, T. Sarangi ¹⁷¹, E. Sarkisyan-Grinbaum⁷, F. Sarri ^{121a,121b}, G. Sartisohn ¹⁷³, O. Sasaki ⁶⁵, N. Sasao ⁶⁷, I. Satsounkevitch ⁸⁹, G. Sauvage ⁴, E. Sauvan ⁴, J.B. Sauvan ¹¹⁴, P. Savard ^{157,d}, V. Savinov ¹²², D.O. Savu ²⁹, L. Sawyer ^{24,l}, D.H. Saxon ⁵³, J. Saxon ¹¹⁹, L.P. Says ³³, C. Sbarra ^{19a}, A. Sbrizzi ^{19a,19b}, O. Scallon ⁹², D.A. Scannicchio ¹⁶², M. Scarcella ¹⁴⁹, J. Schaarschmidt ¹¹⁴, P. Schacht ⁹⁸, D. Schaefer ¹¹⁹, U. Schäfer ⁸⁰, S. Schaepe ²⁰, S. Schaetzel ^{58b}, A.C. Schaffer ¹¹⁴, D. Schaile ⁹⁷, R.D. Schamberger ¹⁴⁷, A.G. Schamov ¹⁰⁶, V. Scharf ^{58a}, V.A. Schegelsky ¹²⁰, D. Scheirich ⁸⁶, M. Schernau ¹⁶², M.I. Scherzer ³⁴, C. Schiavi ^{50a,50b}, J. Schieck ⁹⁷, M. Schioppa ^{36a,36b}, S. Schlenker ²⁹, J.L. Schlereth ⁵, E. Schmidt ⁴⁸, K. Schmieden ²⁰, C. Schmitt ⁸⁰, S. Schmitt ^{58b} M. Schmitz ²⁰ A. Schöning ^{58b} M. Schott ²⁹ D. Schouten ^{158a} I. Schovancova ¹²⁴ V.A. Schlegelsky ¹²⁰, S. Schlenker²⁹, J.L. Schlerth¹⁴¹, ¹⁴¹, M. Soares ^{123a}, R. Sobie ¹⁶⁸J, J. Sodomka ¹²⁶, A. Soffer ¹⁵², C.A. Solans ¹⁶⁶, M. Solar ¹²⁶, J. Solc ¹²⁶, E. Solkaroli Camillocci ^{131a,131b}, A.A. Solodkov ¹²⁷, O.V. Solovyanov ¹²⁷, N. Soni², V. Sopko ¹²⁶, B. Sopko ¹²⁶, M. Sosebee⁷, R. Soulahl ^{153a,153b}, R. Spiwoks²⁹, M. Spousta ¹²⁵, Spagnolo ^{71a,71b}, F. Spano ⁷⁵, R. Spighi ^{19a}, G. Spigo ²⁹, F. Spila ^{131a,131b}, R. Spiwoks²⁹, M. Spousta ¹²⁵, Spagnolo ^{71a,71b}, F. Spano ⁷⁵, R. Spighi ^{19a}, G. Spigo ²⁹, F. Spila ^{131a,131b}, R. Spiwoks²⁹, M. Spousta ¹²⁵, Spagnolo ^{71a,71b}, S. Staruescu ^{133a}, M. Stanescu-Bellu ⁴¹, S. Stapnes ¹¹⁶, E.A. Starchenko ¹²⁷, J. Stark ⁵⁵, P. Staroba ¹²⁴, P. Starovcitov ⁹⁰, A. Staude ⁹⁷, P. Stavina ¹⁴³³, G. Steele ⁵³, P. Steinbach ⁴³, P. Steinberg ²⁴, I. Stekl ¹²⁶, B. Stelzer ¹⁴¹, H.J. Stelzer ⁸⁷, O. Stelzer-Chilton ^{158a}, H. Stenzel⁵², S. Stern ⁹⁸, K. Stevenson ⁷⁴, G.A. Stewart ²⁹, J.A. Stillings ²⁰, M.C. Stockton ⁸⁴, K. Stoeride ⁴⁵, G. Stoicea ^{25a}, S. Stonjek ⁹⁸, P. Strachota ¹²⁵, R. Stroynowski ³⁹, J. Strub ¹²⁸, B. Stugu ¹³, I. Stumer ¹⁴⁵, J. Stugak ¹⁴⁷, P. Sturn ¹⁷³, N.A. Styles ⁴¹, D.A. Soh ^{150,47}, D. Stu¹⁴², H.S. Subramania ², A. Succurro ¹¹, Y. Sugaya ¹¹⁵, T. Sugimoto ¹⁰⁰, C. Suhr ¹⁰⁵, K. Suita ⁵⁶, M. Suk ¹²⁵, V. V. Sulin ⁹³, S. Sutkanos ³⁴, T. Stumko ⁴⁷, X. Suns ⁵, J. Sucurermann ⁴⁸, K. Sturuliz ¹³⁸, S. Sushkov ¹¹, G. Susinno ^{36a,36b}, M. R. Sutton ¹⁴⁸, Y. Suzuki ⁶⁵, Y. Suzuki ⁶⁶, M. Svatos ¹²⁴, Yu.M. Sviridov ¹²⁷, S. Swedish ¹⁶⁵, T. Skycarl ¹⁴³, T. Sukoo ¹²⁵, S. Starhose ¹⁶⁵, D. Ta ¹⁰⁴, K. Tackmann ⁴¹, A. Taffard ¹⁶², R. Tarkeshira ¹³⁹, Y. Taukabé ⁵, Y. Suzuki ⁶⁶, M. Suta ¹²⁴, T. Taukab ¹⁴³, T. Sukoo ¹⁵⁵, Y. Taukab ¹⁵⁶, M. Suta ¹²⁵, J. Starkes ¹⁵⁶, J. Ta ¹⁰⁴, K. Tackman ⁴¹, A. Taffard ¹⁶², R. Tarkeshira ¹³⁹, T. Tankab ⁵⁹, Y. Taukabé ¹⁴⁴, K. Tani ⁶⁶, N. Starte ¹⁴⁵, J. Therense ¹⁵⁷, J. Starte ¹⁵⁸, Y. Tankesh M. Soares ^{123a}, R. Sobie ^{168, j}, J. Sodomka ¹²⁶, A. Soffer ¹⁵², C.A. Solans ¹⁶⁶, M. Solar ¹²⁶, J. Solc ¹²⁶, E. Soldatov ⁹⁵, U. Soldevila ¹⁶⁶, E. Solfaroli Camillocci ^{131a,131b}, A.A. Solodkov ¹²⁷, O.V. Solovyanov ¹²⁷, M. Tsiakiris ¹⁰⁴, P.V. Tsiareshka⁸⁹, D. Tsionou^{4,ae}, G. Tsipolitis⁹, V. Tsiskaridze⁴⁸, E.G. Tskhadadze^{51a}, I.I. Tsukerman⁹⁴, V. Tsulaia¹⁴, J.-W. Tsung²⁰, S. Tsuno⁶⁵, D. Tsybychev¹⁴⁷, A. Tua¹³⁸, A. Tudorache^{25a}, V. Tudorache^{25a}, J.M. Tuggle³⁰, M. Turala³⁸, D. Turecek¹²⁶, I. Turk Cakir^{3e}, E. Turlay¹⁰⁴, R. Turra^{88a,88b}, P.M. Tuts³⁴, A. Tykhonov⁷³, M. Tylmad^{145a,145b}, M. Tyndel¹²⁸, G. Tzanakos⁸, K. Uchida²⁰, I. Ueda¹⁵⁴, P.M. Tuts ³⁴, A. Tykhonov ⁷⁵, M. Tylmad ¹⁴³⁴, ¹⁴³⁵, M. Tyndel ¹²⁵, G. Tzanakos⁵, K. Uchida²⁶, I. Ueda¹³⁴, R. Ueno²⁸, M. Ugland¹³, M. Uhlenbrock²⁰, M. Uhrmacher⁵⁴, F. Ukegawa¹⁵⁹, G. Unal²⁹, D.G. Underwood⁵, A. Undrus²⁴, G. Unel¹⁶², Y. Unno⁶⁵, D. Urbaniec³⁴, G. Usai⁷, M. Uslenghi^{118a,118b}, L. Vacavant⁸², V. Vacek¹²⁶, B. Vachon⁸⁴, S. Vahsen¹⁴, J. Valenta¹²⁴, P. Valente^{131a}, S. Valentinetti^{19a,19b}, S. Valkar¹²⁵, E. Valladolid Gallego¹⁶⁶, S. Vallecorsa¹⁵¹, J.A. Valls Ferrer¹⁶⁶, H. van der Graaf¹⁰⁴, E. van der Kraaij¹⁰⁴, R. Van Der Leeuw¹⁰⁴, E. van der Poel¹⁰⁴, D. van der Ster²⁹, N. van Eldik⁸³, P. van Gemmeren⁵, Z. van Kesteren¹⁰⁴, I. van Vulpen¹⁰⁴, M. Vanadia⁹⁸, W. Vandelli²⁹, G. Vandoni²⁹, A. Vaniachine⁵, P. Vankov⁴¹, F. Vannucci⁷⁷, F. Varela Rodriguez²⁹, R. Vari^{131a}, E.W. Varnes⁶, T. Varol⁸³, D. Varouchas¹⁴, A. Vartapotian⁷, K.E. Varuull¹⁴⁹, VI. Varsilakopoulos⁵⁶, F. Vazeille³³ A. Vaniachine⁵, P. Vankov⁴¹, F. Vannucci⁷⁷, F. Varela Rodriguez²⁹, R. Vari^{131a}, E.W. Varnes⁶, T. Varol⁸³, D. Varouchas¹⁴, A. Vartapetian⁷, K.E. Varvell¹⁴⁹, V.I. Vassilakopoulos⁵⁶, F. Vazeille³³, T. Vazquez Schroeder⁵⁴, G. Vegni^{88a,88b}, J.J. Veillet¹¹⁴, C. Vellidis⁸, F. Veloso^{123a}, R. Veness²⁹, S. Veneziano^{131a}, A. Ventura^{71a,71b}, D. Ventura¹³⁷, M. Venturi⁴⁸, N. Venturi¹⁵⁷, V. Vercesi^{118a}, M. Verducci¹³⁷, W. Verkerke¹⁰⁴, J.C. Vermeulen¹⁰⁴, A. Vest⁴³, M.C. Vetterli^{141,d}, I. Vichou¹⁶⁴, T. Vickey^{144b,af}, O.E. Vickey Boeriu^{144b}, G.H.A. Viehhauser¹¹⁷, S. Viel¹⁶⁷, M. Villa^{19a,19b}, M. Villaplana Perez¹⁶⁶, E. Vilucchi⁴⁷, M.G. Vincter²⁸, E. Vinek²⁹, V.B. Vinogradov⁶⁴, M. Virchaux^{135,*}, J. Virzi¹⁴, O. Vitells¹⁷⁰, M. Viti⁴¹, I. Vivarelli⁴⁸, F. Vives Vaque², S. Vlachos⁹, D. Vladoiu⁹⁷, M. Vlasak¹²⁶, N. Vlasov²⁰, A. Vogel²⁰, P. Vokac¹²⁶, G. Volpi⁴⁷, M. Volpi⁸⁵, G. Volpini^{88a}, H. von der Schmitt⁹⁸,

J. von Loeben ⁹⁸, H. von Radziewski ⁴⁸, E. von Toerne ²⁰, V. Vorobel ¹²⁵, A.P. Vorobiev ¹²⁷, V. Vorwerk ¹¹, M. Vos ¹⁶⁶, R. Voss ²⁹, T.T. Voss ¹⁷³, J.H. Vossebeld ⁷², N. Vranjes ¹³⁵, M. Vranjes Milosavljevic ¹⁰⁴, M. Vos¹⁶⁶, R. Voss²⁹, T.T. Voss¹⁷³, J.H. Vossebeld⁷², N. Vranjes¹³⁵, M. Vranjes Milosavljevic¹⁰⁴, V. Vrba¹²⁴, M. Vreeswijk¹⁰⁴, T. Vu Anh⁴⁸, R. Vuillermet²⁹, I. Vukotic¹¹⁴, W. Wagner¹⁷³, P. Wagner¹¹⁹, H. Wahlen¹⁷³, J. Wakabayashi¹⁰⁰, S. Walch⁸⁶, J. Walder⁷⁰, R. Walker⁹⁷, W. Walkowiak¹⁴⁰, R. Wall¹⁷⁴, P. Waller⁷², C. Wang⁴⁴, H. Wang¹⁷¹, H. Wang^{32b,ag}, J. Wang¹⁵⁰, J. Wang⁵⁵, J.C. Wang¹³⁷, R. Wang¹⁰², S.M. Wang¹⁵⁰, T. Wang²⁰, A. Warburton⁸⁴, C.P. Ward²⁷, M. Warsinsky⁴⁸, A. Washbrook⁴⁵, C. Wasicki⁴¹, P.M. Watkins¹⁷, A.T. Watson¹⁷, I.J. Watson¹⁴⁹, M.F. Watson¹⁷, G. Watts¹³⁷, S. Watts⁸¹, A.T. Waugh¹⁴⁹, B.M. Waugh⁷⁶, M. Weber¹²⁸, M.S. Weber¹⁶, P. Weber⁵⁴, A.R. Weidberg¹¹⁷, P. Weigell⁹⁸, J. Weingarten⁵⁴, C. Weiser⁴⁸, H. Wellenstein²², P.S. Wells²⁹, T. Wenaus²⁴, D. Wendland¹⁵, S. Wendler¹²², Z. Weng^{150,u}, T. Wengler²⁹, S. Wenig²⁹, N. Wermes²⁰, M. Werner⁴⁸, P. Werner²⁹, M. Werth¹⁶², M. Wessels^{58a}, J. Wetter¹⁶⁰, C. Weydert⁵⁵, K. Whalen²⁸, S.J. Wheeler-Ellis¹⁶², S.P. Whitaker²¹ A. White⁷, M.I. White⁸⁵, S. White^{121a,121b}, S.R. Whitehead¹¹⁷, D. Whiteson¹⁶². S.P. Whitaker²¹, A. White⁷, M.J. White⁸⁵, S. White^{121a,121b}, S.R. Whitehead¹¹⁷, D. Whiteson¹⁶², D. Whittington⁶⁰, F. Wicek¹¹⁴, D. Wicke¹⁷³, F.J. Wickens¹²⁸, W. Wiedenmann¹⁷¹, M. Wielers¹²⁸, P. Wienemann²⁰, C. Wiglesworth⁷⁴, L.A.M. Wiik-Fuchs⁴⁸, P.A. Wijeratne⁷⁶, A. Wildauer¹⁶⁶, M.A. Wildt^{41,q}, I. Wilhelm¹²⁵, H.G. Wilkens²⁹, J.Z. Will⁹⁷, E. Williams³⁴, H.H. Williams¹¹⁹, W. Willis³⁴, M.A. Wildt ^{11,4}, I. Wilhelm ^{12,5}, H.G. Wilkens ^{2,5}, J.Z. Will^{3,7}, E. Williams ^{3,7}, H.H. Williams ^{1,6}, W. Willis^{3,5} S. Willocq ⁸³, J.A. Wilson ¹⁷, M.G. Wilson ¹⁴², A. Wilson ⁸⁶, I. Wingerter-Seez⁴, S. Winkelmann ⁴⁸, F. Winklmeier ²⁹, M. Wittgen ¹⁴², M.W. Wolter ³⁸, H. Wolters ^{123a,h}, W.C. Wong ⁴⁰, G. Wooden ⁸⁶, B.K. Wosiek ³⁸, J. Wotschack ²⁹, M.J. Woudstra ⁸³, K.W. Wozniak ³⁸, K. Wraight ⁵³, C. Wright ⁵³, M. Wright ⁵³, B. Wrona ⁷², S.L. Wu ¹⁷¹, X. Wu ⁴⁹, Y. Wu ^{32b,ah}, E. Wulf ³⁴, R. Wunstorf ⁴², B.M. Wynne ⁴⁵, S. Xella ³⁵, M. Xiao ¹³⁵, S. Xie ⁴⁸, Y. Xie ^{32a}, C. Xu ^{32b,w}, D. Xu ¹³⁸, G. Xu ^{32a}, B. Yabsley ¹⁴⁹, S. Yacoob ^{144b}, M. Yamada ⁶⁵, H. Yamaguchi ¹⁵⁴, A. Yamamoto ⁶⁵, K. Yamamoto ⁶³, S. Yamamoto ¹⁵⁴, T. Yamamura ¹⁵⁴, T. Yamanaka ¹⁵⁴, J. Yamaoka ⁴⁴, T. Yamazaki ¹⁵⁴, Y. Yamazaki ⁶⁶, Z. Yan ²¹, H. Yang ⁸⁶, U.K. Yang ⁸¹, Y. Yang ⁶⁰, Y. Yang ^{32a}, Z. Yang ^{145a,145b}, S. Yanush ⁹⁰, Y. Yao ¹⁴, Y. Yasu ⁶⁵, G.V. Ybeles Smit ¹²⁹, J. Ye ³⁹, S. Ye ²⁴, M. Yilmaz ^{3c}, R. Yoosoofmiya ¹²², K. Yorita ¹⁶⁹, R. Yoshida ⁵, C. Young ¹⁴², C.J. Young ¹¹⁷, S. Youssef²¹, D. Yu²⁴, J. Yu⁷, J. Yu¹¹¹, L. Yuan^{32a,ai}, A. Yurkewicz¹⁰⁵, B. Zabinski³⁸, V.G. Zaets¹²⁷, R. Zaidan⁶², A.M. Zaitsev¹²⁷, Z. Zajacova²⁹, L. Zanello^{131a,131b}, A. Zaytsev¹⁰⁶, C. Zeitnitz¹⁷³, M. Zeller¹⁷⁴, M. Zeman¹²⁴, A. Zemla³⁸, C. Zendler²⁰, O. Zenin¹²⁷, T. Ženiš^{143a}, Z. Zinonos^{121a,121b}, M. Zeller ¹⁷⁴, M. Zeman ¹²⁴, A. Zemla ³⁵, C. Zendler ²⁵, O. Zenlin ¹²⁷, I. Zenls ^{143a}, Z. Zinonos ^{121a}, ^{121b}, S. Zenz ¹⁴, D. Zerwas ¹¹⁴, G. Zevi della Porta ⁵⁷, Z. Zhan ^{32d}, D. Zhang ^{32b,ag}, H. Zhang ⁸⁷, J. Zhang ⁵, X. Zhang ^{32d}, Z. Zhang ¹¹⁴, L. Zhao ¹⁰⁷, T. Zhao ¹³⁷, Z. Zhao ^{32b}, A. Zhemchugov ⁶⁴, S. Zheng ^{32a}, J. Zhong ¹¹⁷, B. Zhou ⁸⁶, N. Zhou ¹⁶², Y. Zhou ¹⁵⁰, C.G. Zhu ^{32d}, H. Zhu ⁴¹, J. Zhu ⁸⁶, Y. Zhu ^{32b}, X. Zhuang ⁹⁷, V. Zhuravlov ⁹⁸, D. Zieminska ⁶⁰, R. Zimmermann ²⁰, S. Zimmermann ²⁰, S. Zimmermann ⁴⁸, M. Ziolkowski ¹⁴⁰, R. Zitoun ⁴, L. Živković ³⁴, V.V. Zmouchko ^{127,*}, G. Zobernig ¹⁷¹, A. Zoccoli ^{19a,19b}, A. Zsenei ²⁹, M. zur Nedden ¹⁵, V. Zutshi ¹⁰⁵, L. Zwalinski ²⁹

- ¹ University at Albany, Albany, NY, United States
- ² Department of Physics, University of Alberta, Edmonton, AB, Canada ³ ⁽⁶⁾ Department of Physics, Ankara University, Ankara; ^(b) Department of Physics, Dumlupinar University, Kutahya; ^(c) Department of Physics, Gazi University, Ankara; ^(d) Division of Physics, TOBB University of Economics and Technology, Ankara; ^(e) Turkish Atomic Energy Authority, Ankara, Turkey
- LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
- ⁵ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
- ⁶ Department of Physics, University of Arizona, Tucson, AZ, United States
- ⁷ Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
- ⁸ Physics Department, University of Athens, Athens, Greece
- ⁹ Physics Department, National Technical University of Athens, Zografou, Greece
- ¹⁰ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ¹¹ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
- 12 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
- ¹³ Department for Physics and Technology, University of Bergen, Bergen, Norway
- ¹⁴ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
- ¹⁵ Department of Physics, Humboldt University, Berlin, Germany
- ¹⁶ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
- ¹⁷ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
- ¹⁸ (a) Department of Physics, Bogazici University, Istanbul; ^(b) Division of Physics, Dogus University, Istanbul; ^(c) Department of Physics Engineering, Gaziantep University, Gaziantep;
- (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
- ¹⁹ ^(d) INFN Sezione di Bologna; ^(b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
- ²⁰ Physikalisches Institut, University of Bonn, Bonn, Germany
- ²¹ Department of Physics, Boston University, Boston, MA, United States
- ²² Department of Physics, Brandeis University, Waltham, MA, United States
- 23 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFIF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSI), Sao Joao del Rei; ^(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
- ²⁴ Physics Department, Brookhaven National Laboratory, Upton, NY, United States
- ²⁵ (a) National Institute of Physics and Nuclear Engineering, Bucharest; ^(b) University Politehnica Bucharest, Bucharest; ^(c) West University in Timisoara, Timisoara, Romania

- ²⁶ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- ²⁷ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- ²⁸ Department of Physics, Carleton University, Ottawa, ON, Canada
- ²⁹ CERN, Geneva, Switzerland
- ³⁰ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
- ³¹ (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ^(b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
 ³² (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ^(b)Department of Modern Physics, University of Science and Technology of China, Anhui; ^(c)Department of Physics, Nanjing University, Jiangsu; ^(d) School of Physics, Shandong University, Shandong, China
- 33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
- ³⁴ Nevis Laboratory, Columbia University, Irvington, NY, United States
- ³⁵ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
- ³⁶ (a) INFN Gruppo Collegato di Cosenza; ^(b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
 ³⁷ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
- ³⁸ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
- ³⁹ Physics Department, Southern Methodist University, Dallas, TX, United States
- ⁴⁰ Physics Department, University of Texas at Dallas, Richardson, TX, United States
- ⁴¹ DESY, Hamburg and Zeuthen, Germany
- ⁴² Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
- ⁴³ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
- ⁴⁴ Department of Physics, Duke University, Durham, NC, United States
- ⁴⁵ SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- ⁴⁶ Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
- ⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy
- ⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
- ⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland
 ⁵⁰ ^(a) INFN Sezione di Genova; ^(b) Dipartimento di Fisica, Università di Genova, Genova, Italy
- ⁵¹ (a) EAndronikashvili Institute of Physics, Tbilisi State University, Tbilisi; ^(b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
- ⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
- ⁵³ SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
- ⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
- 55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
- ⁵⁶ Department of Physics, Hampton University, Hampton, VA, United States
- ⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
- ⁵⁸ (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für
- technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
- ⁵⁹ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
- ⁶⁰ Department of Physics, Indiana University, Bloomington, IN, United States
- ⁶¹ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
- 62 University of Iowa, Iowa City, IA, United States
- ⁶³ Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
- ⁶⁴ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
- ⁶⁵ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
- ⁶⁶ Graduate School of Science, Kobe University, Kobe, Japan
- ⁶⁷ Faculty of Science, Kyoto University, Kyoto, Japan
- ⁶⁸ Kvoto University of Education, Kvoto, Japan
- ⁶⁹ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
- ⁷⁰ Physics Department, Lancaster University, Lancaster, United Kingdom
- ⁷¹ ^(a) INFN Sezione di Lecce; ^(b) Dipartimento di Fisica, Università del Salento, Lecce, Italy
- ⁷² Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
- ⁷³ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
- ⁷⁴ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
- ⁷⁵ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
- ⁷⁶ Department of Physics and Astronomy, University College London, London, United Kingdom
- ⁷⁷ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
 ⁷⁸ Fysiska institutionen, Lunds universitet, Lund, Sweden
- ⁷⁹ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
- ⁸⁰ Institut für Physik, Universität Mainz, Mainz, Germany
- ⁸¹ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- ⁸² CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
- ⁸³ Department of Physics, University of Massachusetts, Amherst, MA, United States
- ⁸⁴ Department of Physics, McGill University, Montreal, QC, Canada
- ⁸⁵ School of Physics, University of Melbourne, Victoria, Australia
 ⁸⁶ Department of Physics, The University of Michigan, Ann Arbor, MI, United States
- ⁸⁷ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- ⁸⁸ ^(a) INFN Sezione di Milano; ^(b) Dipartimento di Fisica, Università di Milano, Milano, Italy
- ⁸⁹ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
- ⁹⁰ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
- ⁹¹ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
- 92 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
- ⁹³ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
- ⁹⁴ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
- ⁹⁵ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
- ⁹⁶ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- ⁹⁷ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
- 98 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
- ⁹⁹ Nagasaki Institute of Applied Science, Nagasaki, Japan
- ¹⁰⁰ Graduate School of Science, Nagoya University, Nagoya, Japan
- ¹⁰¹ ^(a) INFN Sezione di Napoli; ^(b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
- ¹⁰² Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States

¹⁰³ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

- ¹⁰⁴ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
- ¹⁰⁵ Department of Physics, Northern Illinois University, DeKalb, IL, United States
- ¹⁰⁶ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
- ¹⁰⁷ Department of Physics, New York University, New York, NY, United States
- ¹⁰⁸ Ohio State University, Columbus, OH, United States
- ¹⁰⁹ Faculty of Science, Okayama University, Okayama, Japan
- ¹¹⁰ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
- ¹¹¹ Department of Physics, Oklahoma State University, Stillwater, OK, United States
- 112 Palacký University, RCPTM, Olomouc, Czech Republic
- ¹¹³ Center for High Energy Physics, University of Oregon, Eugene, OR, United States
- ¹¹⁴ LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
- ¹¹⁵ Graduate School of Science, Osaka University, Osaka, Japan
- ¹¹⁶ Department of Physics, University of Oslo, Oslo, Norway
- ¹¹⁷ Department of Physics, Oxford University, Oxford, United Kingdom
- ¹¹⁸ ^(a) INFN Sezione di Pavia; ^(b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
- ¹¹⁹ Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
- ¹²⁰ Petersburg Nuclear Physics Institute, Gatchina, Russia
- ¹²¹ ^(a) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
- ¹²² Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
- 123 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal; (b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada Spain
- ¹²⁴ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
- ¹²⁵ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
- 126 Czech Technical University in Prague, Praha, Czech Republic
- ¹²⁷ State Research Center Institute for High Energy Physics, Protvino, Russia
- ¹²⁸ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
- ¹²⁹ Physics Department, University of Regina, Regina, SK, Canada
- ¹³⁰ Ritsumeikan University, Kusatsu, Shiga, Japan

¹³¹ ^(a) INFN Sezione di Roma I; ^(b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy

- ¹³² ^(a) INFN Sezione di Roma Tor Vergata; ^(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
- ¹³³ ^(a) INFN Sezione di Roma Tre; ^(b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
- 134 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques

Nucleaires, Rabat; ^(c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; ^(d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ^(e) Faculté des

Sciences, Université Mohammed V-Agdal, Rabat, Morocco

135 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France

¹³⁶ Santa Cruz, Santa Cruz, CA, United States

- ¹³⁷ Department of Physics, University of Washington, Seattle, WA, United States
- ¹³⁸ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- ¹³⁹ Department of Physics, Shinshu University, Nagano, Japan
- ¹⁴⁰ Fachbereich Physik, Universität Siegen, Siegen, Germany
- ¹⁴¹ Department of Physics, Simon Fraser University, Burnaby, BC, Canada
- 142 SLAC National Accelerator Laboratory, Stanford, CA, United States
- 143 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
- ¹⁴⁴ ^(a) Department of Physics, University of Johannesburg, Johannesburg; ^(b)School of Physics, University of the Witwatersrand, Johannesburg, South Africa
 ¹⁴⁵ ^(a) Department of Physics, Stockholm University; ^(b) The Oskar Klein Centre, Stockholm, Sweden
- ¹⁴⁶ Physics Department, Royal Institute of Technology, Stockholm, Sweden
- 147 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
- ¹⁴⁸ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
- 149 School of Physics, University of Sydney, Sydney, Australia
- ¹⁵⁰ Institute of Physics, Academia Sinica, Taipei, Taiwan
- ¹⁵¹ Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
- ¹⁵² Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ¹⁵³ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- ¹⁵⁴ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
- ¹⁵⁵ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- ¹⁵⁶ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- ¹⁵⁷ Department of Physics, University of Toronto, Toronto, ON, Canada
- ¹⁵⁸ (a) TRIUMF, Vancouver, BC; ^(b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
- ¹⁵⁹ Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- ¹⁶⁰ Science and Technology Center, Tufts University, Medford, MA, United States
- ¹⁶¹ Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
- ¹⁶² Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
 ¹⁶³ ^(a) INFN Gruppo Collegato di Udine; ^(b) ICTP, Trieste; ^(c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
 ¹⁶⁴ Department of Physics, University of Illinois, Urbana, IL, United States
- ¹⁶⁵ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
- 166 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
- Department of Physics, University of British Columbia, Vancouver, BC, Canada
- ¹⁶⁸ Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- ¹⁶⁹ Waseda University, Tokyo, Japan
- ¹⁷⁰ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- ¹⁷¹ Department of Physics, University of Wisconsin, Madison, WI, United States
- ¹⁷² Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- ¹⁷³ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- ¹⁷⁴ Department of Physics, Yale University, New Haven, CT, United States
- ¹⁷⁵ Yerevan Physics Institute, Yerevan, Armenia
- ¹⁷⁶ Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

- ^a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal.
- ^b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
- ^c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
- ^d Also at TRIUMF, Vancouver, BC, Canada.
- ^e Also at Department of Physics, California State University, Fresno, CA, United States.
- f Also at Novosibirsk State University, Novosibirsk, Russia.
- $^{\rm g}\,$ Also at Fermilab, Batavia, IL, United States.
- ^h Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
- ^{*i*} Also at Università di Napoli Parthenope, Napoli, Italy.
- ^j Also at Institute of Particle Physics (IPP), Canada.
- $^{k}\,$ Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
- ¹ Also at Louisiana Tech University, Ruston, LA, United States.
- ^m Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
- n Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
- ^o Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
- ^{*p*} Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
- ${}^{q}\,$ Also at Institut für Experimental
physik, Universität Hamburg, Hamburg, Germany.
- ^{*r*} Also at Manhattan College, New York, NY, United States.
- ^s Also at School of Physics, Shandong University, Shandong, China.
- ^t Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
- ^u Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
- ^v Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
 ^w Also at DCM(IREL) (Institut do Reporting gui leg Leis Fondamentales do l'Univers). CEA Sadau
- * Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.
- $^{\rm x}$ Also at Section de Physique, Université de Genève, Geneva, Switzerland.
- ^y Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
- ^z Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
- aa Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
- ^{ab} Also at California Institute of Technology, Pasadena, CA, United States.
- ^{ac} Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
- ^{ad} Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France.
- ae Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
- ^{df} Also at Department of Physics, Oxford University, Oxford, United Kingdom.
- ^{ag} Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
- ^{ah} Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
- ^{ai} Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France. * Deceased.