Physics Letters B 714 (2012) 180-196

Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for events with large missing transverse momentum, jets, and at least two tau leptons in 7 TeV proton–proton collision data with the ATLAS detector $\stackrel{k}{\approx}$

ATLAS Collaboration*

ARTICLE INFO

Article history: Received 29 March 2012 Received in revised form 24 May 2012 Accepted 23 June 2012 Available online 26 June 2012 Editor: H. Weerts

ABSTRACT

A search for events with large missing transverse momentum, jets, and at least two tau leptons has been performed using 2 fb⁻¹ of proton–proton collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set, where the visible cross section is defined by the product of cross section, branching fraction, detector acceptance and event selection efficiency. A 95% CL lower limit of 32 TeV is set on the gauge-mediated supersymmetry breaking (GMSB) scale Λ independent of tan β . These limits provide the most stringent tests to date in a large part of the considered parameter space.

Published by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

Supersymmetry (SUSY) [1–5] introduces a symmetry between fermions and bosons, resulting in a SUSY partner (sparticle) for each Standard Model (SM) particle with identical mass and quantum numbers except a difference by half a unit of spin. As none of these sparticles have been observed, SUSY must be a broken symmetry if realised in nature. Assuming *R*-parity conservation [6,7], sparticles are produced in pairs. These would then decay through cascades involving other sparticles until the lightest SUSY particle (LSP) is produced, which is stable.

Minimal gauge-mediated supersymmetry breaking (GMSB) [8-13] models can be described by six parameters: the SUSY breaking mass scale felt by the low-energy sector (Λ) , the messenger mass (M_{mess}), the number of SU(5) messengers (N_5), the ratio of the vacuum expectation values of the two Higgs doublets $(\tan \beta)$, the Higgs sector mixing parameter (μ) and the scale factor for the gravitino mass (C_{grav}). In this analysis Λ and $\tan\beta$ are treated as free parameters and the other parameters are fixed to $M_{\rm mess}=250$ TeV, $N_5=3,~\mu>0$ and $C_{
m grav}=1,$ similar to other GMSB benchmark points in the literature, e.g. G2a [14] and SPS7 [15]. The C_{grav} parameter determines the lifetime of the nextto-lightest SUSY particle (NLSP). For $C_{grav} = 1$ the NLSP decays promptly ($c\tau_{NLSP} < 0.1$ mm). With these parameters, the production of squark and/or gluino pairs is expected to dominate at the present Large Hadron Collider (LHC) energy. These sparticles decay directly or through cascades into the NLSP, which subsequently decays to the LSP. In GMSB models, the LSP is the very light gravitino

(\tilde{G}). Due to the gravitino's very small mass of $\mathcal{O}(\text{keV})$, the NLSP is the only sparticle decaying into the LSP. This leads to multiple jets and missing transverse momentum ($E_{\text{T}}^{\text{miss}}$) in the final states. The experimental signature is then largely determined by the nature of the NLSP, which can be either the lightest stau ($\tilde{\tau}_1$), a right-handed slepton ($\tilde{\ell}_R$), the lightest neutralino ($\tilde{\chi}_1^0$), or a sneutrino ($\tilde{\nu}$), leading to final states containing taus, light leptons ($\ell = e, \mu$), photons, b-jets, or neutrinos. For $N_5 = 3$ the $\tilde{\tau}_1$ and $\tilde{\ell}_R$ NLSPs become more dominant compared to lower values of N_5 . At large values of $\tan \beta$, the $\tilde{\tau}_1$ is the NLSP for most of the parameter space, which leads to final states containing between two and four tau leptons. In the so-called CoNLSP [16] region, the mass difference between the $\tilde{\tau}_1$ and the $\tilde{\ell}_R$ is smaller than the tau lepton mass such that both sparticles decay directly into the LSP and are therefore NLSP.

This Letter reports on the search for events with large E_{T}^{miss} , jets, and at least two hadronically decaying tau leptons. The analysis has been performed using 2 fb⁻¹ of proton-proton (pp) collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the LHC between March and August 2011. Although the analysis is sensitive to a wide variety of models for physics beyond the Standard Model, the results shown here are interpreted in the context of a minimal GMSB model. The three LEP Collaborations ALEPH [17], DELPHI [18] and OPAL [19] studied $\tilde{\tau}_1$ pair production, with the subsequent decay $\tilde{\tau}_1 \rightarrow \tau \tilde{G}$ in the minimal GMSB model. The best limits are set by the OPAL Collaboration and $\tilde{\tau}_1$ NLSPs with masses below 87.4 GeV are excluded. A limit on the SUSY breaking mass scale A of 26 TeV was set for $N_5 = 3$, $M_{mess} = 250$ TeV, independent of $\tan \beta$ and the NLSP lifetime. The CMS Collaboration searched for new physics in same-sign ditau events [20] and multilepton events including ditaus [21] using 35 pb⁻¹ of data, but the minimal GMSB model was not considered. A search for supersymmetry in final states containing at least one hadronically decaying

 $^{^{\,{\}rm tr}}\,$ © CERN for the benefit of the ATLAS Collaboration.

^{*} E-mail address: atlas.publications@cern.ch,

⁰³⁷⁰⁻²⁶⁹³ Published by Elsevier B.V. Open access under CC BY-NC-ND license. http://dx.doi.org/10.1016/j.physletb.2012.06.055

tau lepton, missing transverse momentum and jets with the ATLAS detector is presented in another Letter [22].

2. ATLAS detector

The ATLAS detector [23] is a multi-purpose apparatus with a forward-backward symmetric cylindrical geometry and nearly 4π solid angle coverage. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon strip detector and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field and by fine-granularity lead/liquid-argon (LAr) electromagnetic calorimeters. An iron/scintillating-tile calorimeter provides hadronic coverage in the central rapidity¹ range. The endcap and forward regions are instrumented with liquid-argon calorimeters for both electromagnetic and hadronic measurements. An extensive muon spectrometer system that incorporates large superconducting toroidal magnets surrounds the calorimeters.

3. Simulated samples

Monte Carlo (MC) simulations are used to extrapolate backgrounds from control regions (CRs) to the signal region (SR) and to evaluate the selection efficiencies for the SUSY models considered. Samples of W and Z/γ^* production with accompanying jets are simulated with ALPGEN [24], using CTEQ6L1 [25] parton density functions (PDFs). Top quark pair production, single top production and diboson pair production are simulated with MC@NLO [26-28] and the next-to-leading order (NLO) PDF set CTEQ6.6 [29]. Fragmentation and hadronisation are performed with HERWIG [30], using JIMMY [31] for the underlying event simulation and the AT-LAS MC10 parameter tune [32]. TAUOLA [33,34] and PHOTOS [35] are used to model the decays of τ leptons and the radiation of photons, respectively. The production of multi-jet events is simulated with PYTHIA 6.4.25 [36] using the AMBT1 tune [37] and MRST2007 LO* [38] PDFs. For the minimal GMSB model considered in this analysis, the SUSY mass spectra are calculated using ISAJET 7.80 [39]. The MC signal samples are produced using HERWIG++ 2.4.2 [40] with MRST2007 LO* PDFs. NLO cross sections are calculated using PROSPINO 2.1 [41-46]. All samples are processed through the GEANT4-based simulation [47] of the AT-LAS detector [48]. The variation of the number of pp interactions per bunch crossing (pile-up) as a function of the instantaneous luminosity is taken into account by modeling the simulated number of overlaid minimum bias events according to the observed distribution of the number of pile-up interactions in data, with an average of \sim 6 interactions.

4. Object reconstruction

Jets are reconstructed using the anti- k_t jet clustering algorithm [49] with radius parameter R = 0.4. Their energies are calibrated to correct for calorimeter non-compensation, upstream material and other effects [50]. Jets are required to have transverse momentum (p_T) above 20 GeV and $|\eta| < 2.5$.

Muons are identified as tracks in the ID matched to track segments in the stand-alone muon spectrometer, while electrons are identified as isolated tracks with a corresponding energy deposit in the electromagnetic calorimeter. The selection criteria applied to muons and "medium" quality electrons are described in more detail in Refs. [51] and [52], respectively.

The measurement of the missing transverse momentum twodimensional vector p_T^{miss} (and its magnitude E_T^{miss}) is based on the transverse momenta of identified jets, electrons, muons and all calorimeter clusters with $|\eta| < 4.5$ not associated to such objects [53]. For the purpose of the measurement of E_T^{miss} , taus are not distinguished from jets.

In this search, only hadronically decaying taus are considered. The tau reconstruction is seeded from anti- k_t jets with $p_T > 10$ GeV. An η - and p_T -dependent energy calibration to the hadronic tau energy scale is applied. Hadronic tau identification is based on observables sensitive to the transverse and longitudinal shape of the calorimeter shower and on tracking information, combined in a boosted decision tree (BDT) discriminator [54]. Transition radiation and calorimeter information is used to veto electrons misidentified as taus. A tau candidate must have $p_T > 20$ GeV, $|\eta| < 2.5$, and one or three associated tracks of $p_T > 1$ GeV with a charge sum of ± 1 . The efficiency of the BDT tau identification (the "loose" working point in Ref. [54]), determined using $Z \rightarrow \tau \tau$ events, is about 60%, independent of p_T , with a jet background rejection factor of 20–50.

During a part of the data-taking period, an electronics failure in the LAr barrel EM calorimeter created a dead region in the second and third layers, corresponding to approximately 1.4×0.2 radians in $\Delta \eta \times \Delta \phi$. Electron and tau candidates falling in this region are discarded. A correction to the jet energy is made using the energy depositions in the cells neighbouring the dead region; events having at least one jet for which the energy after correction is above 30 GeV are discarded, resulting in a loss of $\sim 6\%$ of the data sample.

5. Data analysis

The analysed data sample, after applying beam, detector and data-quality requirements, corresponds to an integrated luminosity of (2.05 ± 0.08) fb⁻¹ [55,56]. Candidate events are pre-selected by a trigger requiring a leading jet, i.e. the jet having the highest transverse momentum of all jets in the event, with $p_T > 75$ GeV, measured at the raw electromagnetic scale, and $E_T^{miss} > 45$ GeV [57]. In the offline analysis, these events are required to have a reconstructed primary vertex with at least five tracks, a leading jet with $p_T > 130$ GeV and $E_T^{miss} > 130$ GeV. These requirements ensure a uniform trigger efficiency that exceeds 98%.

Pre-selected events are then required to have at least two identified tau candidates and must not contain any electron or muon candidates with transverse momenta above 20 GeV or 10 GeV, respectively. To suppress soft multi-jet events, a second jet with $p_T > 30$ GeV is required. The p_T spectrum of the leading tau candidate after pre-selection of candidate events, soft multi-jet rejection and the requirement of two or more taus and no light leptons is shown in Fig. 1.

This selection rejects almost all soft multi-jet background events. Remaining multi-jet events, where highly energetic jets are mis-measured, are rejected by requiring the azimuthal angle between the missing transverse momentum and either of the two leading jets $\Delta \phi(p_{\rm T}^{\rm miss}, {\rm jet}_{1,2})$ to be larger than 0.4 radians.

The SR is defined by requiring $m_{\rm eff} > 700$ GeV and $m_{\rm T}^{\tau_1} + m_{\rm T}^{\tau_2} > 80$ GeV, where $m_{\rm eff}$ is the effective mass² and $m_{\rm T}^{\tau_1} + m_{\rm T}^{\tau_2}$ is the

¹ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the *z*-axis along the beam pipe. The *x*-axis points from the IP to the centre of the LHC ring and the *y*-axis points upward. Cylindrical coordinates (R, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

 $^{^2}$ The effective mass $m_{\rm eff}$ is calculated as the sum of $E_{\rm T}^{\rm miss}$ and the magnitude of the transverse momenta of the two highest- $p_{\rm T}$ jets and all selected taus.

Events / 40 GeV

Fig. 1. The $p_{\rm T}$ spectrum of the leading tau candidates in data (points, statistical uncertainty only) and the estimated SM background after the pre-selection of candidate events, soft multi-jet rejection and the requirement of two or more taus and no light leptons. The band centred around the total SM background indicates the statistical uncertainty. Also shown is the expected signal from a typical GMSB (A = 40 TeV, tan $\beta = 30$) sample.

sum of the transverse masses³ of the two leading tau candidates. The $m_{\rm eff}$ distribution after the $\Delta \phi (p_{\rm T}^{\rm miss}, {\rm jet}_{1,2})$ requirement and the $m_{\rm T}^{\tau_1} + m_{\rm T}^{\tau_2}$ distribution after the $m_{\rm eff}$ requirement are shown in Fig. 2. After applying all the analysis requirements, 3 events are selected in the data.

6. Background estimation

The dominant backgrounds in the SR arise from top-pair plus single top events (here generically indicated as $t\bar{t}$), $W \rightarrow \tau v_{\tau}$ events and $Z \rightarrow \tau \tau$ events. While the latter comprises final states with two true taus, which are well described in the simulation, the W and $t\bar{t}$ background consist of events in which one real tau is correctly reconstructed and the other tau candidates are misreconstructed from hadronic activity in the final state. Since misidentified taus are not well described in the MC, the background contribution from $t\bar{t}$ and $W \rightarrow \tau v_{\tau}$ is determined simultaneously in a CR defined by inverting the $m_{\rm eff}$ cut. Owing to the requirement on $\Delta \phi$ and of two or more taus, this CR has negligible contamination from multi-jet events. Moreover, a totally negligible contribution is expected in this CR from signal events. The MC overestimates the number of events in the CR compared to data, due to mis-modeling of tau misidentification probabilities. MC studies show that the tau misidentification probability is, to a good approximation, independent of $m_{\rm eff}$, so that the measured ratio of the data to MC event yields in the CR can be used to correct the MC background prediction in the SR.

In a similar way, the multi-jet background expectation is computed in a multi-jet dominated CR defined by inverting the $\Delta\phi$ and $m_{\rm eff}$ cuts. In addition, $E_{\rm T}^{\rm miss}/m_{\rm eff} < 0.4$ is required to increase the purity of this CR sample. The extrapolated contribution of this background source to the SR is found to be negligible.

7. Systematic uncertainties on the background

The theoretical uncertainty on the MC-based corrected extrapolation of the W and $t\bar{t}$ backgrounds from the CR into the SR

(a) $m_{\rm eff}$ distribution after the $\Delta \phi$ requirement

(b) $m_{\rm T}^{\tau_1} + m_{\rm T}^{\tau_2}$ distribution after the $m_{\rm eff}$ requirement

Fig. 2. Distributions of variables used for the signal region definition in data (points, statistical uncertainty only) and the estimated SM background after the preselection of candidate events, soft multi-jet rejection and the requirement of two or more taus and no light leptons. The band centred around the total SM background indicates the statistical uncertainty. Also shown is the expected signal from a typical GMSB (A = 40 TeV, tan $\beta = 30$) sample.

is estimated using alternative MC samples obtained by varying the renormalisation and factorisation scales, the functional form of the factorisation scale and the matching threshold in the parton shower process. An uncertainty of 14% is estimated from this procedure. Moreover, an uncertainty of 23% is associated to the normalisation factor derived in the CR. This uncertainty is estimated by repeating the normalisation to data independently for W and $t\bar{t}$. Systematic uncertainties on the jet energy scale and jet energy resolution [50] are applied in MC to the selected jets and propagated throughout the analysis, including to E_{T}^{miss} . The difference in the number of expected background events obtained with the nominal MC simulation after applying these changes is taken as the systematic uncertainty and corresponds to 18% each. The effect of the tau energy scale uncertainly on the expected background is estimated in a similar way and amounts to 7%. The uncertainties from the jet and tau energy scale are treated as fully correlated. The tau identification efficiency uncertainties on the background depends on the tau identification algorithm, the kinematics of the τ sample and the number of associated tracks. The systematic uncertainties associated to the tau identification and misidentification are found to be 2.5% and 0.5%, respectively. For

³ The transverse mass $m_{\rm T}$ formed by $E_{\rm T}^{\rm miss}$ and the $p_{\rm T}$ of the tau lepton (τ) is defined as $m_{\rm T} = \sqrt{2p_{\rm T}^{\tau} E_{\rm T}^{\rm miss}(1 - \cos(\Delta\phi(\tau, p_{\rm Tmiss}))))}$.

the $t\bar{t}$ and W backgrounds, these uncertainties are absorbed into the normalisation. The systematic uncertainty associated to pile-up simulation in MC is 1%. The normalisation of the Z + jets and diboson backgrounds is affected by the uncertainty of 3.7% on the luminosity measurement [55,56]. This results in a 0.8% uncertainty on the total background. The contributions from the different systematic uncertainties result in a total background systematic uncertainty of 41%.

In total 5.3 ± 1.3 (stat) ± 2.2 (sys) background events are expected where the first uncertainty is statistical and includes the statistical component of the background correction factor uncertainty and the second is systematic. Roughly half of the background is composed of $t\bar{t}$ events and the other half is evenly split into W and Z events with accompanying jets.

8. Signal efficiencies and systematic uncertainties

GMSB signal samples were generated on a grid ranging from $\Lambda = 10$ TeV to $\Lambda = 80$ TeV and from tan $\beta = 2$ to tan $\beta = 50$. The number of selected events decreases significantly with increasing Λ due to the reduced cross section. The cross section drops from 100 pb for $\Lambda = 15$ TeV to 5.0 fb for $\Lambda = 80$ TeV. The selection efficiency is highest ($\approx 3\%$) for high tan β and lower Λ values, including in the region of the GMSB4030 point ($\Lambda = 40$, tan $\beta = 30$) which is near the expected limit. It drops to 0.2% in the non- $\tilde{\tau}_1$ NLSP regions and for high Λ values. This is primarily a consequence of the light lepton veto and the requirement of two hadronically decaying taus, respectively.

The total systematic uncertainty on the signal selection from the systematic uncertainties discussed in Section 7 ranges between 7.5% and 36% over the GMSB grid. The statistical uncertainty from the limited size of the MC signal samples is of the order of 20%, with variations between 7.6% and 59% at the edges of the accessible signal range. Theory uncertainties related to the GMSB cross section predictions are estimated through variations of the factorisation and renormalisation scales in the NLO PROSPINO calculation between half and twice their default values, by considering variations in α_s , and by considering PDF uncertainties using the CTEQ6.6M PDF error sets [58]. These uncertainties are calculated for individual SUSY production processes and for each model point, leading to overall theoretical cross section uncertainties between 6.5% and 22%. Altogether this yields 20.8 ± 3.4 (stat) ± 3.6 (sys) ± 3.3 (theo) signal events for the GMSB4030 point.

9. Results

Based on the observation of 3 events in the SR and a background expectation of 5.3 ± 1.3 (stat) ± 2.2 (svs) events, an upper limit of 5.9 (7.0) events observed (expected) is set at 95% Confidence Level (CL) on the number of events from any scenario of physics beyond the SM, using the profile likelihood and CL_s method [59]. Uncertainties on the background and signal expectations are treated as Gaussian-distributed nuisance parameters in the likelihood fit. This limit translates into a 95% observed (expected) upper limit of 2.9 fb (3.4 fb) on the visible cross section for new phenomena, defined by the product of cross section, branching fraction, acceptance and efficiency for the selections defined in Section 5. The resulting expected and observed 95% CL limits on the GMSB model parameters Λ and tan β are shown in Fig. 3, including the lower limits from OPAL [19] for comparison. These limits are calculated including all experimental and theoretical uncertainties on the background and signal expectations. Excluding the theoretical uncertainties on the signal cross section from the

Fig. 3. Expected and observed 95% CL limits on the minimal GMSB model parameters Λ and $\tan\beta$. The dark grey area indicates the region which is theoretically excluded due to unphysical sparticle mass values. The different NLSP regions are indicate. In the CoNLSP region the $\tilde{\tau}_1$ and the $\tilde{\ell}_R$ are the NLSP. Additional model parameters are $M_{\rm mess} = 250$ TeV, $N_5 = 3$, $\mu > 0$ and $C_{\rm grav} = 1$. The previous OPAL [19] limits are also shown.

limit calculation has a negligible effect on the limits obtained. The best exclusion is set for $\Lambda = 47$ TeV and tan $\beta = 37$. The results extend previous limits and values of $\Lambda < 32$ TeV are now excluded at 95% CL, independent of tan β .

10. Conclusions

A search for events with two or more hadronically decaying tau leptons, large $E_{\rm T}^{\rm miss}$ and jets is performed using 2 fb⁻¹ of $\sqrt{s} = 7$ TeV *pp* collision data recorded with the ATLAS detector at the LHC. Three events are found, consistent with the expected SM background. The results are used to set a model-independent 95% CL upper limit of 5.9 events from new phenomena, corresponding to an upper limit on the visible cross section of 2.9 fb. Limits on the model parameters are set for a minimal GMSB model. The limit on the SUSY breaking scale Λ of 32 TeV is determined, independent of tan β . It increases up to 47 TeV for tan $\beta = 37$. These results provide the most stringent tests in a large part of the parameter space considered to date, improving the previous best limits.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

- [1] Y.A. Golfand, E.P. Likhtman, JETP Lett. 13 (1971) 323.
- [2] A. Neveu, J.H. Schwarz, Nucl. Phys. B 31 (1971) 86.
- [3] P. Ramond, Phys. Rev. D 3 (1971) 2415.
- [4] D.V. Volkov, V.P. Akulov, Phys. Lett. B 46 (1973) 109.
- [5] J. Wess, B. Zumino, Nucl. Phys. B 70 (1974) 39.
- [6] P. Fayet, Phys. Lett. B 69 (1977) 489.
- [7] G.R. Farrar, P. Fayet, Phys. Lett. B 76 (1978) 575.
- [8] M. Dine, W. Fischler, Phys. Lett. B 110 (1982) 227.
- [9] L. Alvarez-Gaume, M. Claudson, M. Wise, Nucl. Phys. B 207 (1982) 96.
- [10] C.R. Nappi, B.A. Ovrut, Phys. Lett. B 113 (1982) 175.
- [11] M. Dine, A.E. Nelson, Phys. Rev. D 48 (1993) 1277, arXiv:hep-ph/9303230 [hep-ph].
- [12] M. Dine, A.E. Nelson, Y. Shirman, Phys. Rev. D 51 (1995) 1362, arXiv:hep-ph/ 9408384 [hep-ph].
- [13] M. Dine, A. Nelson, Y. Nir, Y. Shirman, Phys. Rev. D 53 (1996) 2658, arXiv:hepph/9507378 [hep-ph].
- [14] I. Hinchliffe, F. Paige, Phys. Rev. D 60 (1999) 095002, arXiv:hep-ph/9812233
 [hep-ph], 45 pp., 35 figures.
- [15] B.C. Allanach, et al., Eur. Phys. J. C 25 (2002) 113, arXiv:hep-ph/0202233 [hep-ph].
- [16] S. Ambrosanio, B. Mele, S. Petrarca, G. Polesello, A. Rimoldi, JHEP 0101 (2001) 014, arXiv:hep-ph/0010081 [hep-ph].
- [17] ALEPH Collaboration, A. Heister, et al., Eur. Phys. J. C 25 (2002) 339, arXiv:hepex/0203024 [hep-ex].
- [18] DELPHI Collaboration, J. Abdallah, et al., Eur. Phys. J. C 27 (2003) 153, arXiv: hep-ex/0303025 [hep-ex].
- [19] OPAL Collaboration, G. Abbiendi, et al., Eur. Phys. J. C 46 (2006) 307, arXiv:hepex/0507048 [hep-ex].
- [20] CMS Collaboration, JHEP 1106 (2011) 077, arXiv:1104.3168 [hep-ex].
- [21] CMS Collaboration, Phys. Lett. B 704 (2011) 411, arXiv:1106.0933 [hep-ex].
- [22] ATLAS Collaboration, Search for supersymmetry with jets, missing transverse momentum and at least one hadronically decaying tau lepton in proton–proton

collisions at $\sqrt{s}=7$ TeV with the ATLAS detector, CERN-PH-EP-2012-076; Phys. Lett. B, submitted for publication.

- [23] ATLAS Collaboration, JINST 3 (2008) S08003.
- [24] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, JHEP 0307 (2003) 001, arXiv:hep-ph/0206293 [hep-ph].
- [25] J. Pumplin, et al., JHEP 0207 (2002) 012, arXiv:hep-ph/0201195 [hep-ph].
- [26] S. Frixione, B.R. Webber, JHEP 0206 (2002) 029, arXiv:hep-ph/0204244 [hep-
- ph]. [27] S. Frixione, P. Nason, B.R. Webber, JHEP 0308 (2003) 007, arXiv:hep-ph/ 0305252 [hep-ph].
- [28] S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, JHEP 0603 (2006) 092, arXiv: hep-ph/0512250 [hep-ph].
- [29] P.M. Nadolsky, et al., Phys. Rev. D 78 (2008) 013004, arXiv:0802.0007 [hep-ph].
- [30] G. Corcella, et al., JHEP 0101 (2001) 010, arXiv:hep-ph/0011363 [hep-ph].
- [31] J. Butterworth, J.R. Forshaw, M. Seymour, Z. Phys. C 72 (1996) 637, arXiv:hepph/9601371 [hep-ph].
- [32] ATLAS Collaboration, First tuning of HERWIG/JIMMY to ATLAS data, ATL-PHYS-PUB-2010-014. Oct. 2010. http://cdsweb.cem.ch/record/1303025.
- [33] S. Jadach, Z. Was, R. Decker, J.H. Kuhn, Comput. Phys. Commun. 76 (1993) 361.
- [34] P. Golonka, et al., Comput. Phys. Commun. 174 (2006) 818.
- [35] E. Barberio, Z. Was, Comput, Phys. Commun. 79 (1994) 291.
- [36] T. Sjöstrand, S. Mrenna, P. Skands, JHEP 0605 (2006) 026, arXiv:hep-ph/ 0603175 [hep-ph].
- [37] ATLAS Collaboration, Charged particle multiplicities in *pp* interactions at \sqrt{s} = 0.9 and 7 TeV in a diffractive limited phase space measured with the ATLAS detector at the LHC and a new PYTHIA6 tune, ATLAS-CONF-2010-031, July 2010, http://cdsweb.cern.ch/record/1277665.
- [38] A. Sherstnev, R.S. Thorne, Eur. Phys. J. C 55 (2008) 553, arXiv:0711.2473 [hepph].
- [39] F.E. Paige, S.D. Protopopescu, H. Baer, X. Tata, ISAJET 7.69: A Monte Carlo event generator for pp, pp, and e⁺e⁻ reactions, arXiv:hep-ph/0312045 [hep-ph].
- [40] M. Bahr, et al., Eur. Phys. J. C 58 (2008) 639, arXiv:0803.0883v3 [hep-ph].
- [41] PROSPINO2, http://www.thphys.uni-heidelberg.de/~plehn/index.php?show= prospino.
- [42] W. Beenakker, R. Hopker, M. Spira, P. Zerwas, Nucl. Phys. B 492 (1997) 51, arXiv:hep-ph/9610490 [hep-ph].
- [43] W. Beenakker, M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Nucl. Phys. B 515 (1998) 3, arXiv:hep-ph/9710451 [hep-ph].
- [44] W. Beenakker, et al., Phys. Rev. Lett. 83 (1999) 3780, arXiv:hep-ph/9906298 [hep-ph].
- [45] M. Spira, Higgs and SUSY particle production at hadron colliders, arXiv:hepph/0211145 [hep-ph].
- [46] T. Plehn, Czech. J. Phys. 55 (2005) B213, arXiv:hep-ph/0410063 [hep-ph].
- [47] GEANT4 Collaboration, S. Agostinelli, et al., Nucl. Instrum. Meth. A 506 (2003) 250.
- [48] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568 [physics. ins-det].
- [49] M. Cacciari, G.P. Salam, G. Soyez, JHEP 0804 (2008) 063, arXiv:0802.1189 [hepph].
- [50] ATLAS Collaboration, Jet energy measurement with the ATLAS detector in proton–proton collisions at $\sqrt{s} = 7$ TeV, Eur. Phys. J. C, submitted for publication, arXiv:1112.6426 [hep-ex].
- [51] ATLAS Collaboration, Phys. Lett. B 709 (2012) 137, arXiv:1110.6189 [hep-ex].
- [52] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1909, arXiv:1110.3174 [hep-ex].
- [53] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1844, arXiv:1108.5602 [hep-ex].
- [54] ATLAS Collaboration, Performance of the reconstruction and identification of hadronic tau decays with ATLAS, ATLAS-CONF-2011-152, Nov. 2011, http:// cdsweb.cern.ch/record/1398195.
- [55] ATLAS Collaboration, Luminosity determination in pp collisions at √s = 7 TeV using the ATLAS detector in 2011, ATLAS-CONF-2011-116, Aug. 2011, http:// cdsweb.cern.ch/record/1376384.
- [56] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630, arXiv:1101.2185 [hep-ex].
- [57] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1849, arXiv:1110.1530 [hep-ex].
- [58] D. Stump, et al., JHEP 0310 (2003) 046, arXiv:hep-ph/0303013 [hep-ph].
- [59] A.L. Read, J. Phys. G 28 (2002) 2693.

ATLAS Collaboration

G. Aad ⁴⁸, B. Abbott ¹¹⁰, J. Abdallah ¹¹, S. Abdel Khalek ¹¹⁴, A.A. Abdelalim ⁴⁹, A. Abdesselam ¹¹⁷, O. Abdinov ¹⁰, B. Abi ¹¹¹, M. Abolins ⁸⁷, O.S. AbouZeid ¹⁵⁷, H. Abramowicz ¹⁵², H. Abreu ¹¹⁴, E. Acerbi ^{88a,88b}, B.S. Acharya ^{163a,163b}, L. Adamczyk ³⁷, D.L. Adams ²⁴, T.N. Addy ⁵⁶, J. Adelman ¹⁷⁴, M. Aderholz ⁹⁸, S. Adomeit ⁹⁷, P. Adragna ⁷⁴, T. Adye ¹²⁸, S. Aefsky ²², J.A. Aguilar-Saavedra ^{123b,a}, M. Aharrouche ⁸⁰, S.P. Ahlen ²¹, F. Ahles ⁴⁸, A. Ahmad ¹⁴⁷, M. Ahsan ⁴⁰, G. Aielli ^{132a,132b}, T. Akdogan ^{18a}, T.P.A. Åkesson ⁷⁸, G. Akimoto ¹⁵⁴, A.V. Akimov ⁹³, A. Akiyama ⁶⁶, M.S. Alam ¹, M.A. Alam ⁷⁵, J. Albert ¹⁶⁸,

S. Albrand ⁵⁵, M. Aleksa ²⁹, I.N. Aleksandrov ⁶⁴, F. Alessandria ^{88a}, C. Alexa ^{25a}, G. Alexander ¹⁵², G. Alexandre ⁴⁹, T. Alexopoulos ⁹, M. Alhroob ²⁰, M. Aliev ¹⁵, G. Alimonti ^{88a}, J. Alison ¹¹⁹, M. Aliyev ¹⁰, B.M.M. Allbrooke ¹⁷, P.P. Allport ⁷², S.E. Allwood-Spiers ⁵³, J. Almond ⁸¹, A. Aloisio ^{101a,101b}, R. Alon ¹⁷⁰, A. Alonso ⁷⁸, B. Alvarez Gonzalez ⁸⁷, M.G. Alviggi ^{101a,101b}, K. Amako ⁶⁵, P. Amaral ²⁹, C. Amelung ²², V.V. Ammosov ¹²⁷, A. Amorim ^{123a,b}, G. Amorós ¹⁶⁶, N. Amram ¹⁵², C. Anastopoulos ²⁹, L.S. Ancu ¹⁶, N. Andari ¹¹⁴, T. Andeen ³⁴, C.F. Anders ²⁰, G. Anders ^{58a}, K.J. Anderson ³⁰, A. Andreazza ^{88a,88b}, V. Andrei ^{58a}, M.-L. Andrieux ⁵⁵, X.S. Anduaga ⁶⁹, A. Angerami ³⁴, F. Anghinolfi ²⁹, A. Anisenkov ¹⁰⁶, N. Anjos ^{123a}, A. Annovi ⁴⁷, A. Antonaki ⁸, M. Antonelli ⁴⁷, A. Antonov ⁹⁵, J. Antos ^{143b}, F. Anulli ^{131a}, S. Aoun ⁸², L. Aperio Bella ⁴, R. Apolle ^{117,c}, G. Arabidze ⁸⁷, I. Aracena ¹⁴², Y. Arai ⁶⁵, A.T.H. Arce ⁴⁴, S. Arfaoui ¹⁴⁷, J.-F. Arguin ¹⁴, E. Arik ^{18a,*}, M. Arik ^{18a}, A.J. Armbruster ⁸⁶, O. Arnaez ⁸⁰, V. Arnal ⁷⁹, C. Arnault ¹¹⁴, A. Artamonov ⁹⁴, G. Artoni ^{131a,131b}, D. Arutinov ²⁰, S. Asai ¹⁵⁴, R. Asfandiyarov ¹⁷¹, S. Ask ²⁷, B. Åsman ^{145a,145b}, L. Asquith ⁵, K. Assamagan ²⁴, A. Astbury ¹⁶⁸, A. Astvatsatourov ⁵², C. Arnault ¹¹¹, A. Artamonov^{5,1}, G. Artoni ¹⁵¹, ¹⁵¹, D. Arutinov²⁵, S. Asai ¹⁵¹, R. Astandiyarov¹⁷¹, S. Ask²⁷, B. Åsman ^{145a,145b}, L. Asquith⁵, K. Assamagan²⁴, A. Astbury¹⁶⁸, A. Astvatsatourov⁵², B. Aubert⁴, E. Auge¹¹⁴, K. Augsten¹²⁶, M. Aurousseau^{144a}, G. Avolio¹⁶², R. Avramidou⁹, D. Axen¹⁶⁷, C. Ay⁵⁴, G. Azuelos^{92,d}, Y. Azuma¹⁵⁴, M.A. Baak²⁹, G. Baccaglioni^{88a}, C. Bacci^{133a,133b}, A.M. Bach¹⁴, H. Bachacou¹³⁵, K. Bachas²⁹, M. Backes⁴⁹, M. Backhaus²⁰, E. Badescu^{25a}, P. Bagnaia^{131a,131b}, S. Bahinipati², Y. Bai^{32a}, D.C. Bailey¹⁵⁷, T. Bain¹⁵⁷, J.T. Baines¹²⁸, O.K. Baker¹⁷⁴, M.D. Baker²⁴, S. Baker⁷⁶, E. Banas³⁸, P. Banerjee⁹², Sw. Banerjee¹⁷¹, D. Banfi²⁹, A. Bangert¹⁴⁹, V. Bansal¹⁶⁸, S. Baker ⁷⁰, E. Banas ³⁸, P. Banerjee ⁹², Sw. Banerjee ¹⁷¹, D. Banfi ²⁹, A. Bangert ¹⁴⁹, V. Bansal ¹⁶⁸, H.S. Bansil ¹⁷, L. Barak ¹⁷⁰, S.P. Baranov ⁹³, A. Barashkou ⁶⁴, A. Barbaro Galtieri ¹⁴, T. Barber ⁴⁸, E.L. Barberio ⁸⁵, D. Barberis ^{50a,50b}, M. Barbero ²⁰, D.Y. Bardin ⁶⁴, T. Barillari ⁹⁸, M. Barisonzi ¹⁷³, T. Barklow ¹⁴², N. Barlow ²⁷, B.M. Barnett ¹²⁸, R.M. Barnett ¹⁴, A. Baroncelli ^{133a}, G. Barone ⁴⁹, A.J. Barr ¹¹⁷, F. Barreiro ⁷⁹, J. Barreiro Guimarães da Costa ⁵⁷, P. Barrillon ¹¹⁴, R. Bartoldus ¹⁴², A.E. Barton ⁷⁰, V. Bartsch ¹⁴⁸, R.L. Bates ⁵³, L. Batkova ^{143a}, J.R. Batley ²⁷, A. Battaglia ¹⁶, M. Battistin ²⁹, F. Bauer ¹³⁵, H.S. Bawa ^{142,e}, S. Beale ⁹⁷, T. Beau ⁷⁷, P.H. Beauchemin ¹⁶⁰, R. Beccherle ^{50a}, P. Bechtle ²⁰, H.P. Beck ¹⁶, S. Becker ⁹⁷, M. Beckingham ¹³⁷, K.H. Becks ¹⁷³, A.J. Beddall ^{18c}, A. Beddall ^{18c}, S. Bedikian ¹⁷⁴, V.A. Bednyakov ⁶⁴, C.P. Bee ⁸², M. Begel ²⁴, S. Behar Harpaz ¹⁵¹, P.K. Behera ⁶², M. Beimforde ⁹⁸, C. Belanger-Champagne ⁸⁴ PI Bell ⁴⁹ W H Bell ⁴⁹ C. Bella ¹⁵² J. Bellagramba ^{19a} F. Bollina ²⁹ C. Belanger-Champagne⁸⁴, P.J. Bell⁴⁹, W.H. Bell⁴⁹, G. Bella¹⁵², L. Bellagamba^{19a}, F. Bellina²⁹, M. Bellomo²⁹, A. Belloni⁵⁷, O. Beloborodova^{106,f}, K. Belotskiy⁹⁵, O. Beltramello²⁹, O. Benary¹⁵², D. Benchekroun^{134a}, M. Bendel⁸⁰, N. Benekos¹⁶⁴, Y. Benhammou¹⁵², E. Benhar Noccioli⁴⁹, J.A. Benitez Garcia^{158b}, D.P. Benjamin⁴⁴, M. Benoit¹¹⁴, J.R. Bensinger²², K. Benslama¹²⁹, S. Bentvelsen¹⁰⁴, D. Berge²⁹, E. Bergeaas Kuutmann⁴¹, N. Berger⁴, F. Berghaus¹⁶⁸, E. Berglund¹⁰⁴, J. Beringer¹⁴, P. Bernat⁷⁶, R. Bernhard⁴⁸, C. Bernius²⁴, T. Berry⁷⁵, C. Bertella⁸², A. Bertin^{19a,19b}, J. Beringer ¹⁴, P. Bernat ⁷⁰, R. Bernhard ⁴⁰, C. Bernius ²⁴, I. Berry ⁷⁰, C. Bertella ⁶², A. Bertin ^{104,105}, F. Bertinelli ²⁹, F. Bertolucci ^{121a,121b}, M.I. Besana ^{88a,88b}, N. Besson ¹³⁵, S. Bethke ⁹⁸, W. Bhimji ⁴⁵, R.M. Bianchi ²⁹, M. Bianco ^{71a,71b}, O. Biebel ⁹⁷, S.P. Bieniek ⁷⁶, K. Bierwagen ⁵⁴, J. Biesiada ¹⁴, M. Biglietti ^{133a}, H. Bilokon ⁴⁷, M. Bindi ^{19a,19b}, S. Binet ¹¹⁴, A. Bingul ^{18c}, C. Bini ^{131a,131b}, C. Biscarat ¹⁷⁶, U. Bitenc ⁴⁸, K.M. Black ²¹, R.E. Blair ⁵, J.-B. Blanchard ¹³⁵, G. Blanchot ²⁹, T. Blazek ^{143a}, C. Blocker ²², J. Blocki ³⁸, A. Blondel ⁴⁹, W. Blum ⁸⁰, U. Blumenschein ⁵⁴, G.J. Bobbink ¹⁰⁴, V.B. Bobrovnikov ¹⁰⁶, S.S. Bocchetta ⁷⁸, A. Bocci ⁴⁴, C.R. Boddy ¹¹⁷, M. Boehler ⁴¹, J. Boek ¹⁷³, N. Boelaert ³⁵, J.A. Bogaerts ²⁹, S.S. BOCCNETTA ', A. BOCCI⁺⁺, C.K. BOddy⁺⁺, M. Boehler⁺⁺, J. Boek⁺⁺, N. Boelaert⁻³⁵, J.A. Bogaerts²⁹, A. Bogdanchikov¹⁰⁶, A. Bogouch^{89,*}, C. Bohm^{145a}, J. Bohm¹²⁴, V. Boisvert⁷⁵, T. Bold³⁷, V. Boldea^{25a}, N.M. Bolnet¹³⁵, M. Bomben⁷⁷, M. Bona⁷⁴, V.G. Bondarenko⁹⁵, M. Bondioli¹⁶², M. Boonekamp¹³⁵, C.N. Booth¹³⁸, S. Bordoni⁷⁷, C. Borer¹⁶, A. Borisov¹²⁷, G. Borissov⁷⁰, I. Borjanovic^{12a}, M. Borri⁸¹, S. Borroni⁸⁶, V. Bortolotto^{133a,133b}, K. Bos¹⁰⁴, D. Boscherini^{19a}, M. Bosman¹¹, H. Boterenbrood¹⁰⁴, D. Botterill¹²⁸, J. Bouchami⁹², J. Boudreau¹²², E.V. Bouhova-Thacker⁷⁰, D. Boumediene³³, C. Bourdarios¹¹⁴, N. Bousson⁸², A. Boveia³⁰, J. Boyd²⁹, I.R. Boyko⁶⁴, N.I. Bozhko¹²⁷, I. Bozovic-Jelisavcic^{12b}, J. Bracinik¹⁷, A. Braem²⁹, P. Branchini^{133a}, G.W. Brandenburg⁵⁷, A. Brandt⁷, G. Brandt¹¹⁷, O. Brandt⁵⁴, II. Bratzler¹⁵⁵, B. Brau⁸³, J.E. Brau¹¹³, H.M. Braup¹⁷³, P. Bralier¹⁵⁷ G. Brandt ¹¹⁷, O. Brandt ⁵⁴, U. Bratzler ¹⁵⁵, B. Brau ⁸³, J.E. Brau ¹¹³, H.M. Braun ¹⁷³, B. Brelier ¹⁵⁷, J. Bremer ²⁹, K. Brendlinger ¹¹⁹, R. Brenner ¹⁶⁵, S. Bressler ¹⁷⁰, D. Britton ⁵³, F.M. Brochu ²⁷, I. Brock ²⁰, R. Brock ⁸⁷, T.J. Brodbeck ⁷⁰, E. Brodet ¹⁵², F. Broggi ^{88a}, C. Bromberg ⁸⁷, J. Bronner ⁹⁸, G. Brooijmans ³⁴, W.K. Brooks ^{31b}, G. Brown ⁸¹, H. Brown ⁷, P.A. Bruckman de Renstrom ³⁸, D. Bruncko ^{143b}, R. Bruneliere ⁴⁸, S. Brunet ⁶⁰, A. Bruni ^{19a}, G. Bruni ^{19a}, M. Bruschi ^{19a}, T. Buanes ¹³, Q. Buat ⁵⁵, F. Bucci ⁴⁹, J. Buchanan ¹¹⁷, M. Bruschi ^{19a}, A. Bruschi ^{19a}, S. Brunet ⁶¹, S. Bruschi ²⁵, J. Brodet ²⁵, J. Buchanan ¹¹⁷, J. Broggi ⁸⁴, J. Buchanan ¹¹⁷, J. Brock ⁶¹, J. Brunet ¹⁴⁰, D. M. Bruschi ^{19a}, T. Buanes ¹³, Q. Buat ⁵⁵, F. Bucci ⁴⁹, J. Buchanan ¹¹⁷, J. Buchanan ¹¹⁷, J. Buchanan ², J. Buchanan ¹⁴, J. Buchanan ¹¹⁷, J. Buchanan ², J. Buchanan ¹⁴, J. N.J. Buchanan², P. Buchholz¹⁴⁰, R.M. Buckingham¹¹⁷, A.G. Buckley⁴⁵, S.I. Buda^{25a}, I.A. Budagov⁶⁴, B. Budick¹⁰⁷, V. Büscher⁸⁰, L. Bugge¹¹⁶, O. Bulekov⁹⁵, M. Bunse⁴², T. Buran¹¹⁶, H. Burckhart²⁹, S. Burdin⁷², T. Burgess¹³, S. Burke¹²⁸, E. Busato³³, P. Bussey⁵³, C.P. Buszello¹⁶⁵, F. Butin²⁹, B. Butler¹⁴²,

J.M. Butler²¹, C.M. Buttar⁵³, J.M. Butterworth⁷⁶, W. Buttinger²⁷, S. Cabrera Urbán¹⁶⁶, D. Caforio^{19a, 19b}, O. Cakir^{3a}, P. Calafiura¹⁴, G. Calderini⁷⁷, P. Calfayan⁹⁷, R. Calkins¹⁰⁵, L.P. Caloba^{23a}, R. Caloi^{131a,131b}, D. Calvet ³³, S. Calvet ³³, R. Camacho Toro ³³, P. Camarri ^{132a,132b}, M. Cambiaghi ^{118a,118b}, D. Cameron ¹¹⁶, L.M. Caminada ¹⁴, S. Campana ²⁹, M. Campanelli ⁷⁶, V. Canale ^{101a,101b}, F. Canelli ^{30,g}, A. Canepa ^{158a}, J. Cantero⁷⁹, L. Capasso^{101a,101b}, M.D.M. Capeans Garrido²⁹, I. Caprini^{25a}, M. Caprini^{25a}, D. Capriotti⁹⁸, M. Capua^{36a,36b}, R. Caputo⁸⁰, R. Cardarelli^{132a}, T. Carli²⁹, G. Carlino^{101a}, L. Carminati^{88a,88b}, B. Caron⁸⁴, M. Capua ^{304,300}, R. Caputo ³⁰, R. Cardarelli ^{132a}, T. Carli ²⁵, G. Carlino ^{101a}, L. Carminati ^{304,300}, B. Caron ⁴⁴, S. Caron ¹⁰³, E. Carquin ^{31b}, G.D. Carrillo Montoya ¹⁷¹, A.A. Carter ⁷⁴, J.R. Carter ²⁷, J. Carvalho ^{123a,h}, D. Casadei ¹⁰⁷, M.P. Casado ¹¹, M. Cascella ^{121a,121b}, C. Caso ^{50a,50b,*}, A.M. Castaneda Hernandez ¹⁷¹, E. Castaneda-Miranda ¹⁷¹, V. Castillo Gimenez ¹⁶⁶, N.F. Castro ^{123a}, G. Cataldi ^{71a}, A. Catinaccio ²⁹, J.R. Catmore ²⁹, A. Cattai ²⁹, G. Cattani ^{132a,132b}, S. Caughron ⁸⁷, D. Cauz ^{163a,163c}, P. Cavalleri ⁷⁷, D. Cavalli ^{88a}, M. Cavalli-Sforza ¹¹, V. Cavasinni ^{121a,121b}, F. Ceradini ^{133a,133b}, A.S. Cerqueira ^{23b}, A. Cerri ²⁹, L. Cerrito ⁷⁴, F. Cerutti ⁴⁷, S.A. Cetin ^{18b}, F. Cevenini ^{101a,101b}, A. Chafaq ^{134a}, D. Chakraborty ¹⁰⁵, K. Chan², B. Chapleau ⁸⁴, J.D. Chapman ²⁷, J.W. Chapman ⁸⁶, E. Chareyre ⁷⁷, D.G. Charlton ¹⁷, V. Chavda ⁸¹, C.A. Charles ²⁹, S. Chortham ⁸⁴, S. Chokaneyr, S.V. Chavlare ^{158a}, C.A. Chalkov ⁶⁴ C.A. Chavez Barajas²⁹, S. Cheatham⁸⁴, S. Chekanov⁵, S.V. Chekulaev^{158a}, G.A. Chelkov⁶⁴, M.A. Chelstowska¹⁰³, C. Chen⁶³, H. Chen²⁴, S. Chen^{32c}, T. Chen^{32c}, X. Chen¹⁷¹, S. Cheng^{32a}, M.A. Chelstowska¹⁰³, C. Chen⁶³, H. Chen²⁴, S. Chen^{32c}, T. Chen^{32c}, X. Chen¹⁷¹, S. Chen^{32a},
A. Cheplakov⁶⁴, V.F. Chepurnov⁶⁴, R. Cherkaoui El Moursli^{134e}, V. Chernyatin²⁴, E. Cheu⁶,
S.L. Cheung¹⁵⁷, L. Chevalier¹³⁵, G. Chiefari^{101a,101b}, L. Chikovani^{51a}, J.T. Childers²⁹, A. Chilingarov⁷⁰,
G. Chiodini^{71a}, A.S. Chisholm¹⁷, R.T. Chislett⁷⁶, M.V. Chizhov⁶⁴, G. Choudalakis³⁰, S. Chouridou¹³⁶,
I.A. Christidi⁷⁶, A. Christov⁴⁸, D. Chromek-Burckhart²⁹, M.L. Chu¹⁵⁰, J. Chudoba¹²⁴, G. Ciapetti^{131a,131b},
A.K. Ciftci^{3a}, R. Ciftci^{3a}, D. Cinca³³, V. Cindro⁷³, M.D. Ciobotaru¹⁶², C. Ciocca^{19a}, A. Ciocio¹⁴,
M. Cirilli⁸⁶, M. Citterio^{88a}, M. Ciubancan^{25a}, A. Clark⁴⁹, P.J. Clark⁴⁵, W. Cleland¹²², J.C. Clemens⁸²,
B. Clement⁵⁵, C. Clement^{145a,145b}, R.W. Clifft¹²⁸, Y. Coadou⁸², M. Cobal^{163a,163c}, A. Coccaro¹⁷¹,
J. Cochran⁶³, P. Coe¹¹⁷, J.G. Cogan¹⁴², J. Coggeshall¹⁶⁴, E. Cogneras¹⁷⁶, J. Colas⁴, A.P. Colijn¹⁰⁴,
N.J. Collins¹⁷, C. Collins-Tooth⁵³, J. Collot⁵⁵, G. Colon⁸³, P. Conde Muiño^{123a}, E. Coniavitis¹¹⁷,
M.C. Conid¹¹, M. Consonni¹⁰³, S.M. Consonni^{88a,88b}, V. Consorti⁴⁸, S. Constantinescu^{25a},
C. Conta^{118a,118b}, G. Conti⁵⁷, F. Conventi^{101a,i}, J. Cook²⁹, M. Cooke¹⁴, B.D. Cooper⁷⁶,
A.M. Cooper-Sarkar¹¹⁷, K. Copic¹⁴, T. Cornelissen¹⁷³, M.C Corradi^{19a}, F. Corriveau^{84,j},
A. Cortes-Gonzalez¹⁶⁴, G. Cottian⁹⁸, G. Costa^{8a}, M.J. Costa¹⁶⁶, D. Costanzo¹³⁸, T. Costin³⁰, D. Côté²⁹,
R. Coura Torres^{23a}, L. Courneyea¹⁶⁸, G. Costa^{8a}, M.J. Costa¹⁶³, B. Cox⁸¹, K. Cranmer¹⁰⁷,
F. Crescioli^{121a,121b}, M. Cristinziani²⁰, G. Crosetti^{36a,36b}, R. Crupi^{71a,71b}, S. Crépé-Renaudin⁵⁵,
C.-M. Cuciuc^{25a}, C. Cuenca Almenar¹⁷⁴, T. Cuhadar Donszelmann¹³⁸, M. Curatolo⁴⁷, C.J. Curtis¹⁷⁷,
C. Cuthbert¹⁴⁹, P. Cwetans T. Dai⁸⁶, C. Dallapiccola⁸³, M. Dam³⁵, M. Dameri ^{50a,50b}, D.S. Damiani ¹³⁶, H.O. Danielsson²⁹, D. Dannheim⁹⁸, V. Dao⁴⁹, G. Darbo^{50a}, G.L. Darlea^{25b}, W. Davey²⁰, T. Davidek¹²⁵, N. Davidson⁸⁵, R. Davidson⁷⁰, E. Davies^{117,c}, M. Davies⁹², A.R. Davison⁷⁶, Y. Davygora^{58a}, E. Dawe¹⁴¹, I. Dawson¹³⁸, J.W. Dawson^{5,*}, R.K. Daya-Ishmukhametova²², K. De⁷, R. de Asmundis^{101a}, S. De Castro^{19a,19b}, P.E. De Castro Faria Salgado²⁴, S. De Cecco⁷⁷, J. de Graat⁹⁷, N. De Groot¹⁰³, P. de Jong¹⁰⁴, C. De La Taille¹¹⁴, H. De la Torre⁷⁹, B. De Lotto^{163a,163c}, L. de Mora⁷⁰, L. De Nooij¹⁰⁴, D. De Pedis^{131a}, A. De Salvo^{131a}, U. De Sanctis^{163a,163c}, A. De Santo¹⁴⁸, J.B. De Vivie De Regie¹¹⁴, G. De Zorzi^{131a,131b}, S. Dean⁷⁶, W.J. Dearnaley⁷⁰, R. Debbe²⁴, C. Debenedetti⁴⁵, B. Dechenaux⁵⁵, D.V. Dedovich⁶⁴, J. Degenhardt¹¹⁹, M. Dehchar¹¹⁷, C. Del Papa^{163a,163c}, J. Del Peso⁷⁹, T. Del Prete^{121a,121b}, T. Delemontex⁵⁵, M. Deliyergiyev⁷³, A. Dell'Acqua²⁹, L. Dell'Asta²¹, M. Della Pietra^{101a,i}, D. della Volpe^{101a,101b}, M. Delmastro⁴, N. Delruelle²⁹, P.A. Delsart⁵⁵, C. Deluca¹⁴⁷, S. Demers¹⁷⁴, M. Demichev⁶⁴, B. Demirkoz^{11,k}, J. Deng¹⁶², S.P. Denisov¹²⁷, D. Derendarz³⁸, J.E. Derkaoui^{134d}, M. Definitiev³, B. Definitköz^{1,4,7}, J. Defig¹⁰², S.P. Definsov¹⁰⁴, D. Defendal^{2,03}, J.E. Defkaoul^{104,4},
F. Derue⁷⁷, P. Dervan⁷², K. Desch²⁰, E. Devetak¹⁴⁷, P.O. Deviveiros¹⁰⁴, A. Dewhurst¹²⁸, B. DeWilde¹⁴⁷,
S. Dhaliwal¹⁵⁷, R. Dhullipudi^{24,1}, A. Di Ciaccio^{132a,132b}, L. Di Ciaccio⁴, A. Di Girolamo²⁹,
B. Di Girolamo²⁹, S. Di Luise^{133a,133b}, A. Di Mattia¹⁷¹, B. Di Micco²⁹, R. Di Nardo⁴⁷,
A. Di Simone^{132a,132b}, R. Di Sipio^{19a,19b}, M.A. Diaz^{31a}, F. Diblen^{18c}, E.B. Diehl⁸⁶, J. Dietrich⁴¹,
T.A. Dietzsch^{58a}, S. Diglio⁸⁵, K. Dindar Yagci³⁹, J. Dingfelder²⁰, C. Dionisi^{131a,131b}, P. Dita^{25a}, S. Dita^{25a}, F. Dittus²⁹, F. Djama⁸², T. Djobava^{51b}, M.A.B. do Vale^{23c}, A. Do Valle Wemans^{123a}, T.K.O. Doan⁴, M. Dobbs ⁸⁴, R. Dobinson ^{29,*}, D. Dobos ²⁹, E. Dobson ^{29,m}, J. Dodd ³⁴, C. Doglioni ⁴⁹, T. Doherty ⁵³,

Y. Doi^{65,*}, J. Dolejsi¹²⁵, I. Dolenc⁷³, Z. Dolezal¹²⁵, B.A. Dolgoshein^{95,*}, T. Dohmae¹⁵⁴, M. Donadelli^{23d}, M. Donega¹¹⁹, J. Donini³³, J. Dopke²⁹, A. Doria^{101a}, A. Dos Anjos¹⁷¹, M. Dosil¹¹, A. Dotti^{121a,121b}, M. Dohega , J. Dohim , J. Dopke , A. Dorla , A. Dos Anjos , M. Dosh , A. Dotti , A. Dotti , M. Dosh , M. Dosh , M. Dosh , M. Dotti , S. Eckweiler⁸⁰, K. Edmonds⁸⁰, C.A. Edwards⁷⁵, N.C. Edwards⁵³, W. Ehrenfeld⁴¹, T. Ehrich⁹⁸, T. Eifert¹⁴², G. Eigen¹³, K. Einsweiler¹⁴, E. Eisenhandler⁷⁴, T. Ekelof¹⁶⁵, M. El Kacimi^{134c}, M. Ellert¹⁶⁵, S. Elles⁴, G. Eigen ¹³, K. Einsweiler ¹⁴, E. Eisenhandler ⁷⁴, T. Ekelot ¹⁰³, M. El Kacimi ^{134c}, M. Ellert ¹⁰⁵, S. Elles ⁴, F. Ellinghaus ⁸⁰, K. Ellis ⁷⁴, N. Ellis ²⁹, J. Elmsheuser ⁹⁷, M. Elsing ²⁹, D. Emeliyanov ¹²⁸, R. Engelmann ¹⁴⁷, A. Engl ⁹⁷, B. Epp ⁶¹, A. Eppig ⁸⁶, J. Erdmann ⁵⁴, A. Ereditato ¹⁶, D. Eriksson ^{145a}, J. Ernst ¹, M. Ernst ²⁴, J. Ernwein ¹³⁵, D. Errede ¹⁶⁴, S. Errede ¹⁶⁴, E. Ertel ⁸⁰, M. Escalier ¹¹⁴, C. Escobar ¹²², X. Espinal Curull ¹¹, B. Esposito ⁴⁷, F. Etienne ⁸², A.I. Etienvre ¹³⁵, E. Etzion ¹⁵², D. Evangelakou ⁵⁴, H. Evans ⁶⁰, L. Fabbri ^{19a, 19b}, C. Fabre ²⁹, R.M. Fakhrutdinov ¹²⁷, S. Falciano ^{131a}, Y. Fang ¹⁷¹, M. Fanti ^{88a,88b}, A. Farbin ⁷, A. Farilla ^{133a}, J. Farley ¹⁴⁷, T. Farooque ¹⁵⁷, S. Farrell ¹⁶², S.M. Farrington ¹¹⁷, P. Farthouat ²⁹, P. Fassnacht ²⁹, D. Fassouliotis ⁸, B. Fatholahzadeh ¹⁵⁷, A. Favareto ^{88a,88b}, L. Fayard ¹¹⁴, S. Fazio ^{36a,36b}, R. Febbraro ³³, P. Eederic ^{143a}, O.L. Eedin ¹²⁰, W. Fedorko ⁸⁷, M. Febling Kaschek ⁴⁸, L. Foligioni ⁸², D. Follmann ⁵ D. Fassoullotis⁵, B. Fatholanzaden¹⁵⁷, A. Favareto^{504,605}, L. Fayard¹¹⁴, S. Fazio^{504,505}, R. Febbraro⁵⁵, P. Federic^{143a}, O.L. Fedin¹²⁰, W. Fedorko⁸⁷, M. Fehling-Kaschek⁴⁸, L. Feligioni⁸², D. Fellmann⁵, C. Feng^{32d}, E.J. Feng³⁰, A.B. Fenyuk¹²⁷, J. Ferencei^{143b}, J. Ferland⁹², W. Fernando¹⁰⁸, S. Ferrag⁵³, J. Ferrando⁵³, V. Ferrara⁴¹, A. Ferrari¹⁶⁵, P. Ferrari¹⁰⁴, R. Ferrari^{118a}, D.E. Ferreira de Lima⁵³, A. Ferrer¹⁶⁶, M.L. Ferrer⁴⁷, D. Ferrere⁴⁹, C. Ferretti⁸⁶, A. Ferretto Parodi^{50a,50b}, M. Fiascaris³⁰, F. Fiedler⁸⁰, A. Filipčič⁷³, A. Filippas⁹, F. Filthaut¹⁰³, M. Fincke-Keeler¹⁶⁸, M.C.N. Fiolhais^{123a,h}, L. Fiorini¹⁶⁶, A. Firan³⁹, G. Fischer⁴¹, P. Fischer²⁰, M.J. Fisher¹⁰⁸, M. Flechl⁴⁸, I. Fleck¹⁴⁰, J. Fleckner⁸⁰, P. Fleischmann¹⁷², S. Fleischmann¹⁷³, T. Flick¹⁷³, A. Floderus⁷⁸, L.R. Flores Castillo¹⁷¹, M.L. Flowerdew⁹⁸, M. Fekitis⁹, T. Forecea Martin¹⁶, D.A. Fortush¹³⁷, A. Foremica¹³⁵, A. Forti⁸¹ M.J. Flowerdew⁹⁸, M. Fokitis⁹, T. Fonseca Martin¹⁶, D.A. Forbush¹³⁷, A. Formica¹³⁵, A. Forti⁸¹, D. Fortin^{158a}, J.M. Foster⁸¹, D. Fournier¹¹⁴, A. Foussat²⁹, A.J. Fowler⁴⁴, K. Fowler¹³⁶, H. Fox⁷⁰, P. Francavilla¹¹, S. Franchino^{118a,118b}, D. Francis²⁹, T. Frank¹⁷⁰, M. Franklin⁵⁷, S. Franz²⁹, M. Fraternali^{118a,118b}, S. Fratina¹¹⁹, S.T. French²⁷, F. Friedrich⁴³, R. Froeschl²⁹, D. Froidevaux²⁹, I. A. Frost²⁷, C. Fukupaga¹⁵⁵, F. Fukupaga¹⁵⁵, Fukupaga¹⁵⁵, Fukupa J.A. Frost²⁷, C. Fukunaga¹⁵⁵, E. Fullana Torregrosa²⁹, J. Fuster¹⁶⁶, C. Gabaldon²⁹, O. Gabizon¹⁷⁰, T. Gadfort²⁴, S. Gadomski⁴⁹, G. Gagliardi^{50a,50b}, P. Gagnon⁶⁰, C. Galea⁹⁷, E.J. Gallas¹¹⁷, V. Gallo¹⁶, B.J. Gallop¹²⁸, P. Gallus¹²⁴, K.K. Gan¹⁰⁸, Y.S. Gao^{142,e}, V.A. Gapienko¹²⁷, A. Gaponenko¹⁴, F. Garberson ¹⁷⁴, M. Garcia-Sciveres ¹⁴, C. García ¹⁶⁶, J.E. García Navarro ¹⁶⁶, R.W. Gardner ³⁰, N. Garelli ²⁹, H. Garitaonandia ¹⁰⁴, V. Garonne ²⁹, J. Garvey ¹⁷, C. Gatti ⁴⁷, G. Gaudio ^{118a}, B. Gaur ¹⁴⁰, L. Gauthier ¹³⁵, P. Gauzzi ^{131a,131b}, I.L. Gavrilenko ⁹³, C. Gay ¹⁶⁷, G. Gaycken ²⁰, J.-C. Gayde ²⁹, E.N. Gazis ⁹, P. Ge ^{32d}, C.N.P. Gee ¹²⁸, D.A.A. Geerts ¹⁰⁴, Ch. Geich-Gimbel ²⁰, K. Gellerstedt ^{145a,145b}, C. Gemme ^{50a}, A. Gemmell⁵³, M.H. Genest⁵⁵, S. Gentile^{131a,131b}, M. George⁵⁴, S. George⁷⁵, P. Gerlach¹⁷³, A. Gershon ¹⁵², C. Geweniger ^{58a}, H. Ghazlane ^{134b}, N. Ghodbane ³³, B. Giacobbe ^{19a}, S. Giagu ^{131a,131b}, V. Giakoumopoulou⁸, V. Giangiobbe ¹¹, F. Gianotti ²⁹, B. Gibbard ²⁴, A. Gibson ¹⁵⁷, S.M. Gibson ²⁹, L.M. Gilbert ¹¹⁷, V. Gilewsky ⁹⁰, D. Gillberg ²⁸, A.R. Gillman ¹²⁸, D.M. Gingrich ^{2,d}, J. Ginzburg ¹⁵², N. Giokaris⁸, M.P. Giordani ^{163c}, R. Giordano ^{101a,101b}, F.M. Giorgi ¹⁵, P. Giovannini ⁹⁸, P.F. Giraud ¹³⁵, P. Giovannini ⁹⁸, P.F. Giraud ¹³⁵, ⁴⁸ D. Giugni ^{88a}, M. Giunta ⁹², P. Giusti ^{19a}, B.K. Gjelsten ¹¹⁶, L.K. Gladilin ⁹⁶, C. Glasman ⁷⁹, J. Glatzer ⁴⁸, A. Glazov ⁴¹, K.W. Glitza ¹⁷³, G.L. Glonti ⁶⁴, J.R. Goddard ⁷⁴, J. Godfrey ¹⁴¹, J. Godlewski ²⁹, M. Goebel ⁴¹, T. Göpfert ⁴³, C. Goeringer ⁸⁰, C. Gössling ⁴², T. Göttfert ⁹⁸, S. Goldfarb ⁸⁶, T. Golling ¹⁷⁴, A. Gomes ^{123a,b}, ⁴¹ L.S. Gomez Fajardo⁴¹, R. Gonçalo⁷⁵, J. Goncalves Pinto Firmino Da Costa⁴¹, L. Gonella²⁰, A. Gonidec²⁹, S. Gonzalez ¹⁷¹, S. González de la Hoz ¹⁶⁶, G. Gonzalez Parra ¹¹, M.L. Gonzalez Silva ²⁶, S. Gonzalez-Sevilla ⁴⁹, J.J. Goodson ¹⁴⁷, L. Goossens ²⁹, P.A. Gorbounov ⁹⁴, H.A. Gordon ²⁴, I. Gorelov ¹⁰², G. Gorfine ¹⁷³, B. Gorini ²⁹, E. Gorini ^{71a,71b}, A. Gorišek ⁷³, E. Gornicki ³⁸, V.N. Goryachev ¹²⁷, B. Gosdzik ⁴¹, A.T. Goshaw ⁵, M. Gosselink ¹⁰⁴, M.I. Gostkin ⁶⁴, I. Gough Eschrich ¹⁶², M. Gouighri ^{134a}, D. Goujdami ^{134c}, M.P. Goulette⁴⁹, A.G. Goussiou¹³⁷, C. Goy⁴, S. Gozpinar²², I. Grabowska-Bold³⁷, P. Grafström²⁹, K.-J. Grahn⁴¹, F. Grancagnolo^{71a}, S. Grancagnolo¹⁵, V. Grassi¹⁴⁷, V. Gratchev¹²⁰, N. Grau³⁴, H.M. Gray²⁹, J.A. Gray¹⁴⁷, E. Graziani^{133a}, O.G. Grebenyuk¹²⁰, T. Greenshaw⁷², Z.D. Greenwood^{24,1}, K. Gregersen³⁵, I.M. Gregor ⁴¹, P. Grenier ¹⁴², J. Griffiths ¹³⁷, N. Grigalashvili ⁶⁴, A.A. Grillo ¹³⁶, S. Grinstein ¹¹, Y.V. Grishkevich ⁹⁶, J.-F. Grivaz ¹¹⁴, M. Groh ⁹⁸, E. Gross ¹⁷⁰, J. Grosse-Knetter ⁵⁴, J. Groth-Jensen ¹⁷⁰, K. Grybel ¹⁴⁰, V.J. Guarino ⁵, D. Guest ¹⁷⁴, C. Guicheney ³³, A. Guida ^{71a,71b}, S. Guindon ⁵⁴, H. Guler ^{84,n},

 J. Gunther ¹²⁴, B. Guo ¹⁵⁷, J. Guo ³⁴, A. Gupta ³⁰, Y. Gusakov ⁶⁴, V.N. Gushchin ¹²⁷, P. Gutierrez ¹¹⁰, N. Guttman ¹⁵², O. Gutzwiller ¹⁷¹, C. Guyot ¹³⁵, C. Gwenlan ¹¹⁷, C.B. Gwilliam ⁷², A. Haas ¹⁴², S. Haas ²⁹, C. Haber ¹⁴, H.K. Hadavand ²⁹, D.R. Hadley ¹⁷, P. Hadrner ³⁶, F. Haln ²⁹, S. Haider ²⁷, Z. Haiduk ³⁶, H. Hakobay ¹⁷⁵, D. Hall ¹¹⁷, J. Haller ⁴¹, K. Hana ¹¹⁶, K. Hanacher ¹⁷³, P. Hamer ⁵⁴, A. Hamilton ^{144b,4}, S. Hamilton ¹⁴⁶, H. Han ¹²⁴, L. Han ²²⁵, K. Hanagaki ¹¹⁵, K. Hanawa ¹⁵⁹, M. Hance ¹⁴, C. Handel ⁸⁰, P. Hanke ⁵⁸⁴, J.R. Hansen ³⁵, J.B. Hansen ³⁵, J.D. Harper ⁸⁶, R.D. Harrington ⁴⁵, O.M. Harris ¹³⁷, K. Harrison ¹⁷, J. Hartert ⁴⁸, F. Hartiges ¹⁰⁴, T. Haruyama ⁵⁵, A. Harvey ⁵⁶, S. Hasegawa ¹⁰⁰, Y. Hasegawa ¹³⁹, S. Haassin ¹³⁵, M. Hatch ²⁴, D. Hauffell, S. Haugel ⁷⁴, M. Havsner ⁷⁵, M. Havranek ²⁰, B.M. Hawes ¹¹⁷, C.M. Hawkes ⁷⁷, R.J. Hawkings ²⁵, A.D. Hawkins ¹⁰², T. Hayakawa ⁶⁶, T. Hayaken ¹¹⁵, D. Haden ⁷⁵, H.S. Hayward ⁷², S.J. Haywood ¹²⁸, E. Hazer ²¹, M. Het ²²⁴, S.J. Heal ¹⁷⁷, V. Hedberg ⁷⁸, L. Hellman ¹⁴⁵, H. Heisterkamp ³⁵, L. Hellar, ⁴⁵, H. Hellman ¹⁴⁵, H. Heisterkamp ³⁵, L. Hellar, ⁴⁵, M. Henke ⁵⁸⁸, A. Henriches ⁴⁴, A. Henriches ²⁷, J. Hellmar ²⁷, S. Hellar ²⁷, S. Henres ¹⁵⁶, M. Henke ⁵⁸⁸, A. Henriches ⁴⁴, A. Henriches ²⁷, J. Herras ²⁸, G. G. Heskent ¹⁵⁶, N.P. Hessey ¹⁰⁴, E. Higgön-Rodriguez ¹⁶⁶, D. Hills ⁴⁷, T. Hiller ⁴⁷, J. Hiller ⁴⁷, J. Hiller ⁴⁷, J. Henes ¹⁵⁴, M. Henre ¹⁵⁴, J. H. Henre ²⁵⁹, J. Hobet ¹⁴⁷, N. Hod ¹⁵², M.C. Hodgkinson ¹³⁸, P. Hodgson ¹³⁸, A. Hoecker ²⁹, M. Hoeferkamp ¹⁰², J. Hofbann ³⁵, M. Hoolfiel ⁸⁰, M. Holke ¹⁴⁰, J. Huifli, ¹⁴¹, H. Hiller ⁴⁷, J. Hubarke ¹⁵⁴, J. Houtiman ⁴¹⁴, J. Hussen ⁴⁵⁴, J. Heuken ⁴⁵⁵, J. Houther ⁴⁷, J. Houtiman ⁴¹⁵, J. Hoeferkamp ¹ J. Gunther ¹²⁴, B. Guo ¹⁵⁷, J. Guo ³⁴, A. Gupta ³⁰, Y. Gusakov ⁶⁴, V.N. Gushchin ¹²⁷, P. Gutierrez ¹¹⁰, N. Guttman ¹⁵², O. Gutzwiller ¹⁷¹, C. Guyot ¹³⁵, C. Gwenlan ¹¹⁷, C.B. Gwilliam ⁷², A. Haas ¹⁴², S. Haas ²⁹, M. Karagoz ¹¹⁷, M. Karnevskiy ⁴¹, V. Kartvelishvili ⁷⁰, A.N. Karyukhin ¹²⁷, L. Kashif ¹⁷¹, G. Kasieczka ^{58b}, R.D. Kass ¹⁰⁸, A. Kastanas ¹³, M. Kataoka ⁴, Y. Kataoka ¹⁵⁴, E. Katsoufis ⁹, J. Katzy ⁴¹, V. Kaushik ⁶, K. Kawagoe ⁶⁶, T. Kawamoto ¹⁵⁴, G. Kawamura ⁸⁰, M.S. Kayl ¹⁰⁴, V.A. Kazanin ¹⁰⁶, M.Y. Kazarinov ⁶⁴, R. Keeler ¹⁶⁸, R. Kehoe ³⁹, M. Keil ⁵⁴, G.D. Kekelidze ⁶⁴, J.S. Keller ¹³⁷, J. Kennedy ⁹⁷, M. Kenyon ⁵³, O. Kepka ¹²⁴, N. Kerschen ²⁹, B.P. Kerševan ⁷³, S. Kersten ¹⁷³, K. Kessoku ¹⁵⁴, J. Keung ¹⁵⁷, F. Khalil-zada ¹⁰, H. Khandanyan ¹⁶⁴, A. Khanov ¹¹¹, D. Kharchenko ⁶⁴, A. Khodinov ⁹⁵, A.G. Kholodenko ¹²⁷, A. Khomich ^{58a}, T.J. Khoo ²⁷, G. Khoriauli ²⁰, A. Khoroshilov ¹⁷³, N. Khovanskiy ⁶⁴, V. Khovanskiy ⁹⁴, E. Khramov ⁶⁴, J. Khubua ^{51b}, H. Kim ^{145a, 145b}, M.S. Kim ², S.H. Kim ¹⁵⁹, N. Kimura ¹⁶⁹, O. Kind ¹⁵, B.T. King ⁷², M. King ⁶⁶, R.S.B. King ¹¹⁷, J. Kirk ¹²⁸, L.E. Kirsch ²², A.E. Kiryunin ⁹⁸, T. Kishimoto ⁶⁶, D. Kisielewska ³⁷, T. Kittelmann ¹²², A.M. Kiver ¹²⁷, E. Kladiva ^{143b}, M. Klein ⁷², U. Klein ⁷², K. Kleinknecht ⁸⁰, M. Klemetti ⁸⁴, A. Klier ¹⁷⁰, P. Klimek ^{145a, 145b}, A. Klimentov ²⁴, R. Klingenberg ⁴², J.A. Klinger ⁸¹, E.B. Klinkby ³⁵,

T. Klioutchnikova²⁹, P.F. Klok¹⁰³, S. Klous¹⁰⁴, E.-E. Kluge^{58a}, T. Kluge⁷², P. Kluit¹⁰⁴, S. Kluth⁹⁸, N.S. Knecht¹⁵⁷, E. Kneringer⁶¹, J. Knobloch²⁹, E.B.F.G. Knoops⁸², A. Knue⁵⁴, B.R. Ko⁴⁴, T. Kobayashi¹⁵⁴, N.S. Knocht ¹⁵⁷, E. Kneringer ⁶¹, J. Knobloch ²⁹, E.B.F.G. Knoge⁹, J. Kulge⁹, J. Kulge¹⁷, S. Kulf¹¹, S. Kod¹⁴, T. Kobayashi ¹⁵⁴, M. Kobel ⁴³, M. Kocian ¹⁴², P. Kodys ¹²⁵, K. Köneke²⁹, A.C. König ¹⁰³, S. Koenig⁸⁰, L. Köpke⁸⁰, E. Kottsveld ¹⁰³, P. Koevesarki ²⁰, T. Koffas ²⁸, E. Koffeman ¹⁰⁴, L.A. Kogan ¹¹⁷, F. Kohn ⁵⁴, Z. Kohout ¹²⁶, T. Kohriki ⁶⁵, T. Koi ¹⁴², T. Kokott ²⁰, G.M. Kolachev ¹⁰⁶, H. Kolanoski ¹⁵, V. Kolesnikov ⁶⁴, I. Koletsou ^{88a}, J. Koll ⁸⁷, M. Kollefrath ⁴⁸, S.D. Kolya ⁸¹, A.A. Komar ⁹³, Y. Komori ¹⁵⁴, T. Kondo ⁶⁵, T. Kono ^{41,q}, A.I. Kononov ⁴⁸, R. Konoplich ^{107,r}, N. Konstantinidis ⁷⁶, A. Kootz ¹⁷³, S. Koperny ³⁷, K. Korcyl ³⁸, K. Kordas ¹⁵³, V. Koreshev ¹²⁷, A. Korn ¹¹⁷, A. Korol ¹⁰⁶, I. Korolkov ¹¹, E.V. Korolkova ¹³⁸, V.A. Korotkov ¹²⁷, O. Kortner ⁹⁸, S. Kortner ⁹⁸, V.V. Kostyukhin ²⁰, M.J. Kotamäki ²⁹, S. Kotov ⁹⁸, V.M. Kotov ⁶⁴, A. Kotwal ⁴⁴, C. Kourkoumelis ⁸, V. Kouskoura ¹⁵³, A. Koutsman ^{158a}, R. Kowalewski ¹⁶⁸, T.Z. Kowalski ³⁷, W. Kozanecki ¹³⁵, A.S. Kozhin ¹²⁷, V. Kral ¹²⁶, V.A. Kramarenko ⁹⁶, G. Kramberger ⁷³, M.W. Krasny ⁷⁷, A. Krasznahorkay ¹⁰⁷, J. Kraus ⁸⁷, J.K. Kraus ²⁰, A. Kreisel ¹⁵², F. Krejci ¹²⁶, J. Kretzschmar ⁷², N. Krieger ⁵⁴, P. Krieger ¹⁵⁷, K. Kroeninger ⁵⁴, H. Kroha ⁹⁸, J. Kroll ¹¹⁹, J. Kroseberg ²⁰, J. Krstic ^{12a}, U. Kruchonak ⁶⁴, H. Krüger ²⁰, T. Kruker ¹⁶, N. Krumnack ⁶³, Z.V. Krumshteyn ⁶⁴, A. Kruth ²⁰, T. Kubota ⁸⁵, S. Kuday ^{3a}, S. Kuehn ⁴⁸, A. Kugel ^{58c}, T. Kuhl ⁴¹, D. Kuhn ⁶¹, V. Kukhtin ⁶⁴, Y. Kulchitsky ⁸⁹, S. Kuleshov ^{31b}, C. Kummer ⁹⁷, M. Kuna ⁷⁷, N. Kundu ¹¹⁷, J. Kunkle ¹¹⁹, A. Kupco ¹²⁴, H. Kurashige ⁶⁶, M. Kurata ¹⁵⁹, Y.A. Kurochkin ⁸⁹, V. Kus ¹²⁴, E.S. Kuvertz ¹⁴⁶, M. Kuze ¹⁵⁶, J. Kvita ¹⁴¹, R. Kwee ¹⁵, A. La Rosa ⁴⁹, L. La Rotonda ^{36a,36b}, L. Labarga ⁷⁹, J. Labbe ⁴, S. Lablak ^{134a}, C. Lacasta ¹⁶⁶, F. Lacava ^{131a,131b}, M. Lamanna²⁹, L. Lambourne⁷⁶, C.L. Lampen⁶, W. Lampl⁶, E. Lancon¹³⁵, U. Landgraf⁴⁸, M.P.J. Landon⁷⁴, J.L. Lane⁸¹, C. Lange⁴¹, A.J. Lankford¹⁶², F. Lanni²⁴, K. Lantzsch¹⁷³, S. Laplace⁷⁷, C. Lapoire²⁰, J.F. Laporte¹³⁵, T. Lari^{88a}, A.V. Larionov¹²⁷, A. Larner¹¹⁷, C. Lasseur²⁹, M. Lassnig²⁹, P. Laurelli⁴⁷, V. Lavorini^{36a,36b}, W. Lavrijsen¹⁴, P. Laycock⁷², A.B. Lazarev⁶⁴, O. Le Dortz⁷⁷, E. Le Guirriec⁸², C. Le Maner¹⁵⁷, E. Le Menedeu¹¹, C. Lebel⁹², T. LeCompte⁵, F. Ledroit-Guillon⁵⁵, H. Lee¹⁰⁴, V. Lavorini ^{36a, 36b}, W. Lavrijsen ¹⁴, P. Laycock ⁷², A.B. Lazarev ⁶⁴, O. Le Dortz ⁷⁷, E. Le Guirrice⁸², C. Le Maner ¹⁵⁷, E. Le Menedeu ¹¹, C. Lebel ⁹², T. LeCompte ⁵, F. Ledroit-Guillon ⁵⁵, H. Lee ¹⁰⁴, J.S.H. Lee ¹¹⁵, S.C. Lee ¹⁵⁰, L. Lee ¹⁷⁴, M. Lefebvre ¹⁶⁸, M. Legendre ¹²⁵, A. Leger ⁴⁹, B.C. LeGeyt ¹¹⁹, F. Leggett ¹⁴, M. Lehmacher ²⁰, G. Lehmann Miotto ²⁹, X. Lei ⁶, M.A.L. Leite ^{23d}, R. Leitner ¹²⁵, D. Lellouch ¹⁷⁰, M. Leltchouk ³⁴, B. Lemmer ⁵⁴, V. Lendermann ^{58a}, K.J.C. Leney ^{144b}, T. Lenz ¹⁰⁴, G. Lenzen ¹⁷³, B. Lenzi ²⁹, K. Leonhardt ⁴³, S. Leontsinis ⁹, C. Leroy ⁹², J.-R. Lessard ¹⁶⁶, J. Lesser ^{145a}, C.G. Lester ²⁷, A. Leung Fook Cheong ¹⁷¹, J. Levèque ⁴, D. Levin ⁸⁶, L.J. Levinson ¹⁷⁰, M.S. Levitski ¹²⁷, A. Lewis ¹⁰⁷, A.M. Leyko ²⁰, M. Leyton ¹⁵, B. Li⁸², H. Li ^{171, s}, S. Li^{22b, t}, X. Li⁸⁶, Z. Liang ^{117, u}, H. Liao ³³, B. Liberti ^{132a}, P. Lichard ²⁹, M. Lichtnecker ⁹⁷, K. Lie ¹⁶⁴, W. Liebig ¹³, C. Limbach ²⁰, A. Limosani ⁸⁵, M. Limper ⁶², S.C. Lin ^{150, v}, F. Linde ¹⁰⁴, J.T. Linnemann ⁸⁷, E. Lipeles ¹¹⁹, L. Lipinsky ¹²⁴, A. Lipniacka ¹³, T.M. Liss ¹⁶⁴, D. Lissauer ²⁴, A. Lister ⁴⁹, A.M. Litke ¹³⁶, C. Liu ²⁸, D. Liu ¹⁵⁰, H. Liu⁸⁶, J. Lesser ¹⁴⁵, J. Lorente Merino ⁷⁹, S.L. Lloyd ⁷⁴, E. Lobodzinska ⁴¹, P. Loch ⁶, W.S. Lockman ¹³⁶, T. Loddenkoetter ²⁰, F.K. Loebinger ⁸¹, A. Loginov ¹⁷⁴, C.W. Loh ¹⁶⁷, T. Lohse ¹⁵, J. Lorenz ⁹⁷, N. Lorenzo Martinez ¹¹⁴, M. Losada ¹⁶¹, P. Losve ¹⁷⁴, A. Luoy ¹³², D. Lopez Mateos ⁵⁷, J. Lorenz ⁹⁷, N. Lorenzo Martinez ¹¹⁴, M. Losada ¹⁶¹, P. Losvetro ^{131a,131b}, M.J. Losty ¹⁵⁸, X. Lou⁴⁰, A. Lounis ¹¹⁴, K.F. Loureiro ¹⁶¹, J. Love²¹, P.A. Love ⁷⁰, A.J. Lowe ^{142, e</sub>, F. Lu ^{32a}, H.J. Lubatti ¹³⁷, C. Luci ^{131a,131b}, A. Lucute ⁵⁵, A. Ludwig ⁴³, D. Ludwig ⁴⁴, F. Ludwig ⁴⁸, F. Luehring ⁶⁰, G. Luijckx ¹⁰⁴, W. Lukas ⁶¹, D. Lumb ⁴⁸, L. Lumiari ^{131a, 4}, E. Lund} L. Manhaes de Andrade Filho^{23a}, I.D. Manjavidze⁶⁴, A. Mann⁵⁴, P.M. Manning¹³⁶, A. Manousakis-Katsikakis⁸, B. Mansoulie¹³⁵, A. Manz⁹⁸, A. Mapelli²⁹, L. Mapelli²⁹, L. March⁷⁹, J.F. Marchand²⁸, F. Marchese^{132a,132b}, G. Marchiori⁷⁷, M. Marcisovsky¹²⁴, C.P. Marino¹⁶⁸,

F. Marroquim ^{23a}, R. Marshall ⁸¹, Z. Marshall ²⁹, F.K. Martens ¹⁵⁷, S. Marti-Garcia ¹⁶⁶, A.J. Martin ¹⁷⁴, B. Martin ²⁹, B. Martin ⁸⁷, F.F. Martin ¹¹⁹, J.P. Martin ⁹², Ph. Martin ⁵⁵, T.A. Martin ¹⁷, V.J. Martin ⁴⁵, F. Marroquim ^{23a}, R. Marshall ³¹, Z. Marshall ²⁵, F.K. Marttens ¹⁵⁷, S. Martti-García ¹⁰⁶, A.J. Martin ¹⁷⁴, B. Martin ²⁹, B. Martin ²⁹, B. Martin ¹⁵⁵, T.A. Martin ¹⁷, V.J. Martin ⁴⁵, B. Martin ⁴⁵, S. Martin-Haugh ¹⁴⁸, M. Martine²¹, V. Martinez Outschoorn ⁵⁷, A.C. Martyniuk ¹⁶⁸, M. Marx ⁸¹, F. Marzano ^{131a}, A. Marzin ¹¹⁰, L. Masetti ⁸⁰, T. Mashimo ¹⁵⁴, R. Mashinistov ⁹³, J. Masik ⁸¹, A.L. Maslennikov ¹⁰⁶, I. Massa ^{19a,19b}, G. Massaro ¹⁰⁴, N. Massol⁴, P. Mastrandrea ^{131a,131b}, A. Mastroberardino ^{36a,36b}, T. Masubuchi ¹⁵⁴, P. Matricon ¹¹⁴, H. Matsumoto ¹⁵⁴, H. Matsunaga ¹⁵⁴, T. Matsushita ⁶⁶, C. Mattravers ^{117,c}, J.M. Maugain ²⁹, J. Maurer ⁸², S.J. Maxfeld ⁷², D.A. Maximov ^{106,f}, E.N. May ⁵, A. Mayne ¹³⁸, R. Mazini ¹⁵⁰, M. Mazur ²⁰, M. Mazzanti ^{88a}, S.P. Mc Kee ⁸⁶, A. McCarn ¹⁶⁴, R.L. McCarthy ¹⁴⁷, T.G. McCarthy ²⁸, N.A. McCubbin ¹²⁸, K.W. McFarlane ⁵⁶, J.A. Mcfayden ¹³⁸, H. McGlone ⁵³, G. Mchedlidze ^{51b}, R.A. McLaren ²⁹, T. Mclaughlan ¹⁷, S.J. McMahon ¹²⁸, R.A. McPherson ^{168,j}, A. Meade ⁸³, J. Mechnich ¹⁰⁴, M. Mechtell ¹⁷³, M. Medinnis ⁴¹, R. Meera-Lebbai ¹¹⁰, T. Meguro ¹¹⁵, R. Mehdiyev ⁹², S. Mehlhase ³⁵, A. Mehta ⁷², K. Meier ^{58a}, B. Meirose ⁷⁸, C. Melachrinos ³⁰, B.R. Mellado Garcia ¹⁷¹, L. Mendoza Navas ¹⁶¹, Z. Meng ^{150,s}, A. Mengarelli ^{19a,19b}, S. Menke ⁹⁸, C. Meort ²⁹, E. Meoni ¹¹, K.M. Mercurio ⁵⁷, P. Mermod ⁴⁹, L. Merola ^{101a,101b}, C. Meroni ^{88a}, F.S. Merritt ³⁰, H. Merritt ¹⁰⁸, A. Messina ²⁹, J. Metcalfe ¹⁰², A.S. Mete ⁶³, C. Meyer ⁸⁰, C. Meyer ³⁰, J.-P. Meyer ¹³⁵, J. Meyer ⁵⁴, T.C. Meyer ²⁹, W.T. Meyer ⁶³, J. Milos ^{32d}, S. Michal ²⁹, L. Micu ²⁵⁴, R.P. Middleton ¹²⁸, S. Migas ⁷², L. Mijović ⁴¹, G. Mikenberg ¹⁷⁰, M. Mikestikova ¹²⁴, M. Mikuž ⁷³, D.W. Miller ³⁰, R.J. Miller ⁸⁷, V.J. Mills ¹⁶⁷, C. Mills ⁵⁷, A. Milos ¹⁷⁰, D.A. Milsead ^{145a,145b}, D. Milstein ¹⁷⁰, A.A. Minaenko ¹²⁷, M. Miñ C. Mora Herrera⁴⁹, A. Moraes⁵³, N. Morange¹³⁵, J. Morel⁵⁴, G. Morello^{36a,36b}, D. Moreno⁸⁰, M. Moreno Llácer ¹⁶⁶, P. Morettini ^{50a}, M. Morgenstern ⁴³, M. Morii ⁵⁷, J. Morin ⁷⁴, A.K. Morley ²⁹, M. Moreno Llácer ¹⁶⁵, P. Morettini ¹⁰³, M. Morgenstern ⁴³, M. Morii ⁵⁷, J. Morin ⁷⁴, A.K. Morley ²⁹, G. Mornacchi ²⁹, S.V. Morozov ⁹⁵, J.D. Morris ⁷⁴, L. Morvaj ¹⁰⁰, H.G. Moser ⁹⁸, M. Mosidze ^{51b}, J. Moss ¹⁰⁸, R. Mount ¹⁴², E. Mueller ²⁰, T.A. Müller ⁹⁷, T. Mueller ⁸⁰, D. Muenstermann ²⁹, A. Muir ¹⁶⁷, Y. Munwes ¹⁵², W.J. Murray ¹²⁸, I. Mussche ¹⁰⁴, E. Musto ^{101a,101b}, A.G. Myagkov ¹²⁷, M. Myska ¹²⁴, J. Nadal ¹¹, K. Nagai ¹⁵⁵, K. Nagano ⁶⁵, A. Nagarkar ¹⁰⁸, Y. Nagasaka ⁵⁹, M. Nagel ⁹⁸, A.M. Nairz ²⁹, Y. Nakahama ²⁹, K. Nakamura ¹⁵⁴, T. Nakamura ¹⁵⁴, I. Nakano ¹⁰⁹, G. Nanava²⁰, A. Naper ⁶⁶, R. Narayan ^{58b}, M. Nash ^{76, c}, N.R. Naticon ²¹, T. Nattermann ²⁰, T. Naumann ⁴¹, G. Navaro ¹⁶¹, H.A. Neal ⁸⁶, E. Nebot ⁷⁹, P.Yu. Nechaeva ⁹³, T.J. Neep ⁸¹, A. Negri ^{118a,118b}, G. Negri ²⁹, S. Nektarijevic ⁴⁹, A. Nelson ¹⁶², T.K. Nelson ¹⁴⁴, S. Nemecek ¹²⁴, P. Nemethy ¹⁰⁷, A.A. Nepomuceno ^{23a}, M. Nessi ^{29a, M}.S. Neubauer ¹⁶⁴, A. Neusiedl ⁸⁰, R.M. Neves ¹⁰⁷, P. Nevski ²⁴, P.R. Newman ¹⁷, V. Nguyen Thi Hong ¹³⁵, R.B. Nickerson ¹¹⁷, R. Nikolou ¹³⁵, L. Nicolas ¹³⁸, B. Nicquevert ²⁹, F. Niedercorn ¹¹⁴, J. Nielsen ¹³⁶, T. Ninikoski ²⁹, N. Nikiforou ³⁴, A. Nikiforov ¹⁵, V. Nikolaenko ¹²⁷, K. Nikolaev ⁶⁴, I. Nikolic-Audit ⁷⁷, K. Nikolics ⁴⁹, K. Nikolopoulos ²⁴, H. Nilsen ⁴⁸, P. Nilsson ⁷, Y. Ninomiya ¹⁵⁴, A. Nisati ^{131a}, T. Nishiyama ⁶⁶, R. Nisius ⁹⁸, L. Nodulman ⁵, M. Nomachi ¹¹⁵, I. Nomidis ¹⁵³, M. Nordberg ²⁹, P.R. Norton ¹²⁸, J. Novakova ¹²⁵, M. Nozaki ⁶⁵, L. Nozka ¹¹², I. M. Nugent ¹⁵⁴, S. W.O (Neale ^{17, *}, D.C. O'Neil ¹⁴¹, V. O'Shea ³³, L.B. Oakes ⁹⁷, F.G. Oakham ^{28, 4}, H. Oberlack ⁹⁸, J. Ocariz ⁷⁷, A. Ochi ⁶⁶, S. Oda ¹⁵⁴, S. Odaka ⁶⁵, J. Odier ⁸², H. Ogren ⁶⁰, A. Oh ⁸¹, S.H. Oh ⁴⁴, C.C. Ohm ¹⁴⁵, J. Olsima ¹⁰⁰, H. Ohshita ¹³⁹, S. Okada ⁶⁶, H. Okayaa ¹⁶², Y. Okumura ¹⁰⁰, T. Okuyama ¹⁵⁴, A. Olariu ^{55a}, M. Oc G. Mornacchi²⁹, S.V. Morozov⁹⁵, J.D. Morris⁷⁴, L. Morvaj¹⁰⁰, H.G. Moser⁹⁸, M. Mosidze^{51b}, J. Moss¹⁰⁸,

J.D. Palmer¹⁷, Y.B. Pan¹⁷¹, E. Panagiotopoulou⁹, B. Panes^{31a}, N. Panikashvili⁸⁶, S. Panitkin²⁴, D. Pantea^{25a}, M. Panuskova¹²⁴, V. Paolone¹²², A. Papadelis^{145a}, Th.D. Papadopoulou⁹, A. Paramonov⁵, D. Pantea ^{25a}, M. Panuskova ¹²⁴, V. Paolone ¹²², A. Papadelis ^{145a}, Th.D. Papadopoulou ⁹, A. Paramonov ⁵, D. Paredes Hernandez ³³, W. Park ^{24,z}, M.A. Parker ²⁷, F. Parodi ^{50a,50b}, J.A. Parsons ³⁴, U. Parzefall ⁴⁸, S. Pashapour ⁵⁴, E. Pasqualucci ^{131a}, S. Passaggio ^{50a}, A. Passeri ^{133a}, F. Pastore ^{133a,133b}, Fr. Pastore ⁷⁵, G. Pásztor ^{49,aa}, S. Pataraia ¹⁷³, N. Patel ¹⁴⁹, J.R. Pater ⁸¹, S. Patricelli ^{101a,101b}, T. Pauly ²⁹, M. Pecsy ^{143a}, M.I. Pedraza Morales ¹⁷¹, S.V. Peleganchuk ¹⁰⁶, H. Peng ^{32b}, B. Penning ³⁰, A. Penson ³⁴, J. Penwell ⁶⁰, M. Perantoni ^{23a}, K. Perez ^{34,ab}, T. Perez Cavalcanti ⁴¹, E. Perez Codina ^{158a}, M.T. Pérez García-Estañ ¹⁶⁶, V. Perez Reale ³⁴, L. Perini ^{88a,88b}, H. Pernegger ²⁹, R. Perrino ^{71a}, P. Perrodo ⁴, S. Persembe ^{3a}, V.D. Peshekhonov ⁶⁴, K. Peters ²⁹, B.A. Petersen ²⁹, J. Petersen ²⁹, T.C. Petersen ³⁵, E. Petit ⁴, A. Petridis ¹⁵³, C. Petridou ¹⁵³, E. Petrolo ^{131a}, F. Petrucci ^{133a,133b}, D. Petschull ⁴¹, M. Petteni ¹⁴¹, R. Pezoa ^{31b}, A. Phan ⁸⁵, P.W. Phillips ¹²⁸, G. Piacquadio ²⁹, A. Picazio ⁴⁹, E. Piccaro ⁷⁴, M. Piccinini ^{19a,19b}, S.M. Piec ⁴¹, R. Piegaia ²⁶, D.T. Pignotti ¹⁰⁸, J.E. Pilcher ³⁰, A.D. Pilkington ⁸¹, J. Pina ^{123a,b}, M. Pinamonti ^{163a,163c}, A. Pinder ¹¹⁷, J.L. Pinfold ², J. Ping ^{32c}, B. Pinto ^{123a}, O. Pirotte ²⁹, C. Pizio ^{88a,88b}, M. Plamondon ¹⁶⁸, M.-A. Pleier ²⁴, A.V. Pleskach ¹²⁷, E. Plotnikova ⁶⁴, A. Poblaguev ²⁴, S. Poddar ^{58a}, F. Podlyski ³³, L. Poggioli ¹¹⁴, T. Poghosyan ²⁰, M. Pohl⁴⁹, F. Polci ⁵⁵, G. Polesello ^{118a}, A. Policicchio ^{36a,36b}, A. Polini ^{19a}, J. Poll ⁷⁴, V. Polychronakos ²⁴, D.M. Pomarede ¹³⁵, D. Pomeroy ²², K. Pommès ²⁹, L. Pontecorvo ^{131a}, B.G. Pope ⁸⁷, V. Polychronakos²⁴, D.M. Pomarede¹³⁵, D. Pomeroy²², K. Pommès²⁹, L. Pontecorvo^{131a}, B.G. Pope⁸⁷, G.A. Popenciu^{25a}, D.S. Popovic^{12a}, A. Poppleton²⁹, X. Portell Bueso²⁹, C. Posch²¹, G.E. Pospelov⁹⁸, S. Pospisil¹²⁶, I.N. Potrap⁹⁸, C.J. Potter¹⁴⁸, C.T. Potter¹¹³, G. Poulard²⁹, J. Poveda¹⁷¹, V. Pozdnyakov⁶⁴, R. Prabhu⁷⁶, P. Pralavorio⁸², A. Pranko¹⁴, S. Prasad²⁹, R. Pravahan⁷, S. Prell⁶³, K. Pretzl¹⁶, L. Pribyl²⁹, D. Price⁶⁰, J. Price⁷², L.E. Price⁵, M.J. Price²⁹, D. Prieur¹²², M. Primavera^{71a}, K. Prokofiev¹⁰⁷, F. Prokoshin^{31b}, S. Protopopescu²⁴, J. Proudfoot⁵, X. Prudent⁴³, M. Przybycien³⁷, H. Przysiezniak⁴, S. Psoroulas²⁰, E. Ptacek¹¹³, E. Pueschel⁸³, J. Purdham⁸⁶, M. Purohit^{24,z}, P. Puzo¹¹⁴, Y. Pylypchenko⁶², J. Qian⁸⁶, Z. Qian⁸², Z. Qin⁴¹, A. Quadt⁵⁴, D.R. Quarrie¹⁴, W.B. Quayle¹⁷¹, F. Quinonez^{31a}, M. Raas¹⁰³, V. Radescu⁴¹, B. Radics²⁰, P. Radloff¹¹³, T. Rador^{18a}, F. Ragusa^{88a,88b}, G. Rahal¹⁷⁶, A.M. Rahimi¹⁰⁸, D. Rahm²⁴, S. Rajagopalan²⁴, M. Rammensee⁴⁸, M. Rammes¹⁴⁰, A.S. Randle-Conde³⁹, K. Randrianarivony²⁸, P.N. Ratoff⁷⁰, F. Rauscher⁹⁷, T.C. Rave⁴⁸, M. Raymond²⁹, A.L. Read¹¹⁶, D.M. Rebuzzi^{118a,118b}, A. Redelbach¹⁷², G. Redlinger²⁴, R. Reece¹¹⁹, K. Reeves⁴⁰, A. Reichold¹⁰⁴, D.M. Reduzzi ¹¹⁰³, ¹¹², ^{A.} Redenbach ¹¹³, ^{I.} Reisinger ⁴², ^{C.} Rembser ²⁹, ^{Z.L.} Ren ¹⁵⁰, ^{A.} Renaud ¹¹⁴,
M. Rescigno ^{131a}, ^{S.} Resconi ^{88a}, ^{B.} Resende ¹³⁵, ^{P.} Reznicek ⁹⁷, ^{R.} Rezvani ¹⁵⁷, ^{A.} Richards ⁷⁶, ^{R.} Richter ⁹⁸,
E. Richter-Was ^{4,ac}, ^{M.} Ridel ⁷⁷, ^{M.} Rijpstra ¹⁰⁴, ^{M.} Rijssenbeek ¹⁴⁷, ^{A.} Rimoldi ^{118a,118b}, ^{L.} Rinaldi ^{19a},
R.R. Rios ³⁹, ^{I.} Riu ¹¹, ^{G.} Rivoltella ^{88a,88b}, ^{F.} Rizatdinova ¹¹¹, ^{F.} Rizvi ⁷⁴, ^{S.H.} Robertson ^{84,j}, R.R. Rios ³⁹, I. Riu¹¹, G. Rivoltella ^{88a,88b}, F. Rizatdinova¹¹¹, E. Rizvi⁷⁴, S.H. Robertson^{84,j}, A. Robichaud-Veronneau¹¹⁷, D. Robinson²⁷, J.E.M. Robinson⁷⁶, A. Robson⁵³, J.G. Rocha de Lima¹⁰⁵, C. Roda^{121a,121b}, D. Roda Dos Santos²⁹, D. Rodriguez¹⁶¹, A. Roe⁵⁴, S. Roe²⁹, O. Røhne¹¹⁶, V. Rojo¹, S. Rolli¹⁶⁰, A. Romaniouk⁹⁵, M. Romano^{19a,19b}, V.M. Romanov⁶⁴, G. Romeo²⁶, E. Romero Adam¹⁶⁶, L. Roos⁷⁷, E. Ros¹⁶⁶, S. Rosati^{131a}, K. Rosbach⁴⁹, A. Rose¹⁴⁸, M. Rose⁷⁵, G.A. Rosenbaum¹⁵⁷, E.I. Rosenberg⁶³, P.L. Rosendahl¹³, O. Rosenthal¹⁴⁰, L. Rosselet⁴⁹, V. Rossetti¹¹, E. Rossi^{131a,131b}, L.P. Rossi^{50a}, M. Rotaru^{25a}, I. Roth¹⁷⁰, J. Rothberg¹³⁷, D. Rousseau¹¹⁴, C.R. Royon¹³⁵, A. Rozanov⁸², Y. Rozen¹⁵¹, X. Ruan^{32a,ad}, I. Rubinskiy⁴¹, B. Ruckert⁹⁷, N. Ruckstuhl¹⁰⁴, V.I. Rud⁹⁶, C. Rudolph⁴³, G. Rudolph⁶¹, F. Rühr⁶, F. Ruggieri^{133a,133b}, A. Ruiz-Martinez⁶³, V. Rumiantsev^{90,*}, L. Rumyantsev⁶⁴, K. Runge⁴⁸, Z. Rurikova⁴⁸, N.A. Rusakovich⁶⁴, J.P. Rutherfoord⁶, C. Ruwiedel¹⁴, P. Ruzicka¹²⁴, Y.F. Ryabov¹²⁰, V. Ryadovikov¹²⁷, P. Ryan⁸⁷, M. Rybar¹²⁵, G. Rybkin¹¹⁴, N.C. Ryder¹¹⁷, S. Rzaeva¹⁰, A.F. Saavedra¹⁴⁹, I. Sadeh¹⁵², H.F.-W. Sadrozinski¹³⁶, R. Sadykov⁶⁴, F. Safai Tehrani^{131a}, H. Sakamoto¹⁵⁴, G. Salamanna⁷⁴, A. Salamon^{132a}, M. Saleem¹¹⁰, D. Salek²⁹, D. Salihagic⁹⁸, A. Salnikov¹⁴², J. Salt¹⁶⁶, B.M. Salvachua Ferrando⁵, D. Salvatore^{36a,36b}, F. Salvatore¹⁴⁸, A. Salvucci¹⁰³, A. Salzburger²⁹, D. Sampsonidis¹⁵³, B.H. Samset¹¹⁶, A. Sanchez^{101a,101b}, V. Sanchez Martinez¹⁶⁶, H. Sandaker¹³, H.G. Sander⁸⁰, M.P. Sanders⁹⁷, M. Sandhoff¹⁷³, T. Sandoval²⁷, C. Sandoval¹⁶¹, R. Sandstroem⁹⁸, S. Sandvoss¹⁷³, D.P.C. Sankey¹²⁸, A. Sansoni⁴⁷, C. Santamarina Rios⁸⁴, C. Santoni³³, R. Santonico^{132a,132b}, H. Santos^{123a}, J.G. Saraiva^{123a}, T. Saraagi¹⁷¹, E. Sarkisyan-Grinbaum⁷, R. Santonico ^{132a,132b}, H. Santos ^{123a}, J.G. Saraiva ^{123a}, T. Sarangi ¹⁷¹, E. Sarkisyan-Grinbaum⁷, F. Sarri ^{121a,121b}, G. Sartisohn ¹⁷³, O. Sasaki ⁶⁵, N. Sasao ⁶⁷, I. Satsounkevitch ⁸⁹, G. Sauvage⁴, E. Sauvan⁴, J.B. Sauvan ¹¹⁴, P. Savard ^{157,d}, V. Savinov ¹²², D.O. Savu ²⁹, L. Sawyer ^{24,l}, D.H. Saxon ⁵³, J. Saxon ¹¹⁹, L.P. Says ³³, C. Sbarra ^{19a}, A. Sbrizzi ^{19a,19b}, O. Scallon ⁹², D.A. Scannicchio ¹⁶², M. Scarcella ¹⁴⁹, J. Schaarschmidt ¹¹⁴, P. Schacht ⁹⁸, D. Schaefer ¹¹⁹, U. Schäfer ⁸⁰, S. Schaepe ²⁰, S. Schaetzel ^{58b},

 192
 A.C. Schaffer ¹¹⁴, D. Schaile ⁹⁷, R.D. Schamberger ¹⁴⁷, A.G. Schamov ¹⁰⁶, V. Scharf ^{58a}, V.A. Schegelsky ¹²⁰, D. Scheirch ⁸⁶, M. Schernau ¹⁶², M.I. Scherzer ³⁴, C. Schiavi ^{50a,50b}, J. Schieck ⁹⁷, M. Schioppa ^{36a,36b}, S. Schlenker ²⁹, J.L. Schlereth ⁵, E. Schmidt ⁴⁸, K. Schmieden ²⁰, C. Schmitt ⁸⁰, S. Schmitt ^{58b}, M. Schuler ²⁰, D. Schouten ^{158a}, J. Schovancova ¹²⁴, M. Schuram ⁴⁴, C. Schuler ^{25b}, M. Schuler ²⁷, M. Schuler ²⁹, J. Schuleret ⁸¹, S. Schwint ^{57b}, M. Schuler ²⁹, M. Schuler ²⁰, J. Schulters ¹⁷³, H.-C. Schultz-Coulon ^{58a}, H. Schuler ²⁷, M. Schumacher ⁴⁸, B.A. Schumin ¹³⁶, Ph. Schune ¹³⁵, C. Schwanenberger ⁸¹, A. Schwartzman ¹⁴², Ph. Schwemling ⁷⁷, R. Schwienhorst ⁸⁷, R. Schwierz ⁴³, J. Schwindling ¹³⁵, S. Schwindt ²⁰⁰, M. Schwoerer ⁴, G. Sciolla ²², W.G. Scott ¹²⁸, J. Scercy ¹¹³, G. Sedov ⁴¹, E. Sedykh ¹²⁰, E. Segura ¹¹, S.C. Seiden ¹³⁶, F. Seiflert ⁴³, J.M. Seixas ²³⁴, G. Sekhnaidze ^{101a}, S.J. Sekula ³⁹, K.E. Selbach ⁴⁵, D.M. Seliverstov ¹²⁰, B. Sellden ^{145a}, G. Sellers ⁷², M. Seman ^{143b}, M. Shapiro ¹⁴, P. Shatalov ⁹⁴, L. Shavef ⁶, K. Shaw ^{163a,163c}, D. Sherman ¹⁷⁴, P. Sherwood ⁷⁶, A. Shipiro ¹⁴, P. Shichi ¹⁰⁰, S. Shimizu ²⁹, M. Shimojima ⁹⁹, T. Shin ⁵⁶, M. Shiyakova ⁴⁴, A. Shmeleva ⁹³, M. Shochet ³⁰, D. Short ¹¹⁷, S. Shrestha ⁶³, E. Shulga ⁵⁵, M.A. Shupe ⁶, P. Sicho ¹²⁴, A. Sidott ^{131a}, F. Siegert ⁴⁸, D. Sikor ¹⁵⁵, N.B. Sime ¹¹³, Y. Sikor ¹⁵², D. Sikor ¹²⁶, A. Sikorestein ¹⁴⁵, S. Simino ¹⁴⁴, B. Simano ¹⁶⁵, R. Siminello ^{88a,88b}, M. Simonya ³⁵, P. Simervo ¹⁵⁷, N.B. Sime ¹¹³, V. Sipica ¹⁴⁰, G. Siragusa ¹⁷², A. Sircar ²⁴, A.N. Sisakyan ⁶⁴, S. Shuje ¹⁵⁶, D. Sikort ¹⁷⁶, J. Sikort ¹²⁶, S. Simino ¹⁴⁴, B. Simano ⁷⁶, R. Simonello ^{88a,88b}, S. Sintho ¹¹⁴, S. Simino ¹⁴⁴, B. Simaro ⁷⁶, R. Simonello ^{88a,88b}, S. Sintho ¹¹⁴, B. Simaro ¹³⁶, O. Sinther ¹⁷⁷, S. Shestha ⁷⁵, D. S A. Soukharev ¹⁰⁵, S. Spagnolo ^{71,170}, F. Spano ⁷³, R. Spighi ¹²⁸, G. Spigo ²⁵, F. Spila ^{151,1517}, R. Spiwoks ²⁵, M. Spousta ¹²⁵, T. Spreitzer ¹⁵⁷, B. Spurlock ⁷, R.D. St. Denis ⁵³, J. Stahlman ¹¹⁹, R. Stamen ^{58a}, E. Stanecka ³⁸, R.W. Stanes ⁵, C. Stanescu ^{133a}, M. Stanescu-Bellu ⁴¹, S. Stapnes ¹¹⁶, E.A. Starchenko ¹²⁷, J. Stark ⁵⁵, P. Staroba ¹²⁴, P. Starovoitov ⁹⁰, A. Staude ⁹⁷, P. Stavina ^{143a}, G. Steele ⁵³, P. Steinbach ⁴³, P. Steinberg ²⁴, I. Stekl ¹²⁶, B. Stelzer ¹⁴¹, H.J. Stelzer ⁸⁷, O. Stelzer-Chilton ^{158a}, H. Stenzel ⁵², S. Stern ⁹⁸, K. Stevenson ⁷⁴, G.A. Stewart ²⁹, J.A. Stillings ²⁰, M.C. Stockton ⁸⁴, K. Stoerig ⁴⁸, G. Stoicea ^{25a}, S. Stonjek ⁹⁸, P. Strachota ¹²⁵, A.R. Stradling ⁷, A. Straessner ⁴³, J. Strandberg ¹⁴⁶, S. Strandberg ^{145a,145b}, A. Strandlie ¹¹⁶, M. Strang ¹⁰⁸, E. Strayon ⁸¹, M. Straus ¹¹⁰, P. Strizenec ^{143b}, R. Strömmer ¹⁷², D.M. Strom ¹¹³, J.A. Strog ^{75,*}, R. Stroynowski ³⁹, J. Strube ¹²⁸, B. Stugu ¹³, I. Stumer ^{24,*}, J. Stupak ¹⁴⁷, P. Sturm ¹⁷³, N.A. Styles ⁴¹, D.A. Soh ^{150,u}, D. Su ¹⁴², H.S. Subramania ², A. Succurro ¹¹, Y. Suzaya ¹¹⁵, T. Sugimoto ¹⁰⁰, C. Suhr ¹⁰⁵, K. Suita ⁶⁶, M. Suk ¹²⁵, V.V. Sulin ⁹³, S. Sultansoy ^{3d}, T. Sumida ⁶⁷, X. Sun ⁵⁵, J.E. Sundermann ⁴⁸, K. Suruliz ¹³⁸, S. Sushkov ¹¹, G. Susinno ^{36a,36b}, M.R. Sutton ¹⁴⁸, Y. Suzuki ⁶⁵, Y. Suzuki ⁶⁶, M. Svatos ¹²⁴, Yu.M. Sviridov ¹²⁷, S. Swedish ¹⁶⁷, I. Sykora ^{143a}, T. Sykora ¹²⁵, B. Szeless ²⁹, J. Sánchez ¹⁶⁶, D. Ta ¹⁰⁴, K. Tackmann ⁴¹, A. Taffard ¹⁶², R. Tafirout ^{158a}, N. Taiblum ¹⁵², Y. Takahashi ¹⁰⁰, H. Takai ²⁴, R. Taakai ⁸⁴, H. Takeda ⁶⁶, T. Takeshita ¹³⁹, Y. Takuba ⁶⁵, M. Talby ⁸², A. Talyshev ^{106,f}, M.C. Tamsett ²⁴, J. Tanaka ¹⁵⁴, R. Tanaka ¹¹⁴, S. Tanaka ¹³⁹, Y. Takuba ⁶⁵, Y. Tanaka ⁹⁹, A.J. Tanasijczuk ¹⁴¹, K. Tani ⁶⁶, N. Tannoury ⁸², G.P. Tappern ²⁹, S. Tapprogge ⁸⁰, D. Tardif ¹⁵⁷, S. Tarem ¹⁵ S. Tisserant ⁸², B. Toczek ³⁷, T. Todorov⁴, S. Todorova-Nova ¹⁶⁰, B. Toggerson ¹⁶², J. Tojo ⁶⁵, S. Tokár ^{143a}, K. Tokunaga ⁶⁶, K. Tokushuku ⁶⁵, K. Tollefson ⁸⁷, M. Tomoto ¹⁰⁰, L. Tompkins ³⁰, K. Toms ¹⁰², G. Tong ^{32a}, A. Tonoyan ¹³, C. Topfel ¹⁶, N.D. Topilin ⁶⁴, I. Torchiani ²⁹, E. Torrence ¹¹³, H. Torres ⁷⁷, E. Torró Pastor ¹⁶⁶,

J. Toth^{82,aa}, F. Touchard⁸², D.R. Tovey¹³⁸, T. Trefzger¹⁷², L. Tremblet²⁹, A. Tricoli²⁹, I.M. Trigger^{158a}, S. Trincaz-Duvoid⁷⁷, T.N. Trinh⁷⁷, M.F. Tripiana⁶⁹, W. Trischuk¹⁵⁷, A. Trivedi^{24,z}, B. Trocmé⁵⁵, C. Troncon^{88a}, M. Trottier-McDonald¹⁴¹, M. Trzebinski³⁸, A. Trzupek³⁸, C. Tsarouchas²⁹, J.C.-L. Tseng¹¹⁷, M. Tsiakiris¹⁰⁴, P.V. Tsiareshka⁸⁹, D. Tsionou^{4,ae}, G. Tsipolitis⁹, V. Tsiskaridze⁴⁸, E.G. Tskhadadze^{51a}, I.I. Tsukerman⁹⁴, V. Tsulaia¹⁴, J.-W. Tsung²⁰, S. Tsuno⁶⁵, D. Tsybychev¹⁴⁷, A. Tua¹³⁸, A. Tudorache^{25a}, V. Tudorache^{25a}, J.M. Tuggle³⁰, M. Turala³⁸, D. Turecek¹²⁶, I. Turk Cakir^{3e}, E. Turlay¹⁰⁴, R. Turra^{88a,88b}, P.M. Tuts³⁴, A. Tykhonov⁷³, M. Tylmad^{145a,145b}, M. Tyndel¹²⁸, G. Tzanakos⁸, K. Uchida²⁰, I. Ueda¹⁵⁴, P. Marala and M. Huberd¹³, M. Huberd¹³, M. Huberd¹⁴, M. Tyndel¹⁵⁹, C. Huberd¹⁵⁹, C. Huberd¹⁴, P. Huberd¹⁵⁹, C. Hu R. Ueno²⁸, M. Ugland¹³, M. Uhlenbrock²⁰, M. Uhrmacher⁵⁴, F. Ukegawa¹⁵⁹, G. Unal²⁹, D.G. Underwood⁵, A. Undrus²⁴, G. Unel¹⁶², Y. Unno⁶⁵, D. Urbaniec³⁴, G. Usai⁷, M. Uslenghi^{118a,118b}, L. Vacavant⁸², V. Vacek¹²⁶, B. Vachon⁸⁴, S. Vahsen¹⁴, J. Valenta¹²⁴, P. Valente^{131a}, S. Valentinetti^{19a,19b}, S. Valkar¹²⁵, E. Valladolid Gallego¹⁶⁶, S. Vallecorsa¹⁵¹, J.A. Valls Ferrer¹⁶⁶, H. van der Graaf¹⁰⁴, E. van der Kraaij ¹⁰⁴, R. Van Der Leeuw ¹⁰⁴, E. van der Poel ¹⁰⁴, D. van der Ster ²⁹, N. van Eldik ⁸³, P. van Gemmeren ⁵, Z. van Kesteren ¹⁰⁴, I. van Vulpen ¹⁰⁴, M. Vanadia ⁹⁸, W. Vandelli ²⁹, G. Vandoni ²⁹, A. Vaniachine ⁵, P. Vankov ⁴¹, F. Vannucci ⁷⁷, F. Varela Rodriguez ²⁹, R. Vari ^{131a}, E.W. Varnes ⁶, T. Varol ⁸³, D. Varouchas¹⁴, A. Vartapetian⁷, K.E. Varvell¹⁴⁹, V.I. Vassilakopoulos⁵⁶, F. Vazeille³³, D. Varouchas ¹⁴, A. Vartapetian ', K.E. Varvell ¹⁴³, V.I. Vassilakopoulos ⁵⁰, F. Vazelle ⁵⁰, T. Vazquez Schroeder ⁵⁴, G. Vegni ^{88a,88b}, J.J. Veillet ¹¹⁴, C. Vellidis ⁸, F. Veloso ^{123a}, R. Veness ²⁹, S. Veneziano ^{131a}, A. Ventura ^{71a,71b}, D. Ventura ¹³⁷, M. Venturi ⁴⁸, N. Venturi ¹⁵⁷, V. Vercesi ^{118a}, M. Verducci ¹³⁷, W. Verkerke ¹⁰⁴, J.C. Vermeulen ¹⁰⁴, A. Vest ⁴³, M.C. Vetterli ^{141,d}, I. Vichou ¹⁶⁴, T. Vickey ^{144b,af}, O.E. Vickey Boeriu ^{144b}, G.H.A. Viehhauser ¹¹⁷, S. Viel ¹⁶⁷, M. Villa ^{19a,19b}, M. Villaplana Perez ¹⁶⁶, E. Vilucchi ⁴⁷, M.G. Vincter ²⁸, E. Vinek ²⁹, V.B. Vinogradov ⁶⁴, M. Virchaux ^{135,*}, J. Virzi ¹⁴, O. Vitells ¹⁷⁰, M. Viti ⁴¹, I. Vivarelli ⁴⁸, F. Vives Vaque ², S. Vlachos ⁹, D. Vladoiu ⁹⁷, M. Vlasak ¹²⁶, N. Vlasov ²⁰, A. Vogel ²⁰, P. Vokac ¹²⁶, G. Volpi ⁴⁷, M. Volpi ⁸⁵, G. Volpini ^{88a}, H. von der Schmitt ⁹⁸, J. von Loeben ⁹⁸, H. von Radziewski⁴⁸, E. von Toerne²⁰, V. Vorobel ¹²⁵, A.P. Vorobiev ¹²⁷, V. Vorwerk ¹¹, M. Vos ¹⁶⁶, R. Voss ²⁹, T.T. Voss ¹⁷³, J.H. Vossebeld ⁷², N. Vranjes ¹³⁵, M. Vranjes Milosavljevic ¹⁰⁴, M. Vos ¹⁰⁰, R. Voss ²³, T.T. Voss ¹⁷³, J.H. Vossebeld ⁷², N. Vranjes ¹³³, M. Vranjes ¹¹⁰Savijevic ¹³⁴, V. Vrba ¹²⁴, M. Vreeswijk ¹⁰⁴, T. Vu Anh ⁴⁸, R. Vuillermet ²⁹, I. Vukotic ¹¹⁴, W. Wagner ¹⁷³, P. Wagner ¹¹⁹, H. Wahlen ¹⁷³, J. Wakabayashi ¹⁰⁰, S. Walch ⁸⁶, J. Walder ⁷⁰, R. Walker ⁹⁷, W. Walkowiak ¹⁴⁰, R. Wall ¹⁷⁴, P. Waller ⁷², C. Wang ⁴⁴, H. Wang ¹⁷¹, H. Wang ^{32b,ag}, J. Wang ¹⁵⁰, J. Wang ⁵⁵, J.C. Wang ¹³⁷, R. Wang ¹⁰², S.M. Wang ¹⁵⁰, T. Wang ²⁰, A. Warburton ⁸⁴, C.P. Ward ²⁷, M. Warsinsky ⁴⁸, C. Wasicki ⁴¹, P.M. Watkins ¹⁷, A.T. Watson ¹⁷, I.J. Watson ¹⁴⁹, M.F. Watson ¹⁷, G. Watts ¹³⁷, S. Watts ⁸¹, A.T. Waugh ¹⁴⁹, B.M. Waugh ⁷⁶, M. Weber ¹²⁸, M.S. Weber ¹⁶, P. Weber ⁵⁴, A.R. Weidberg ¹¹⁷, P. Weigell ⁹⁸, J. Weingarten ⁵⁴, C. Weiser ⁴⁸, H. Wellenstein ²², P.S. Wells ²⁹, T. Wenaus ²⁴, D. Wendland ¹⁵, S. Wendler ¹²², Z. Weng ^{150,u}, T. Wengler ²⁹, S. Wenig ²⁹, N. Wermer ⁴⁸, P. Werner ²⁹, M. Werther ¹⁶², M. Wessels ^{58a}, J. Wetter ¹⁶⁰ H. Wellenstein²², P.S. Wells²³, T. Wenaus²⁴, D. Wendland¹³, S. Wendler¹²², Z. Weng^{150,4}, T. Wengler²⁹, S. Wenig²⁹, N. Wermes²⁰, M. Werner⁴⁸, P. Werner²⁹, M. Werth¹⁶², M. Wessels^{58a}, J. Wetter¹⁶⁰, C. Weydert⁵⁵, K. Whalen²⁸, S.J. Wheeler-Ellis¹⁶², S.P. Whitaker²¹, A. White⁷, M.J. White⁸⁵, S.R. Whitehead¹¹⁷, D. Whiteson¹⁶², D. Whittington⁶⁰, F. Wicek¹¹⁴, D. Wicke¹⁷³, F.J. Wickens¹²⁸, W. Wiedenmann¹⁷¹, M. Wielers¹²⁸, P. Wienemann²⁰, C. Wiglesworth⁷⁴, L.A.M. Wiik-Fuchs⁴⁸, P.A. Wijeratne⁷⁶, A. Wildauer¹⁶⁶, M.A. Wildt^{41,q}, I. Wilhelm¹²⁵, H.G. Wilkens²⁹, J.Z. Will⁹⁷, E. Williams³⁴, H.H. Williams¹¹⁹, W. Willis³⁴, S. Willocq⁸³, J.A. Wilson¹⁷, M.G. Wilson¹⁴², A. Wilson⁸⁶, I. Wingerter-Seez⁴, S. Winkelmann⁴⁸, F. Winklmeier²⁹, M. Wittgen¹⁴², M.W. Wolter³⁸, H. Wolters^{123a,h}, W.C. Wong⁴⁰, C. Wooden⁸⁶, B.K. Wosiek³⁸, J. Wotschack²⁹, M.J. Woudstra⁸³, K.W. Wozniak³⁸ I. Wingerter-Seez⁴, S. Winkelmann⁴⁸, F. Winklmeier²⁹, M. Wittgen¹⁴², M.W. Wolter³⁸, H. Wolters^{123a,h}, W.C. Wong⁴⁰, G. Wooden⁸⁶, B.K. Wosiek³⁸, J. Wotschack²⁹, M.J. Woudstra⁸³, K.W. Wozniak³⁸, K. Wraight⁵³, C. Wright⁵³, M. Wright⁵³, B. Wrona⁷², S.L. Wu¹⁷¹, X. Wu⁴⁹, Y. Wu^{32b,ah}, E. Wulf³⁴, R. Wunstorf⁴², B.M. Wynne⁴⁵, S. Xella³⁵, M. Xiao¹³⁵, S. Xie⁴⁸, Y. Xie^{32a}, C. Xu^{32b,w}, D. Xu¹³⁸, G. Xu^{32a}, B. Yabsley¹⁴⁹, S. Yacoob^{144b}, M. Yamada⁶⁵, H. Yamaguchi¹⁵⁴, A. Yamamoto⁶⁵, K. Yamamoto⁶³, S. Yamamoto¹⁵⁴, T. Yamamura¹⁵⁴, T. Yamanaka¹⁵⁴, J. Yamaoka⁴⁴, T. Yamazaki¹⁵⁴, Y. Yamazaki⁶⁶, Z. Yan²¹, H. Yang⁸⁶, U.K. Yang⁸¹, Y. Yang⁶⁰, Y. Yang^{32a}, Z. Yang^{145a,145b}, S. Yanush⁹⁰, Y. Yao¹⁴, Y. Yasu⁶⁵, G.V. Ybeles Smit¹²⁹, J. Ye³⁹, S. Ye²⁴, M. Yilmaz^{3c}, R. Yoosoofmiya¹²², K. Yorita¹⁶⁹, R. Yoshida⁵, C. Young¹⁴², S. Youssef²¹, D. Yu²⁴, J. Yu⁷, J. Yu¹¹¹, L. Yuan^{32a,ai}, A. Yurkewicz¹⁰⁵, B. Zabinski³⁸, V.G. Zaets¹²⁷, R. Zaidan⁶², A.M. Zaitsev¹²⁷, Z. Zajacova²⁹, L. Zanello^{131a,131b}, A. Zaytsev¹⁰⁶, C. Zeitnitz¹⁷³, M. Zeller¹⁷⁴, M. Zeman¹²⁴, A. Zemla³⁸, C. Zendler²⁰, O. Zenin¹²⁷, T. Ženiš^{143a}, Z. Zinonos^{121a,121b}, S. Zenz¹⁴, D. Zerwas¹¹⁴, G. Zevi della Porta⁵⁷, Z. Zhan^{32d}, D. Zhang^{32b,ag}, H. Zhang⁵⁵, X. Zhang⁵⁵, X. Zhang³⁵, X. Zhang^{32d}, Z. Zhang¹⁴¹, L. Zhao¹⁰⁷, T. Zhao¹³⁷, Z. Zhao^{32b}, A. Zhemchugov⁶⁴, S. Zheng^{32a}, J. Zhong¹¹⁷, B. Zhou⁸⁶, N. Zhou¹⁶², Y. Zhou¹⁵⁰, C.G. Zhu^{32d}, H. Zhu⁴¹, J. Zhu⁸⁶, Y. Zhu^{32b}, X. Zhuang⁹⁷, V. Zhuravlov⁹⁸, D. Zieminska⁶⁰, R. Zimmermann²⁰, S. Zimmermann²⁰,

S. Zimmermann⁴⁸, M. Ziolkowski ¹⁴⁰, R. Zitoun⁴, L. Živkovič³⁴, V.V. Zmouchko ^{127,*}, G. Zobernig¹⁷¹, A. Zoccoli ^{19a,19b}, A. Zsenei²⁹, M. zur Nedden¹⁵, V. Zutshi ¹⁰⁵, L. Zwalinski²⁹

- ³ ^(a) Department of Physics, Ankara University, Ankara; ^(b) Department of Physics, Dumlupinar University, Kutahya; ^(c) Department of Physics, Gazi University, Ankara; ^(d) Division of Physics, TOBB University of Economics and Technology, Ankara; ^(e) Turkish Atomic Energy Authority, Ankara, Turkey
- LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
- ⁵ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
- ⁶ Department of Physics, University of Arizona, Tucson, AZ, United States
- Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
- ⁸ Physics Department, University of Athens, Athens, Greece
- ⁹ Physics Department, National Technical University of Athens, Zografou, Greece
- ¹⁰ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ¹¹ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
- ¹² ^(a) Institute of Physics, University of Belgrade, Belgrade; ^(b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
- ¹³ Department for Physics and Technology, University of Bergen, Bergen, Norway
- ¹⁴ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
- ¹⁵ Department of Physics, Humboldt University, Berlin, Germany
- ¹⁶ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
- ¹⁷ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
 ¹⁸ ^(a) Department of Physics, Bogazici University, Istanbul; ^(b) Division of Physics, Dogus University, Istanbul; ^(c) Department of Physics Engineering, Gaziantep University, Gaziantep;
- ^(d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
- ¹⁹ (⁽ⁱ⁾ INFN Sezione di Bologna; ^(b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
 ²⁰ Physikalisches Institut, University of Bonn, Bonn, Germany
- ²¹ Department of Physics, Boston University, Boston, MA, United States
- ²² Department of Physics, Brandeis University, Waltham, MA, United States
- 23 (a) Universidade Federal do Rio De Janeiro COPPE/EE/JF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFIF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSI), Sao Joao del Rei, ^(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
- ²⁴ Physics Department, Brookhaven National Laboratory, Upton, NY, United States
- 25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
- ²⁶ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- ²⁷ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- ²⁸ Department of Physics, Carleton University, Ottawa, ON, Canada
- ²⁹ CERN, Geneva, Switzerland
- ³⁰ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
- ³¹ (a) Departamento de Física, Pontego, Entago, El ontego, El ontego, Chilego, Physics, Nanjing University, Jiangsu; ^(d) School of Physics, Shandong University, Shandong, China
- Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
- ³⁴ Nevis Laboratory, Columbia University, Irvington, NY, United States
- ³⁵ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
 ³⁶ ^(a) INFN Gruppo Collegato di Cosenza; ^(b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
- ³⁷ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
- ³⁸ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
- ³⁹ Physics Department, Southern Methodist University, Dallas, TX, United States
- ⁴⁰ Physics Department, University of Texas at Dallas, Richardson, TX, United States
- ⁴¹ DESY, Hamburg and Zeuthen, Germany
- ⁴² Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
- ⁴³ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
- ⁴⁴ Department of Physics, Duke University, Durham, NC, United States
- ⁴⁵ SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- ⁴⁶ Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
- ⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy
- ⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
- ⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland
- ⁵⁰ ^(a) INFN Sezione di Genova; ^(b) Dipartimento di Fisica, Università di Genova, Genova, Italy
- ⁵¹ ^(a) E.Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; ^(b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
- ⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
- ⁵³ SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
- ⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
- 55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
- ⁵⁶ Department of Physics, Hampton University, Hampton, VA, United States
- ⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
- 58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg; Heidelberg; (CZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
- ⁵⁹ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
- ⁶⁰ Department of Physics, Indiana University, Bloomington, IN, United States
- ⁶¹ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
- ⁶² University of Iowa, Iowa City, IA, United States
- ⁶³ Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
- ⁶⁴ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
- ⁶⁵ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
- ⁶⁶ Graduate School of Science, Kobe University, Kobe, Japan
- ⁶⁷ Faculty of Science, Kyoto University, Kyoto, Japan
- ⁶⁸ Kyoto University of Education, Kyoto, Japan
- ⁶⁹ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
- ⁷⁰ Physics Department, Lancaster University, Lancaster, United Kingdom

¹ University at Albany, Albany, NY, United States

² Department of Physics, University of Alberta, Edmonton, AB, Canada

⁷¹ ^(a) INFN Sezione di Lecce; ^(b) Dipartimento di Fisica, Università del Salento, Lecce, Italy

⁷² Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

⁷³ Department of Physics, Jožef Stefan Institute and University of Ljubliana, Ljubliana, Slovenia

⁷⁴ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

⁷⁵ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom ⁷⁶ Department of Physics and Astronomy, University College London, London, United Kingdom

⁷⁷ Laboratoire de Physique Nucléaire et de Hautes Énergies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

⁷⁸ Fvsiska institutionen, Lunds universitet, Lund, Sweden

⁷⁹ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain

⁸⁰ Institut für Physik, Universität Mainz, Mainz, Germany

⁸¹ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

⁸² CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

⁸³ Department of Physics, University of Massachusetts, Amherst, MA, United States

⁸⁴ Department of Physics, McGill University, Montreal, QC, Canada

⁸⁵ School of Physics, University of Melbourne, Victoria, Australia

⁸⁶ Department of Physics, The University of Michigan, Ann Arbor, MI, United States

⁸⁷ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States

⁸⁸ ^(a) INFN Sezione di Milano; ^(b) Dipartimento di Fisica, Università di Milano, Milano, Italy

⁸⁹ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

⁹⁰ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus

⁹¹ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States

⁹² Group of Particle Physics, University of Montreal, Montreal, QC, Canada 93 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

⁹⁴ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

⁹⁵ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

⁹⁶ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

⁹⁷ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

98 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

⁹⁹ Nagasaki Institute of Applied Science, Nagasaki, Japan

¹⁰⁰ Graduate School of Science, Nagoya University, Nagoya, Japan

¹⁰¹ ^(a) INFN Sezione di Napoli; ^(b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy

¹⁰² Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States

¹⁰³ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

¹⁰⁴ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

¹⁰⁵ Department of Physics, Northern Illinois University, DeKalb, IL, United States

¹⁰⁶ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

¹⁰⁷ Department of Physics, New York University, New York, NY, United States

¹⁰⁸ Ohio State University, Columbus, OH, United States

¹⁰⁹ Faculty of Science, Okayama University, Okayama, Japan

¹¹⁰ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States

¹¹¹ Department of Physics, Oklahoma State University, Stillwater, OK, United States

¹¹² Palacký University, RCPTM, Olomouc, Czech Republic

¹¹³ Center for High Energy Physics, University of Oregon, Eugene, OR, United States

¹¹⁴ LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France

¹¹⁵ Graduate School of Science, Osaka University, Osaka, Japan

¹¹⁶ Department of Physics, University of Oslo, Oslo, Norway

¹¹⁷ Department of Physics, Oxford University, Oxford, United Kingdom

¹¹⁸ ^(a) INFN Sezione di Pavia; ^(b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy

¹¹⁹ Department of Physics, University of Pennsylvania, Philadelphia, PA, United States

¹²⁰ Petersburg Nuclear Physics Institute, Gatchina, Russia

¹²¹ ^(a) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

¹²² Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States

123 (a) Laboratorio de Instrumentacao e Física Experimental de Particulas – LIP, Lisboa, Portugal; (b) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain

¹²⁴ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

¹²⁵ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

¹²⁶ Czech Technical University in Prague, Praha, Czech Republic

¹²⁷ State Research Center Institute for High Energy Physics, Protvino, Russia

¹²⁸ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

¹²⁹ Physics Department, University of Regina, Regina, SK, Canada

¹³⁰ Ritsumeikan University, Kusatsu, Shiga, Japan

^(a) INFN Sezione di Roma I; ^(b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
 ^(a) INFN Sezione di Roma Tor Vergata; ^(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

¹³³ ^(a) INFN Sezione di Roma Tre; ^(b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy

134 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies – Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; ^(c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; ^(d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ^(e) Faculté des Sciences, Université Mohammed V- Agdal, Rabat, Morocco

135 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France

¹³⁶ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States

¹³⁷ Department of Physics, University of Washington, Seattle, WA, United States

¹³⁸ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

¹³⁹ Department of Physics, Shinshu University, Nagano, Japan

¹⁴⁰ Fachbereich Physik, Universität Siegen, Siegen, Germany

¹⁴¹ Department of Physics, Simon Fraser University, Burnaby, BC, Canada

142 SLAC National Accelerator Laboratory, Stanford, CA, United States

143 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

144 (@ Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

¹⁴⁵ ^(a) Department of Physics, Stockholm University; ^(b) The Oskar Klein Centre, Stockholm, Sweden

¹⁴⁶ Physics Department, Royal Institute of Technology, Stockholm, Sweden

- ¹⁴⁷ Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
- ¹⁴⁸ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
- ¹⁴⁹ School of Physics, University of Sydney, Sydney, Australia
- ¹⁵⁰ Institute of Physics, Academia Sinica, Taipei, Taiwan
- ¹⁵¹ Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
- ¹⁵² Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ¹⁵³ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- ¹⁵⁴ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
- ¹⁵⁵ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- ¹⁵⁶ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- ¹⁵⁷ Department of Physics, University of Toronto, Toronto, ON, Canada
- ¹⁵⁸ ^(a) TRIUMF, Vancouver, BC; ^(b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
- ¹⁵⁹ Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- ¹⁶⁰ Science and Technology Center, Tufts University, Medford, MA, United States
- ¹⁶¹ Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
- ¹⁶² Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
 ¹⁶³ ^(a) INFN Gruppo Collegato di Udine; ^(b) ICTP, Trieste; ^(c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
- ¹⁶⁴ Department of Physics, University of Illinois, Urbana, IL, United States
- ¹⁶⁵ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
- 166 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
- ¹⁶⁷ Department of Physics, University of British Columbia, Vancouver, BC, Canada
- ¹⁶⁸ Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- ¹⁶⁹ Waseda University, Tokyo, Japan
- ¹⁷⁰ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- ¹⁷¹ Department of Physics, University of Wisconsin, Madison, WI, United States
- ¹⁷² Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- ¹⁷³ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- 174 Department of Physics, Yale University, New Haven, CT, United States
- ¹⁷⁵ Yerevan Physics Institute, Yerevan, Armenia
- ¹⁷⁶ Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
- ^a Also at Laboratorio de Instrumentação e Fisiça Experimental de Particulas LIP, Lisboa, Portugal,
- Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
- Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
- ^d Also at TRIUMF, Vancouver, BC, Canada.
- Also at Department of Physics, California State University, Fresno, CA, United States.
- Also at Novosibirsk State University, Novosibirsk, Russia.
- g Also at Fermilab, Batavia, IL, United States.
- ^h Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
- Also at Università di Napoli Parthenope, Napoli, Italy.
- Also at Institute of Particle Physics (IPP), Canada.
- k Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
- Also at Louisiana Tech University, Ruston, LA, United States.
- Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
- Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
- Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
- р Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
- Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
- Also at Manhattan College, New York, NY, United States.
- Also at School of Physics, Shandong University, Shandong, China.
- Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
- Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
- Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
- Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.
- Also at Section de Physique, Université de Genève, Geneva, Switzerland.
- Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal,
- Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
- aa Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
- Also at California Institute of Technology, Pasadena, CA, United States.
- Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
- ad Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France.
- ^{ae} Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
- af Also at Department of Physics, Oxford University, Oxford, United Kingdom.
- ^{ag} Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
- ^{ah} Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
- ^{ai} Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
- Deceased.