Physics Letters B 718 (2013) 841-859

Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in $\sqrt{s} = 7$ TeV *pp* collisions with the ATLAS detector $\stackrel{\text{transverse}}{=}$

ATLAS Collaboration*

ARTICLE INF	0
-------------	---

Article history: Received 15 August 2012 Received in revised form 5 November 2012 Accepted 13 November 2012 Available online 19 November 2012 Editor: H. Weerts

ABSTRACT

A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb⁻¹ of $\sqrt{s} = 7$ TeV proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results.

© 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

Supersymmetry (SUSY) [1-9] postulates the existence of SUSY particles, or "sparticles", with spin differing by one-half unit with respect to that of their Standard Model (SM) partner. If Rparity [10-14] is conserved, the lightest SUSY particle (LSP) is stable and sparticles can only be pair-produced and decay into final states with SM particles and LSPs. Charginos ($\tilde{\chi}_i^{\pm}$, i = 1, 2) and neutralinos ($\tilde{\chi}_j^0$, j = 1, 2, 3, 4) are the mass eigenstates formed from the linear superposition of the SUSY partners of the Higgs and electroweak gauge bosons. These are the Higgsinos, and the winos, zino, and bino, collectively known as gauginos. Naturalness requires $\tilde{\chi}_i^{\pm}$ and $\tilde{\chi}_i^0$ (and third-generation sparticles) to have masses in the hundreds of GeV range [15,16]. In scenarios where squark and gluino masses are larger than a few TeV, the direct production of gauginos may be the dominant SUSY process at the Large Hadron Collider (LHC). Charginos can decay into leptonic final states via sneutrinos $(\tilde{\nu}\ell)$, sleptons $(\tilde{\ell}\nu)$ or W bosons $(W\tilde{\chi}_1^0)$, while unstable neutralinos can decay via sleptons $(\ell \tilde{\ell})$ or Z bosons $(Z \tilde{\chi}_{1}^{0}).$

This Letter presents a search with the ATLAS detector for the direct production of charginos and neutralinos decaying to a final state with three leptons (electrons or muons) and missing transverse momentum, the latter originating from the two undetected LSPs and the neutrinos. The analysis is based on 4.7 fb⁻¹ of proton-proton collision data delivered by the LHC at a centre-of-mass energy $\sqrt{s} = 7$ TeV between March and October 2011. The

0370-2693/ © 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license. http://dx.doi.org/10.1016/j.physletb.2012.11.039

search described here significantly extends the current mass limits on charginos and neutralinos set by ATLAS [17,18]. Similar searches have been conducted at the Tevatron [19,20] and LEP [21], where a model-independent lower limit of 103.5 GeV was set at 95% confidence level (CL) on the mass of promptly decaying charginos.

2. Detector description

ATLAS [22] is a multipurpose particle detector with forwardbackward symmetric cylindrical geometry. It includes an inner tracker (ID) immersed in a 2 T magnetic field providing precision tracking of charged particles for pseudorapidities $|\eta| < 2.5.^1$ Calorimeter systems with either liquid argon or scintillating tiles as the active media provide energy measurements over the range $|\eta| < 4.9$. The muon detectors are positioned outside the calorimeters and are contained in an air-core toroidal magnetic field produced by superconducting magnets with field integrals varying from 1 T m to 8 T m. They provide trigger and high-precision tracking capabilities for $|\eta| < 2.4$ and $|\eta| < 2.7$, respectively.

3. New physics scenarios

In this analysis, results are interpreted in the phenomenological minimal supersymmetric SM (pMSSM [23]) and in simplified models [24].

^{*} E-mail address: atlas.publications@cern.ch.

¹ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the *z*-axis along the beam pipe. The *x*-axis points from the IP to the centre of the LHC ring, and the *y*-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

In the pMSSM the mixing for the $\tilde{\chi}_i^{\pm}$ and $\tilde{\chi}_j^0$ depends on the gaugino masses M_1 and M_2 , the Higgs mass parameter μ , and $\tan\beta$, the ratio of the expectation values of the two Higgs doublets. The dominant mode for gaugino production leading to three-lepton final states is $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production via the *s*-channel exchange of a virtual gauge boson. Other $\tilde{\chi}_i^{\pm} \tilde{\chi}_i^0$ processes contribute a maximum of 20% to three-lepton final states depending on the values of the mass parameters. The right-handed sleptons (including third-generation sleptons) are assumed to be degenerate and have a mass $m_{\tilde{\ell}_R} = (m_{\tilde{\chi}^0_2} + m_{\tilde{\chi}^0_1})/2$, set via the right-handed SUSYbreaking slepton mass parameter at the electroweak scale. In these scenarios, decays to sleptons are favoured. The parameter $\tan \beta$ is set to 6, yielding comparable branching ratios into each slepton generation. The masses of the gluinos, squarks and left-handed sleptons are chosen to be larger than 2 TeV. In order to achieve maximum mixing in the top-squark sector the corresponding trilinear couplings are set to non-zero values, while all other trilinear couplings are set to zero.

In the simplified models considered, the masses of the relevant particles $(\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0, \tilde{\chi}_1^0, \tilde{\nu}, \tilde{\ell}_L)$ are the only free parameters. The charginos and heavy neutralinos are set to be wino-like and mass degenerate, and the lightest neutralino is set to be bino-like. Two different scenarios are considered. In the first case, the $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ are pair-produced and decay via left-handed sleptons, including staus, and sneutrinos of mass $m_{\tilde{\nu}} = m_{\tilde{\ell}_L} = (m_{\tilde{\chi}_1^0} + m_{\tilde{\chi}_1^\pm})/2$ with a branching ratio of 50% each. In the second scenario, the $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ decay via *W* and *Z* bosons.

4. Monte Carlo simulation

Several Monte Carlo (MC) generators are used to simulate SM processes and new physics signals relevant for this analysis. SHERPA [25] is used to simulate diboson processes WZ and ZZ. These include all diagrams leading to three leptons and one neutrino, and to four leptons, respectively, including internal conversions (virtual photons converting into lepton pairs). HERWIG [26] is used for WW, while MadGraph [27] is used for the $t\bar{t}W$, $t\bar{t}WW$, $t\bar{t}Z$, $W\gamma$ and $Z\gamma$ processes. MC@NLO [28] is chosen for the simulation of single- and pair-production of topquarks, and ALPGEN [29] is used to simulate W/Z + jets. Expected diboson yields are normalised using next-to-leading-order (NLO) QCD predictions obtained with MCFM [30,31]. The top-quark pair-production contribution is normalised to approximate next-tonext-to-leading-order calculations (NNLO) [32] and the $t\bar{t}W(W)/Z$ contributions are normalised to NLO [33,34]. The $W\gamma$ and $Z\gamma$ yields are normalised to be consistent with the ATLAS cross-section measurement [35]. The QCD NNLO FEWZ [36,37] cross-sections are used for normalisation of the inclusive W + light-flavour iets and Z +light-flavour jets. The ratio of the NNLO to LO cross-section is used to rescale the W + heavy-flavour jets and Z + heavy-flavour jets LO cross-sections.

The choice of the parton distribution functions (PDFs) depends on the generator. The CTEQ6L1 [38] PDFs are used with Mad-Graph and ALPGEN, and the CT10 [39] PDFs with MC@NLO and SHERPA. The MRTSmcal PDF set [40] is used for HERWIG.

The pMSSM samples are produced with HERWIG and the simplified model samples with Herwig++ [41]. The yields of the SUSY samples are normalised to the NLO cross-sections obtained from PROSPINO [42] using the PDF set CTEQ6.6 with the renormalisation/factorisation scales set to the average of the relevant gaugino masses.

Fragmentation and hadronisation for the ALPGEN and MC@NLO (MadGraph) samples are performed with HERWIG (PYTHIA [43]), while for SHERPA, these are performed internally. JIMMY [44] is

interfaced to HERWIG for simulating the underlying event. For all MC samples, the propagation of particles through the ATLAS detector is modelled using GEANT4 [45,46]. The effect of multiple proton-proton collisions from the same or different bunch crossings is incorporated into the simulation by overlaying additional minimum bias events onto hard-scatter events using PYTHIA. Simulated events are weighted to match the distribution of the number of interactions per bunch crossing observed in data (pile-up).

5. Event reconstruction and preselection

The data sample was collected with an inclusive selection of single-lepton and double-lepton triggers. If the event is selected by the single-lepton triggers, at least one reconstructed muon (electron) is requested to have transverse momentum p_T^{μ} (transverse energy E_T^e) above 20 GeV (25 GeV). For di-lepton triggers, at least two leptons are required to be present in the event with transverse energy or momentum above threshold. The two muons are required to have $p_T^{\mu} > 12$ GeV for di-lepton triggers, and the two electrons to have $E_T^e > 17$ GeV for di-lectron triggers, while the thresholds for electron–muon triggers are $E_T^e > 15$ GeV and $p_T^{\mu} > 10$ GeV. These thresholds on the reconstructed transverse momenta of leptons are higher than those applied by the online trigger selection, and are chosen such that the trigger efficiency is high, typically between 90 and 99%, and independent of the transverse.

Events recorded during normal running conditions are analysed if the primary vertex has five or more tracks associated to it. The primary vertex of an event is identified as the vertex with the highest Σp_T^2 of associated tracks.

Electrons must satisfy "tight" identification criteria [47] and fulfil $|\eta| < 2.47$ and $E_T > 10$ GeV, where E_T and $|\eta|$ are determined from the calibrated clustered energy deposits in the electromagnetic calorimeter and the matched ID track respectively. Muons are reconstructed by combining tracks in the ID and tracks in the muon spectrometer [48]. Reconstructed muons are considered as candidates if they have transverse momentum $p_T > 10$ GeV and $|\eta| < 2.4$.

In this analysis "tagged" leptons are defined for evaluating the background, as described below in Section 7.1. Tagged leptons are leptons separated from each other and from candidate jets as described below. If two candidate electrons are reconstructed with $\Delta R \equiv \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.1$, the lower energy one is discarded. Candidate jets within $\Delta R = 0.2$ of an electron candidate are rejected. To suppress leptons originating from semi-leptonic decays of *c*- and *b*-quarks, all lepton candidates are required to be separated from candidate jets by $\Delta R > 0.4$. Muons undergoing bremsstrahlung can be reconstructed with an overlapping electron. To reject these, tagged electrons and muons separated from jets and reconstructed within $\Delta R = 0.1$ of each other are both discarded. Events containing one or more tagged muons that have transverse impact parameter with respect to the primary vertex $|d_0| > 0.2$ mm or longitudinal impact parameter with respect to the primary vertex $|z_0| > 1$ mm are rejected to suppress cosmic muon background.

"Signal leptons" are tagged leptons for which the scalar sum of the transverse momenta of tracks within a cone of $\Delta R \equiv \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.2$ around the lepton candidate, and excluding the lepton candidate track itself, is less than 10% of the lepton $E_{\rm T}$ for electrons and less than 1.8 GeV for muons. Tracks selected for the electron and muon isolation requirement, defined above, have $p_{\rm T} > 1$ GeV and are associated to the primary vertex of the event. To suppress leptons originating from secondary vertices, the distance of closest approach of the lepton track to the primary vertex normalised to its uncertainty is required to be small, with $|d_0|/\sigma(d_0) < 6(3)$ for electrons (muons).

Jets are reconstructed using the anti- k_t algorithm [49] with a radius parameter of R = 0.4 using clustered energy deposits calibrated at the electromagnetic scale. The jet energy is corrected to account for pile-up and for the non-compensating nature of the calorimeter using correction factors parameterised as a function of the jet $E_{\rm T}$ and n [50]. The correction factors applied to jets have been obtained from simulation and have been tuned and validated using data. Jets considered in this analysis have $E_{\rm T}$ > 20 GeV, $|\eta| < 2.5$ and a fraction of the jet's track transverse momenta that can be associated with the primary vertex greater than 0.75. Events containing jets failing the quality criteria described in Ref. [50] are rejected to suppress both SM and beam-induced background. Jets are identified as containing *b*-hadron decays, and thus called "b-tagged", using a multivariate technique based on quantities such as the impact parameters of the tracks associated to a reconstructed secondary vertex. The *b*-tagging algorithm [51] correctly identifies b-quark jets in simulated top-quark decays with an efficiency of 60% and misidentifies jets containing light-flavour quarks and gluons with a rate of < 1%, for jets with $|\eta| < 2.5$ and jet $E_{\rm T} > 20$ GeV.

The missing transverse momentum, E_T^{miss} , is the magnitude of the vector sum of the transverse momentum or transverse energy of all $p_T > 10$ GeV muons, $E_T > 20$ GeV electrons, $E_T > 20$ GeV jets, and calibrated calorimeter clusters with $|\eta| < 4.9$ not associated to these objects [52].

6. Signal region selection

Selected events must contain exactly three signal leptons. As R-parity conserving leptonic decays of $\tilde{\chi}_j^0$ yield same-flavour opposite-sign (SFOS) lepton pairs, the presence of at least one such pair is required. The invariant mass of any SFOS lepton pair must be above 20 GeV to suppress background from low-mass resonances and the missing transverse momentum must satisfy $E_{\rm T}^{\rm miss} > 75$ GeV.

Three signal regions are then defined: two "Z-depleted" regions (SR1a and SR1b), with no SFOS pairs having invariant mass within 10 GeV of the nominal Z-boson mass; and a "Z-enriched" one (SR2), where at least one SFOS pair has an invariant mass within 10 GeV of the Z-boson mass. Events in SR1a and SR1b are further required to contain no b-tagged jets to suppress contributions from *b*-jet-rich background processes, where a lepton could originate from the decay of a heavy-flavor quark. SR1b is designed to increase sensitivity to scenarios characterised by large mass splittings between the heavy gauginos and the LSP by requiring all three leptons to have $p_T > 30$ GeV. In both SR1b and SR2, the transverse mass variable $m_{\rm T}$ must take values greater than 90 GeV, where $m_{\rm T}$ is constructed using the $E_{\rm T}^{\rm miss}$ and the lepton not included in the lepton pair with invariant mass closest to the nominal Z-boson mass. The $m_{\rm T}$ requirement is introduced to suppress background from WZ events. The SR1a/b regions target neutralino decays via intermediate sleptons or via off-shell Z bosons while SR2 targets decays via an on-shell Z boson. Table 1 summarises the selection requirements for the three signal regions.

7. Standard model background estimation

7.1. Reducible background processes

Several SM processes contribute to the background in the signal regions. A "reducible" process has at least one "fake" object, that is either a lepton from a semileptonic decay of a heavy-flavour quark

Table 1

The selection requirements for the three signal regions. The *Z*-veto (*Z*-requirement) rejects (selects) events with m_{SFOS} within 10 GeV of the *Z* mass (91.2 GeV). The m_T is calculated from the E_T^{miss} and the lepton not forming the best *Z* candidate.

Selection	SR1a	SR1b	SR2
Targeted intermediate decay	Ĩ ^(*) (or Z*	on-shell Z
N leptons (e, μ)	Exactly 3		
Lepton charge, flavour	At least one SFOS pair with $m_{\ell\ell} > 20~{ m GeV}$		
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 75~{ m GeV}$		
m _{sFos}	Z-veto	Z-veto	Z-requirement
N b-jets	0	0	any
m _T	any	> 90 GeV	> 90 GeV
p _T all ℓ	> 10 GeV	> 30 GeV	> 10 GeV

or an electron from an isolated photon conversion. The contribution from misidentified light-flavour quark or gluon jets is negligible in the signal regions. The reducible background includes singleand pair-production of top-quarks and WW or W/Z produced in association with jets or photons. The dominant component is the production of top-quarks, with a contribution of 1% or less from Z + jets. The reducible background is estimated using a "matrix method" similar to that described in Ref. [53].

In this implementation of the matrix method, the signal lepton with the highest $p_{\rm T}$ or $E_{\rm T}$ is taken to be real, which is a valid assumption in 99% of the cases, based on simulation. The number of observed events with one or two fakes is then extracted from a system of linear equations relating the number of events with two additional signal or tagged candidates to the number of events with two additional candidates that are either real or fake. The coefficients of the linear equations are functions of the real-lepton identification efficiencies and of the fake-object misidentification probabilities.

The identification efficiency is measured in data using lepton candidates from $Z \rightarrow \ell \ell$ decays. Misidentification probabilities for each relevant fake type (heavy flavour or conversion) and for each reducible background process, parameterised with the lepton $p_{\rm T}$ and η , are obtained using simulated events with one signal and two tagged leptons. These misidentification probabilities are then corrected using the ratio (fake scale factor) of the misidentification probability in data to that in simulation obtained from dedicated control samples. For heavy-flavour fakes, the correction factor is measured in a $b\bar{b}$ -dominated control sample. This is defined by selecting events with only one *b*-tagged jet (containing a muon) and a tagged lepton, for which the fake rate is measured. The non $b\bar{b}$ background includes top-quark pair-production and W bosons produced in association with a *b*-quark. An E_{T}^{miss} requirement of less than 40 GeV suppresses both the $t\bar{t}$ and the W contamination, while requiring $m_{\rm T} < 40~{\rm GeV}$ reduces the W background. The remaining (small) background is subtracted from data using MC predictions. The fake scale factor for the conversion candidates is determined in a sample of photons radiated from a muon in $Z \rightarrow \mu \mu$ decays. These are selected by requiring $m_{\mu\mu e}$ to lie within 10 GeV of the nominal Z-boson mass value. A weighted average misidentification probability is then calculated by weighting the corrected type- and process-dependent misidentification probabilities according to the relative contributions in a given signal or validation region, defined below.

7.2. Irreducible background processes

A background process is considered "irreducible" if it leads to events with three real and isolated leptons, referred to as "real" leptons below. Such processes include diboson (WZ and ZZ) and $t\bar{t}W/Z$ production, where the gauge boson may be produced offmass-shell. The ZZ and $t\bar{t}W/Z$ contribution is determined using Table 2

Expected numbers of events from SM backgrounds and observed numbers of events in data, for 4.7 fb^{-1} , in validation regions VR1, VR2 and VR3. Both statistical and systematic uncertainties are included.

Selection	VR1	VR2	VR3
tīZ	0.17 ± 0.14	0.12 ± 0.10	1.1 ± 0.9
tŦW	0.6 ± 0.5	0.7 ± 0.5	0.10 ± 0.08
tĪW W	0.017 ± 0.014	0.022 ± 0.017	0.0023 ± 0.0019
ZZ	17 ± 15	0.10 ± 0.05	3.9 ± 0.6
WZ	46 ± 8	0.93 ± 0.29	98 ± 12
Reducible Bkg.	50 ± 28	13 ± 7	$3.1^{+4.7}_{-3.1}$
Total Bkg.	114 ± 32	15 ± 7	106 ± 13
Data	126	18	109

the corresponding MC samples, for which lepton and jet selection efficiencies are corrected to account for differences with respect to data.

The largest irreducible background, WZ, is determined using a semi-data-driven approach. The WZ background is fit to data in a control region including events with exactly three leptons, one SFOS lepton pair, a Z candidate, $E_{\rm T}^{\rm miss} < 50~{\rm GeV}$, a b-veto, and $m_{\rm T}$ > 40 GeV. The WZ purity in the control region is ~80%. Non-WZ backgrounds, both irreducible and reducible, are determined based on simulation or by using the matrix method and subtracted. A WZ normalisation factor 1.25 ± 0.12 is obtained in the control region under a background-only hypothesis and used to estimate the WZ background in the validation regions. To obtain the model-independent 95% CL upper limit on the new phenomena cross-section, a fit is performed simultaneously in the WZcontrol region and in the signal region, with floating WZ normalisation factor and a non-negative signal in the signal region only. This allows the propagation of the uncertainties on the normalisation factor. When setting limits on specific new physics scenarios, the potential signal contamination in the WZ control region is accounted for in the simultaneous fit.

8. Background model validation

The background predictions have been tested in various validation regions. A region (VR1) dominated by Drell–Yan and *W Z* events is selected by requiring three signal leptons, at least one SFOS lepton pair, 30 GeV $< E_T^{miss} < 75$ GeV, and a *Z*-boson veto. A reducible-background dominated region (VR2, where top-quark pair-production and decay to two real and one fake lepton is the main contribution) is built by requiring three signal leptons, $E_T^{miss} > 50$ GeV and by vetoing SFOS lepton pairs. Finally, a *W Z*-dominated region (VR3) is defined by selecting events with three signal leptons, at least one SFOS lepton pair, a *Z* candidate, and 50 GeV $< E_T^{miss} < 75$ GeV. The data and predictions are in agreement within the quoted statistical and systematic uncertainties as shown in Table 2.

9. Systematic uncertainties

Several sources of systematic uncertainty are considered in the signal, control and validation regions. The systematic uncertainties affecting the simulation-based estimates (the yield of the irreducible background, the cross-section weighted misidentification probabilities, the signal yield) include the theoretical cross-section uncertainties due to renormalisation and factorisation scale and PDFs, the acceptance uncertainty due to PDFs, the uncertainty on the luminosity, the uncertainty due to the jet energy scale, jet energy resolution, lepton energy scale, lepton energy resolution, lepton efficiency, *b*-tagging efficiency, mistag probability, and the choice of MC generator. In SR1a, the total uncertainty on the irreducible background is 24%. This is dominated by the uncertainty

Table 3

Expected numbers of events from SM backgrounds and observed numbers of events in data, for 4.7 fb⁻¹, in signal regions SR1a, SR1b and SR2. The yield for two of the simplified model scenarios, "SUSY ref. point 1" with intermediate sleptons, $(m_{\tilde{\chi}_1^\pm}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_L}, m_{\tilde{\chi}_1^0}) = 425, 425, 250, 75 \text{ GeV}$ and "SUSY ref. point 2" with no intermediate sleptons, $(m_{\tilde{\chi}_1^\pm}, m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_1}) = 150, 150, 0 \text{ GeV}$ are also presented. Both statistical and systematic uncertainties are included. Upper limits on the observed and expected visible production cross-section at 95% CL are also shown.

Selection	SR1a	SR1b	SR2
tĪZ	0.06 ± 0.05	0.025 ± 0.023	0.6 ± 0.5
ttW	0.36 ± 0.29	0.10 ± 0.08	0.09 ± 0.08
tĪW W	0.010 ± 0.008	0.0023 ± 0.0019	0.004 ± 0.004
ZZ	0.67 ± 0.21	0.09 ± 0.08	0.34 ± 0.17
WZ	13.5 ± 2.9	1.05 ± 0.28	9.3 ± 2.1
Reducible Bkg.	10 ± 5	0.35 ± 0.34	$0.5^{+1.0}_{-0.5}$
Total Bkg.	25 ± 6	1.6 ± 0.5	10.9 ± 2.4
Data	24	0	11
SUSY ref. point 1	8.0 ± 0.8	6.5 ± 0.6	0.46 ± 0.05
SUSY ref. point 2	1.03 ± 0.19	0.21 ± 0.09	10.9 ± 1.0
Visible σ (exp)	< 3.0 fb	< 0.8 fb	< 2.0 fb
Visible σ (obs)	< 3.0 fb	< 0.7 fb	$< 2.0 \ \mathrm{fb}$

on the efficiency of the signal region selection for the WZ generator, determined by comparing the nominal yield with that obtained with the HERWIG generator and found to be 20%. The next largest uncertainties are the uncertainty due to the MC generator (16%) and that on the cross-sections (9%) of the non-WZ background. The MC generator uncertainty partially accounts for the cross-section uncertainty, leading to a slight overestimate of the overall uncertainty. All the remaining uncertainties on the irreducible background in this signal region range between 0.5 and 5%. The total uncertainty on the irreducible background in SR1b is slightly larger, at 25%, due to the limited number of simulated events. In SR2, the uncertainty on the irreducible background is 24%, with increased contributions from the jet energy scale and resolution and cross-section uncertainties.

The uncertainty on the reducible background includes the MC uncertainty on the weights for the misidentification probabilities from the sources listed above (up to 10%) and the uncertainty due to the dependence of the misidentification probability on E_T^{miss} (0.6–15%). Also included in the uncertainty on the reducible background is the uncertainty on the fake scale factors (10–34%), and that due to the limited number of data events with three tagged leptons, of which at least one is a signal lepton (19–130%). The latter uncertainty is highest in SR2 where the reducible background is very low.

The total uncertainties on the signal yields are 10–20%, where the largest contribution is from the uncertainty on the crosssections (7%). Signal cross-sections are calculated to NLO in the strong coupling constant using PROSPINO. An envelope of crosssection predictions is defined using the 68% CL ranges of the CTEQ6.6 [54] (including the α_S uncertainty) and the MSTW [55] PDF sets, together with variations of the factorisation and renormalisation scales by factors of two or one half. The nominal crosssection value is taken to be the midpoint of the envelope and the uncertainty assigned is half the full width of the envelope, following the PDF4LHC recommendations [56].

In all of the above, the value used for the uncertainty on the luminosity is 3.9% [57,58]. Correlations of systematic uncertainties between processes and regions are accounted for.

10. Results and interpretation

The numbers of observed events and the prediction for SM backgrounds in SR1a, SR1b and SR2 are given in Table 3. Distributions of the $E_{\rm T}^{\rm miss}$ in SR1a and SR2 are presented in Fig. 1.

Fig. 1. $E_{\rm T}^{\rm miss}$ distributions for events in signal regions SR1a (a) and SR2 (b). The uncertainty band includes both statistical and systematic uncertainty, while the uncertainties on the data points are statistical only. The yields for two of the simplified model scenarios are also shown for illustration purposes: one with intermediate sleptons "SUSY ref. point 1" $(m_{\tilde{\chi}_1^\pm}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_L}, m_{\tilde{\chi}_2^0} = 425, 425, 250, 75 \text{ GeV})$ and a second with no sleptons "SUSY ref. point 2" $(m_{\tilde{\chi}_1^\pm}, m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_1^0} = 150, 150, 0 \text{ GeV})$. The signal distribution is not stacked on top of the expected background.

No significant excess of events is found in any of the three signal regions. Upper limits on the visible cross-section, defined as the production cross-section times acceptance times efficiency, of 3.0 fb in SR1a, 0.7 fb in SR1b and 2.0 fb in SR2 are placed at 95% CL with the modified frequentist CL_s prescription [59]. All systematic uncertainties and their correlations are taken into account via nuisance parameters in a profile likelihood fit [60]. The corresponding expected limits are 3.0 fb, 0.8 fb and 2.0 fb, respectively.

SR1a and SR1b provide the best sensitivity for the pMSSM scenarios; in particular SR1a (SR1b) targets scenarios with small (large) mass splitting between the heavy gauginos and the LSP. The limits are calculated using the signal region providing the best expected limit for each of the model points. The uncertainties on the signal cross-section are not included in the limit calculation but their impact on the observed limit is shown. The exclusion limits for the pMSSM are shown in Fig. 2 as a function of the three parameters M_1 , M_2 and μ , where the regions with low values of M_2 and μ are the excluded ones for all values of M_1 . In these plots, the main features can be explained in broad terms as follows. For a given value of M_1 , for example $M_1 = 100$ GeV in Fig. 2(a), the production cross-section decreases as M_2 and μ increase, which explains why limits become less stringent when both M_2 and μ take high values. In general, the sensitivity is reduced in the region at low M_2 and high μ , due to the small mass splitting between

Fig. 2. Observed and expected 95% CL limit contours for chargino and neutralino production in the pMSSM for $M_1 = 100$ GeV (a), $M_1 = 140$ GeV (b) and $M_1 = 250$ GeV (c). The regions with low values of M_2 and μ are the excluded ones for all values of M_1 . The expected and observed limits are calculated without signal cross-section uncertainty taken into account. The yellow band is the $\pm 1\sigma$ experimental uncertainty on the expected limit (black dashed line). The red dotted band is the $\pm 1\sigma$ signal theory uncertainty on the observed limit (red solid line). The LEP2 limit in the figure corresponds to the limit on the $\tilde{\chi}_1^{\pm}$ mass in [21] as transposed to this pMSSM plane. Linear interpolation is used to account for the discreteness of the signal grids. The exclusion contours are optimised by applying in each signal grid point the CL values from the most sensitive signal region (lowest expected CL) for $M_1 = 100$ GeV, whereas signal region SR1a is used for $M_1 = 250$ GeV. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 3. Observed and expected 95% CL limit contours for chargino and neutralino production in the pMSSM for $M_1 = 100$ GeV (a), $M_1 = 140$ GeV (b) and $M_1 = 250$ GeV (c). Contours from the combination of the results from this search with those of the two-lepton ATLAS search in [61]. The various limits are as described in Fig. 2. The colour coding is the same as that in Fig. 2.

the $\tilde{\chi}_2^0$ and the $\tilde{\chi}_1^0$. When μ is greater than M_1 and M_2 , which is true for example in the rightmost part of the exclusion plots for $M_1 = 100 \text{ GeV}$ (Fig. 2(a)) and $M_1 = 140 \text{ GeV}$ (Fig. 2(b)), the mass of the gauginos does not depend on μ and the sensitivity remains constant as a function of μ . On the contrary, in a large section

Fig. 4. Observed and expected 95% CL limit contours for chargino and neutralino production in the simplified model scenario with intermediate slepton decay (a) and intermediate gauge boson decay (b). The colour coding is the same as that in Fig. 2. For scenarios with intermediate slepton decay (with no intermediate slepton decay) the reference point is "SUSY ref. point 1" ("SUSY ref. point 2"). The "ATLAS 2.06 fb^{-1} 3 leptons" contour corresponds to the result of the ATLAS search documented in [18].

of the plane shown for $M_1 = 250$ GeV (Fig. 2(c)), the condition that μ should be greater than M_1 is not fulfilled and the resulting limits on the same plane become less stringent. Additionally, the reduced reach at high M_2 and low μ for $M_1 = 140$ GeV can be explained in terms of smaller cross-section values and smaller mass splittings in that section of the parameter space. The difference between expected and observed limits seen in the upper right corner of the $M_1 = 100$ GeV exclusion plot, where SR1b has the best sensitivity, is explained by the observed under-fluctuation in data with respect to SM predictions. The value of $\tan \beta$ does not have a significant impact on $\sigma(pp \rightarrow \tilde{\chi}_i^{\pm} \tilde{\chi}_j^0) \times BR(\tilde{\chi}_i^{\pm} \tilde{\chi}_j^0 \rightarrow \ell \nu \tilde{\chi}_1^0 \ell \ell \tilde{\chi}_1^0)$, which decreases by 10% if $\tan \beta$ is raised from 6 to 10.

The results obtained in signal regions SR1a and SR1b are combined with results from the relevant signal region in the ATLAS two-lepton search (SR- m_{T2}) [61]. The fits are performed on the combined likelihood function from $SR-m_{T2}$ with SR1a, and from SR-m_{T2} with SR1b. The combination yielding the highest expected sensitivity is selected for optimal exclusions in the pMSSM planes (Fig. 3). The uncertainties are profiled in the likelihood and correlations between channels and processes are taken into account. An improvement in the sensitivity for $M_1 = 250$ GeV and small values of M_2 is seen when results from the three-lepton and the two-lepton analyses are combined.

Region SR1b provides the best sensitivity to the simplified models with intermediate slepton decay for which the interpretation is shown in Fig. 4(a). In the simplified models with intermediate slepton decays, degenerate $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ masses up to 500 GeV are excluded for large mass differences from the $\tilde{\chi}_1^{0}$. Both SR1a and SR2 are used to interpret the results in the simplified model with gauginos decaying via gauge bosons (Fig. 4(b)). The signal region SR1a has the best sensitivity for small mass differences between the heavy and light neutralinos, while SR2 is sensitive to decays of $\tilde{\chi}_{2}^{0}$ into on-mass-shell Z bosons.

11. Summary

Results from a search for direct production of charginos and neutralinos in the final state with three leptons (electrons or muons) and missing transverse momentum are reported. The analysis is based on 4.7 fb⁻¹ of proton-proton collision data delivered by the LHC at $\sqrt{s} = 7$ TeV and collected by ATLAS. No significant excess of events is found in data. The null result is interpreted in the pMSSM and simplified models. For the pMSSM, an improvement in the sensitivity for $M_1 = 250$ GeV and small values of M_2 is seen when results from this analysis are combined with those from the corresponding two-lepton ATLAS search. For the simplified models with intermediate slepton decays, degenerate $\tilde{\chi}^\pm_1$ and ${ ilde\chi}^0_2$ masses up to 500 GeV are excluded for large mass differences from the $\tilde{\chi}_1^0$. The analysis presented here also has sensitivity to direct gaugino production with decays via gauge bosons.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation. Denmark: EPLANET and ERC. European Union: IN2P3-CNRS, CEA-DSM/IRFU, France: GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

- [1] H. Miyazawa, Prog. Theor. Phys. 36 (1966) 1266.
- [2] P. Ramond, Phys. Rev. D 3 (1971) 2415.
- [3] Y. Golfand, E. Likhtman, JETP Lett. 13 (1971) 323.
- [4] A. Neveu, J.H. Schwarz, Nucl. Phys. B 31 (1971) 86.
- [5] A. Neveu, J.H. Schwarz, Phys. Rev. D 4 (1971) 1109.
- [6] J.L. Gervais, B. Sakita, Nucl. Phys. B 34 (1971) 632.
- [7] D. Volkov, V. Akulov, Phys. Lett. B 46 (1973) 109.
- [8] J. Wess, B. Zumino, Phys. Lett. B 49 (1974) 52.
- [9] J. Wess, B. Zumino, Nucl. Phys. B 70 (1974) 39.
- [10] P. Fayet, Phys. Lett. B 64 (1976) 159.
- [11] P. Favet, Phys. Lett. B 69 (1977) 489.
- [12] G.R. Farrar, P. Fayet, Phys. Lett. B 76 (1978) 575.
- [13] P. Fayet, Phys. Lett. B 84 (1979) 416.
- [14] S. Dimopoulos, H. Georgi, Nucl. Phys. B 193 (1981) 150.
- [15] R. Barbieri, G.F. Giudice, Nucl. Phys. B 306 (1988) 63.
- [16] B. de Carlos, J.A. Casas, Phys. Lett. B 309 (1993) 320, arXiv:hep-ph/9303291.
- [17] ATLAS Collaboration, Phys. Lett. B 709 (2012) 137, arXiv:1110.6189.
- [18] ATLAS Collaboration, Phys. Rev. Lett. 108 (2012) 261804, arXiv:1204.5638.
- [19] D0 Collaboration, V. Abazov, et al., Phys. Lett. B 680 (2009) 34, arXiv:0901.0646.
- [20] CDF Collaboration, T. Aaltonen, et al., Phys. Rev. Lett. 101 (2008) 251801, arXiv: 0808.2446.
- [21] K. Nakamura, et al., Particle Data Group, J. Phys. G 37 (2010) 075021.
- [22] ATLAS Collaboration, JINST 3 (2008) S08003.
- [23] A. Djouadi, J.L. Kneur, G. Moultaka, Comput. Phys. Commun. 176 (2007) 426, arXiv:hep-ph/0211331.
- [24] J. Alwall, P. Schuster, N. Toro, Phys. Rev. D 79 (2009) 075020, arXiv:0810.3921.
- [25] T. Gleisberg, et al., [HEP 0902 (2009) 007, arXiv:0811.4622.
- [26] G. Corcella, et al., JHEP 0101 (2001) 010, arXiv:hep-ph/0011363.
- [27] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, JHEP 1106 (2011) 128, arXiv:1106.0522
- [28] S. Frixione, B.R. Webber, [HEP 0206 (2002) 029, arXiv:hep-ph/0204244.
- [29] M. Mangano, et al., JHEP 0307 (2003) 001, arXiv:hep-ph/0206293.
- [30] J.M. Campbell, R.K. Ellis, Phys. Rev. D 60 (1999) 113006, arXiv:hep-ph/9905386.
- [31] J.M. Campbell, R.K. Ellis, C. Williams, JHEP 1107 (2011) 018, arXiv:1105.0020.
- [32] M. Aliev, et al., Comput. Phys. Commun. 182 (2011) 1034, arXiv:1007.1327.
- [33] A. Kardos, et al., arXiv:1111.0610, 2011.
- [34] J.M. Campbell, R.K. Ellis, arXiv:1204.5678, 2012.
- [35] ATLAS Collaboration, Phys. Lett. B (2012), submitted for publication, arXiv:
- 1205.2531. [36] K. Melnikov, F. Petriello, Phys. Rev. D 74 (2006) 114017, arXiv:hep-ph/0609070.
- [37] C. Anastasiou, et al., Phys. Rev. D 69 (2004) 094008.
- [38] J. Pumplin, et al., JHEP 0207 (2002) 012, arXiv:0802.0007.
- [39] H. Lai, et al., Phys. Rev. D 82 (2010) 074024, arXiv:1007.2241.
- [40] A. Sherstnev, R.S. Thorne, Eur. Phys. J. C 55 (2008) 553, arXiv:0711.2473 [hep-ph].
- [41] M. Bahr, et al., Eur. Phys. J. C 58 (2008) 639, arXiv:0803.0883.
- [42] W. Beenakker, et al., arXiv:hep-ph/9610490, 1997.
- [43] T. Sjostrand, S. Mrenna, P. Skands, JHEP 0605 (2006) 026, arXiv:hep-ph/ 0603175.
- [44] J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Z. Phys. C 72 (1996) 637, arXiv:1005.4568.
- [45] S. Agostinelli, et al., GEANT4 Collaboration, Nucl. Instrum. Meth. A 506 (2003) 250
- [46] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568.
- [47] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1909, arXiv:1110.3174.
- [48] ATLAS Collaboration, JHEP 1012 (2010) 60.
- [49] M. Cacciari, G.P. Salam, G. Soyez, JHEP 0804 (2008) 063, arXiv:0802.1189.
- [50] ATLAS Collaboration, Eur. Phys. J. C (2011), submitted for publication, arXiv: 1112.6426
- [51] ATLAS Collaboration, ATLAS-CONF-2011-102, http://cdsweb.cern.ch/record/ 1369219
- [52] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1844, arXiv:1108.5602.

- [53] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1577, arXiv:1012.1792.
- [54] P.M. Nadolsky, et al., Phys. Rev. D 78 (2008) 013004.
- [55] A.D. Martin, et al., Eur. Phys. J. C 63 (2009) 189.
- [56] M. Botje, et al., arXiv:1101.0538, 2011.
- [57] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630, arXiv:1101.2185.
- [58] ATLAS Collaboration, ATLAS-CONF-2011-116, http://cdsweb.cern.ch/record/ 1376384.
- [59] A.L. Read, J. Phys. G 28 (2002) 2693.
- [60] G. Cowan, et al., Eur. Phys. J. C 71 (2011) 1554, arXiv:1007.1727.
- [61] ATLAS Collaboration, Phys. Lett. B, submitted for publication, arXiv:1208.2884.

ATLAS Collaboration

G. Aad ⁴⁸, T. Abajyan ²¹, B. Abbott ¹¹¹, J. Abdallah ¹², S. Abdel Khalek ¹¹⁵, A.A. Abdelalim ⁴⁹, O. Abdinov ¹¹, R. Aben ¹⁰⁵, B. Abi ¹¹², M. Abolins ⁸⁸, O.S. AbouZeid ¹⁵⁸, H. Abramowicz ¹⁵³, H. Abreu ¹³⁶, B.S. Acharya ^{164a, 164b}, L. Adamczyk ³⁸, D.L. Adams ²⁵, T.N. Addy ⁵⁶, J. Adelman ¹⁷⁶, S. Adomeit ⁹⁸, P. Adragna ⁷⁵, T. Adye ¹²⁹, S. Aefsky ²³, J.A. Aguilar-Saavedra ^{124b,a}, M. Agustoni ¹⁷, M. Aharrouche ⁸¹, S.P. Ahlen ²², F. Ahles ⁴⁸, A. Ahmad ¹⁴⁸, M. Ahsan ⁴¹, G. Aielli ^{133a, 133b}, T. Akdogan ^{19a}, T.P.A. Åkesson ⁷⁹, G. Akimoto ¹⁵⁵, A.V. Akimov ⁹⁴, M.S. Alam ², M.A. Alam ⁷⁶, J. Albert ¹⁶⁹, S. Albrand ⁵⁵, M. Aleksa ³⁰, I.N. Aleksandrov ⁶⁴, F. Alessandria ^{89a}, C. Alexa ^{26a}, G. Alexander ¹⁵³, G. Alexandre ⁴⁹, T. Alexopoulos ¹⁰, M. Alhroob ^{164a, 164c}, M. Aliev ¹⁶, G. Alimonti ^{89a}, J. Alison ¹²⁰, B.M.M. Allbrooke ¹⁸, P.P. Allport ⁷³, S.E. Allwood-Spiers ⁵³, J. Almond ⁸², A. Aloisio ^{102a, 102b}, R. Alon ¹⁷², A. Alonso ⁷⁹, F. Alonso ⁷⁰, A. Altheimer ³⁵, B. Alvarez Gonzalez ⁸⁸, M.G. Alviggi ^{102a, 102b}, K. Amako ⁶⁵, C. Amelung ²³, V.V. Ammosoy ^{128,*}, S.P. Amor Dos Santos ^{124a}, A. Amorim ^{124a,b}, N. Amram ¹⁵³, C. Anastopoulos ³⁰, V.V. Ammosov ^{128,*}, S.P. Amor Dos Santos ^{124a}, A. Amorim ^{124a,b}, N. Amram ¹⁵³, C. Anastopoulos ³⁰, L.S. Ancu ¹⁷, N. Andari ¹¹⁵, T. Andeen ³⁵, C.F. Anders ^{58b}, G. Anders ^{58a}, K.J. Anderson ³¹, A. Andreazza ^{89a,89b}, V. Andrei ^{58a}, X.S. Anduaga ⁷⁰, P. Anger ⁴⁴, A. Angerami ³⁵, F. Anghinolfi ³⁰, A. Anisenkov ¹⁰⁷, N. Anjos ^{124a}, A. Annovi ⁴⁷, A. Antonaki ⁹, M. Antonelli ⁴⁷, A. Antonov ⁹⁶, J. Antos ^{144b}, A. Anisenkov ¹⁰⁷, N. Anjos ^{124a}, A. Annovi⁴⁷, A. Antonaki¹⁵, M. Antonelli⁴⁷, A. Antonov⁵⁶, J. Antos ^{144b}, F. Anulli ^{132a}, M. Aoki ¹⁰¹, S. Aoun ⁸³, L. Aperio Bella⁵, R. Apolle ^{118,c}, G. Arabidze ⁸⁸, I. Aracena ¹⁴³, Y. Arai ⁶⁵, A.T.H. Arce ⁴⁵, S. Arfaoui ¹⁴⁸, J.-F. Arguin ¹⁵, E. Arik ^{19a}, *, M. Arik ^{19a}, A.J. Armbruster ⁸⁷, O. Arnaez ⁸¹, V. Arnal ⁸⁰, C. Arnault ¹¹⁵, A. Artamonov ⁹⁵, G. Artoni ^{132a,132b}, D. Arutinov ²¹, S. Asai ¹⁵⁵, R. Asfandiyarov ¹⁷³, S. Ask ²⁸, B. Åsman ^{146a,146b}, L. Asquith ⁶, K. Assamagan ²⁵, A. Astbury ¹⁶⁹, M. Atkinson ¹⁶⁵, B. Aubert ⁵, E. Auge ¹¹⁵, K. Augsten ¹²⁷, M. Aurousseau ^{145a}, G. Avolio ¹⁶³, R. Avramidou ¹⁰, D. Axen ¹⁶⁸, G. Azuelos ^{93,d}, Y. Azuma ¹⁵⁵, M.A. Baak ³⁰, G. Baccaglioni ^{89a}, C. Bacci ^{134a,134b}, A.M. Bach ¹⁵, H. Bachacou ¹³⁶, K. Bachas ³⁰, M. Backes ⁴⁹, M. Backhaus ²¹, E. Badescu ^{26a}, P. Bagnaia ^{132a, 132b}, S. Bahinipati³, Y. Bai^{33a}, D.C. Bailey ¹⁵⁸, T. Bain¹⁵⁸, J.T. Baines ¹²⁹, O.K. Baker ¹⁷⁶, M.D. Baker ²⁵, S. Baker ⁷⁷, E. Banas ³⁹, P. Banerjee ⁹³, Sw. Banerjee ¹⁷³, D. Banfi ³⁰, A. Bangert ¹⁵⁰, M.D. Baker²⁵, S. Baker⁷⁷, E. Banas³⁹, P. Banerjee⁹³, Sw. Banerjee¹⁷³, D. Banfi³⁰, A. Bangert¹⁵⁰, V. Bansal¹⁶⁹, H.S. Bansil¹⁸, L. Barak¹⁷², S.P. Baranov⁹⁴, A. Barbaro Galtieri¹⁵, T. Barber⁴⁸, E.L. Barberio⁸⁶, D. Barberis^{50a,50b}, M. Barbero²¹, D.Y. Bardin⁶⁴, T. Barillari⁹⁹, M. Barisonzi¹⁷⁵, T. Barklow¹⁴³, N. Barlow²⁸, B.M. Barnett¹²⁹, R.M. Barnett¹⁵, A. Baroncelli^{134a}, G. Barone⁴⁹, A.J. Barr¹¹⁸, F. Barreiro⁸⁰, J. Barreiro Guimarães da Costa⁵⁷, P. Barrillon¹¹⁵, R. Bartoldus¹⁴³, A.E. Barton⁷¹, V. Bartsch¹⁴⁹, A. Basye¹⁶⁵, R.L. Bates⁵³, L. Batkova^{144a}, J.R. Batley²⁸, A. Battaglia¹⁷, M. Battistin³⁰, F. Bauer¹³⁶, H.S. Bawa^{143,e}, S. Beale⁹⁸, T. Beau⁷⁸, P.H. Beauchemin¹⁶¹, R. Beccherle^{50a}, P. Bechtle²¹, H.P. Beck¹⁷, A.K. Becker¹⁷⁵, S. Becker⁹⁸, M. Beckingham¹³⁸, K.H. Becks¹⁷⁵, A.J. Beddall^{19c}, A. Beddall^{19c}, S. Bedikian¹⁷⁶, V.A. Bednyakov⁶⁴, C.P. Bee⁸³, L.J. Beemster¹⁰⁵, M. Begel²⁵, S. Behar Harpaz¹⁵², M. Beimforde⁹⁹, C. Belanger-Champagne⁸⁵, P.J. Bell⁴⁹, W.H. Bell⁴⁹, G. Bella¹⁵³, L. Bellagamba^{20a}, F. Bellina³⁰ M. Bellomo³⁰ A. Belloni⁵⁷ O. Beloborodova^{107,f} K. Belotskiy⁹⁶ O. Beltramello³⁰ F. Bellina ³⁰, M. Bellomo ³⁰, A. Belloni ⁵⁷, O. Beloborodova ^{107,f}, K. Belotskiy ⁹⁶, O. Beltramello ³⁰, O. Benary ¹⁵³, D. Benchekroun ^{135a}, K. Bendtz ^{146a, 146b}, N. Benekos ¹⁶⁵, Y. Benhammou ¹⁵³, O. Benary ¹⁵³, D. Benchekroun ^{135a}, K. Bendtz ^{146a,146b}, N. Benekos ¹⁶⁵, Y. Benhammou ¹⁵³, E. Benhar Noccioli ⁴⁹, J.A. Benitez Garcia ^{159b}, D.P. Benjamin ⁴⁵, M. Benoit ¹¹⁵, J.R. Bensinger ²³, K. Benslama ¹³⁰, S. Bentvelsen ¹⁰⁵, D. Berge ³⁰, E. Bergeaas Kuutmann ⁴², N. Berger ⁵, F. Berghaus ¹⁶⁹, E. Berglund ¹⁰⁵, J. Beringer ¹⁵, P. Bernat ⁷⁷, R. Bernhard ⁴⁸, C. Bernius ²⁵, T. Berry ⁷⁶, C. Bertella ⁸³, A. Bertin ^{20a,20b}, F. Bertolucci ^{122a,122b}, M.I. Besana ^{89a,89b}, G.J. Besjes ¹⁰⁴, N. Besson ¹³⁶, S. Bethke ⁹⁹, W. Bhimji ⁴⁶, R.M. Bianchi ³⁰, M. Bianco ^{72a,72b}, O. Biebel ⁹⁸, S.P. Bieniek ⁷⁷, K. Bierwagen ⁵⁴, J. Biesiada ¹⁵, M. Biglietti ^{134a}, H. Bilokon ⁴⁷, M. Bindi ^{20a,20b}, S. Binet ¹¹⁵, A. Bingul ^{19c}, C. Bini ^{132a,132b}, C. Biscarat ¹⁷⁸, B. Bittner ⁹⁹, K.M. Black ²², R.E. Blair ⁶, J.-B. Blanchard ¹³⁶, G. Blanchot ³⁰, T. Blazek ^{144a}, I. Bloch ⁴², C. Blocker ²³, J. Blocki ³⁹, A. Blondel ⁴⁹, W. Blum ⁸¹, U. Blumenschein ⁵⁴, G.J. Bobbink ¹⁰⁵, V.B. Bobrovnikov ¹⁰⁷, S.S. Bocchetta ⁷⁹, A. Bocci ⁴⁵, C.R. Boddy ¹¹⁸, M. Boehler ⁴⁸, J. Boek ¹⁷⁵, N. Boelaert ³⁶, J.A. Bogaerts ³⁰, A. Bogdanchikov ¹⁰⁷, A. Bogouch ^{90,*}, C. Bohm ^{146a}, J. Bohm ¹²⁵, V. Boisvert ⁷⁶, T. Bold ³⁸, V. Boldea ^{26a}, N.M. Bolnet ¹³⁶, M. Bomben ⁷⁸, M. Bona ⁷⁵, M. Boonekamp ¹³⁶, S. Bordoni ⁷⁸, C. Borer ¹⁷, A. Borisov ¹²⁸, G. Borissov ⁷¹, I. Borjanovic ^{13a}, M. Borri ⁸², S. Borroni ⁸⁷, V. Bortolotto ^{134a,134b}, K. Bos ¹⁰⁵,

D. Boscherini^{20a}, M. Bosman¹², H. Boterenbrood¹⁰⁵, J. Bouchami⁹³, J. Boudreau¹²³, E.V. Bouhova-Thacker⁷¹, D. Boumediene³⁴, C. Bourdarios¹¹⁵, N. Bousson⁸³, A. Boveia³¹, J. Boyd³⁰, I.R. Boyko⁶⁴, I. Bozovic-Jelisavcic^{13b}, J. Bracinik¹⁸, P. Branchini^{134a}, A. Brandt⁸, G. Brandt¹¹⁸, O. Brandt⁵⁴, U. Bratzler¹⁵⁶, B. Brau⁸⁴, J.E. Brau¹¹⁴, H.M. Braun^{175,*}, S.F. Brazzale^{164a,164c}, B. Brelier¹⁵⁸, J. Bremer³⁰, K. Brendlinger¹²⁰, R. Brenner¹⁶⁶, S. Bressler¹⁷², D. Britton⁵³, F.M. Brochu²⁸, I. Brock²¹, R. Brock⁸⁸, F. Broggi^{89a}, C. Bromberg⁸⁸, J. Bronner⁹⁹, G. Brooijmans³⁵, T. Brooks⁷⁶, W.K. Brooks^{32b}, R. Brock ⁸⁸, F. Broggi ^{89a}, C. Bromberg ⁸⁸, J. Bronner ⁹⁹, G. Brooijmans ³⁵, T. Brooks ⁷⁶, W.K. Brooks ^{32b}, G. Brown ⁸², H. Brown ⁸, P.A. Bruckman de Renstrom ³⁹, D. Bruncko ^{144b}, R. Bruneliere ⁴⁸, S. Brunet ⁶⁰, A. Bruni ^{20a}, G. Bruni ^{20a}, M. Bruschi ^{20a}, T. Buanes ¹⁴, Q. Buat ⁵⁵, F. Bucci ⁴⁹, J. Buchanan ¹¹⁸, P. Buchholz ¹⁴¹, R.M. Buckingham ¹¹⁸, A.G. Buckley ⁴⁶, S.I. Buda ^{26a}, I.A. Budagov ⁶⁴, B. Budick ¹⁰⁸, V. Büscher ⁸¹, L. Bugge ¹¹⁷, O. Bulekov ⁹⁶, A.C. Bundock ⁷³, M. Bunse ⁴³, T. Buran ¹¹⁷, H. Burckhart ³⁰, S. Burdin ⁷³, T. Burgess ¹⁴, S. Burke ¹²⁹, E. Busato ³⁴, P. Bussey ⁵³, C.P. Buszello ¹⁶⁶, B. Butler ¹⁴³, J.M. Butler ²², C.M. Buttar ⁵³, J.M. Butterworth ⁷⁷, W. Buttinger ²⁸, M. Byszewski ³⁰, S. Cabrera Urbán ¹⁶⁷, D. Caforio ^{20a, 20b}, O. Cakir ^{4a}, P. Calafiura ¹⁵, G. Calderini ⁷⁸, P. Calfayan ⁹⁸, R. Calkins ¹⁰⁶, L.P. Caloba ^{24a}, R. Caloi ^{132a, 132b}, D. Calvet ³⁴, S. Calvet ³⁴, R. Camacho Toro ³⁴, P. Camarri ^{133a, 133b}, D. Cameron ¹¹⁷, L.M. Caminada ¹⁵, R. Caminal Armadans ¹², S. Campana ³⁰, M. Campanelli ⁷⁷, V. Canale ^{102a, 102b}, F. Canelli ^{31,g}, A. Canepa ^{159a}, J. Cantero ⁸⁰, R. Cantrill ⁷⁶, L. Capasso ^{102a, 102b}, M.D.M. Capeans Garrido ³⁰, I. Caprini ^{26a}, M. Caprinti ^{26a}, D. Capriotti ⁹⁹, M. Capua ^{37a, 37b}, R. Caputo ⁸¹, R. Cardarelli ^{133a}, T. Carli ³⁰, G. Carlino ^{102a}, L. Carminati ^{89a, 89b}, B. Caron ⁸⁵, S. Caron ¹⁰⁴, E. Carquin ^{32b}, G.D. Carrillo Montoya ¹⁷³, A.A. Carter ⁷⁵, J.R. Carter ²⁸, J. Carvalho ^{124a, h}, D. Casadei ¹⁰⁸, M.P. Casado ¹², M. Cascella ^{122a, 122b}, C. Caso ^{50a, 50b,*}, A.M. Castaneda Hernandez ^{173,i}, E. Castaneda-Miranda ¹⁷³, V. Castillo Gimenez ¹⁶⁷, N.F. Castro ^{124a}, G. Cataldi ^{77a}, P. Catastini ⁵⁷, A. Catianaccio ³⁰, J.R. Cattmore ³⁰, A. Cattai ³⁰, N.F. Castro ^{124a}, G. Cataldi ^{72a}, P. Catastini ⁵⁷, A. Catinaccio ³⁰, J.R. Catmore ³⁰, A. Cattai ³⁰, G. Cattani ^{133a,133b}, S. Caughron ⁸⁸, V. Cavaliere ¹⁶⁵, P. Cavalleri ⁷⁸, D. Cavalli ^{89a}, M. Cavalli-Sforza ¹², V. Cavasinni ^{122a,122b}, F. Ceradini ^{134a,134b}, A.S. Cerqueira ^{24b}, A. Cerri ³⁰, L. Cerrito ⁷⁵, F. Cerutti ⁴⁷, S.A. Cetin ^{19b}, A. Chafaq ^{135a}, D. Chakraborty ¹⁰⁶, I. Chalupkova ¹²⁶, K. Chan³, P. Chang ¹⁶⁵, B. Chapleau ⁸⁵, J.D. Chapman ²⁸, J.W. Chapman ⁸⁷, E. Chareyre ⁷⁸, D.G. Charlton ¹⁸, V. Chavda ⁸², C.A. Chavez Barajas ³⁰, S. Cheatham⁸⁵, S. Chekanov⁶, S.V. Chekulaev^{159a}, G.A. Chelkov⁶⁴, M.A. Chelstowska¹⁰⁴, C. Chen⁶³, H. Chen²⁵, S. Chen^{33c}, X. Chen¹⁷³, Y. Chen³⁵, A. Cheplakov⁶⁴, R. Cherkaoui El Moursli^{135e}, V. Chernyatin²⁵, E. Cheu⁷, S.L. Cheung¹⁵⁸, L. Chevalier¹³⁶, G. Chiefari^{102a,102b}, L. Chikovani^{51a,*}, J.T. Childers³⁰, A. Chilingarov⁷¹, G. Chiodini^{72a}, A.S. Chisholm¹⁸, R.T. Chislett⁷⁷, A. Chitan^{26a}, J.T. Childers ³⁰, A. Chilingarov ⁷¹, G. Chiodini ^{72a}, A.S. Chisholm ¹⁸, R.T. Chislett ⁷⁷, A. Chitan ^{26a}, M.V. Chizhov ⁶⁴, G. Choudalakis ³¹, S. Chouridou ¹³⁷, I.A. Christidi ⁷⁷, A. Christov ⁴⁸, D. Chromek-Burckhart ³⁰, M.L. Chu ¹⁵¹, J. Chudoba ¹²⁵, G. Ciapetti ^{132a,132b}, A.K. Ciftci ^{4a}, R. Ciftci ^{4a}, D. Cinca ³⁴, V. Cindro ⁷⁴, C. Ciocca ^{20a,20b}, A. Ciocio ¹⁵, M. Cirilli ⁸⁷, P. Cirkovic ^{13b}, Z.H. Citron ¹⁷², M. Citterio ^{89a}, M. Ciubancan ^{26a}, A. Clark ⁴⁹, P.J. Clark ⁴⁶, R.N. Clarke ¹⁵, W. Cleland ¹²³, J.C. Clemens ⁸³, B. Clement ⁵⁵, C. Clement ^{146a,146b}, Y. Coadou ⁸³, M. Cobal ^{164a,164c}, A. Coccaro ¹³⁸, J. Cochran ⁶³, L. Coffey ²³, J.G. Cogan ¹⁴³, J. Coggeshall ¹⁶⁵, E. Cogneras ¹⁷⁸, J. Colas ⁵, S. Cole ¹⁰⁶, A.P. Colijn ¹⁰⁵, N.J. Collins ¹⁸, C. Collins-Tooth ⁵³, J. Collot ⁵⁵, T. Colombo ^{119a,119b}, G. Colon ⁸⁴, P. Conde Muiño ^{124a}, E. Coniavitis ¹¹⁸, M.C. Conidi ¹², S.M. Consonni ^{89a,89b}, V. Consorti ⁴⁸, S. Constantinescu ^{26a}, C. Conta ^{119a,119b}, G. Conti ⁵⁷, F. Conventi ^{102a,j}, M. Cooke ¹⁵, B.D. Cooper ⁷⁷, A.M. Cooper-Sarkar ¹¹⁸, K. Copic ¹⁵, T. Cornelissen ¹⁷⁵, M. Corradi ^{20a}, F. Corriveau ^{85,k}, A. Cortes-Gonzalez ¹⁶⁵, G. Cortiana ⁹⁹, G. Costa ^{89a}, M.J. Costa ¹⁶⁷, D. Costanzo ¹³⁹, D. Côté ³⁰, L. Courneyea ¹⁶⁹, G. Cowan ⁷⁶, C. Cowden ²⁸, B.E. Cox ⁸², K. Cranmer ¹⁰⁸, F. Crescioli ^{122a,122b}, M. Cristinziani ²¹, G. Crosetti ^{37a,37b}, S. Crépé-Renaudin ⁵⁵, C.-M. Cuciuc ^{26a}, C. Cuenca Almenar ¹⁷⁶, T. Cuhadar Donszelmann ¹³⁹, M. Curatolo ⁴⁷, C.J. Curtis ¹⁸, C.-M. Cuciuc^{26a}, C. Cuenca Almenar¹⁷⁶, T. Cuhadar Donszelmann¹³⁹, M. Curatolo⁴⁷, C.J. Curtis¹⁸, C. Cuthbert¹⁵⁰, P. Cwetanski⁶⁰, H. Czirr¹⁴¹, P. Czodrowski⁴⁴, Z. Czyczula¹⁷⁶, S. D'Auria⁵³, M. D'Onofrio⁷³, A. D'Orazio^{132a,132b}, M.J. Da Cunha Sargedas De Sousa^{124a}, C. Da Via⁸², W. Dabrowski ³⁸, A. Dafinca ¹¹⁸, T. Dai ⁸⁷, C. Dallapiccola ⁸⁴, M. Dam ³⁶, M. Dameri ^{50a, 50b}, D.S. Damiani ¹³⁷, H.O. Danielsson ³⁰, V. Dao⁴⁹, G. Darbo ^{50a}, G.L. Darlea ^{26b}, J.A. Dassoulas ⁴², W. Davey ²¹, T. Davidek ¹²⁶, N. Davidson ⁸⁶, R. Davidson ⁷¹, E. Davies ^{118,c}, M. Davies ⁹³, O. Davignon ⁷⁸, A.R. Davison ⁷⁷, Y. Davygora ^{58a}, E. Dawe ¹⁴², I. Dawson ¹³⁹, R.K. Daya-Ishmukhametova ²³, K. De⁸, R. de Asmundis ^{102a}, S. De Castro^{20a,20b}, S. De Cecco⁷⁸, J. de Graat⁹⁸, N. De Groot¹⁰⁴, P. de Jong¹⁰⁵, C. De La Taille¹¹⁵, H. De la Torre⁸⁰, F. De Lorenzi⁶³, L. de Mora⁷¹, L. De Nooij¹⁰⁵, D. De Pedis^{132a}, A. De Salvo^{132a}, U. De Sanctis^{164a,164c}, A. De Santo¹⁴⁹, J.B. De Vivie De Regie¹¹⁵, G. De Zorzi^{132a,132b}, W.J. Dearnaley⁷¹, R. Debbe²⁵, C. Debenedetti⁴⁶, B. Dechenaux⁵⁵, D.V. Dedovich⁶⁴, J. Degenhardt¹²⁰, C. Del Papa^{164a,164c},

J. Del Peso⁸⁰, T. Del Prete^{122a,122b}, T. Delemontex⁵⁵, M. Deliyergiyev⁷⁴, A. Dell'Acqua³⁰, L. Dell'Asta²², M. Della Pietra^{102a,j}, D. della Volpe^{102a,102b}, M. Delmastro⁵, P.A. Delsart⁵⁵, C. Deluca¹⁰⁵, S. Demers¹⁷⁶, M. Demichev⁶⁴, B. Demirkoz^{12,1}, J. Deng¹⁶³, S.P. Denisov¹²⁸, D. Derendarz³⁹, J.E. Derkaoui^{135d}, F. Derue⁷⁸, P. Dervan⁷³, K. Desch²¹, E. Devetak¹⁴⁸, P.O. Deviveiros¹⁰⁵, A. Dewhurst¹²⁹, B. DeWilde¹⁴⁸, S. Dhaliwal ¹⁵⁸, R. Dhullipudi ^{25,m}, A. Di Ciaccio ^{133a,133b}, L. Di Ciaccio ⁵, A. Di Girolamo ³⁰, B. Di Girolamo³⁰, S. Di Luise^{134a,134b}, A. Di Mattia¹⁷³, B. Di Micco³⁰, R. Di Nardo⁴⁷, A. Di Simone^{133a,133b}, R. Di Sipio^{20a,20b}, M.A. Diaz^{32a}, E.B. Diehl⁸⁷, J. Dietrich⁴², T.A. Dietzsch^{58a}, S. Diglio⁸⁶, K. Dindar Yagci⁴⁰, J. Dingfelder²¹, F. Dinut^{26a}, C. Dionisi^{132a,132b}, P. Dita^{26a}, S. Dita^{26a}, F. Dittus³⁰, F. Djama⁸³, T. Djobava^{51b}, M.A.B. do Vale^{24c}, A. Do Valle Wemans^{124a,n}, T.K.O. Doan⁵, F. Dittus ³⁰, F. Djama ⁸³, T. Djobava ^{51b}, M.A.B. do Vale ^{24c}, A. Do Valle Wemans ^{124a,n}, T.K.O. Doan ⁵, M. Dobbs ⁸⁵, R. Dobinson ^{30,*}, D. Dobos ³⁰, E. Dobson ^{30,o}, J. Dodd ³⁵, C. Doglioni ⁴⁹, T. Doherty ⁵³, Y. Doi ^{65,*}, J. Dolejsi ¹²⁶, I. Dolenc ⁷⁴, Z. Dolezal ¹²⁶, B.A. Dolgoshein ^{96,*}, T. Dohmae ¹⁵⁵, M. Donadelli ^{24d}, J. Donini ³⁴, J. Dopke ³⁰, A. Doria ^{102a}, A. Dos Anjos ¹⁷³, A. Dotti ^{122a,122b}, M.T. Dova ⁷⁰, A.D. Doxiadis ¹⁰⁵, A.T. Doyle ⁵³, M. Dris ¹⁰, J. Dubbert ⁹⁹, S. Dube ¹⁵, E. Duchovni ¹⁷², G. Duckeck ⁹⁸, D. Duda ¹⁷⁵, A. Dudarev ³⁰, F. Dudziak ⁶³, M. Dührssen ³⁰, I.P. Duerdoth ⁸², L. Duflot ¹¹⁵, M.-A. Dufour ⁸⁵, L. Duguid ⁷⁶, M. Dunford ³⁰, H. Duran Yildiz ^{4a}, R. Duxfield ¹³⁹, M. Dwuznik ³⁸, F. Dydak ³⁰, M. Düren ⁵², J. Ebke ⁹⁸, S. Eckweiler ⁸¹, K. Edmonds ⁸¹, W. Edson ², C.A. Edwards ⁷⁶, N.C. Edwards ⁵³, W. Ehrenfeld ⁴², T. Eifert ¹⁴³, G. Eigen ¹⁴, K. Einsweiler ¹⁵, E. Eisenhandler ⁷⁵, T. Ekelof ¹⁶⁶, M. El Kacimi ^{135c}, M. Ellert ¹⁶⁶, S. Elles ⁵, F. Ellinghaus ⁸¹, K. Ellis ⁷⁵, N. Ellis ³⁰, J. Elmsheuser ⁹⁸, M. Elsing ³⁰, D. Emeliyanov ¹²⁹, R. Engelmann ¹⁴⁸, A. Engl ⁹⁸, B. Epp ⁶¹, J. Erdmann ⁵⁴, A. Ereditato ¹⁷, D. Eriksson ^{146a}, J. Ernst ², M. Ernst ²⁵, J. Ernwein ¹³⁶, D. Errede ¹⁶⁵, S. Errede ¹⁶⁵, E. Ertel ⁸¹, M. Escalier ¹¹⁵, H. Esch ⁴³, C. Escobar ¹²³, X. Espinal Curull ¹², B. Esposito ⁴⁷, F. Etienne ⁸³, A.I. Etienvre ¹³⁶, E. Etzion ¹⁵³, D. Evangelakou ⁵⁴, H. Evans ⁶⁰, L. Fabbri ^{20a,20b}, C. Fabre ³⁰, R.M. Fakhrutdinov ¹²⁸, S. Falciano ^{132a}, Y. Fang ¹⁷³, M. Fanti ^{89a,89b}, A. Farbin ⁸, A. Farilla ^{134a}, J. Farley ¹⁴⁴, T. Farooque ¹⁵⁸, S. Farrell ¹⁶³, S.M. Farrington ¹⁷⁰, P. Farthouat ³⁰, F. Fassi ¹⁶⁷, P. Fassnacht ³⁰, D. Fassouliotis ⁹, B. Fatholahzadeh ¹⁵⁸, A. Favareto ^{89a,89b}, L. Fayard ¹¹⁵, S. Fazio ^{37a,37b}, R. Febbraro ³⁴, P. Federic ^{144a}, O.L. Fedin ¹²¹, W. Fedorko ⁸⁸, M. D. Fassounotris , B. Fatholalizaden J., A. Favareto J., L. Fayard J., S. Fazio J., R. Febbrard P. Federic ^{144a}, O.L. Fedin ¹²¹, W. Fedorko ⁸⁸, M. Fehling-Kaschek ⁴⁸, L. Feligioni ⁸³, D. Fellmann ⁶, C. Feng ^{33d}, E.J. Feng ⁶, A.B. Fenyuk ¹²⁸, J. Ferencei ^{144b}, W. Fernando ⁶, S. Ferrag ⁵³, J. Ferrando ⁵³, V. Ferrara ⁴², A. Ferrari ¹⁶⁶, P. Ferrari ¹⁰⁵, R. Ferrari ^{119a}, D.E. Ferreira de Lima ⁵³, A. Ferrer¹⁶⁷, D. Ferrere ⁴⁹, C. Ferretti ⁸⁷, A. Ferretto Parodi ^{50a,50b}, M. Fiascaris ³¹, F. Fiedler ⁸¹, A. Filipčič ⁷⁴, F. Filthaut ¹⁰⁴, M. Fincke-Keeler ¹⁶⁹, M.C.N. Fiolhais ^{124a,h}, L. Fiorini ¹⁶⁷, A. Firan ⁴⁰, G. Fischer ⁴², M. Fincke-Keeler ¹⁶⁹, M.C.N. Fiolhais ^{124a,h}, L. Fiorini ¹⁶⁷, A. Firan ⁴⁰, G. Fischer ⁴², ⁴¹ M.J. Fisher ¹⁰⁹, M. Flechl⁴⁸, I. Fleck ¹⁴¹, J. Fleckner ⁸¹, P. Fleischmann ¹⁷⁴, S. Fleischmann ¹⁷⁵, T. Flick ¹⁷⁵, A. Floderus ⁷⁹, L.R. Flores Castillo ¹⁷³, M.J. Flowerdew ⁹⁹, T. Fonseca Martin ¹⁷, A. Formica ¹³⁶, A. Forti ⁸², D. Fortin ^{159a}, D. Fournier ¹¹⁵, H. Fox ⁷¹, P. Francavilla ¹², M. Franchini ^{20a,20b}, S. Franchino ^{119a,119b}, D. Francis ³⁰, T. Frank ¹⁷², S. Franz ³⁰, M. Fraternali ^{119a,119b}, S. Fratina ¹²⁰, S.T. French ²⁸, C. Friedrich ⁴², ³⁰ F. Friedrich ⁴⁴, R. Froeschl ³⁰, D. Froidevaux ³⁰, J.A. Frost ²⁸, C. Fukunaga ¹⁵⁶, E. Fullana Torregrosa ³⁰, B.G. Fulsom ¹⁴³, J. Fuster ¹⁶⁷, C. Gabaldon ³⁰, O. Gabizon ¹⁷², T. Gadfort ²⁵, S. Gadomski ⁴⁹, G. Gagliardi ^{50a,50b}, P. Gagnon ⁶⁰, C. Galea ⁹⁸, B. Galhardo ^{124a}, E.J. Gallas ¹¹⁸, V. Gallo ¹⁷, B.J. Gallop ¹²⁹, P. Gallus ¹²⁵, K.K. Gan ¹⁰⁹, Y.S. Gao ^{143,e}, A. Gaponenko ¹⁵, F. Garberson ¹⁷⁶, M. Garcia-Sciveres ¹⁵, C. García ¹⁶⁷, J.E. García Navarro ¹⁶⁷, R.W. Gardner ³¹, N. Garelli ³⁰, H. Garitaonandia ¹⁰⁵, V. Garonne ³⁰, C. Gatti ⁴⁷, C. Gaudio ^{119a}, P. Gauri ¹⁴¹, L. Gauthian ¹³⁶, P. Gauri ¹³², ¹³², ¹³², ¹⁴³, ¹⁴⁴, ¹⁴⁵, ¹⁴⁵, ¹⁴⁵, ¹⁴⁵, ¹⁴⁶, ¹⁴ C. Gatti⁴⁷, G. Gaudio^{119a}, B. Gaur¹⁴¹, L. Gauthier¹³⁶, P. Gauzzi^{132a,132b}, I.L. Gavrilenko⁹⁴, C. Gay¹⁶⁸, G. Gaycken²¹, E.N. Gazis¹⁰, P. Ge^{33d}, Z. Gecse¹⁶⁸, C.N.P. Gee¹²⁹, D.A.A. Geerts¹⁰⁵, Ch. Geich-Gimbel²¹, K. Gellerstedt^{146a,146b}, C. Gemme^{50a}, A. Gemmell⁵³, M.H. Genest⁵⁵, S. Gentile^{132a,132b}, M. George⁵⁴, S. George⁷⁶, P. Gerlach¹⁷⁵, A. Gershon¹⁵³, C. Geweniger^{58a}, H. Ghazlane^{135b}, N. Ghodbane³⁴, B. Giacobbe^{20a}, S. Giagu^{132a,132b}, V. Giakoumopoulou⁹, V. Giangiobbe¹², F. Gianotti³⁰, B. Gibbard²⁵, A. Gibson¹⁵⁸, S.M. Gibson³⁰, D. Gillberg²⁹, A.R. Gillman¹²⁹, D.M. Gingrich^{3,d}, J. Ginzburg¹⁵³, A. Glosoff ⁴², S.M. Glosoff ⁴³, D. Glibberg ⁴³, A.R. Gliffian ⁴², D.M. Gligfich ⁴³, J. Glizburg ⁴³,
N. Giokaris ⁹, M.P. Giordani ^{164c}, R. Giordano ^{102a,102b}, F.M. Giorgi ¹⁶, P. Giovannini ⁹⁹, P.F. Giraud ¹³⁶,
D. Giugni ^{89a}, M. Giunta ⁹³, P. Giusti ^{20a}, B.K. Gjelsten ¹¹⁷, L.K. Gladilin ⁹⁷, C. Glasman ⁸⁰, J. Glatzer ⁴⁸,
A. Glazov ⁴², K.W. Glitza ¹⁷⁵, G.L. Glonti ⁶⁴, J.R. Goddard ⁷⁵, J. Godfrey ¹⁴², J. Godlewski ³⁰, M. Goebel ⁴²,
T. Göpfert ⁴⁴, C. Goeringer ⁸¹, C. Gössling ⁴³, S. Goldfarb ⁸⁷, T. Golling ¹⁷⁶, A. Gomes ^{124a,b},
L.S. Gomez Fajardo ⁴², R. Gonçalo ⁷⁶, J. Goncalves Pinto Firmino Da Costa ⁴², L. Gonella ²¹, S. González de la Hoz¹⁶⁷, G. Gonzalez Parra¹², M.L. Gonzalez Silva²⁷, S. Gonzalez-Sevilla⁴⁹, J.J. Goodson¹⁴⁸, L. Goossens³⁰, P.A. Gorbounov⁹⁵, H.A. Gordon²⁵, I. Gorelov¹⁰³, G. Gorfine¹⁷⁵, B. Gorini³⁰, E. Gorini^{72a,72b}, A. Gorišek⁷⁴, E. Gornicki³⁹, B. Gosdzik⁴², A.T. Goshaw⁶, M. Gosselink¹⁰⁵,

M.I. Gostkin⁶⁴, I. Gough Eschrich¹⁶³, M. Gouighri^{135a}, D. Goujdami^{135c}, M.P. Goulette⁴⁹, A.G. Goussiou¹³⁸, C. Goy⁵, S. Gozpinar²³, I. Grabowska-Bold³⁸, P. Grafström^{20a,20b}, K.-J. Grahn⁴², F. Grancagnolo ^{72a}, S. Grancagnolo ¹⁶, V. Grassi ¹⁴⁸, V. Gratchev ¹²¹, N. Grau ³⁵, H.M. Gray ³⁰, J.A. Gray ¹⁴⁸, E. Graziani ^{134a}, O.G. Grebenyuk ¹²¹, T. Greenshaw ⁷³, Z.D. Greenwood ^{25,m}, K. Gregersen ³⁶, I.M. Gregor ⁴², E. Graziani ^{134a}, O.G. Grebenyuk ¹²¹, T. Greenshaw ⁷³, Z.D. Greenwood ^{25,m}, K. Gregersen ³⁶, I.M. Gregor ⁴², P. Grenier ¹⁴³, J. Griffiths ⁸, N. Grigalashvili ⁶⁴, A.A. Grillo ¹³⁷, S. Grinstein ¹², Ph. Gris ³⁴, Y.V. Grishkevich ⁹⁷, J.-F. Grivaz ¹¹⁵, E. Gross ¹⁷², J. Grosse-Knetter ⁵⁴, J. Groth-Jensen ¹⁷², K. Grybel ¹⁴¹, D. Guest ¹⁷⁶, C. Guicheney ³⁴, S. Guindon ⁵⁴, U. Gul ⁵³, H. Guler ^{85,p}, J. Gunther ¹²⁵, B. Guo ¹⁵⁸, J. Guo ³⁵, P. Gutierrez ¹¹¹, N. Guttman ¹⁵³, O. Gutzwiller ¹⁷³, C. Guyot ¹³⁶, C. Gwenlan ¹¹⁸, C.B. Gwilliam ⁷³, A. Haas ¹⁴³, S. Haas ³⁰, C. Haber ¹⁵, H.K. Hadavand ⁴⁰, D.R. Hadley ¹⁸, P. Haefner ²¹, F. Hahn ³⁰, S. Haider ³⁰, Z. Hajduk ³⁹, H. Hakobyan ¹⁷⁷, D. Hall ¹¹⁸, J. Haller ⁵⁴, K. Hamacher ¹⁷⁵, P. Hamal ¹¹³, M. Hamer ⁵⁴, A. Hamilton ^{145b,q}, S. Hamilton ¹⁶¹, L. Han ^{33b}, K. Hanagaki ¹¹⁶, K. Hanawa ¹⁶⁰, M. Hance ¹⁵, C. Handel ⁸¹, P. Hanke ^{58a}, J.R. Hansen ³⁶, J.B. Hansen ³⁶, J.D. Hansen ³⁶, P.H. Hansen ³⁶, P. Hansson ¹⁴³, K. Hara ¹⁶⁰, G.A. Hare ¹³⁷, T. Harenberg ¹⁷⁵, S. Harkusha ⁹⁰, D. Harper ⁸⁷, R.D. Harrington ⁴⁶, O.M. Harris ¹³⁸, J. Hartert ⁴⁸, F. Hartjes ¹⁰⁵, T. Haruyama ⁶⁵, A. Harvey ⁵⁶, S. Hasegawa ¹⁰¹, Y. Hasegawa ¹⁴⁰, S. Hassani ¹³⁶, S. Haug ¹⁷, M. Hauschild ³⁰, R. Hauser ⁸⁸, M. Havranek ²¹, C.M. Hawkes ¹⁸, R.J. Hawkings ³⁰, A.D. Hawkins ⁷⁹, T. Havakawa ⁶⁶, T. Havashi ¹⁶⁰, D. Havden ⁷⁶, C.P. Hays ¹¹⁸, H.S. Havward ⁷³. A.D. Hawkins⁷⁹, T. Hayakawa⁶⁶, T. Hayashi¹⁶⁰, D. Hayden⁷⁶, C.P. Hays¹¹⁸, H.S. Hayward⁷³, S.J. Haywood¹²⁹, S.J. Head¹⁸, V. Hedberg⁷⁹, L. Heelan⁸, S. Heim⁸⁸, B. Heinemann¹⁵, S. Heisterkamp³⁶, L. Helary²², C. Heller⁹⁸, M. Heller³⁰, S. Hellman^{146a,146b}, D. Hellmich²¹, C. Helsens¹², R.C.W. Henderson⁷¹, M. Henke^{58a}, A. Henrichs⁵⁴, A.M. Henriques Correia³⁰, S. Henrot-Versille¹¹⁵, C. Hensel⁵⁴, T. Henß¹⁷⁵, C.M. Hernandez⁸, Y. Hernández Jiménez¹⁶⁷, R. Herrberg¹⁶, G. Herten⁴⁸, C. Hensel³⁴, T. Henß¹⁷³, C.M. Hernandez⁶, Y. Hernández Jiménez¹⁶⁷, R. Herrberg¹⁶, G. Herten⁴⁸, R. Hertenberger⁹⁸, L. Hervas³⁰, G.G. Hesketh⁷⁷, N.P. Hessey¹⁰⁵, E. Higón-Rodriguez¹⁶⁷, J.C. Hill²⁸, K.H. Hiller⁴², S. Hillert²¹, S.J. Hillier¹⁸, I. Hinchliffe¹⁵, E. Hines¹²⁰, M. Hirose¹¹⁶, F. Hirsch⁴³, D. Hirschbuehl¹⁷⁵, J. Hobbs¹⁴⁸, N. Hod¹⁵³, M.C. Hodgkinson¹³⁹, P. Hodgson¹³⁹, A. Hoecker³⁰, M.R. Hoeferkamp¹⁰³, J. Hoffman⁴⁰, D. Hoffmann⁸³, M. Hohlfeld⁸¹, M. Holder¹⁴¹, S.O. Holmgren^{146a}, T. Holy¹²⁷, J.L. Holzbauer⁸⁸, T.M. Hong¹²⁰, L. Hooft van Huysduynen¹⁰⁸, S. Horner⁴⁸, J.-Y. Hostachy⁵⁵, S. Hou¹⁵¹, A. Hoummada^{135a}, J. Howard¹¹⁸, J. Howarth⁸², I. Hristova¹⁶, J. Hrivnac¹¹⁵, T. Hryn'ova⁵, P.J. Hsu⁸¹, S.-C. Hsu¹⁵, D. Hu³⁵, Z. Hubacek¹²⁷, F. Hubaut⁸³, F. Huegging²¹, A. Huettmann⁴², T.B. Huffman¹¹⁸, E.W. Hughes³⁵, G. Hughes⁷¹, M. Huhtinen³⁰, M. Hurwitz¹⁵, U. Husemann⁴², N. Husewnov^{64,7}, I. Huston⁸⁸, I. Huth⁵⁷, G. Jacobucci⁴⁹, G. Jakovidis¹⁰, M. Ibbotson⁸², J. Ibragimov¹⁴¹ N. Huseynov^{64,r}, J. Huston⁸⁸, J. Huth⁵⁷, G. Iacobucci⁴⁹, G. Iakovidis¹⁰, M. Ibbotson⁸², I. Ibragimov¹⁴¹, L. Iconomidou-Fayard¹¹⁵, J. Idarraga¹¹⁵, P. Iengo^{102a}, O. Igonkina¹⁰⁵, Y. Ikegami⁶⁵, M. Ikeno⁶⁵, D. Iliadis¹⁵⁴, N. Ilic¹⁵⁸, T. Ince²¹, J. Inigo-Golfin³⁰, P. Ioannou⁹, M. Iodice^{134a}, K. Iordanidou⁹, L. Iconomidou-Fayard 175, J. Idarraga 175, P. Iengo 1024, O. Igonkina 105, Y. Ikegami 95, M. Ikeino 97, D. Iliadis 154, N. Ilic 158, T. Ince ²¹, J. Inigo-Golfin ³⁰, P. Ioannou ⁹, M. Iodice ^{134a}, K. Iordanidou ⁹, V. Ippolito ^{132a,132b}, A. Irles Quiles ¹⁶⁷, C. Isaksson ¹⁶⁶, M. Ishino ⁶⁷, M. Ishitsuka ¹⁵⁷, R. Ishmukhametov ⁴⁰, C. Issever ¹¹⁸, S. Istin ^{19a}, A.V. Ivashin ¹²⁸, W. Iwanski ³⁹, H. Iwasaki ⁶⁵, J.M. Izen ⁴¹, V. Izzo ^{102a}, B. Jackson ¹²⁰, J.N. Jackson ⁷³, P. Jackson ¹, M.R. Jaekel ³⁰, V. Jain ⁶⁰, K. Jakobs ⁴⁸, S. Jakobsen ³⁶, T. Jakoubek ¹²⁵, J. Jakubek ¹²⁷, D.K. Jana ¹¹¹, E. Jansen ⁷⁷, H. Jansen ³⁰, A. Jantsch ⁹⁹, M. Janus ⁴⁸, G. Jarlskog ⁷⁹, L. Jeanty ⁵⁷, I. Jen-La Plante ³¹, D. Jennens ⁸⁶, P. Jenni ³⁰, A.E. Loevschall-Jensen ³⁶, P. Jež ³⁶, S. Jézéquel ⁵, M.K. Jha^{20a}, H. Ji ¹⁷³, W. Ji ⁸¹, J. Jia ¹⁴⁸, Y. Jiang ^{33b}, M. Jimenez Belenguer ⁴², S. Jin ^{33a}, O. Jinnouchi ¹⁵⁷, M.D. Joergensen ³⁶, D. Joffe ⁴⁰, M. Johansen ^{146a,146b}, K.E. Johansson ^{146a}, P. Johansson ¹³⁹, S. Johnert ⁴², K.A. Johns ⁷, K. Jon-And ^{146a,146b}, G. Jones ¹⁷⁰, R.W.L. Jones ⁷¹, T.J. Jones ⁷³, C. Joram ³⁰, P.M. Jorge ^{124a}, K.D. Joshi ⁸², J. Jovicevic ¹⁴⁷, T. Jovin ^{13b}, X. Ju ¹⁷³, C.A. Jung ⁴³, R.M. Jungst ³⁰, V. Juranek ¹²⁵, P. Jussel ⁶¹, A. Juste Rozas ¹², S. Kabana ¹⁷, M. Kaci ¹⁶⁷, A. Kaczmarska ³⁹, P. Kadlecik ³⁶, M. Kado ¹¹⁵, H. Kagan ¹⁰⁰, M. Kagan ⁵⁷, E. Kajomovitz ¹⁵², S. Kalinin ¹⁷⁵, L.V. Kalinovskaya ⁶⁴, S. Kama ⁴⁰, N. Kanaya ¹⁵⁵, M. Kaneda ³⁰, S. Kaneti ²⁸, T. Kangounis ²¹, K. Karakostas ¹⁰, M. Karnevskiy ⁴², V. Kartvelishvili ⁷¹, A.N. Karyukhin ¹²⁸, L. Kashif ¹⁷³, G. Kasieczka ^{58b}, R.D. Kass ¹⁰⁹, A. Kastanas ¹⁴, M. Kataoka ⁵, Y. Kataoka ¹⁵⁵, E. Katsoufis ¹⁰, J. Katzy ⁴², V. Kaushik ⁷, K. Kawagoe ⁶⁹, T. Kawamoto ¹⁵⁵, G. Kawamura ⁸¹, M.S. Kayl ¹⁰⁵, S. Kazama ¹⁵⁵, V.A. Kazanin ¹⁰⁷, M.Y. Kazarinov ⁶⁴, R. Keeler ¹⁶⁹, R. Kehoe ⁴ Kishimoto⁶⁶, D. Kisielewska³⁸, T. Kitamura⁶⁶, T. Kittelmann¹²³, K. Kiuchi¹⁶⁰, E. Kladiva^{144b},
 M. Klein⁷³, U. Klein⁷³, K. Kleinknecht⁸¹, M. Klemetti⁸⁵, A. Kligr¹⁷², P. Klimek^{146a,164}, S. Kolou¹⁵⁵,
 E.-E. Klug²⁸⁵, T. Klug²⁷³, P. Kluit¹¹⁰⁵, S. Kluth⁹⁷, N.S. Knecht¹³⁸, E. Kneringer⁶¹, E.B.F.G. Khoops⁸³,
 A. Knue⁵⁴, B.R. Ko⁴⁵, T. Kobayashi¹⁵⁵, M. Kobel⁴⁴, M. Kocian¹⁴³, P. Kodys¹²⁵, K. Könek²⁰,
 A. Kong¹¹⁴, S. Konli¹⁸³, I. Köpke⁸⁴, E. Koersteyl¹⁶⁴, P. Koevsenkl²¹, T. Koffaz²⁹, E. Koffeman¹⁰⁵,
 L.A. Kogan¹¹⁸, S. Kohlmann¹⁷⁵, F. Kohn⁵⁴, Z. Kohout¹²⁷, T. Kohrikl⁸⁵, T. Koiffaz²⁹, E. Koffeman¹⁰⁵,
 K. Konda¹⁵⁴, A. Konn¹¹⁸, A. Korol¹⁰⁷, I. Korlsko¹¹⁶, Y. Konstantinidis⁷⁷, S. Koperny³⁸, K. Korzl²⁹,
 K. Kortas¹⁵⁴, A. Kon¹¹⁸, A. Korol¹⁰⁷, I. Korolkov¹², E. Korolkov¹², S. Koreny¹³⁸, K. Korzl¹⁰⁸, O. Kortko⁹⁹,
 K. Koruda¹⁵⁴, A. Kont¹¹⁸, A. Korol¹⁰⁷, I. Korolkov¹², Z. K. Korolkov¹³⁸, V. Kourskoura¹⁵⁸, A. Konzh¹¹⁸, A. S. Kozhi¹⁷⁸,
 K. Kraus¹¹⁰, A. Koutsman¹⁵⁹, R. Kowalewski¹⁶⁰, T.Z. Kowalski³⁸, W. Kozanecki¹³⁶, A.S. Kozhi¹⁷⁸,
 Y. Kraus¹¹⁷, V.A. Kramarenko³⁷, G. Kramberger²⁴, P. Kirger¹⁵⁸, K. Krosninger⁵⁴, H. Kroha⁴⁹,
 Kroll¹²⁰, J. Kroszberg²¹, J. Krstic¹³³, U. Kruchon⁴⁴, K. Kuszu¹⁵⁷, J. Kruts⁴¹⁴, N. Kuraha⁴⁵,
 Y. Kuushitz⁴⁹, S. Kuleshov²²⁶, C. Kumme⁷⁸, M. Kuna⁷⁸, J. Kural²¹⁷, J. Kurasta⁴¹, Y. Kucho⁴⁵, A. Kuge¹⁵⁸, T. Kuhl⁴⁴, Z. D. Kunh⁴⁵, A. Kugauri⁴⁷, A. Kurashige⁶⁵,
 M. Kurata⁴⁰, Y. A. Kurachkin³⁶, V. Labarg³⁶, J. Labbr⁴⁵, J. Lakor¹⁷⁹, J. Kutashige⁶⁵,
 Kurata⁴⁰, J. La Rorond³⁷⁴, J. Labarg⁵⁸, C. Lange¹⁵⁸, T. Kuhl⁴⁴, Z. D. Kurh⁴⁵, A. Kugauri⁴⁷, S. Labarg⁴⁷, J. Labarg⁴⁵, J. Lahoft⁴⁷, J. Lacasa¹³⁷, F. Lacava¹³², J. Lavora¹³⁸, J. Lab T. Kishimoto ⁶⁶, D. Kisielewska ³⁸, T. Kitamura ⁶⁶, T. Kittelmann ¹²³, K. Kiuchi ¹⁶⁰, E. Kladiva ^{144b}, M. Klein ⁷³, U. Klein ⁷³, K. Kleinknecht ⁸¹, M. Klemetti ⁸⁵, A. Klier ¹⁷², P. Klimek ^{146a, 146b}, A. Klimentov ²⁵, B. Lund-Jensen ¹⁴⁷, B. Lundberg ⁷⁹, J. Lundberg ^{1404, 140D}, O. Lundberg ^{1404, 140D}, J. Lundquist ³⁶, M. Lungwitz ⁸¹, D. Lynn ²⁵, E. Lytken ⁷⁹, H. Ma ²⁵, L.L. Ma ¹⁷³, G. Maccarrone ⁴⁷, A. Macchiolo ⁹⁹, B. Maček ⁷⁴, J. Machado Miguens ^{124a}, R. Mackeprang ³⁶, R.J. Madaras ¹⁵, H.J. Maddocks ⁷¹, W.F. Mader ⁴⁴, R. Maenner ^{58c}, T. Maeno ²⁵, P. Mättig ¹⁷⁵, S. Mättig ⁸¹, L. Magnoni ¹⁶³, E. Magradze ⁵⁴, K. Mahboubi ⁴⁸, J. Mahlstedt ¹⁰⁵, S. Mahmoud ⁷³, G. Mahout ¹⁸, C. Maiani ¹³⁶, C. Maidantchik ^{24a}, A. Maio ^{124a,b}, S. Majewski ²⁵, Y. Makida ⁶⁵, N. Makovec ¹¹⁵, P. Mal ¹³⁶, B. Malaescu ³⁰, Pa. Malecki ³⁹, P. Malecki ³⁹, V.P. Maleev ¹²¹, F. Malek ⁵⁵, U. Mallik ⁶², D. Malon ⁶, C. Malone ¹⁴³, S. Maltezos ¹⁰, V. Malyshev ¹⁰⁷, S. Malyukov ³⁰, R. Mameghani ⁹⁸, J. Mamuzic ^{13b}, A. Manabe ⁶⁵, L. Mandelli ^{89a}, I. Mandić ⁷⁴, R. Mandrysch ¹⁶, J. Maneira ^{124a}, A. Manfredini ⁹⁹, P.S. Mangeard ⁸⁸, L. Manhaes de Andrade Filho ^{24b}, I.A. Manjarres Ramos ¹³⁶, A. Mann ⁵⁴, P.M. Manning ¹³⁷, A. Manousakis-Katsikakis ⁹, B. Mansoulie ¹³⁶ J.A. Manjarres Ramos ¹³⁶, A. Mann ⁵⁴, P.M. Manning ¹³⁷, A. Manousakis-Katsikakis ⁹, B. Mansoulie ¹³⁶, A. Mapelli ³⁰, L. Marchiori ⁸⁰, J.F. Marchand ²⁹, F. Marchese ^{133a, 133b}, G. Marchiori ⁷⁸, M. Marcisovsky¹²⁵, C.P. Marino¹⁶⁹, F. Marroquim^{24a}, Z. Marshall³⁰, F.K. Martens¹⁵⁸, L.F. Marti¹⁷,

853

S. Marti-Garcia ¹⁶⁷, B. Martin ³⁰, B. Martin ⁸⁸, J.P. Martin ⁹³, T.A. Martin ¹⁸, V.J. Martin ⁴⁶, B. Martin dit Latour ⁴⁹, S. Martin-Haugh ¹⁴⁹, M. Martinez ¹², V. Martinez Outschoorn ⁵⁷, A.C. Martyniuk ¹⁶⁹, M. Marx ⁸², F. Marzano ^{132a}, A. Marzin ¹¹¹, L. Masetti ⁸¹, T. Mashimo ¹⁵⁵, R. Mashinistov ⁹⁴, J. Masik ⁸², A.L. Maslennikov ¹⁰⁷, I. Massa ^{20a,20b}, G. Massaro ¹⁰⁵, N. Massol ⁵, P. Mastrandrea ¹⁴⁸, A. Mastroberardino ^{37a,37b}, T. Masubuchi ¹⁵⁵, P. Matricon ¹¹⁵, H. Matsunaga ¹⁵⁵, T. Matsushita ⁶⁶, C. Mattravers ^{118,c}, J. Maurer ⁸³, S.J. Maxfield ⁷³, A. Mayne ¹³⁹, R. Mazini ¹⁵¹, M. Mazur ²¹, L. Mazzaferro ^{133a,133b}, M. Mazzanti ^{89a}, J. Mc Donald ⁸⁵, S.P. Mc Kee ⁸⁷, A. McCarn ¹⁶⁵, R.L. McCarthy ¹⁴⁸, T.G. McCarthy ²⁹, N.A. McCubbin ¹²⁹, K.W. McFarlane ^{56,*}, J.A. Mcfayden ¹³⁹, G. Mchedlidze ^{51b}, T. Mclaughlan ¹⁸, S.J. McMahon ¹²⁹, R.A. McPherson ^{169,k}, A. Meade ⁸⁴, J. Mechnich ¹⁰⁵, M. Mechtel ¹⁷⁵, M. Medinnis ⁴², R. Meera-Lebbai ¹¹¹, T. Meguro ¹¹⁶, R. Mehdiyev ⁹³, S. Mehlhase ³⁶, A. Mehta ⁷³, K. Meier ^{58a}, B. Meirose ⁷⁹, C. Melachrinos ³¹, B.R. Mellado Garcia ¹⁷³, F. Meloni ^{89a,89b}, L. Mendoza Navas ¹⁶², Z. Meng ^{151,u}, A. Mengarelli ^{20a,20b}, S. Menke ⁹⁹, E. Meoni ¹⁶¹, K.M. Mercurio ⁵⁷, K. Meier ^{58a}, B. Meirose ⁷⁹, C. Melachrinos ³¹, B.R. Mellado Garcia ¹⁷³, F. Meloni ^{89a,89b}, L. Mendoza Navas ¹⁶², Z. Meng ^{151,*u*}, A. Mengarelli ^{20a,20b}, S. Menke ⁹⁹, E. Meoni ¹⁶¹, K.M. Mercurio ⁵⁷, P. Mermod ⁴⁹, L. Merola ^{102a,102b}, C. Meroni ^{89a}, F.S. Merritt ³¹, H. Merritt ¹⁰⁹, A. Messina ^{30,*y*}, J. Metcalfe ²⁵, A.S. Mete ¹⁶³, C. Meyer ⁸¹, C. Meyer ³¹, J.-P. Meyer ¹³⁶, J. Meyer ¹⁷⁴, J. Meyer ⁵⁴, T.C. Meyer ³⁰, J. Miao ^{33d}, S. Michal ³⁰, L. Micu ^{26a}, R.P. Middleton ¹²⁹, S. Migas ⁷³, L. Mijović ¹³⁶, G. Mikenberg ¹⁷², M. Mikestikova ¹²⁵, M. Mikuž ⁷⁴, D.W. Miller ³¹, R.J. Miller ⁸⁸, W.J. Mills ¹⁶⁸, C. Mills ⁵⁷, A. Milov ¹⁷², D.A. Milstead ^{146a,146b}, D. Milstein ¹⁷², A.A. Minaenko ¹²⁸, M. Miñano Moya ¹⁶⁷, I.A. Minashvili ⁶⁴, A.I. Mincer ¹⁰⁸, B. Mindur ³⁸, M. Mineev ⁶⁴, Y. Ming ¹⁷³, L.M. Mir ¹², G. Mirabelli ^{132a}, J. Mitrevski ¹³⁷, V.A. Mitsou ¹⁶⁷, S. Mitsui ⁶⁵, P.S. Miyagawa ¹³⁹, J.U. Mjörnmark ⁷⁹, T. Moa ^{146a,146b}, V. Moeller ²⁸, K. Mönig ⁴², N. Möser ²¹, S. Mohapatra ¹⁴⁸, W. Mohr ⁴⁸, R. Moles-Valls ¹⁶⁷, A. Molfetas ³⁰, L. Monk ⁷⁷, F. Monnier ⁸³, I. Monteio Berlingen ¹², F. Monticelli ⁷⁰, S. Morzani ^{20a,20b}, R.W. Moore ³ J. Monk⁷⁷, E. Monnier⁸³, J. Montejo Berlingen¹², F. Monticelli⁷⁰, S. Monzani^{20a,20b}, R.W. Moore³, G.F. Moorhead⁸⁶, C. Mora Herrera⁴⁹, A. Moraes⁵³, N. Morange¹³⁶, J. Morel⁵⁴, G. Morello^{37a,37b}, D. Moreno⁸¹, M. Moreno Llácer¹⁶⁷, P. Morettini^{50a}, M. Morgenstern⁴⁴, M. Morii⁵⁷, A.K. Morley³⁰, G. Mornacchi³⁰, J.D. Morris⁷⁵, L. Morvaj¹⁰¹, H.G. Moser⁹⁹, M. Mosidze^{51b}, J. Moss¹⁰⁹, R. Mount¹⁴³, E. Mountricha^{10,z}, S.V. Mouraviev^{94,*}, E.J.W. Moyse⁸⁴, F. Mueller^{58a}, J. Mueller¹²³, K. Mueller²¹, T.A. Müller⁹⁸, T. Mueller⁸¹, D. Muenstermann³⁰, Y. Munwes¹⁵³, W.J. Murray¹²⁹, I. Mussche¹⁰⁵, E. Musto^{102a,102b}, A.G. Myagkov¹²⁸, M. Myska¹²⁵, J. Nadal¹², K. Nagai¹⁶⁰, R. Nagai¹⁵⁷, K. Nagano⁶⁵, A. Nagarkar¹⁰⁹, Y. Nagasaka⁵⁹, M. Nagel⁹⁹, A.M. Nairz³⁰, Y. Nakahama³⁰, K. Nakamura¹⁵⁵, T. Nakamura¹⁵⁵, I. Nakano¹¹⁰, G. Nanava²¹, A. Napier¹⁶¹, R. Narayan^{58b}, M. Nash^{77,c}, T. Nattermann²¹, T. Naumann⁴², G. Navarro¹⁶², H.A. Neal⁸⁷, P.Yu. Nechaeva⁹⁴, T.J. Neep⁸², A. Negri ^{119a,119b}, G. Negri ³⁰, M. Negrini^{20a}, S. Nektarijevic⁴⁹, A. Nelson¹⁶³, T.K. Nelson¹⁴³, S. Nemecek¹²⁵, P. Nemethy¹⁰⁸, ¹⁰⁹ A.A. Nepomuceno^{24a}, M. Nessi^{30,aa}, M.S. Neubauer¹⁶⁵, M. Neumann¹⁷⁵, A. Neusiedl⁸¹, R.M. Neves¹⁰⁸, P. Nevski²⁵, P.R. Newman¹⁸, V. Nguyen Thi Hong¹³⁶, R.B. Nickerson¹¹⁸, R. Nicolaidou¹³⁶, B. Nicquevert³⁰, F. Niedercorn¹¹⁵, J. Nielsen¹³⁷, N. Nikiforou³⁵, A. Nikiforov¹⁶, V. Nikolaenko¹²⁸, I. Nikolic-Audit⁷⁸, K. Nikolics⁴⁹, K. Nikolopoulos¹⁸, H. Nilsen⁴⁸, P. Nilsson⁸, Y. Ninomiya¹⁵⁵, A. Nisati ^{132a}, R. Nisius ⁹⁹, T. Nobe ¹⁵⁷, L. Nodulman⁶, M. Nomachi ¹¹⁶, I. Nomidis ¹⁵⁴, S. Norberg ¹¹¹, A. Nisati ^{152a}, R. Nisius⁵⁵, I. Nobe¹⁵⁷, L. Nodulman⁶, M. Nomachi ¹¹⁶, I. Nomidis¹⁵¹, S. Norberg¹¹ M. Nordberg³⁰, P.R. Norton¹²⁹, J. Novakova¹²⁶, M. Nozaki⁶⁵, L. Nozka¹¹³, I.M. Nugent^{159a}, A.-E. Nuncio-Quiroz²¹, G. Nunes Hanninger⁸⁶, T. Nunnemann⁹⁸, E. Nurse⁷⁷, B.J. O'Brien⁴⁶, D.C. O'Neil¹⁴², V. O'Shea⁵³, L.B. Oakes⁹⁸, F.G. Oakham^{29,d}, H. Oberlack⁹⁹, J. Ocariz⁷⁸, A. Ochi⁶⁶, S. Oda⁶⁹, S. Odaka⁶⁵, J. Odier⁸³, H. Ogren⁶⁰, A. Oh⁸², S.H. Oh⁴⁵, C.C. Ohm³⁰, T. Ohshima¹⁰¹, H. Okawa²⁵, Y. Okumura³¹, T. Okuyama¹⁵⁵, A. Olariu^{26a}, A.G. Olchevski⁶⁴, S.A. Olivares Pino^{32a}, M. Oliveira^{124a,h}, D. Oliveira Damazio²⁵, E. Oliver Garcia¹⁶⁷, D. Olivito¹²⁰, A. Olszewski³⁹, J. Olszowska³⁹, A. Onofre^{124a,ab}, P.U.E. Onyisi³¹, C.J. Oram^{159a}, M.J. Oreglia³¹, Y. Oren¹⁵³, D. Orestano^{134a,134b}, N. Orlando^{72a,72b}, I. Orlov¹⁰⁷, C. Oropeza Barrera⁵³, R.S. Orr¹⁵⁸, B. Osculati^{50a,50b}, R. Ospanov ¹²⁰, C. Osuna ¹², G. Otero y Garzon ²⁷, J.P. Ottersbach ¹⁰⁵, M. Ouchrif ^{135d}, E.A. Ouellette ¹⁶⁹, F. Ould-Saada ¹¹⁷, A. Ouraou ¹³⁶, Q. Ouyang ^{33a}, A. Ovcharova ¹⁵, M. Owen ⁸², S. Owen ¹³⁹, V.E. Ozcan ^{19a}, N. Ozturk⁸, A. Pacheco Pages ¹², C. Padilla Aranda ¹², S. Pagan Griso ¹⁵, E. Paganis ¹³⁹, C. Pahl ⁹⁹, F. Paige²⁵, P. Pais⁸⁴, K. Pajchel¹¹⁷, G. Palacino^{159b}, C.P. Paleari⁷, S. Palestini³⁰, D. Pallin³⁴, A. Palma^{124a}, J.D. Palmer¹⁸, Y.B. Pan¹⁷³, E. Panagiotopoulou¹⁰, P. Pani¹⁰⁵, N. Panikashvili⁸⁷, S. Panitkin²⁵, D. Pantea^{26a}, A. Papadelis^{146a}, Th.D. Papadopoulou¹⁰, A. Paramonov⁶, D. Paredes Hernandez³⁴, W. Park^{25,ac}, M.A. Parker²⁸, F. Parodi^{50a,50b}, J.A. Parsons³⁵, U. Parzefall⁴⁸, S. Pashapour⁵⁴, E. Pasqualucci^{132a}, S. Passaggio^{50a}, A. Passeri^{134a}, F. Pastore^{134a,134b,*}, Fr. Pastore⁷⁶, G. Pásztor^{49,ad},

S. Pataraia ¹⁷⁵, N. Patel ¹⁵⁰, J.R. Pater ⁸², S. Patricelli ^{102a,102b}, T. Pauly ³⁰, M. Pecsy ^{144a}, S. Pedraza Lopez ¹⁶⁷, M.I. Pedraza Morales ¹⁷³, S.V. Peleganchuk ¹⁰⁷, D. Pelikan ¹⁶⁶, H. Peng ^{33b}, B. Penning ³¹, A. Penson ³⁵, J. Penwell ⁶⁰, M. Perantoni ^{24a}, K. Perez ^{35,ae}, T. Perez Cavalcanti ⁴², E. Perez Codina ^{159a}, M.T. Pérez García-Estañ ¹⁶⁷, V. Perez Reale ³⁵, L. Perini ^{89a,89b}, H. Pernegger ³⁰, R. Perrino ^{72a}, P. Perrodo ⁵, V.D. Peshekhonov ⁶⁴, K. Peters ³⁰, B.A. Petersen ³⁰, J. Petersen ³⁰, T.C. Petersen ³⁶, E. Petit ⁵, A. Petridis ¹⁵⁴, C. Petridou ¹⁵⁴, E. Petrolo ^{132a}, F. Petrucci ^{134a,134b}, D. Petschull ⁴², T.C. Petersen ³⁶, E. Petit ³, A. Petridis ¹³⁴, C. Petridou ¹³⁴, E. Petrolo ^{132a}, F. Petrucci ^{134a}, ^{134b}, D. Petschul M. Petteni ¹⁴², R. Pezoa ^{32b}, A. Phan ⁸⁶, P.W. Phillips ¹²⁹, G. Piacquadio ³⁰, A. Picazio ⁴⁹, E. Piccaro ⁷⁵, M. Piccinini ^{20a,20b}, S.M. Piec ⁴², R. Piegaia ²⁷, D.T. Pignotti ¹⁰⁹, J.E. Pilcher ³¹, A.D. Pilkington ⁸², J. Pina ^{124a,b}, M. Pinamonti ^{164a,164c}, A. Pinder ¹¹⁸, J.L. Pinfold ³, B. Pinto ^{124a}, C. Pizio ^{89a,89b}, M. Plamondon ¹⁶⁹, M.-A. Pleier ²⁵, E. Plotnikova ⁶⁴, A. Poblaguev ²⁵, S. Poddar ^{58a}, F. Podlyski ³⁴, L. Poggioli ¹¹⁵, D. Pohl ²¹, M. Pohl ⁴⁹, G. Polesello ^{119a}, A. Policicchio ^{37a,37b}, A. Polini ^{20a}, J. Poll ⁷⁵, V. Polychronakos ²⁵, D. Pomeroy ²³, K. Pommès ³⁰, L. Pontecorvo ^{132a}, B.G. Pope ⁸⁸, G.A. Popeneciu ^{26a}, D.S. Popovic ^{13a}, A. Poppleton ³⁰, X. Portell Bueso ³⁰, G.E. Pospelov ⁹⁹, S. Pospisil ¹²⁷, I.N. Potrap ⁹⁹, C.I. Potter ¹⁴⁹, C.T. Potter ¹¹⁴, C. Poulard ³⁰, L. Poveda ⁶⁰, V. Pozdavakov ⁶⁴, R. Prabhu ⁷⁷, P. Pralavorio ⁸³ V. Polychroliakos¹⁴, D. Polneroy¹⁴, K. Polnices¹⁴, L. Polnecovo¹⁴⁴, B.G. Pope¹⁴⁵, G.A. Poperlech¹⁴⁴, D. S. Popovic^{13a}, A. Poppleton³⁰, X. Portell Bueso³⁰, G.E. Posplev⁹⁹, S. Pospisil¹²⁷, I.N. Potrap⁹⁹, C.J. Potter¹⁴⁹, C.T. Potter¹¹⁴, G. Poulard³⁰, J. Poveda⁶⁰, V. Pozdnyakov⁶⁴, R. Prabhu⁷⁷, P. Pralavorio⁸³, A. Pranko¹⁵, S. Prasad³⁰, R. Pravahan²⁵, S. Prell⁶³, K. Pretzl¹⁷, D. Price⁶⁰, J. Price⁷³, L.E. Price⁶, D. Prieur¹²³, M. Primavera^{72a}, K. Prokofiev¹⁰⁸, F. Prokoshin^{32b}, S. Protopopescu²⁵, J. Proudfoot⁶, X. Prudent⁴⁴, M. Przybycien³⁸, H. Przysiezniak⁵, S. Psoroulas²¹, E. Ptacek¹¹⁴, E. Pueschel⁸⁴, J. Purdham⁸⁷, M. Purohit^{25,ac}, P. Puzo¹¹⁵, Y. Pylypchenko⁶², J. Qian⁸⁷, A. Quadt⁵⁴, D.R. Quarrie¹⁵, W.B. Quayle¹⁷³, F. Quinonez^{32a}, M. Raas¹⁰⁴, V. Radescu⁴², P. Radloff¹¹⁴, T. Rador^{19a}, F. Ragusa^{89a,89b}, G. Rahal¹⁷⁸, A.M. Rahimi¹⁰⁹, D. Rahm²⁵, S. Rajagopalan²⁵, M. Rammensee⁴⁸, M. Rammes¹⁴¹, A.S. Randle-Conde⁴⁰, K. Readelanarivony²⁹, F. Rauscher⁹⁸, T.C. Rave⁴⁸, M. Raymond³⁰, A.L. Read¹¹⁷, D.M. Rebuzzi^{119a,119b}, A. Redelbach¹⁷⁴, G. Redlinger²⁵, R. Reece¹²⁰, K. Reeves⁴¹, E. Reinherz-Aronis¹⁵³, A. Reinsch¹¹⁴, I. Reisinger⁴³, C. Rembser³⁰, Z.L. Ren¹⁵¹, A. Renaud¹¹⁵, M. Rescigno^{132a}, S. Resconi^{89a}, B. Resende¹³⁶, P. Reznicek⁹⁸, R. Rezvani¹⁵⁸, R. Richter⁹⁹, E. Richter-Was^{5,df}, M. Ridel⁷⁸, M. Rijpstra¹⁰⁵, M. Rijssenbeek¹⁴⁸, A. Rimoldi^{119a,119b}, L. Rinaldi^{20a}, R.R. Rios⁴⁰, I. Riu¹², G. Rivoltella^{89a,89b}, F. Rizatdinova¹¹², E. Rizvi⁷⁵, S.H. Robertson^{85,k}, A. Robichaud-Veronneau ¹¹⁸, D. Robinson²⁸, J.E. Rose⁵⁴, S. Roe³⁰, O. Røhne¹¹⁷, S. Rolli¹⁶¹, A. Romaniouk⁹⁶, M. Romano^{20a,20b}, G. Romeo⁷⁷, E. Romero Adam¹⁶⁷, N. Rompotis¹³⁸, L. Roos⁷⁸, E. Ros¹⁶⁷, S. Rosatil^{132a}, K. Rosbach⁴⁹, A. Rose¹⁴⁹, M. Rose⁷⁶, G.A. Rosenbaum¹⁵⁸, E.I. Rosenberg⁶³, P.L. Rosendall¹⁴, O. Rosenthal¹⁴¹, L. Rosselet⁴⁹, V. Rosse C. Kutolph ^{1, C}, G. Kutolph ^{1, C}, F. Kulli ^{1,} A. Kulz-Matthlez ^{1,} E. Kulliyalisev ^{1,} Z. Kullikova ^{1,}
N.A. Rusakovich ⁶⁴, J.P. Rutherfoord ⁷, C. Ruwiedel ^{15,*}, P. Ruzicka ¹²⁵, Y.F. Ryabov ¹²¹, M. Rybar ¹²⁶,
G. Rybkin ¹¹⁵, N.C. Ryder ¹¹⁸, A.F. Saavedra ¹⁵⁰, I. Sadeh ¹⁵³, H.F-W. Sadrozinski ¹³⁷, R. Sadykov ⁶⁴,
F. Safai Tehrani ^{132a}, H. Sakamoto ¹⁵⁵, G. Salamanna ⁷⁵, A. Salamon ^{133a}, M. Saleem ¹¹¹, D. Salek ³⁰,
D. Salihagic ⁹⁹, A. Salnikov ¹⁴³, J. Salt ¹⁶⁷, B.M. Salvachua Ferrando ⁶, D. Salvatore ^{37a,37b}, F. Salvatore ¹⁴⁹,
A. Salvucci ¹⁰⁴, A. Salzburger ³⁰, D. Sampsonidis ¹⁵⁴, B.H. Samset ¹¹⁷, A. Sanchez ^{102a,102b},
V. Sanchez Martinez ¹⁶⁷, H. Sandaker ¹⁴, H.G. Sander ⁸¹, M.P. Sanders ⁹⁸, M. Sandhoff ¹⁷⁵, T. Sandoval ²⁸,
C. Sandoval ¹⁶², R. Sandstroem ⁹⁹, D.P.C. Sankey ¹²⁹, A. Sansoni ⁴⁷, C. Santamarina Rios ⁸⁵, C. Santoni ³⁴,
R. Santonico ^{133a,133b}, H. Santos ^{124a}, J.G. Saraiva ^{124a}, T. Sarangi ¹⁷³, E. Sarkisyan-Grinbaum ⁸,
F. Sarri ^{122a,122b}, G. Sartisohn ¹⁷⁵, O. Sasaki ⁶⁵, Y. Sasaki ¹⁵⁵, N. Sasao ⁶⁷, I. Satsounkevitch ⁹⁰,
G. Sauvage ^{5,*}, E. Sauvan ⁵, J.B. Sauvan ¹¹⁵, P. Savard ^{158,d}, V. Savinov ¹²³, D.O. Savu ³⁰, L. Sawyer ^{25,m},
D.H. Saxon ⁵³, J. Saxon ¹²⁰, C. Sbarra ^{20a}, A. Sbrizzi ^{20a,20b}, D.A. Scannicchio ¹⁶³, M. Scarcella ¹⁵⁰,
J. Schaarschmidt ¹¹⁵, P. Schacht ⁹⁹, D. Schaefer ¹²⁰, U. Schäfer ⁸¹, S. Schaepe ²¹, S. Schaetzel ^{58b},
A.C. Schaffer ¹¹⁵, D. Schaile ⁹⁸, R.D. Schamberger ¹⁴⁸, A.G. Schamov ¹⁰⁷, V. Scharf ^{58a}, V.A. Schegelsky ¹²¹,
D. Scheirch ⁸⁷, M. Scherrau ¹⁶³, M.I. Scherzer ³⁵, C. Schinit ⁸¹, S. Schieck ⁹⁸, M. Schioppa ^{37a,37b},
S. Schlenker ³⁰, E. Schmidt ⁴⁸, K. Schmeiden ²¹, C. Schmitt ^{58b}, M. Schouten ^{159a},
J. Schovancova ¹²⁵, M. Schram ⁸⁵, C. Schroeder ⁸¹, N. N.A. Rusakovich⁶⁴, J.P. Rutherfoord⁷, C. Ruwiedel^{15,*}, P. Ruzicka¹²⁵, Y.F. Ryabov¹²¹, M. Rybar¹²⁶,

855

R. Schwierz⁴⁴, J. Schwindling¹³⁶, T. Schwindt²¹, M. Schwoerer⁵, G. Sciolla²³, W.G. Scott¹²⁹, J. Searcy¹¹⁴, G. Sedov⁴², E. Sedykh¹²¹, S.C. Seidel¹⁰³, A. Seiden¹³⁷, F. Seifert⁴⁴, J.M. Seixas^{24a}, G. Sekhniaidze^{102a}, S.J. Sekula⁴⁰, K.E. Selbach⁴⁶, D.M. Seliverstov¹²¹, B. Sellden^{146a}, G. Sellers⁷³, M. Seman^{144b}, N. Semprini-Cesari^{20a,20b}, C. Serfon⁹⁸, L. Serin¹¹⁵, L. Serkin⁵⁴, R. Seuster⁹⁹, H. Severini¹¹¹, A. Sfyrla³⁰, N. Semprini-Cesari ^{20a, 20b}, C. Serfon ⁹⁸, L. Serin ¹¹⁵, L. Serkin ⁵⁴, R. Seuster ⁹⁹, H. Severini ¹¹¹, A. Sfyrla ³⁰, E. Shabalina ⁵⁴, M. Shamim ¹¹⁴, L.Y. Shan ^{33a}, J.T. Shank ²², Q.T. Shao ⁸⁶, M. Shapiro ¹⁵, P.B. Shatalov ⁹⁵, K. Shaw ^{164a, 164c}, D. Sherman ¹⁷⁶, P. Sherwood ⁷⁷, S. Shimizu ¹⁰¹, M. Shimojima ¹⁰⁰, T. Shin ⁵⁶, M. Shiyakova ⁶⁴, A. Shmeleva ⁹⁴, M.J. Shochet ³¹, D. Short ¹¹⁸, S. Shrestha ⁶³, E. Shulga ⁹⁶, M.A. Shupe ⁷, P. Sicho ¹²⁵, A. Sidoti ^{132a}, F. Siegert ⁴⁸, Dj. Sijacki ^{13a}, O. Silbert ¹⁷², J. Silva ^{124a}, Y. Silver ¹⁵³, D. Silverstein ¹⁴³, S.B. Silverstein ^{146a}, V. Simak ¹²⁷, O. Simard ¹³⁶, Lj. Simic ^{13a}, S. Simion ¹¹⁵, E. Simioni ⁸¹, B. Simmons ⁷⁷, R. Simoniello ^{89a, 89b}, M. Simonyan ³⁶, P. Sinervo ¹⁵⁸, N.B. Sinev ¹¹⁴, V. Sipica ¹⁴¹, G. Siragusa ¹⁷⁴, A. Sircar ²⁵, A.N. Sisakyan ^{64,*}, S.Yu. Sivoklokov ⁹⁷, J. Sjölin ^{146a, 146b}, T.B. Sjursen ¹⁴, L.A. Skinnari ¹⁵, H.P. Skottowe ⁵⁷, K. Skovpen ¹⁰⁷, P. Skubic ¹¹¹, M. Slater ¹⁸, T. Slavicek ¹²⁷, K. Sliwa ¹⁶¹, V. Smakhtin ¹⁷², B.H. Smart ⁴⁶, S.L. Smestad ¹¹⁷, S.Yu. Smirnov ⁹⁶, Y. Smirnov ⁹⁶, L.N. Smirnova ⁹⁷, O. Smirnova ⁷⁹, B.C. Smith ⁵⁷, D. Smith ¹⁴³, K.M. Smith ⁵³, M. Smiranska ⁷¹, K. Smolek ¹²⁷ O. Smirnova⁷⁹, B.C. Smith⁵⁷, D. Smith¹⁴³, K.M. Smith⁵³, M. Smizanska⁷¹, K. Smolek¹²⁷, A.A. Snesarev⁹⁴, S.W. Snow⁸², J. Snow¹¹¹, S. Snyder²⁵, R. Sobie^{169,k}, J. Sodomka¹²⁷, A. Soffer¹⁵³, C.A. Solans¹⁶⁷, M. Solar¹²⁷, J. Solc¹²⁷, E.Yu. Soldatov⁹⁶, U. Soldevila¹⁶⁷, E. Solfaroli Camillocci^{132a,132b}, A.A. Solodkov¹²⁸, O.V. Solovyanov¹²⁸, V. Solovyev¹²¹, N. Soni¹, V. Sopko¹²⁷, B. Sopko¹²⁷, M. Sosebee⁸, R. Solotkov^{12,} O.V. Solovyallov^{12,} V. Solovyev^{12,} N. Solir¹, V. Sopko^{12,}, B. Sopko^{12,}, M. Sosel R. Soualah^{164a,164c}, A. Soukharev¹⁰⁷, S. Spagnolo^{72a,72b}, F. Spanò⁷⁶, R. Spighi^{20a}, G. Spigo³⁰, R. Spiwoks³⁰, M. Spousta^{126,ah}, T. Spreitzer¹⁵⁸, B. Spurlock⁸, R.D. St. Denis⁵³, J. Stahlman¹²⁰, R. Stamen^{58a}, E. Stanecka³⁹, R.W. Stanek⁶, C. Stanescu^{134a}, M. Stanescu-Bellu⁴², M.M. Stanitzki⁴², S. Stapnes¹¹⁷, E.A. Starchenko¹²⁸, J. Stark⁵⁵, P. Staroba¹²⁵, P. Starovoitov⁴², R. Staszewski³⁹, A. Staude⁹⁸, P. Stavina^{144a,*}, G. Steele⁵³, P. Steinbach⁴⁴, P. Steinberg²⁵, I. Stekl¹²⁷, B. Stelzer¹⁴², H.J. Stelzer ⁸⁸, O. Stelzer-Chilton ^{159a}, H. Stenzel ⁵², S. Stern ⁹⁹, G.A. Stewart ³⁰, J.A. Stillings ²¹, M.C. Stockton ⁸⁵, K. Stoerig ⁴⁸, G. Stoicea ^{26a}, S. Stonjek ⁹⁹, P. Strachota ¹²⁶, A.R. Stradling ⁸, A. Straessner⁴⁴, J. Strandberg¹⁴⁷, S. Strandberg^{146a,146b}, A. Strandlie¹¹⁷, M. Strang¹⁰⁹, E. Strauss¹⁴³, M. Strauss¹¹¹, P. Strizenec^{144b}, R. Ströhmer¹⁷⁴, D.M. Strom¹¹⁴, J.A. Strong^{76,*}, R. Stroynowski⁴⁰, J. Strube¹²⁹, B. Stugu¹⁴, I. Stumer^{25,*}, J. Stupak¹⁴⁸, P. Sturm¹⁷⁵, N.A. Styles⁴², D.A. Soh^{151,w}, D. Su¹⁴³, HS. Subramania³, A. Succurro¹², Y. Sugaya¹¹⁶, C. Suhr¹⁰⁶, M. Suk¹²⁶, V.V. Sulin⁹⁴, S. Sultansoy^{4d}, HS. Subramania⁻⁵, A. Succurro⁻¹², Y. Sugaya¹¹⁰, C. Sunr¹⁰⁰, M. Suk¹²⁰, V.V. Sulin⁵⁴, S. Sultansoy⁴⁰,
T. Sumida⁶⁷, X. Sun⁵⁵, J.E. Sundermann⁴⁸, K. Suruliz¹³⁹, G. Susinno^{37a,37b}, M.R. Sutton¹⁴⁹, Y. Suzuki⁶⁵,
Y. Suzuki⁶⁶, M. Svatos¹²⁵, S. Swedish¹⁶⁸, I. Sykora^{144a}, T. Sykora¹²⁶, J. Sánchez¹⁶⁷, D. Ta¹⁰⁵,
K. Tackmann⁴², A. Taffard¹⁶³, R. Tafirout^{159a}, N. Taiblum¹⁵³, Y. Takahashi¹⁰¹, H. Takai²⁵,
R. Takashima⁶⁸, H. Takeda⁶⁶, T. Takeshita¹⁴⁰, Y. Takubo⁶⁵, M. Talby⁸³, A. Talyshev^{107,f}, M.C. Tamsett²⁵,
J. Tanaka¹⁵⁵, R. Tanaka¹¹⁵, S. Tanaka¹³¹, S. Tanaka⁶⁵, A.J. Tanasijczuk¹⁴², K. Tani⁶⁶, N. Tannoury⁸³,
S. Tapprogge⁸¹, D. Tardif¹⁵⁸, S. Tarem¹⁵², F. Tarrade²⁹, G.F. Tartarelli^{89a}, P. Tas¹²⁶, M. Tasevsky¹²⁵,
E. Tassi^{37a,37b}, M. Tatarkhanov¹⁵, Y. Tayalati^{135d}, C. Taylor⁷⁷, F.E. Taylor⁹², G.N. Taylor⁸⁶, W. Taylor^{159b}, M. Teinturier ¹¹⁵, F.A. Teischinger ³⁰, M. Teixeira Dias Castanheira ⁷⁵, P. Teixeira-Dias ⁷⁶, K.K. Temming ⁴⁸, H. Ten Kate ³⁰, P.K. Teng ¹⁵¹, S. Terada ⁶⁵, K. Terashi ¹⁵⁵, J. Terron ⁸⁰, M. Testa ⁴⁷, R.J. Teuscher ^{158,k}, J. Therhaag ²¹, T. Theveneaux-Pelzer ⁷⁸, S. Thoma ⁴⁸, J.P. Thomas ¹⁸, E.N. Thompson ³⁵, P.D. Thompson ¹⁸, P.D. Thompson ¹⁵⁸, A.S. Thompson ⁵³, L.A. Thomsen ³⁶, E. Thomson ¹²⁰, M. Thomson ²⁸, W.M. Thong ⁸⁶, R.P. Thun ⁸⁷, F. Tian ³⁵, M.J. Tibbetts ¹⁵, T. Tic ¹²⁵, V.O. Tikhomirov ⁹⁴, Y.A. Tikhonov ^{107, f}, S. Timoshenko ⁹⁶, R.P. Thun ⁸⁷, F. Tian ³⁵, M.J. Tibbetts ¹⁵, T. Tic ¹²⁵, V.O. Tikhomirov ⁹⁴, Y.A. Tikhonov ^{107, f}, S. Timoshenko ⁹⁶ P. Tipton ¹⁷⁶, S. Tisserant ⁸³, T. Todorov ⁵, S. Todorova-Nova ¹⁶¹, B. Toggerson ¹⁶³, J. Tojo ⁶⁹, S. Tokár ^{144a}, K. Tokushuku ⁶⁵, K. Tollefson ⁸⁸, M. Tomoto ¹⁰¹, L. Tompkins ³¹, K. Toms ¹⁰³, A. Tonoyan ¹⁴, C. Topfel ¹⁷, N.D. Topilin ⁶⁴, I. Torchiani ³⁰, E. Torrence ¹¹⁴, H. Torres ⁷⁸, E. Torró Pastor ¹⁶⁷, J. Toth ^{83,ad}, F. Touchard ⁸³, D.R. Tovey ¹³⁹, T. Trefzger ¹⁷⁴, L. Tremblet ³⁰, A. Tricoli ³⁰, I.M. Trigger ^{159a}, S. Trincaz-Duvoid ⁷⁸, M.F. Tripiana ⁷⁰, N. Triplett ²⁵, W. Trischuk ¹⁵⁸, B. Trocmé ⁵⁵, C. Troncon ^{89a}, M. Trottier-McDonald ¹⁴², M. Trzebinski ³⁹, A. Trzupek ³⁹, C. Tsarouchas ³⁰, J.C-L. Tseng ¹¹⁸, M. Tsiakiris ¹⁰⁵, P.V. Tsiareshka ⁹⁰, D. Tsionou ^{5,ai}, G. Tsipolitis ¹⁰, S. Tsiskaridze ¹², V. Tsiskaridze ⁴⁸, E.G. Tskhadadze ^{51a}, I.I. Tsukerman ⁹⁵, V. Tsulaia ¹⁵, J.-W. Tsung ²¹, S. Tsuno ⁶⁵, D. Tsybychev ¹⁴⁸, A. Tua ¹³⁹, A. Tudorache ^{26a}, V. Tudorache ^{26a}, J.M. Tuggle ³¹, M. Turala ³⁹, D. Turecek ¹²⁷, I. Turk Cakir ^{4e}, E. Turlay ¹⁰⁵, R. Turra ^{89a,89b}, P.M. Tuts ³⁵, A. Tykhonov ⁷⁴, M. Tylmad ^{146a,146b}, M. Tyndel ¹²⁹, G. Tzanakos ⁹, K. Uchida ²¹, I. Ueda ¹⁵⁵, R. Ueno ²⁹, M. Ugland ¹⁴, M. Uhlenbrock ²¹, M. Uhrmacher ⁵⁴, F. Ukegawa ¹⁶⁰, G. Unal ³⁰, A. Undrus ²⁵, G. Unel ¹⁶³, Y. Unno ⁶⁵, D. Urbaniec ³⁵, P. Urguijo ²¹, G. Usai ⁸, M. Uslenghi ^{119a,119b}, L. Vacavant ⁸³, V. Vacek ¹²⁷ Y. Unno⁶⁵, D. Urbaniec³⁵, P. Urquijo²¹, G. Usai⁸, M. Uslenghi^{119a,119b}, L. Vacavant⁸³, V. Vacek¹²⁷,

B. Vachon⁸⁵, S. Vahsen¹⁵, J. Valenta¹²⁵, S. Valentinetti^{20a,20b}, A. Valero¹⁶⁷, S. Valkar¹²⁶, E. Valladolid Gallego¹⁶⁷, S. Vallecorsa¹⁵², J.A. Valls Ferrer¹⁶⁷, P.C. Van Der Deijl¹⁰⁵, R. van der Geer¹⁰⁵, H. van der Graaf¹⁰⁵, R. Van Der Leeuw¹⁰⁵, E. van der Poel¹⁰⁵, D. van der Ster³⁰, N. van Eldik³⁰, P. van Gemmeren⁶, I. van Vulpen¹⁰⁵, M. Vanadia⁹⁹, W. Vandelli³⁰, A. Vaniachine⁶, P. Vankov⁴², F. Vannucci⁷⁸, R. Vari^{132a}, T. Varol⁸⁴, D. Varouchas¹⁵, A. Vartapetian⁸, K.E. Varvell¹⁵⁰, V.I. Vassilakopoulos⁵⁶, F. Vazeille³⁴, T. Vazquez Schroeder⁵⁴, G. Vegni^{89a,89b}, J.J. Veillet¹¹⁵, F. Veloso^{124a}, R. Veness³⁰, S. Veneziano^{132a}, A. Ventura^{72a,72b}, D. Ventura⁸⁴, M. Venturi⁴⁸, N. Venturi ¹⁵⁸, V. Vercesi ^{119a}, M. Verducci ¹³⁸, W. Verkerke ¹⁰⁵, J.C. Vermeulen ¹⁰⁵, A. Vest ⁴⁴, M.C. Vetterli^{142,d}, I. Vichou¹⁶⁵, T. Vickey^{145b,aj}, O.E. Vickey Boeriu^{145b}, G.H.A. Viehhauser¹¹⁸, S. Viel¹⁶⁸, M. Villa^{20a,20b}, M. Villaplana Perez¹⁶⁷, E. Vilucchi⁴⁷, M.G. Vincter²⁹, E. Vinek³⁰, V.B. Vinogradov⁶⁴, M. Virchaux^{136,*}, J. Virzi¹⁵, O. Vitells¹⁷², M. Viti⁴², I. Vivarelli⁴⁸, F. Vives Vaque³, S. Vlachos¹⁰, D. Vladoiu⁹⁸, M. Vlasak¹²⁷, A. Vogel²¹, P. Vokac¹²⁷, G. Volpi⁴⁷, M. Volpi⁸⁶, G. Volpini^{89a}, H. von der Schmitt⁹⁹, H. von Radziewski⁴⁸, E. von Toerne²¹, V. Vorobel¹²⁶, V. Vorwerk¹², M. Vos¹⁶⁷, H. von der Schmitt ⁹⁹, H. von Radziewski ⁴⁸, E. von Toerne ²¹, V. Vorobel ¹²⁶, V. Vorwerk ¹², M. Vos ¹⁶⁷, R. Voss ³⁰, T.T. Voss ¹⁷⁵, J.H. Vossebeld ⁷³, N. Vranjes ¹³⁶, M. Vranjes Milosavljevic ¹⁰⁵, V. Vrba ¹²⁵, M. Vreeswijk ¹⁰⁵, T. Vu Anh ⁴⁸, R. Vuillermet ³⁰, I. Vukotic ³¹, W. Wagner ¹⁷⁵, P. Wagner ¹²⁰, H. Wahlen ¹⁷⁵, S. Wahrmund ⁴⁴, J. Wakabayashi ¹⁰¹, S. Walch ⁸⁷, J. Walder ⁷¹, R. Walker ⁹⁸, W. Walkowiak ¹⁴¹, R. Wall ¹⁷⁶, P. Waller ⁷³, B. Walsh ¹⁷⁶, C. Wang ⁴⁵, H. Wang ¹⁷³, H. Wang ^{33b,ak}, J. Wang ¹⁵¹, J. Wang ⁵⁵, R. Wang ¹⁰³, S.M. Wang ¹⁵¹, T. Wang ²¹, A. Warburton ⁸⁵, C.P. Ward ²⁸, M. Warsinsky ⁴⁸, A. Washbrook ⁴⁶, C. Wasicki ⁴², I. Watanabe ⁶⁶, P.M. Watkins ¹⁸, A.T. Watson ¹⁸, I.J. Watson ¹⁵⁰, M.F. Watson ¹⁸, G. Watts ¹³⁸, S. Watts ⁸², A.T. Waugh ¹⁵⁰, B.M. Waugh ⁷⁷, M.S. Weber ¹⁷, P. Weber ⁵⁴, A.R. Weidberg ¹¹⁸, P. Weigell ⁹⁹, J. Weingarten ⁵⁴, C. Weiser ⁴⁸, P.S. Wells ³⁰, T. Wenaus ²⁵, D. Wendland ¹⁶, Z. Weng ^{151,w}, T. Wengler ³⁰, S. Wenig ³⁰, N. Wermes ²¹, M. Werner ⁴⁸, P. Werner ³⁰, M. Werth ¹⁶³, M. Wessels ^{58a}, J. Wetter ¹⁶¹, C. Weydert ⁵⁵, K. Whalen ²⁹, S.J. Wheeler-Ellis ¹⁶³, A. White ⁸, M.J. White ⁸⁶, S. White ^{122a,122b}, S.R. Whitehead ¹¹⁸, D. Whiteson ¹⁶³, D. Whittington ⁶⁰, F. Wicek ¹¹⁵, D. Wicke ¹⁷⁵, F.J. Wickens ¹²⁹, W. Wiedenmann ¹⁷³ M. Wielers ¹²⁹, P. Wienemann ²¹, C. Wiglesworth ⁷⁵, L.A.M. Wiik-Fuchs ⁴⁸, W. Wiedenmann¹⁷³, M. Wielers¹²⁹, P. Wienemann²¹, C. Wiglesworth⁷⁵, L.A.M. Wiik-Fuchs⁴⁸, P.A. Wijeratne⁷⁷, A. Wildauer⁹⁹, M.A. Wildt^{42,s}, I. Wilhelm¹²⁶, H.G. Wilkens³⁰, J.Z. Will⁹⁸, E. Williams³⁵, H.H. Williams¹²⁰, W. Willis³⁵, S. Willocq⁸⁴, J.A. Wilson¹⁸, M.G. Wilson¹⁴³, A. Wilson⁸⁷, I. Wingerter-Seez⁵, S. Winkelmann⁴⁸, F. Winklmeier³⁰, M. Wittgen¹⁴³, S.J. Wollstadt⁸¹, M.W. Wolter³⁹, I. Wingerter-Seez⁵, S. Winkelmann⁴⁸, F. Winklmeier³⁰, M. Wittgen¹⁴³, S.J. Wollstadt⁸¹, M.W. Wolter³⁹, H. Wolters^{124a,h}, W.C. Wong⁴¹, G. Wooden⁸⁷, B.K. Wosiek³⁹, J. Wotschack³⁰, M.J. Woudstra⁸², K.W. Wozniak³⁹, K. Wraight⁵³, M. Wright⁵³, B. Wrona⁷³, S.L. Wu¹⁷³, X. Wu⁴⁹, Y. Wu^{33b,al}, E. Wulf³⁵, B.M. Wynne⁴⁶, S. Xella³⁶, M. Xiao¹³⁶, S. Xie⁴⁸, C. Xu^{33b,z}, D. Xu¹³⁹, B. Yabsley¹⁵⁰, S. Yacoob^{145a,am}, M. Yamada⁶⁵, H. Yamaguchi¹⁵⁵, A. Yamamoto⁶⁵, K. Yamamoto⁶³, S. Yamamoto¹⁵⁵, T. Yamamura¹⁵⁵, T. Yamanaka¹⁵⁵, J. Yamaoka⁴⁵, T. Yamazaki¹⁵⁵, Y. Yamazaki⁶⁶, Z. Yan²², H. Yang⁸⁷, U.K. Yang⁸², Y. Yang¹⁰⁹, Z. Yang^{146a,146b}, S. Yanush⁹¹, L. Yao^{33a}, Y. Yao¹⁵, Y. Yasu⁶⁵, G.V. Ybeles Smit¹³⁰, J. Ye⁴⁰, S. Ye²⁵, M. Yilmaz^{4c}, R. Yoosoofmiya¹²³, K. Yorita¹⁷¹, R. Yoshida⁶, C. Young¹⁴³, C.J. Young¹¹⁸, S. Youssef²², D. Yu²⁵, J. Yu⁸, J. Yu¹¹², L. Yuan⁶⁶, A. Yurkewicz¹⁰⁶, B. Zabinski³⁹, R. Zaidan⁶², A.M. Zaitsev¹²⁸, Z. Zajacova³⁰, L. Zanello^{132a,132b}, D. Zanzi⁹⁹, A. Zaytsev²⁵, C. Zeitnitz¹⁷⁵, M. Zeman¹²⁵, G. Zevi della Porta⁵⁷, Z. Zhan^{33d}, D. Zhang^{33b,ak}, H. Zhang⁸⁸, J. Zhang⁶, X. Zhang^{33d}, Z. Zhang¹¹⁵, L. Zhao¹⁰⁸, T. Zhao¹³⁸, Z. Zhao^{33b}, A. Zhemchugov⁶⁴, J. Zhong¹¹⁸, B. Zhou⁸⁷, N. Zhou¹⁶³, Y. Zhou¹⁵¹, C.G. Zhu^{33d}, H. Zhu⁴², J. Zhu⁸⁷, Y. Zhu^{33b}, X. Zhuang⁹⁸, V. Zhuravlov⁹⁹, D. Zieminska⁶⁰, N.I. Zimin⁶⁴, R. Zimmermann²¹, S. Zimmermann⁴¹, S. Zimmermann⁴⁸, M. Ziolkowski¹⁴¹, R. Zitoun⁵, L. Živković³⁵, V.V. Zmouchko^{128,*}, G. Zobernig¹⁷³, A. Zoccoli^{20a,20b}, M. zur Nedden¹⁶, V. Zutshi¹⁰⁶, L. Zwalinski³⁰

¹ School of Chemistry and Physics, University of Adelaide, Adelaide, Australia

² Physics Department, SUNY Albany, Albany, NY, United States

³ Department of Physics, University of Alberta, Edmonton, AB, Canada

⁴ (a) Department of Physics, Ankara: (b) Department of Physics, Dumlupinar University, Kutahya; (c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey

⁵ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France

⁶ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States

⁷ Department of Physics, University of Arizona, Tucson, AZ, United States

⁸ Department of Physics, The University of Texas at Arlington, Arlington, TX, United States

⁹ Physics Department, University of Athens, Athens, Greece

¹⁰ Physics Department, National Technical University of Athens, Zografou, Greece

¹¹ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

¹² Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain

ATLAS Collaboration / Physics Letters B 718 (2013) 841-859

¹³ ^(a) Institute of Physics, University of Belgrade, Belgrade; ^(b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

¹⁴ Department for Physics and Technology, University of Bergen, Bergen, Norway

¹⁵ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States

¹⁶ Department of Physics, Humboldt University, Berlin, Germany

¹⁷ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

¹⁸ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

19 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; ^(d) Department of Physics, Istanbul Technical University, Istanbul, Turkey

²⁰ ^(a) INFN Sezione di Bologna; ^(b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy

²¹ Physikalisches Institut, University of Bonn, Bonn, Germany

²² Department of Physics, Boston University, Boston, MA, United States

 ²³ Department of Physics, Brandeis University, Waltham, MA, United States
 ²⁴ (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ^(b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; ^(c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ^(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil

²⁵ Physics Department, Brookhaven National Laboratory, Upton, NY, United States

26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania

²⁷ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

²⁸ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

²⁹ Department of Physics, Carleton University, Ottawa, ON, Canada

³⁰ CERN, Geneva, Switzerland

³¹ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States

 ²² (a) Departamento de Física, Pontíficia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
 ³³ (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Departament of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; ^(d) School of Physics, Shandong University, Shandong, China

34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France

³⁵ Nevis Laboratory, Columbia University, Irvington, NY, United States

³⁶ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

³⁷ ^(a) INFN Gruppo Collegato di Cosenza; ^(b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

³⁸ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

³⁹ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

⁴⁰ Physics Department, Southern Methodist University, Dallas, TX, United States

⁴¹ Physics Department, University of Texas at Dallas, Richardson, TX, United States

⁴² DESY, Hamburg and Zeuthen, Germany

⁴³ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

⁴⁴ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

⁴⁵ Department of Physics, Duke University, Durham, NC, United States

⁴⁶ SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy

⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland

⁵⁰ ^(a) INFN Sezione di Genova; ^(b) Dipartimento di Fisica, Università di Genova, Genova, Italy

⁵¹ (a) E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; ^(b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

⁵³ SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

⁵⁵ Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

⁵⁶ Department of Physics, Hampton University, Hampton, VA, United States

⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States

58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für Technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

⁵⁹ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

⁶⁰ Department of Physics, Indiana University, Bloomington, IN, United States

⁶¹ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

⁶² University of Iowa, Iowa City, IA, United States

⁶³ Department of Physics and Astronomy, Iowa State University, Ames, IA, United States

⁶⁴ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

⁶⁵ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

⁶⁶ Graduate School of Science, Kobe University, Kobe, Japan

⁶⁷ Faculty of Science, Kyoto University, Kyoto, Japan

⁶⁸ Kyoto University of Education, Kyoto, Japan

⁶⁹ Department of Physics, Kyushu University, Fukuoka, Japan

⁷⁰ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

⁷¹ Physics Department, Lancaster University, Lancaster, United Kingdom

72 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

⁷³ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

⁷⁴ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

⁷⁵ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

⁷⁶ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom

⁷⁷ Department of Physics and Astronomy, University College London, London, United Kingdom

⁷⁸ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

⁷⁹ Fysiska institutionen, Lunds universitet, Lund, Sweden

⁸⁰ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain

⁸¹ Institut für Physik, Universität Mainz, Mainz, Germany

⁸² School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

⁸³ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

⁸⁴ Department of Physics, University of Massachusetts, Amherst, MA, United States

⁸⁵ Department of Physics, McGill University, Montreal, QC, Canada

⁸⁶ School of Physics, University of Melbourne, Victoria, Australia

⁸⁷ Department of Physics, The University of Michigan, Ann Arbor, MI, United States

- ⁸⁸ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- ⁸⁹ ^(a) INFN Sezione di Milano; ^(b) Dipartimento di Fisica, Università di Milano, Milano, Italy
- ⁹⁰ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
- ⁹¹ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
- ⁹² Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
- 93 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
- ⁹⁴ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
- ⁹⁵ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
- ⁹⁶ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
- ⁹⁷ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- 98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
- 99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
- ¹⁰⁰ Nagasaki Institute of Applied Science, Nagasaki, Japan
- ¹⁰¹ Graduate School of Science and Kobayashi–Maskawa Institute, Nagoya University, Nagoya, Japan
- ¹⁰² ^(a) INFN Sezione di Napoli; ^(b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
- ¹⁰³ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
- ¹⁰⁴ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
- ¹⁰⁵ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
- ¹⁰⁶ Department of Physics, Northern Illinois University, DeKalb, IL, United States
- ¹⁰⁷ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
- ¹⁰⁸ Department of Physics, New York University, New York, NY, United States
- ¹⁰⁹ Ohio State University, Columbus, OH, United States
- ¹¹⁰ Faculty of Science, Okayama University, Okayama, Japan
- ¹¹¹ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
- ¹¹² Department of Physics, Oklahoma State University, Stillwater, OK, United States
- ¹¹³ Palacký University, RCPTM, Olomouc, Czech Republic
- ¹¹⁴ Center for High Energy Physics, University of Oregon, Eugene, OR, United States
- ¹¹⁵ LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
- ¹¹⁶ Graduate School of Science, Osaka University, Osaka, Japan
- ¹¹⁷ Department of Physics, University of Oslo, Oslo, Norway
- ¹¹⁸ Department of Physics, Oxford University, Oxford, United Kingdom
- ¹¹⁹ (a) INFN Sezione di Pavia; ^(b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
- ¹²⁰ Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
- ¹²¹ Petersburg Nuclear Physics Institute, Gatchina, Russia
- ¹²² ^(d) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
- ¹²³ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
- 124 (a) Laboratorio de Instrumentacao e Física Experimental de Particulas LIP, Lisboa, Portugal; (b) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
- ¹²⁵ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
- ¹²⁶ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
- ¹²⁷ Czech Technical University in Prague, Praha, Czech Republic
- ¹²⁸ State Research Center Institute for High Energy Physics, Protvino, Russia
- 129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
- ¹³⁰ Physics Department, University of Regina, Regina, SK, Canada
- ¹³¹ Ritsumeikan University, Kusatsu, Shiga, Japan
- ¹³² (a) INFN Sezione di Roma I; ^(b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
 ¹³³ (a) INFN Sezione di Roma Tor Vergata; ^(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
- ¹³⁴ ^(a) INFN Sezione di Roma Tre; ^(b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
- 135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physiaue des Hautes Energies Université Hassan II. Casablanca; (b) Centre National de l'Energie des Sciences Techniaues Nucleaires, Rabat; ^(c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA, Marrakech; ^(d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ^(e) Faculté des Sciences, Université Mohammed V – Agdal, Rabat, Morocco
- 136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
- ¹³⁷ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
- ¹³⁸ Department of Physics, University of Washington, Seattle, WA, United States
- ¹³⁹ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- ¹⁴⁰ Department of Physics, Shinshu University, Nagano, Japan
- ¹⁴¹ Fachbereich Physik, Universität Siegen, Siegen, Germany
- ¹⁴² Department of Physics, Simon Fraser University, Burnaby, BC, Canada
- ¹⁴³ SLAC National Accelerator Laboratory, Stanford, CA, United States
- ¹⁴⁴ (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
- 145 (a) Department of Physics, University of Johannesburg, Johannesburg; ^(b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
- ¹⁴⁶ (a) Department of Physics, Stockholm University; ^(b) The Oskar Klein Centre, Stockholm, Sweden
- 147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
- ¹⁴⁸ Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
- ¹⁴⁹ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
- ¹⁵⁰ School of Physics, University of Sydney, Sydney, Australia
- ¹⁵¹ Institute of Physics, Academia Sinica, Taipei, Taiwan
- ¹⁵² Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
- ¹⁵³ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ¹⁵⁴ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- ¹⁵⁵ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
- ¹⁵⁶ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- ¹⁵⁷ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- Department of Physics, University of Toronto, Toronto, ON, Canada
 ¹⁵⁹ (a) TRIUMF, Vancouver, BC; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
- ¹⁶⁰ Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- ¹⁶¹ Science and Technology Center, Tufts University, Medford, MA, United States
- 162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

- ¹⁶³ Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
 ¹⁶⁴ ^(a) INFN Gruppo Collegato di Udine; ^(b) ICTP, Trieste; ^(c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
 ¹⁶⁵ Department of Physics, University of Illinois, Urbana, IL, United States
- ¹⁶⁶ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
- 167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
- ¹⁶⁸ Department of Physics, University of British Columbia, Vancouver, BC, Canada
- ¹⁶⁹ Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- ¹⁷⁰ Department of Physics, University of Warwick, Coventry, United Kingdom
- ¹⁷¹ Waseda University, Tokyo, Japan
- ¹⁷² Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- ¹⁷³ Department of Physics, University of Wisconsin, Madison, WI, United States
- ¹⁷⁴ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- ¹⁷⁵ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- ¹⁷⁶ Department of Physics, Yale University, New Haven, CT, United States
- ¹⁷⁷ Yerevan Physics Institute, Yerevan, Armenia
- ¹⁷⁸ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
- ^a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal.
- ^b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
- Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
- Also at TRIUMF, Vancouver, BC, Canada.
- Also at Department of Physics, California State University, Fresno, CA, United States.
- ^f Also at Novosibirsk State University, Novosibirsk, Russia.
- g Also at Fermilab, Batavia, IL, United States.
- Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
- Also at Department of Physics, UASLP, San Luis Potosi, Mexico,
- Also at Università di Napoli Parthenope, Napoli, Italy.
- ^k Also at Institute of Particle Physics (IPP), Canada.
- Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
- m Also at Louisiana Tech University, Ruston, LA, United States.
- Also at Departamento de Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
- Also at Department of Physics and Astronomy, University College London, London, United Kingdom,
- Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
- Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
- Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
- Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany,
- Also at Manhattan College, New York, NY, United States.
- Also at School of Physics, Shandong University, Shandong, China.
- Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
- Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
- Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
- Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.
- Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.
- aa Also at Section de Physique, Université de Genève, Geneva, Switzerland.
- ^{ab} Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
- ас Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
- ad Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
- ae Also at California Institute of Technology, Pasadena, CA, United States,
- ^{af} Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
- ^{ag} Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France,
- ah Also at Nevis Laboratory, Columbia University, Irvington, NY, United States.
- ai Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
- Also at Department of Physics, Oxford University, Oxford, United Kingdom.
- ak Also at Institute of Physics, Academia Sinica, Taipei, Taiwan,
- Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
- am Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.