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Abstract

A flavour independent search for the CP-even and CP-odd neutral Higgs bosons h and A is performed in 624 pb−1 of data
collected with the L3 detector at LEP at centre-of-mass energies between 189 and 209 GeV. Higgs boson production through
the e+e− → Zh and the e+e− → hA processes is considered and decays of the Higgs bosons into hadrons are studied. No
significant signal is observed and 95% confidence level limits on the hZZ and hAZ couplings are derived as a function of
the Higgs boson masses. Assuming the Standard Model cross section for the Higgs-strahlung process and a 100% branching
fraction into hadrons, a 95% confidence level lower limit on the mass of the Higgs boson is set at 110.3 GeV.
 2004 Published by Elsevier B.V. Open access under CC BY license.
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1. Introduction

One of the goals of the LEP program is the search
for Higgs bosons, the particles postulated by the Stan-
dard Model of the electroweak interactions [1], and
some of its extensions, to explain the mechanism [2]
which gives the elementary particles their observed
masses.

At the centre-of-mass energies,
√
s, at which the

LEP e+e−collider was operated, the Standard Model
Higgs boson, H, is predicted to decay dominantly
into b quarks. For a large part of the parameter
space of the Minimal Supersymmetric Standard Model
(MSSM) [3], decays of neutral Higgs bosons into b
quarks are also predicted to be dominant. Experimen-
tal searches for the Higgs bosons predicted both in the
Standard Model and in the MSSM exploit this feature
through sophisticated flavour tagging techniques. No
significant signal was found at LEP either for the Stan-
dard Model Higgs boson [4–7] or for neutral Higgs
bosons of the MSSM [5,8,9].

In some extensions of the Standard Model, decays
of the Higgs bosons into bb̄ pairs are strongly sup-
pressed to the benefit of other decay modes such as
cc̄, gg or τ+τ−. For instance, this occurs for specific
parameters of the two Higgs doublet model [10] or
the MSSM [11], as well as for some composite mod-
els [12]. It is hence important to investigate such sce-
narios with dedicated experimental analyses in which
the information about the flavour of the Higgs boson
decay products is not used, reducing the model depen-
dence of the conventional Higgs searches.

This Letter describes the search for hadronic decays
of the light CP-even Higgs boson, h, and of the CP-
odd Higgs boson, A, using data collected by the L3
detector [13] at LEP. Production of a h boson in
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T019181, F023259 and T037350.
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association with a Z boson, Higgs-strahlung, and pair-
production of the h and A bosons, are considered:

e+e− → hZ, e+e− → hA.

The tree level cross sections of these processes are
related to the cross section of the Standard Model
Higgs boson production through the Higgs-strahlung
process, σ SM

HZ , as [10]:

σhZ = ξ2σ SM
HZ , σhA = η2λ̃σ SM

HZ ,

where λ̃ is a p-wave suppression factor, which depends
on

√
s and on the Higgs boson masses, mh and mA.

The hZZ and hAZ couplings relative to the HZZ
coupling of the Standard Model are defined as ξ =
ghZZ/g

SM
HZZ and η = ghAZ/g

SM
HZZ. In the following,

these couplings are not fixed to any prediction but
rather considered as free parameters, reducing the
model dependence of the analysis.

2. Data and Monte Carlo samples

An integrated luminosity of 624 pb−1 of data,
collected at

√
s = 189–209 GeV, is analysed. The data

are grouped into several subsamples according to their√
s value, as listed in Table 1.
The cross section of the Higgs-strahlung process

in the Standard Model is calculated using the HZHA
generator [14]. For efficiency studies, Monte Carlo
samples are generated using PYTHIA [15] for the
two production mechanisms and for each of the decay
modes h → bb̄, cc̄ and gg, A → bb̄, cc̄ and gg.
Several Higgs mass hypotheses are considered and
2000 events are generated in each case. For the
e+e− → hZ process, mh ranges in steps of 10 GeV
from 60 to 100 GeV, and in steps of 1 GeV from 100
to 120 GeV. For the e+e− → hA process, mh and mA
range from 40 to 110 GeV in steps of 10 GeV.

For background studies, the following Monte Carlo
programs are used: KK2f [16] for e+e− → qq̄(γ )
and e+e− → τ+τ−, PYTHIA for e+e− → ZZ and
e+e− → Ze+e− and YFSWW [17] for e+e− →
W+W−. EXCALIBUR [18] is used for four-fermion
final states not covered by these generators. Hadron
production in two-photon interactions is simulated
with PYTHIA and PHOJET [19]. The number of
simulated events for the most important background
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Table 1
Effective centre-of-mass energies and corresponding integrated luminosities, L
√
s (GeV) 188.6 191.6 195.6 199.5 201.5 203.8 205.1 206.3 206.6 208.0

L
(
pb−1)

176.4 29.7 83.7 82.8 37.0 7.6 68.1 66.9 63.7 8.2

Table 2
Final states of the e+e− → hZ and e+e− → hA processes and topologies under study

Process Process
e+e− → hZ e+e− → hA

h → bb̄, cc̄,gg Z → qq̄, νν̄, �+�− h → bb̄, cc̄,gg A → bb̄, cc̄,gg
Final state Topology Final state Topology

bb̄qq̄, cc̄qq̄, ggqq̄ Four jets bb̄bb̄, bb̄cc̄ Four jets
bb̄νν̄, cc̄νν̄, ggνν̄ Two jets and missing energy bb̄gg, cc̄cc̄
bb̄�+�−, cc̄�+�−, gg�+�− Two jets and two leptons cc̄gg, gggg
channels is more than 100 times the number of
expected events.

The L3 detector response is simulated using the
GEANT program [20], which models the effects of
energy loss, multiple scattering and showering in
the detector. The GHEISHA program [21] is used
to simulate hadronic interactions. Time dependent
detector inefficiencies, monitored during data taking,
are also taken into account.

3. Analysis procedures

Three different decay modes are considered for the
h and A bosons: bb̄, cc̄ and gg. Table 2 summarises
the different signal signatures and the investigated
topologies. Three topologies cover the possible final
states of the e+e− → hZ process. They correspond to
the decay of the Z boson into hadrons, neutrinos or
charged leptons, associated to the hadrons from the h
decay. They give rise to events with four hadronic jets,
two hadronic jets and missing energy and two hadronic
jets and two charged leptons, respectively. A single
topology consisting of four hadronic jets, covers all
final states of the e+e− → hA process.

Analyses in all channels proceed from a preselec-
tion of high multiplicity hadronic events which sup-
presses copious backgrounds from two-photon inter-
actions, lepton-pair production and pair-production of
gauge bosons which decay into leptons. A selection
based on kinematic cuts, neural networks or likeli-
hoods is then applied to further discriminate the sig-
nal from the background. Finally, discriminant vari-
ables which depend on the Higgs mass hypothesis are
built to separate signal and background. Their distrib-
utions are studied to test the presence of a signal and
to probe the ξ and η couplings as a function of mh
and mA. Events are ordered as a function of the signal
over background ratio and only events with this ratio
greater than 0.05 are retained.

4. Search for e+e− → hZ

The three analyses used in the search for e+e− →
hZ are similar to those used in the search for the
Standard Model Higgs boson [4], with the exception
that no b quark identification is used.

4.1. Four jets

If both the h and the Z bosons decay into hadrons,
the signature is four hadronic jets. The invariant mass
of two of them has to be compatible with the mass
of the Z boson, mZ. The dominant background comes
from hadronic decays of pair-produced gauge bosons
and from the e+e− → qq̄(γ ) process.

After a preselection of high multiplicity events [4],
events are resolved into four jets using the DURHAM
algorithm [22] and a kinematic fit imposing four-
momentum conservation is performed. A likelihood,
LhZ, is built [4] from the following variables:
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Fig. 1. Distributions for the e+e− → hZ search in the four-jet final state of: (a) | cosΘ2B|, (b) m5C, (c) γtriple, (d) LhZ. The points indicate data
collected at

√
s > 203 GeV, the open histograms represent the expected background and the hatched histograms stand for a mh = 110 GeV

signal expected for ξ2 × B(h → hadrons) = 1, multiplied by a factor of 10. The arrow in (d) indicates the position of the cut.
• the maximum energy difference between any two
jets,

• the minimum jet energy,
• the parameter y34 of the DURHAM algorithm for

which the event is resolved from three into four
jets,

• the minimum opening angle between any two jets,
• the event sphericity,
• the absolute value of the cosine of the polar angle,
Θ2B, for the di-jet system most compatible with
the production of a pair of gauge bosons,

• the mass from a kinematic fit imposing four-
momentum conservation and equal di-jet masses,
m5C,

• the maximal triple-jet boost, γtriple, defined as the
maximum three-jet boost obtained from the four
possibilities to construct a one-jet against three-jet
configuration in a four-jet event.

Fig. 1 shows the distributions of | cosΘ2B|, m5C,
γtriple and LhZ for data collected at

√
s > 203 GeV,

the expected background and a signal with mh =
110 GeV. Events are retained for which the value
of LhZ exceeds a threshold, around 0.6, optimised
separately for each

√
s and mh hypothesis.

For each of the three possible jet pairings, the
quantity χ2

hZ = (Σ − (mh +mZ))
2/σ 2

Σ + (∆− |mh −
mZ|)2/σ 2

∆ is calculated [4], where Σ and ∆ are the
di-jet mass sum and difference, while σΣ and σ∆
are the corresponding resolutions. The pairing which
minimises χ2

hZ is chosen and the corresponding value
is used as the final discriminant variable. Fig. 2(a)
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Fig. 2. Distributions of the signal over background ratio for events selected in the e+e− → hZ search by the (a) four-jet, (b) two jets and
missing energy and (c) two jets and two lepton analyses. The points indicate data collected at

√
s > 203 GeV, the open histograms represent

the expected background and the hatched histograms stand for a mh = 110 GeV signal expected for ξ2 × B(h → hadrons) = 1. Only events
with s/b > 0.05 are shown.
presents the distributions of the signal over back-
ground ratio in the χ2

hZ variable for selected data and
Monte Carlo events. Table 3 lists the numbers of se-
lected and expected events for different mh hypothe-
ses.

4.2. Two jets and missing energy

The signature for h decays into hadrons and Z
decays into neutrinos is a pair of high multiplicity
jets, large missing energy and a missing mass, mmis,
consistent with mZ. The dominant backgrounds are the
e+e− → qq̄(γ ) process, W pair-production in which
only one W decays into hadrons and Z pair-production
with a Z decaying into hadrons and the other into
neutrinos.
High multiplicity hadronic events are selected with
a visible energy, Evis, such that 0.25 < Evis/

√
s <

0.70. Events with isolated photons of energy greater
than 20 GeV are rejected. The events are forced into
two jets using the DURHAM algorithm and the di-
jet mass is required to be greater than 40 GeV to
suppress background from two-photon interactions.
Events from the e+e− → qq̄(γ ) process are sup-
pressed by requiring mmis > 60 GeV. In addition, the
polar angle, θ , of the missing momentum must satisfy
| cosθ |< 0.9 and the energy deposited in the very for-
ward calorimeters is required to be less than 20 GeV.
Finally, the sine of the angle Ψ between the beam axis
and the plane spanned by the directions of the two jets
must be greater than 0.025. Fig. 3(a) and (b) presents
the distributions of mmis and sinΨ for data collected
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Table 3
Numbers of selected candidates, ND , expected background events, NB , and expected signal events, NS , for different mh hypotheses in the
e+e− → hZ search. The selection efficiencies, ε, are also given. The numbers of signal events are quoted for the h decay mode corresponding
to the lowest efficiency and are computed assuming ξ2 × B(h → hadrons) = 1. Only events with a signal over background ratio greater than
0.05 are considered

e+e− → hZ

h → hadrons h → hadrons
Z → qq̄ Z → νν̄

mh (GeV) ND NB NS ε (%) ND NB NS ε (%)

60 1356 1336 172 43 40 33.1 48.8 63
70 1363 1295 122 43 89 84.0 40.6 60
80 938 966 104 45 209 201 32.2 56
90 584 585 71.2 45 183 181 21.6 53

100 360 355 39.9 46 74 69.9 12.2 50
110 126 127 11.8 46 18 16.4 3.5 48

h → hadrons
Z → �+�− Combined

mh (GeV) ND NB NS ε (%) ND NB NS

60 49 49.4 28.2 49 1445 1419 249
70 43 52.8 24.1 50 1495 1432 187
80 61 63.2 19.2 51 1208 1230 155
90 56 61.3 13.0 50 823 827 106

100 24 18.4 5.8 47 458 443 57.9
110 3 4.2 1.6 42 147 148 16.9
at
√
s > 203 GeV, expected background and a sig-

nal with mh = 110 GeV, when all other cuts are ap-
plied.

A neural network [23] is built from the following
variables:

• Evis,
• mmis,
• sinΨ ,
• the longitudinal missing momentum,
• the transverse missing momentum,
• the absolute value of the cosine of the angle

between the two jets in the plane transverse to the
beam direction,

• the event thrust,
• the sum of the jet opening angles after forcing the

event into a three-jet configuration.

The distributions of the output of the neural net-
work are presented in Fig. 3(c). Fig. 3(d) shows the
distributions of the hadronic mass mqq, calculated with
a fit which imposes mmis = mZ. These two variables
are combined into a final discriminant, whose distrib-
utions are presented in Fig. 2(b) in terms of the signal
over background ratio. Table 3 lists the numbers of se-
lected events for different mh hypotheses.

4.3. Two jets and two leptons

Different signal topologies correspond to h decays
into hadrons and Z decays into electrons and muons or
into tau leptons. For decays into electrons and muons,
the signature is a pair of well-isolated leptons with
mass close to mZ and two hadronic jets. In the case of
tau leptons, events with four jets are expected, where
two of the jets are narrow, of low multiplicity, and of
unit charge. The dominant background is due to Z-pair
production followed by the hadronic decay of one Z
and the decay into leptons of the other.

The event selection is identical to that used for
the same final states of the Standard Model Higgs
search [4]. After this selection, a kinematic fit is
applied which imposes four-momentum conservation
and constrains the di-lepton mass to mZ. The mass of
the hadronic system after the fit is used as a discrimi-
nant to test differentmh hypotheses. Its distributions in
terms of the signal over background ratio are presented
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Fig. 3. Distributions for the e+e− → hZ search in the two jet and missing energy final state of: (a) mmis, (b) sinΨ , (c) neural network output
and (d) mqq. The points indicate data collected at

√
s > 203 GeV, the open histograms represent the expected background and the hatched

histograms stand for a m = 110 GeV signal expected for ξ2 × B(h → hadrons) = 1, multiplied by a factor of 10.
h
in Fig. 2(c). The yield of this selection is presented in
Table 3.

5. Search for e+e− → hA

The pair-production of h and A bosons gives rise
to high multiplicity events with four hadronic jets.
The largest backgrounds are the pair-production of
W and Z bosons which decay into hadrons and the
e+e− → qq̄(γ ) process. High multiplicity events are
selected, subjected to a kinematic fit which enforces
four-momentum conservation and forced into four
jets with the DURHAM algorithm. A neural net-
work [24] is used to separate genuine four-jet events
from events most likely due to fermion-pair produc-
tion.
For each (mh,mA) hypothesis, a likelihood, LhA,
is built [8] to separate the signal from the background
from W- and Z-pair production. It uses the following
variables:

• the maximum energy difference between any two
jets,

• the minimum jet energy,
• the probabilities of kinematic fits which impose

four-momentum conservation together with the
hypotheses of W- or Z-pair production,

• the cosine of the polar angle of the di-jet system
which best fits the hA pair-production hypothesis,

• the cosine of the polar angle, ΘW+ , at which the
positive charged7 boson is produced for the di-

7 Charge assignment is based on jet-charge techniques [25].
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Fig. 4. Distributions for the e+e− → hA search of: (a) cosΘW+ , (b) − logy34, (c) | cosΘT|, (d) LhA. The points indicate the data, the
open histograms represent the expected background and the hatched histograms stand for a (mh,mA) = (60,80) GeV signal expected for
η2 × B(hA → hadrons) = 1, multiplied by a factor of 10. The arrow in (d) indicates the position of the cut.
jet system which best fits the W-pair production
hypothesis,

• y34,
• the absolute value of the cosine of the polar angle,
ΘT, of the thrust axis.

Fig. 4 shows the distributions of the last three vari-
ables and of LhA for data, the expected background
and the signal corresponding to the Higgs boson mass
hypothesis (mh,mA) = (60,80) GeV. A cut on LhA
is applied, which depends on

√
s and on the (mh,mA)

hypothesis, typically around 0.2. The remaining events
are tested for consistency with a given (mh,mA) hy-
pothesis by means of the variable χ2

hA [8], defined
analogously to χ2

hZ. The pairing which minimises the
value of χ2

hA is chosen. For each event and each
(mh,mA) hypothesis, the value of the signal over back-
ground ratio of the variable χ2

hA is calculated. The dis-
tributions of these ratios are presented in Fig. 5 for
different mass hypotheses.

Table 4 reports the numbers of observed events,
expected background and expected signal events for
several Higgs boson mass hypotheses, together with
selection efficiencies.

6. Results

Table 3 shows the result of the combination of
the different channels of the e+e− → hZ search. The
observed number of events agrees with the Standard
Model expectations. No significant excess is observed
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Fig. 5. Distributions of the signal over background ratio for events selected by the e+e− → hA search for different (mh,mA) mass hypotheses:
(a) (75, 75) GeV, (b) (65, 75) GeV, (c) (60, 80) GeV, (d) (55, 85) GeV, (e) (50, 90) GeV and (f) (45, 95) GeV. The points indicate the data, the
open histograms represent the expected background and the hatched histograms stand for a signal of the given (mh,mA) hypothesis expected
for η2 × B(hA → hadrons) = 1.
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Table 4
Number of selected candidates, ND , expected background events,
NB , and expected signal events, NS , and selection efficiencies,
ε, for different (mh,mA) hypotheses in the e+e− → hA search.
The numbers of signal events are quoted for the h and A decay
modes corresponding to the lowest efficiencies and are computed
assuming η2 × B(h → hadrons) = 1. Only events with a signal over
background ratio greater than 0.05 are considered

e+e− → hA

(mh,mA) (GeV) ND NB NS ε (%)

(50, 50) 114 110 84.4 41
(50, 70) 220 211 56.2 36
(50, 90) 223 239 29.2 28
(70, 70) 244 223 39.9 40
(70, 90) 96 95.8 5.7 11
(90, 90) 10 11.4 30.6 4

either in the e+e− → hZ search or in the e+e− → hA
search, which is summarised in Table 4. Limits on
the ξ and η couplings are extracted as a function of
mh and mA from the distributions of the signal over
background ratios derived from the final discriminant
variables. The log-likelihood ratio technique [7] is
used for the combination of the different channels of
the e+e− → hZ search and to derive all the limits. For
each final state, among the three possible decays of the
h and A bosons into bb̄, cc̄ and gg, the case with the
lowest efficiency is considered.

Several sources of systematic uncertainties are in-
vestigated and their impact on the signal efficiency and
the determination of the background level is assessed.
The limited Monte Carlo statistics affects the signal
by around 2% and the background by around 5%, de-
pending on the final state. The selection criteria are
varied within the resolution of the corresponding vari-
ables yielding an uncertainty from the selection pro-
cedure around 2% on the signal and from 3% to 6%
on the background. Lepton identification criteria con-
tribute to this source with an additional 1% for the sig-
nal and 2% for the background. The expected back-
ground level has an uncertainty up to 5%, depending
on the final state, due to the uncertainty in the calcula-
tion of the cross sections of background processes.

Particular care is payed to validate the accuracy of
the simulation of gluon jets. A reference sample of
three-jet events, from the e+e− → qq̄g(γ ) process, is
selected and the jet with the smallest energy in the rest
frame of the hadronic system is taken as the gluon
jet. The distributions of the most important gluon
Fig. 6. The 95% confidence level upper limit on
ξ2 × Br(h → hadrons) as a function of mh. The solid line in-
dicates the observed limit and the dashed line stands for the median
expected limit. The shaded areas show the 1σ and 2σ intervals cen-
tered on the median expected limit. The observed and expected
limits on mh for ξ2 × Br(h → hadrons) = 1 are also shown.

jet characteristics such as jet broadening, boosted
sphericity and charged track multiplicity are compared
for data and Monte Carlo samples. The latter, for
instance, is found to be on average overestimated
by the simulations and is not considered as input
to the likelihoods and the neural networks. From
this comparison, an additional systematic uncertainty
is assigned as 1.5% for the signal and 2% for the
background.

The overall systematic uncertainties depend on the
search channel and are estimated to range between 2%
and 4% for the signal efficiencies and between 4% and
8% for the background levels. They are included in
the derivation of the limits. For ξ2 = 1 they lower the
sensitivity to mh by about 0.8 GeV and for η2 = 1 and
mh =mA by about 0.7 GeV.

Fig. 6 shows the 95% confidence level (CL) upper
limit on ξ2 × B(h → hadrons) as a function of mh.
The expected limit and the 68.3% and 95.4% proba-
bility bands expected in the absence of a signal are
also displayed and denoted as 1σ and 2σ , respec-
tively. For ξ2 × B(h → hadrons)= 1, i.e., for a cross
section equivalent to the Standard Model one and a
Higgs boson decaying into hadrons, a 95% CL lower
limit of 110.3 GeV is set on mh. The expected limit is
108.7 GeV.

Fig. 7 shows the 95% CL upper limit on η2 ×
B(hA → hadrons) as a function of mh + mA for
several values of |mh −mA|. The expected limits and
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Fig. 7. The 95% confidence level upper limit on the quantity η2 × Br(hA → hadrons) as a function of mh + mA for different values of the
difference |mA −mh|: (a) 0 GeV, (b) 10 GeV, (c) 20 GeV, (d) 30 GeV, (e) 40 GeV and (f) 50 GeV. The solid lines indicate the observed limits
and the dashed lines stand for the median expected limits. The shaded areas show the 1σ and 2σ intervals centered on the median expected
limits.
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the 1σ and 2σ probability bands in absence of a signal
are also shown. The observed limits for η = 1 are
between 120 and 140 GeV, as expected. An excess
of 2.9σ is observed around 135 GeV for the mh =
mA hypothesis. A similar behaviour is also observed
in the search for charged Higgs bosons [26]. This
excess is mainly due to data at low values of

√
s. At

higher energies and for larger integrated luminosities
it does not scale with the cross section expected for a
e+e− → hA signal. It is hence ascribed to a statistical
fluctuation.

In conclusion, a flavour independent search for h
and A bosons produced through Higgs-strahlung or in
pairs and decaying into hadrons, shows no evidence of
a signal and further constrains the scenario of Higgs
bosons light enough to have been produced at LEP.
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