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Abstract

The QED processes e+e− → e+e−µ+µ− and e+e− → e+e−τ+τ− are studied with the L3 detector at LEP using an
untagged data sample collected at centre-of-mass energies 161 GeV � √

s � 209 GeV. The τ -pairs are observed through the
associated decay of one τ into eνν and the other into ππν. The cross sections are measured as a function of

√
s. For muon

pairs, the cross section of the γ γ → µ+µ− process is also measured as a function of the two-photon centre-of-mass energy
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for 3 GeV � Wγγ � 40 GeV. Good agreement is found between these measurements and the O(α4) QED expectations. In
addition, limits on the anomalous magnetic and electric dipole moments of the τ lepton are extracted.
 2004 Published by Elsevier B.V.
1. Introduction

The pair production of charged leptons in two-
photon collisions offers a unique opportunity to test
QED to O(α4) over a wide kinematical range. The
e+e− → e+e−µ+µ− and e+e− → e+e−τ+τ− reac-
tions are studied with the L3 detector [1] for untagged
events, in which the e+ and e−, scattered at small an-
gles, are not required to be observed.

Fig. 1 shows the lowest order processes which con-
tribute to this final state: multiperipheral, bremsstrahl-
ung, annihilation and conversion, for a total of 12 pos-
sible diagrams. For untagged events the multiperiph-
eral process dominates the cross section. The contri-
bution of other processes is below 1%.

The e+e− → e+e−�+�− reactions, where � = e,µ
or τ , were previously studied for untagged two-photon
events at e+e− centre-of-mass energy,

√
s, close to

the Z mass [2]. Good agreement was found between
the measurements and the QED expectations. In this
Letter, the production of µ-pairs is studied in the
range 161 GeV � √

s � 209 GeV and the production
of τ -pairs in the range 189 GeV � √

s � 209 GeV.
The individual energies and luminosities are listed in
Table 1. As the e+e− → e+e−µ+µ− channel ben-
efits from high statistics, the cross section of the
process γ γ → µ+µ− is also measured as a function
of the two-photon centre-of-mass energy, Wγγ . The
e+e− → e+e−τ+τ− analysis is restricted to the ex-
clusive final state where τ− → e−ντ ν̄e and τ+ →

1 Supported by the German Bundesministerium für Bildung,
Wissenschaft, Forschung und Technologie.

2 Supported by the Hungarian OTKA fund under contract
numbers T019181, F023259 and T037350.

3 Also supported by the Hungarian OTKA fund under contract
number T026178.

4 Supported also by the Comisión Interministerial de Ciencia y
Tecnología.

5 Also supported by CONICET and Universidad Nacional de La
Plata, CC 67, 1900 La Plata, Argentina.

6 Supported by the National Natural Science Foundation of
China.
π+π0ν̄τ ,7 which arises from 9.07 ± 0.01% of all
τ -pair decays [3].

The process e+e− → e+e−τ+τ− is also used to
constrain the anomalous magnetic and electric dipole
moments of the τ lepton, as proposed in Ref. [4].

2. Data and Monte Carlo samples

The events are mainly accepted by the charged-
particle [6] and the inner track triggers [5]. The
former requires at least two charged particles with a
transverse momentum pt > 150 MeV, back-to-back
within an acoplanarity angle of ±41◦. The latter
is based on a neural network, has no requirement
on the acoplanarity angle of the tracks and extends
the acceptance from the polar region 30◦ < θ <

150◦ to 15◦ < θ < 165◦. A fraction of the e+e− →
e+e−µ+µ− events is also accepted by the muon
trigger and a fraction of the e+e− → e+e−τ+τ−
events by the calorimetric energy trigger [7].

The DIAG36 [8] generator is used to calculate at
O(α4) the full set of diagrams shown in Fig. 1. To ob-
tain the efficiencies of the e+e− → e+e−µ+µ− chan-
nel, high statistics samples are generated in the range
3 GeV � Wγγ � 40 GeV, for each value of

√
s. The

e+e− → e+e−τ+τ− events are generated in the full
phase space with the Vermaseren Monte Carlo [9],
which takes into account only the dominating multi-
peripheral diagrams, shown in Fig. 1(a).

For background studies, the following event gener-
ators are used: KORALZ [10] for the e+e− → τ+τ−
and e+e− → µ+µ− processes and LEPWW [11] and
PYTHIA [12] for W and Z boson pair-production and
decays into leptons, respectively. In the tau-pair analy-
sis, exclusive hadronic two-photon processes are gen-
erated with EGPC [13] and inclusive hadron produc-
tion with PHOJET [14].

All generated events are processed through the full
L3 detector simulation based on the GEANT [15]

7 Charge conjugate processes are included throughout this Letter.
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Fig. 1. Feynman graphs at O(α4) of the processes e+e− → e+e−µ+µ− and e+e− → e+e−τ+τ−: (a) multiperipheral, (b) bremsstrahlung,
(c) conversion and (d) annihilation.

Table 1
Centre-of-mass energies and corresponding integrated luminosities. The selection efficiency, ε� , and trigger efficiency, εtrig, are also given
together with the number of observed events, ND , and the background contribution, NB

〈√s〉 (GeV)
∫
Ldt (pb) ε� (%) εtrig (%) ND NB

µ+µ− 161 10.2 18.4 ± 0.5 99.4 ± 0.6 193 4
172 9.7 18.9 ± 0.5 98.4 ± 0.8 223 7
183 54.2 18.4 ± 0.3 99.7 ± 0.2 1188 15
189 170.3 20.1 ± 0.3 99.6 ± 0.1 4025 33
196 154.0 18.9 ± 0.3 99.7 ± 0.1 3491 36
206 192.7 19.1 ± 0.2 99.7 ± 0.1 4576 45

τ+τ− 189 172.1 1.18 ± 0.04 71.8 ± 1.3 85 25
196 220.9 1.29 ± 0.05 60.1 ± 1.6 97 31
206 215.1 1.08 ± 0.04 58.0 ± 0.9 84 29
and GHEISHA [16] programs and are reconstructed
following the same procedure as for the data. Time
dependent detector inefficiencies, as monitored during
the data taking, are also included.

3. Event selection

3.1. e+e− → e+e−µ+µ−

The muon pairs are selected using information from
the central tracking chamber (TEC) and the muon
spectrometer. The selection requires:

• exactly two tracks with at least 12 hits each and
opposite charges, having a distance of closest
approach to the nominal interaction vertex in the
plane transverse to the beam direction smaller
than 5 mm;

• two well reconstructed muons in the muon cham-
bers corresponding to the charged tracks;

• a fiducial volume | cosθµ| < 0.8, where θµ is the
angle between the muon and the beam axis;

• the momentum of the muons between 2.5 and
40 GeV;

• muon tracks pointing to the primary vertex, with
time-of-flight consistent with the beam crossing,
in order to suppress background from cosmic rays,
hadrons decaying in flight and punch-through
hadrons;

• a di-muon effective mass, Mµµ, which mea-
sures Wγγ , between 3 and 40 GeV.
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Fig. 2. Distributions for selected e+e− → e+e−µ+µ− events of
(a) the di-muon effective mass, Mµµ, and (b) the momentum of the
most energetic muon, pµ . The data are compared to the sum of the
DIAG36 Monte Carlo and of the expected background, normalized
to the integrated luminosity.

The numbers of events selected at different
√
s are

shown in Table 1 together with the selection and trig-
ger efficiencies. The total background contribution,
estimated by Monte Carlo, is below 1%, and con-
sists mainly of events from the e+e− → e+e−τ+τ−,
e+e− → τ+τ− and e+e− → µ+µ− processes and
cosmic rays. The distributions of the di-muon effec-
tive mass and of the momentum of the higher-energy
muon are presented in Fig. 2(a) and (b) together with
the Monte Carlo predictions. The expected distribu-
tions agree well with the data.

3.2. e+e− → e+e−τ+τ−

The selection of tau-pairs, through the associated
decays τ− → e−ντ ν̄e and τ+ → π+π0ν̄τ , is based
on information from the TEC and the electromagnetic
calorimeter (ECAL). It requires:

• a total energy in the calorimeters less than 40 GeV,
to exclude e+e− → τ+τ− events;

• exactly two charged tracks with at least 12 hits
each and opposite charges, having a transverse
momentum greater than 0.3 GeV, a distance of
closest approach to the nominal interaction vertex
in the plane transverse to the beam direction
smaller than 10 mm and a corresponding ECAL
signal;

• two photons, defined as isolated showers in the
ECAL with energy greater than 100 MeV distrib-
uted over at least two crystals. There must be no
track within 150 mrad around the shower direc-
tion and the ratio between the energies deposited
in the hadronic and electromagnetic calorimeters
must be less than 0.2.

The electron identification for the reaction τ− →
e−ντ ν̄e is based on an ECAL cluster, with a shower
shape consistent with that of an electromagnetic par-
ticle, matching with a charged track within 100 mrad
in the plane transverse to the beam direction. The mo-
mentum of the electron candidate must be greater than
600 MeV. To achieve high efficiency and high purity,
the electron identification is based on a neural net-
work [17] which combines ten variables: the energy in
ECAL, the momentum, the ionization energy loss in
TEC, the ratio of the transverse energy in ECAL to the
transverse momentum in TEC, the number of crystals
in the shower, three inputs describing the shower shape
in ECAL, the corresponding energy in the hadronic
calorimeter and its fraction within a 7◦ cone. The elec-
tron identification with the neural network has an effi-
ciency of 87.7 ± 0.2% with a purity of 94.7 ± 0.2%,
as determined from Monte Carlo events.

To identify τ+ → π+π0ν̄τ decays, we require
the two photons to be compatible with a π0. The
remaining charged particle is considered to be the π+
candidate. No additional selection cut is applied on
the π+. The two-photon effective mass distribution
in Fig. 3(a) shows the π0 peak. A Gaussian fit to
this peak gives a mass of 134.6 ± 0.6 MeV and
a width of 6.8 ± 0.7 MeV, compatible with the
expected detector resolution. We require the two-
photon effective mass to be within the range from 115
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Fig. 3. Distributions for τ → ππν candidates of (a) the effective mass of final state photons, mγγ , (b) the sum of the transverse momenta of
the charged particles, |∑ pt |, and (c) the effective mass of the two pions, m

ππ0 . (d) Distributions of the energy of the electron for τ → eνν
candidates. The data are compared to the sum of the Vermaseren Monte Carlo e+e− → e+e−τ+τ− and of the background, normalized to the
integrated luminosity. Arrows in (a) and (b) indicate the position of the cuts on the plotted variable, when all other selection cuts are fulfilled.
to 155 MeV. To reject exclusive final states, as for
example e+e− → e+e−a2(1320) → e+e−π+π−π0,
we require the total transverse momentum imbalance
|∑ pt | to be greater than 0.2 GeV. Fig. 3(b) compares
the |∑ pt | distribution of data and Monte Carlo.
The excess of data for |∑ pt | < 0.2 GeV is due to
exclusive two-photon processes not included in the
Monte Carlo.

With these criteria, 266 events are selected. As
expected for the τ+ → π+π0ν̄τ decay channel, the
π+π0 effective mass is consistent with the ρ meson
mass, as shown in Fig. 3(c). The energy distribution of
the electron candidate is shown in Fig. 3(d). All data
distributions are in good agreement with Monte Carlo
simulations.

Table 1 shows the number of observed events to-
gether with selection and trigger efficiencies. The lat-
ter are evaluated directly from the data [18]. In the
analysis, a two-dimensional trigger efficiency correc-
tion, based on the highest momentum track and the az-
imuthal opening angle between the two tracks, is ap-
plied to each event. The main background in the sam-
ple is 26% and is due to tau-pairs decaying to other
final states, where leptons or pions are misidentified,
or additional pions are not detected. The background
from the e+e− → τ+τ− process, from resonant final
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states and from hadron production in two-photon colli-
sions is less than 4%. The background from beam-gas
and beam-wall interactions is found to be negligible.

4. Results

4.1. e+e− → e+e−µ+µ−

The cross section of the process e+e− →
e+e−µ+µ− for 3 GeV <Wγγ < 40 GeV is measured
for | cosθµ| < 0.8 and extrapolated to the full angu-
lar range. The results are given in Table 2 for different
values of

√
s.

For lower luminosities the systematic uncertain-
ties are dominated by the uncertainty on the trig-
ger efficiency, around 3%. At higher luminosities the
main uncertainty of about 1.5% arises from the lim-
ited Monte Carlo statistics. The uncertainty due to the
event selection is estimated by varying the selection
criteria for the data samples with high integrated lumi-
nosity and is less than 1%.

The cross section for the full angular range, pre-
sented in Fig. 4, shows the expected slow rise as a
function of

√
s and is in good agreement with the QED

prediction, as calculated by DIAG36 Monte Carlo.
The cross section of the process γ γ → µ+µ− is de-
rived by measuring the cross section of the e+e− →
e+e−µ+µ− process in nine Wγγ bins and scaling it by
the two-photon luminosity function [19]. The values
obtained at different

√
s are consistent within a given

Wγγ bin, as shown in Table 3 and Fig. 5(a). Combined
results for the full data sample are listed in Table 3 and
shown in Fig. 5(b) together with the QED predictions.
A good agreement is observed.

4.2. e+e− → e+e−τ+τ−

The total τ -pair production cross section is given in
Table 2. The cross section is lower than the e+e− →

Fig. 4. The cross section of the e+e− → e+e−µ+µ− process
for 3 � Wγγ � 40 GeV and the total cross section of the
e+e− → e+e−τ+τ− process for Wγγ > 2mτ . The data are com-
pared to the QED calculations of DIAG36. The inner parts of the
error bar represent the statistical uncertainties, the outer parts the
systematic uncertainties.
Table 2
The cross sections of the processes e+e− → e+e−µ+µ− and e+e− → e+e−τ+τ− with their statistical and systematic uncertainties at
different

√
s values compared to QED [8] expectations. The cross section for e+e− → e+e−µ+µ− for 3 GeV <Wγγ < 40 GeV is given for

both | cos θµ| < 0.8 and for the full solid angle

〈√s〉 (GeV) σDATA (pb) σQED (pb) σDATA (pb) σQED (pb)
| cos θµ| < 0.8 | cos θµ| < 0.8

µ+µ− 161 101.4±7.2±2.6 115.4 587± 43±22 668.3
172 119.2±7.6±3.1 116.6 700± 46±27 684.9
183 117.7±3.4±1.9 118.3 697± 20 ± 9 700.7
189 117.1±1.8±1.8 118.9 697± 11 ± 9 708.6
196 118.9±2.0±2.2 120.3 713± 12±12 717.8
206 122.6±1.8±1.7 121.3 738± 11 ± 8 730.0

τ+τ− 189 459± 68±33 442.6
196 454± 67±42 452.3
206 459± 76±35 466.0
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Table 3
The cross section of the process γ γ → µ+µ− with its combined statistical and systematic uncertainties as a function of Wγγ for four different√
s values and their average together with the QED [8] expectations

Wγγ (GeV) σ(γ γ → µ+µ−) (nb)√
s = 183 GeV 189 GeV 196 GeV 206 GeV 183–209 GeV QED

3–4 24.3 ± 9.9 28.0 ± 6.6 25.2 ± 6.4 27.7 ± 6.1 25.9 ± 4.2 26.8
4–5 21.5 ± 3.7 23.0 ± 2.7 25.2 ± 2.8 24.9 ± 3.0 22.6 ± 1.9 21.5
5–6 18.4 ± 1.9 18.6 ± 1.5 21.6 ± 1.6 19.1 ± 1.6 18.7 ± 1.1 18.6
6–7 14.5 ± 1.5 16.8 ± 1.3 18.8 ± 1.4 16.1 ± 1.3 15.9 ± 0.9 17.0
7–8 12.3 ± 1.5 15.3 ± 1.3 14.9 ± 1.4 18.5 ± 1.7 14.9 ± 1.0 15.2
8–10 11.5 ± 1.3 12.9 ± 1.0 12.4 ± 1.1 12.9 ± 1.1 12.4 ± 0.7 13.2

10–15 8.9 ± 1.0 9.3 ± 0.8 9.1 ± 0.8 8.3 ± 0.7 8.9 ± 0.5 9.6
15–20 6.0 ± 1.0 6.1 ± 0.7 6.2 ± 0.8 6.6 ± 0.8 6.2 ± 0.5 6.2
20–40 3.1 ± 0.6 3.3 ± 0.4 3.2 ± 0.5 3.6 ± 0.5 3.3 ± 0.3 3.2
Fig. 5. The cross section of the process γ γ → µ+µ− as a function
of the γ γ centre-of-mass energy for (a) different values of

√
s

and (b) their combination. The data are compared to the QED
calculations of DIAG36.

e+e−µ+µ− cross section because of the τ -pair mass
threshold of 3.6 GeV. The main contributions to
systematic uncertainties comes from the variation of
the cuts on |∑ pt | and the electron momentum, both
between 4% and 5%. The total systematic uncertainty
due to selection criteria is estimated to be between 7%
and 9%. Other sources of systematic uncertainties are
the determination of the trigger efficiency, the Monte
Carlo statistics and the uncertainty on the background
level; their combined contribution is below 3%. Fig. 4
compares the measured cross section and the O(α4)
QED calculation. A good agreement is found.

4.3. Anomalous couplings of the tau lepton

Photon couplings to the tau lepton are in general
due to its electric charge, the magnetic dipole moment
and the electric dipole moment. They can be described
by a matrix element in which the usual γ µ term is
replaced by [20]:

Γ µ = F1
(
q2)γ µ + iF2

(
q2)σµν qν

2mτ

+ F3
(
q2)γ5σ

µν qν

2mτ
,

where the form factors F1(q
2), F2(q

2) and F3(q
2),

functions of the four-momentum squared, q2, of the
photon, are related to the tau charge, magnetic and
electric dipole moments as:

eτ = eF1(0), µτ = e(F1(0)+ F2(0))
2mτ

,

dτ = −eF3(0)
2mτ

,

respectively. In the Standard Model, at tree level,
F1(q

2) = 1 and F2(q
2) = F3(q

2) = 0. Limits on
F2(q

2) and F3(q
2) were derived from the decay width
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Γ (Z → τ+τ−), relating the Zττ coupling to the pho-
ton couplings via SU(2) × U(1) invariance [21]. Di-
rect studies of the γ ττ couplings were performed at
the Z pole, by the L3 [22] and OPAL [23] Collabora-
tions through the e+e− → Z → τ+τ−γ process, and
at the ϒ(4S) by the BELLE Collaboration through the
e+e− → γ $ → τ+τ− process [24].

Tau-pair production in two-photon collisions is
sensitive to possible anomalous couplings of the tau
lepton. Values of F2(q

2) and dτ different from zero
would modify the cross section of the e+e− →
e+e−τ+τ− process [4]. By comparing the measured
cross section with predictions [4] as a function of
F2(q

2) and dτ we obtain:
∣∣F2(0)

∣∣ � 0.107, |dτ | � 1.14 × 10−15 e cm
at 95% confidence level, where the limit on each
coupling is derived fixing the other coupling to zero.
These bounds, limited by the size of the data sample,
are in agreement with the more stringent published
ones [22–24] and are derived from a different process.
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