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Abstract A search for top quark pair resonances in final
states containing at least one electron or muon has been
performed with the ATLAS experiment at the CERN Large
Hadron Collider. The search uses a data sample correspond-
ing to an integrated luminosity of 2.05 fb−1, which was
recorded in 2011 at a proton-proton centre-of-mass energy
of 7 TeV. No evidence for a resonance is found and lim-
its are set on the production cross-section times branching
ratio to t t̄ for narrow and wide resonances. For narrow Z0
bosons, the observed 95 % Bayesian credibility level lim-
its range from 9.3 pb to 0.95 pb for masses in the range
of mZ0 = 500 GeV to mZ0 = 1300 GeV. The correspond-
ing excluded mass region for a leptophobic topcolour Z0 bo-
son (Kaluza-Klein gluon excitation in the Randall-Sundrum
model) is mZ0 < 880 GeV (mgKK < 1130 GeV).

1 Introduction

The Standard Model of particle physics (SM) is believed to
be an effective theory valid up to energies in the TeV range.
Since particle masses are central to the breaking of the elec-
troweak symmetry, final states that involve the heaviest of
the particles presumed to be elementary, the top quark, offer
particular promise in searches for new physics. This Arti-
cle describes searches for new heavy particles decaying to
top quark pairs (t t̄) using the ATLAS detector [1] at the
CERN Large Hadron Collider (LHC). Multiple final state
topologies containing at least one lepton (electron or muon)
are considered, in which the lepton is expected to originate
from the decay of one of the W bosons produced in the top
quark decays. In events with one lepton—the lepton plus jets
(` + jets) channel—the reconstructed t t̄ mass spectrum is
used to search for a signal. In events with two leptons—the
dilepton channel—the effective mass is used. Both variables
are defined in Sect. 8.
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The benchmark model used to quantify the experimen-
tal sensitivity to narrow resonances is a topcolour Z0 bo-
son [2] arising in models of strong electroweak symmetry
breaking through top quark condensation [3]. The specific
model used is the leptophobic scenario, model IV in Ref. [2]
with f1 = 1 and f2 = 0 and a width of 1.2 % of the Z0 bo-
son mass. The model used for wide resonances is a Kaluza-
Klein (KK) gluon gKK, which appears in Randall-Sundrum
(RS) models in which particles are located in a warped di-
mension [4–7]. The left-handed (gL) and right-handed (gR)
couplings to quarks take the conventional RS values [5]:
gL = gR = −0.2gs for light quarks including charm, where
gs = √

4παs ; gL = 1.0gs , gR = −0.2gs for bottom quarks;
and gL = 1.0gs , gR = 4.0gs for the top quark. In this case,
the resonance width is 15.3 % of its mass, larger than the
detector resolution.

Previous searches for t t̄ resonances were most recently
carried out by the CDF [8–12] and D0 [13, 14] collabora-
tions at Run II of the Fermilab Tevatron Collider, and by
the CMS collaboration [15] at the LHC. No evidence for
new particles was uncovered and 95 % confidence level lim-
its were set on the mass of a leptophobic topcolour Z0 bo-
son [16] at mZ0 > 900 GeV [11] as well as on the coupling
strength of a heavy colour-octet vector particle.

2 The ATLAS detector

The ATLAS detector [1] is designed to measure the prop-
erties of particles produced in proton-proton (pp) interac-
tions with excellent precision. Its cylindrical geometry, with
axis aligned with the proton beams, is augmented by two
endcap sections. This results in almost complete 4π solid
angle coverage. The Inner Detector (ID) covers pseudo-
rapidities1 of |η| < 2.5 and consists of layers of silicon

1ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
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pixel and strip detectors and a straw-tube transition radia-
tion tracker. It is embedded in the bore of a 2 T supercon-
ducting solenoidal magnet to allow precise measurement of
charged particle momenta. This system is surrounded by a
hermetic calorimeter system consisting of finely segmented
sampling calorimeters using lead/liquid-argon for the de-
tection of electromagnetic (EM) showers up to |η| < 3.2,
and copper or tungsten/liquid-argon for hadronic showers
for 1.5 < |η| < 4.9. In the central region (|η| < 1.7), an
iron/scintillator hadronic calorimeter is used. Outside the
calorimeters, the muon spectrometer incorporates multiple
layers of trigger and tracking chambers within an air-core
toroidal magnetic field, enabling an independent, precise
measurement of muon track momenta.

3 Data sample

The data were collected with the ATLAS detector at the
CERN LHC in 2011 using single-lepton triggers with trans-
verse momentum thresholds at 20 GeV or 22 GeV for elec-
trons and 18 GeV for muons. These triggers use similar, but
looser selection criteria than the offline reconstruction and
reach their efficiency plateaus at 25 GeV (electrons) and
20 GeV (muons).

Only data where all subsystems were operational are
used. Applying these requirements to pp collision data
recorded with stable beam conditions between March and
August 2011 at

√
s = 7 TeV results in a data sample of

2.05 ± 0.08 fb−1 [17, 18].

4 Simulated samples

The irreducible SM t t̄ background is simulated using
MC@NLO V3.41 [19, 20] with CTEQ6.6 [21] par-
ton distribution functions (PDFs), interfaced to HERWIG

V6.5 [22] for the parton shower and hadronization steps and
JIMMY [23] to model effects due to the underlying event
and multiple parton interactions. The top quark mass is set
to 172.5 GeV and only events in which at least one of the
W bosons decays leptonically are generated. The inclusive
cross-section of 165 pb is taken from approximate next-
to-next-to-leading-order (NNLO) calculations [24]. Elec-
troweak single top quark production is simulated using the
same programs, and cross-sections are based on approxi-
mate NNLO calculations: 65 pb (t-channel) [25], 4.6 pb
(s-channel) [26] and 15.7 pb (Wt process) [27]. Samples

axis along the beam pipe. The x-axis points from the IP to the centre
of the LHC ring, and the y axis points upward. Cylindrical coordinates
(r,φ) are used in the transverse plane, φ being the azimuthal angle
around the beam pipe. The pseudorapidity is defined in terms of the
polar angle θ as η = − ln tan(θ/2).

produced with different parameter settings or other Monte
Carlo (MC) event generators are used to evaluate the sys-
tematic uncertainties due to the top quark mass, modelling
of the shape of the t t̄ mass distribution (POWHEG [28]),
the parton shower model (POWHEG+ HERWIG compared to
POWHEG + PYTHIA [29]), and initial- and final-state radia-
tion effects (using ACERMC [30]). These last uncertainties
are considered both separately and in a correlated way.

Production of a W or Z boson plus jets with leptonic vec-
tor boson decays is simulated with ALPGEN V2.13 [31] and
CTEQ6L1 [32] PDFs in exclusive bins of parton multiplicity
for multiplicities lower than five, and inclusively above that.
For the Z boson plus jets sample, Z-photon interference is
included and events are required to have a dilepton invari-
ant mass in the range 10 < m`` < 2000 GeV. The events
are processed by HERWIG and JIMMY, and matrix-element–
parton-shower matching is performed with the MLM [33]
method. The inclusive samples are initially normalized to
the NNLO cross-sections [34, 35], and in addition later cor-
rected using data as described in Sect. 7.2 and Sect. 7.3.

Diboson samples for the ` + jets channel are produced
using HERWIG V6.5 with JIMMY and MRST2007LO∗ [36]
PDFs with JIMMY. A filter requires the presence of one lep-
ton with pT > 10 GeV and pseudorapidity |η| < 2.8. The
cross-sections used for these filtered samples are 11.8 pb for
WW production, 3.4 pb for WZ production, and 0.98 pb
for ZZ production. These values are multiplied with “K-
factors” of 1.52, 1.58 and 1.20, corresponding to the ratio
of the next-to-leading-order (NLO) and leading-order (LO)
calculations, and obtained using the MCFM [37, 38] gen-
erator. Additional diboson samples for the dilepton channel
are simulated using ALPGEN V2.13 with CTEQ6L1 PDFs
and interfaced with HERWIG and JIMMY.

Signal samples for Z0 bosons decaying to t t̄ are gener-
ated using PYTHIA V6.421 with CTEQ6L1 PDFs allowing
all top quark decay modes. Cross-sections for the Z0 bo-
son samples are evaluated with an updated calculation [39]
to which a K-factor of 1.3 is applied [40]. Samples of KK
gluons are generated with MADGRAPH V4.4.51 [41], and
showered with PYTHIA without taking into account interfer-
ence with SM t t̄ production, and the cross-sections are recal-
culated using PYTHIA V8.1 [42]. In both cases, CTEQ6L1
PDFs are used. The resulting cross-sections are given in Ta-
ble 1.

After event generation, all samples are processed by
a GEANT4-based [43] simulation of the ATLAS detec-
tor [44] and reconstructed using the same software as used
for data. All simulated samples include the effects due to
multiple pp interactions per bunch-crossing, and events are
reweighted so that the data and simulated sample instanta-
neous luminosity profiles match.
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Table 1 Cross-sections times branching ratios for the resonant sig-
nal processes obtained using the generator and PDF combinations de-
scribed in the text. The KK gluon (Z0) cross-sections are given at LO
(LO × 1.3)

Signal mass [GeV] σ × BR(Z0/gKK → t t̄ ) [pb]

Topcolour Z0 gKK

500 GeV 19.6 81.2

600 GeV 10.3 39.4

700 GeV 5.6 20.8

800 GeV 3.2 11.6

900 GeV 1.9 6.8

1000 GeV 1.2 4.1

1200 GeV 0.46 1.7

1400 GeV 0.19 0.73

1600 GeV 0.086 0.35

1800 GeV 0.039 0.18

2000 GeV 0.018 0.095

5 Object reconstruction

Electron candidates must have an EM shower shape consis-
tent with expectations based on simulation, test-beam and
Z → ee events in data, and must have a matching track in
the ID [45]. They are required to have transverse momen-
tum pT > 25 GeV and |ηcluster| < 2.47, where ηcluster is the
pseudorapidity of the calorimeter cluster associated to the
candidate. Candidates in the calorimeter transition region at
1.37 < |ηcluster| < 1.52 are excluded.

Muon candidates are reconstructed from track segments
in the various layers of the muon chambers, and matched
with tracks found in the ID. The final candidates are re-
fitted using the complete track information from both de-
tector systems, and required to satisfy pT > 25 GeV and
|η| < 2.5. Additionally, muons are required to be separated
by 1R > 0.4 from any jet with pT > 20 GeV.

The leptons in each event are required to be isolated [46]
to reduce the background due to non-prompt leptons, e.g.
from decays of hadrons (including heavy flavour) produced
in jets. For electrons, the calorimeter isolation transverse en-
ergy in a cone in η-φ space of radius 1R = 0.2 around the
electron position2 is required to be less than 3.5 GeV. The
core of the electron energy deposition is excluded and the
sum is corrected for transverse shower leakage and pile-up
from additional pp collisions. For muons, the calorimeter
isolation transverse energy, corrected for muon energy de-
position, in a cone of 1R = 0.3 is required to be less than
4.0 GeV. The scalar sum of track transverse momenta in a
cone of 1R = 0.3 around but excluding the muon track is
also required to be less than 4.0 GeV.

2The radius 1R between the object axis and the edge of the object

cone is defined as 1R = p
(1φ)2 + (1η)2.

Jets are reconstructed with the anti-kt algorithm [47, 48]
with radius parameter R = 0.4 from topological clus-
ters [49] of energy deposits in the calorimeters, calibrated
at the EM energy scale appropriate for the energy deposited
by electrons or photons. These jets are then calibrated to
the hadronic energy scale, using a pT- and η-dependent cor-
rection factor [49] obtained from simulation, test-beam and
collision data. The uncertainty on this correction factor is
determined from control samples in data. Jets must have
pT > 20 GeV and |η| < 4.5. If the closest object to an elec-
tron candidate is a jet with a separation 1R < 0.2 the jet is
removed in order to avoid double-counting of electrons as
jets. While the topological clusters are taken to be massless,
jets are composed of many of these, and their spatial distri-
bution within the jet cone leads to an invariant mass [50].

Jets originating from b-quarks are selected by exploiting
the long lifetimes of bottom hadrons (about 1.5 ps) lead-
ing to typical flight paths before decay of a few millime-
ters, which are observable in the detector. A multivariate
b-tagging algorithm [51] is used in this analysis at an op-
erating point yielding, in simulated t t̄ events, an average
60 % b-tagging efficiency and a light quark jet rejection fac-
tor of 345.

The missing transverse momentum (Emiss
T ) is constructed

[52] from the vector sum of all calorimeter cells contained
in topological clusters. Calorimeter cells are associated with
a parent physics object in a chosen order: electrons, jets and
muons, such that a cell is uniquely associated to a single
physics object. Cells belonging to electrons are calibrated
at the electron energy scale, but omitting the out-of-cluster
correction to avoid double cell-energy counting, while cells
belonging to jets are taken at the corrected energy scale used
for jets. Finally, the pT of muons passing selection require-
ments is included, and the contributions from any calorime-
ter cells associated to the muons are subtracted. The remain-
ing energy clusters not associated to electrons or jets are in-
cluded at the EM scale.

For all reconstructed objects in simulation, scaling fac-
tors are applied to compensate for the difference in recon-
struction efficiencies between data and simulation. The un-
certainties on these scaling factors are used to determine the
corresponding systematic uncertainties.

6 Event selection

After the event has been accepted by the trigger, it is re-
quired to have at least one offline-reconstructed primary ver-
tex with at least five tracks with pT > 0.4 GeV, and it is
discarded if any jet with pT > 20 GeV is identified as out-
of-time activity or calorimeter noise [49].
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6.1 ` + jets channel

The event must contain exactly one isolated lepton, and
events where an electron shares an inner detector track
with a non-isolated muon, or with a second lepton with
pT > 15 GeV, are rejected. The total t t̄ event fraction is
enhanced by applying the following event-level cuts. In
the electron channel, Emiss

T must be larger than 35 GeV
and mT > 25 GeV, where mT is the lepton-Emiss

T trans-
verse mass;3 in the muon channel, Emiss

T > 20 GeV and
Emiss

T + mT > 60 GeV are required. If one of the jets has
mass mj > 60 GeV, the event must contain at least three
jets with pT > 25 GeV and |η| < 2.5; if not, at least four jets
satisfying the same pT and η criteria must be present. The
leading jet must have pT > 60 GeV, and at least one of the
jets must be tagged as a b-jet. The requirement on the num-
ber of jets is relaxed when one jet has mj > 60 GeV since
for top quarks with significant boost the decay products are
collimated, and multiple quarks from top quark or W boson
decay can be reconstructed as a single, massive jet. This sub-
sample represents approximately 0.3 % of the selected event
sample. The total signal acceptance times branching ratio to
t t̄ is 7.4 % for a topcolour Z0 boson of mass mZ0 = 800 GeV
and 7.3 % for a KK-gluon of mass mgKK = 1300 GeV.

6.2 Dilepton channel

The event selection follows that used in a recent ATLAS
t t̄ production cross-section measurement [53]. Candidate
events are required to have two isolated leptons of oppo-
site charge and two or more jets with pT > 25 GeV. In order
to suppress the Z plus jets background, ee and μμ events
are required to have an invariant dilepton mass outside the
Z boson mass window, defined as |mZ − m``| < 10 GeV,
and Emiss

T > 40 GeV. An additional cut m`` > 10 GeV is
applied to the data in order to conform with the lower m``

cut-off in the Z plus jets simulation and to reduce back-
grounds from meson resonances. In the eμ channel the non-
t t̄ background is suppressed by requiring the scalar sum of
the transverse momenta of the identified leptons and jets to
be larger than 130 GeV. The total signal acceptance times
branching ratio to t t̄ is 1.3 % for a topcolour Z0 boson of
mass mZ0 = 800 GeV and 1.5 % for a KK-gluon of mass
mgKK = 1100 GeV.

7 Data-driven background modelling

For the dominant background sources, t t̄ and single top pro-
duction, W plus jets in the ` + jets channel and Z plus jets

3The transverse mass is defined by the formula mT =q
2p`

TEmiss
T (1 − cos1φ), where p`

T is the lepton pT and 1φ is

the azimuthal angle between the lepton and Emiss
T .

in the dilepton channel, the simulated samples are corrected
based on measurements in data. The multijet background
is determined directly from data. All other backgrounds are
taken without modification from simulation.

7.1 SM t t̄ and single top modelling

As discussed in Sect. 4, the SM t t̄ and single top back-
grounds are simulated using the MC@NLO generator with
CTEQ6.6 PDFs. To investigate the impact of the choice
of PDFs on modelling of this dominant background, the
events are re-weighted to MSTW2008nlo [54] PDFs and
the data are compared to the background expectation for
angular variables: jet and lepton rapidities, and azimuthal
angles between these objects and Emiss

T . Since the use of
MSTW2008nlo leads to better agreement in these angular
variables, samples re-weighted to these PDFs are used in the
analysis. Distributions obtained with CTEQ6.6 PDFs are
used to estimate the systematic uncertainty associated with
this shape modelling.

7.2 W plus jets corrections

For the ` + jets channel, the W plus jets background is de-
termined using the ALPGEN samples described in Sect. 4,
with data-driven corrections.

The flavour composition is determined from data based
on the tagged fraction of W plus one- and two-jet events [55],
and the known b-tagging efficiencies, measured using var-
ious techniques involving jets containing muons [56]. The
MC predictions for different flavour contributions are scaled
accordingly, adjusting the “light parton” scale factor to keep
the untagged W plus two jets normalization unchanged. The
Wbb̄ and Wcc̄ components are scaled by a factor 1.63, the
Wc component by a factor 1.11, and the “light parton” com-
ponent by a factor 0.83. The flavour composition uncertainty
of the W plus jets background is estimated by varying these
scaling factors by their uncertainties (13 % for Wbb̄ and
Wcc̄, 9 % for Wc).

Normalization factors are derived based on the charge
asymmetry in W boson production at the LHC [57]:

(NW+ + NW−)exp =
µ

rMC + 1

rMC − 1

¶
(NW+ − NW−)data

where NW+ and NW− are the number of events with W+
and W− bosons, rMC = NW+/NW− , and the superscripts
“exp” and “data” denote expected and data events, respec-
tively. The difference (NW+ − NW−)data and ratio rMC are
extracted from data and simulation, respectively, as a func-
tion of the number of b-tags and the number of reconstructed
jets passing the selection cuts. The background contamina-
tion in the W boson samples extracted from data is verified
to be charge-symmetric within uncertainties, and cancels in
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the difference. In the tagged four-jet bin, an overall normal-
ization factor for the simulated samples of 0.91 (0.81) is
required in the electron (muon) channel to match the data-
driven prediction. The overall normalization uncertainty on
the W plus jets background is set at 48 %, based on an un-
correlated, 24 %–per-jet uncertainty with respect to the in-
clusive W boson production cross-section [58].

7.3 Z plus jets corrections

Even though the event selection in the dilepton channel in-
cludes cuts to reject Z plus jets events, a small fraction of
events in the Emiss

T tails and dilepton invariant mass side-
bands remain. To estimate this background contribution, the
number of Drell-Yan events is measured in a data control
sample orthogonal to the signal sample [53]. The control
sample consists of events with at least two jets, a dilep-
ton invariant mass inside the Z boson mass window, and
Emiss

T > 40 GeV.
A small contamination in the control sample from non-

Z-boson processes is subtracted from data using simulation.
A scale factor is then derived based on ALPGEN Z plus jets
samples to extrapolate the data-to-MC differences measured
in the control region (CR) into the signal region (SR):

NSR
Z+jets = (DataCR − MCCR

other)

MCCR
NZ+jets

MCSR
NZ+jets

where MCSR/CR
NZ+jets

represents the expected number of events

in the signal and control regions, respectively. MCCR
other is the

number of events from non-Z contamination in the control
region. DataCR is the observed number of events in the con-
trol region. The Z plus jets background normalization pre-
diction from the simulation is thus scaled by the ratio of data
to simulated events in the control region. In the `+ jets chan-
nel the background from Z plus jets production is small and
evaluated directly from the simulation.

7.4 Multijet background estimation

Jets, including those containing a leptonically decaying bot-
tom or charmed hadron, can fake the isolated lepton signa-
ture produced by vector boson decays. Multijet events can
thus contain objects that pass the lepton selection but are
not leptons from vector boson decays, and contribute to the
selected events. In the ` + jets channel, the multijet back-
ground expectation and kinematic distributions are deter-
mined using the method described below. It models the mul-
tijet background with a data-driven template, which is nor-
malized in the multijet-dominated low Emiss

T region. Since
the multijet background in the b-tagged samples is domi-
nated by true, non-prompt leptons from heavy flavour quark
decays in both electron and muon samples, the template is
used for both samples.

Events for the template are selected from a jet-triggered
sample where exactly one jet with a high electromagnetic
fraction (between 0.8 and 0.95) is present. This jet, which
in addition must have at least four tracks to reduce the con-
tribution from photon conversions, is used to model the lep-
ton candidate. Events in which a good electron candidate
is present are rejected, yielding a sample highly enriched
in multijet background with kinematic characteristics very
similar to the multijet events that do pass all the lepton se-
lection cuts.

To determine the normalization of the multijet back-
ground, the data-driven multijet template and the simulated
t t̄ , single top, W plus jets and Z plus jets background sam-
ples are fitted to the data using the full Emiss

T spectrum,
i.e. applying all selections except the Emiss

T cut. Other contri-
butions are negligible after all selection cuts. For MC sam-
ples, each bin is allowed to vary according to a Gaussian
distribution centred at the bin height, with 10 % RMS to
account for their own modelling uncertainties. The multijet
background and signal Emiss

T spectra are sufficiently differ-
ent so that fitting the multijet contribution to the full distribu-
tion will not mask a potential signal. The multijet template
is determined before b-tagging to reduce statistical fluctu-
ations. The kinematic distributions in both tagged and un-
tagged samples have been verified to agree in shape within
the available statistics in data.

In the dilepton channel, the small multijet background
contribution is estimated from data using the Matrix Method
[59], which accounts for small backgrounds with both one
(W plus jets background) and two objects (multijet back-
ground) mimicking leptons from vector boson decays.

8 Mass reconstruction

8.1 ` + jets channel

To reconstruct the t t̄ invariant mass, the neutrino’s longi-
tudinal momentum (pz) is determined by imposing the W

boson mass constraint. If the discriminant of the quadratic
equation is negative, a situation usually due to Emiss

T res-
olution effects, the smallest changes to the Emiss

T x and y

components that lead to a null discriminant are applied [60],
leading to an improved resolution for those two components.
If there are two solutions, the smallest pz solution is chosen.

Different mass reconstruction algorithms are used for the
samples with or without a jet with mj > 60 GeV. In the
sample without such a jet, the dominant source of long, non-
Gaussian tails in the mass resolution is the inclusion of a jet
from initial- or final-state radiation in place of one of the
jets directly related to a top quark decay product. To reduce
this contribution, the four leading jets with pT > 20 GeV
and |η| < 2.5 are considered, and a jet is excluded if its
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Fig. 1 Reconstructed t t̄ pair invariant mass in simulation for four res-
onance masses: mZ0 = 500,700,1000 and mgKK = 1300 GeV

angular distance to the lepton or closest jet satisfies 1R >

2.5 − 0.015 × (mj/GeV). If more than one jet satisfies this
condition, the jet with the largest 1R is excluded. If a jet
was discarded and more than three jets remain, the proce-
dure is iterated. Then mtt̄ is reconstructed from the lepton,
Emiss

T and the leading four jets, or three jets if only three re-
main. The 1R cut removes jets that are well-separated from
the rest of the activity in the event. Furthermore, by requir-
ing only three jets in the mass reconstruction, the method
allows one of the jets from top quark decay to be outside the
detector acceptance, or merged with another jet.

For events with high t t̄ mass, the top quark and W bo-
son momenta can be large enough for some of the decay
products to be merged into a single jet, in which case us-
ing the four highest pT jets often leads to a significant over-
estimation of mtt̄ , causing a substantial contribution to the
very high mass tail. To mitigate this, if one of the jets has
mass mj > 60 GeV, it is combined with the jet closest to it
(in 1R) with pT > 20 GeV to form the hadronic top quark
candidate, and the other top quark is formed by combining
the reconstructed leptonic W boson candidate with, among
those remaining, the jet with pT > 20 GeV closest to it.

The mass resolution obtained from simulation is shown
in Fig. 1 using a few signal masses, and the correlation
between true and reconstructed t t̄ mass (mtt̄ ) is shown in
Fig. 2(a).

8.2 Dilepton channel

The dilepton channel is kinematically underconstrained due
to the presence of two undetected neutrinos. The effective
mass is correlated with mtt̄ and is defined as HT + Emiss

T ,
where HT is the scalar sum of transverse momenta of the
leptons and the two leading jets. The correlation between
true t t̄ mass and reconstructed HT + Emiss

T is shown in
Fig. 2(b).

Fig. 2 (a) Reconstructed versus true t t̄ pair invariant mass in the
` + jets channel and (b) effective mass (HT + Emiss

T ) versus true t t̄

invariant mass in the dilepton channel. The spectrum is normalized to
unity for each bin in the true t t̄ mass to show the correlation over a
large mass range better

9 Systematic uncertainties

Since the search for resonances is done using binned mtt̄

and HT + Emiss
T distributions, two categories of systematic

uncertainties are considered: uncertainties in the normaliza-
tion of the expected event yield, which do not impact the
shapes of the different contributions, and uncertainties af-
fecting the shape of the mtt̄ or effective mass distributions,
which can also impact the event yields.

Systematic uncertainties that affect only the normaliza-
tion of the different backgrounds come from the uncertainty
on the integrated luminosity (3.7 %); the lepton trigger and
reconstruction efficiencies (≤1.5 %); and background nor-
malizations: t t̄ (+7.0

−9.6 % [24]), single top (10 %), diboson
(5 %), W or Z plus jets in the `+ jets channel (48 %), Z plus
jets in the dilepton channel (12 %), W plus jets and multi-
jet in the dilepton channel (76 %), multijet in the ` + jets
channel (50 %).
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The dominant uncertainties that affect both yields and
shape in the ` + jets channel arise from the b-tagging ef-
ficiency [56], with 13 % (17 %) variation in the background
(mZ0 = 800 GeV signal) yields, jet energy scale including
pile-up effects, 15 % (4 %) [49], and modelling of initial-
and final-state radiation, 7 % (6 %). The first two have been
determined from data by comparing results from different
methods and/or data samples, while the last has been esti-
mated from MC simulations in which the relevant parame-
ters were varied [61].

The largest shape uncertainties in the dilepton channel
arise from the modelling of initial- and final-state radiation,
with 1.0 % (5.1 %) variation in the background (mgKK =
1000 GeV signal) yields, the jet energy scale 2.5 % (3.0 %)
and PDFs 3.7 % (0.6 %).

Other uncertainties arising from MC modelling as well
as object identification and momentum measurements have
smaller impact. These include the following: jet energy
resolution and reconstruction efficiency, muon pT resolu-
tion, electron energy scale and energy resolution, Emiss

T
measurement, mtt̄ shape (as evaluated by comparison of
POWHEG with MC@NLO), parton shower and fragmen-
tation (PYTHIA versus HERWIG), W plus jets shape (eval-
uated by varying ALPGEN generation parameters), W plus
jets composition (from the uncertainty in Wc and Wcc̄ +
Wbb̄ fractions), mis-modelling of the multijet background
shape, as well as potential effects due to mis-modelling of
pile-up effects.

10 Comparison of data and background expectation

Tables 2 and 3 compare the predicted and observed event
yields after applying the event selection cuts described in
Sect. 6 for the ` + jets and dilepton channels, respectively.

Table 2 Number of expected and observed events for the e and μ +
jets channels after applying all selection cuts described in Sect. 6. The
uncertainties given are the normalization uncertainties as described in
Sect. 9. Statistical uncertainties on these numbers are small

Electron channel Muon channel

t t̄ 7830 ± 750 10000 ± 960

Single top 470 ± 50 570 ± 60

W plus jets 1120 ± 540 1450 ± 700

Z plus jets 85 ± 40 90 ± 45

Diboson 18 ± 1 18 ± 1

Multijet 340 ± 170 470 ± 240

Total expected 9860 ± 940 12600 ± 1210

Data observed 9622 12706

mgZ0 = 800 GeV 200 224

mgKK = 1300 GeV 59 65

Table 3 Number of expected and observed events in the dilepton
channel after applying all selection cuts described in Sect. 6. The un-
certainties shown are all normalization uncertainties as described in
Sect. 9. Statistical uncertainties on these numbers are small

Dilepton channel

t t̄ 4020 ± 470

Single top 210 ± 30

Z plus jets 570 ± 70

Diboson 185 ± 30

W plus jets and Multijet 190 ± 145

Total expected 5200 ± 500

Data observed 5304

mgZ0 = 800 GeV 77

mgKK = 1100 GeV 75

Fig. 3 Reconstructed t t̄ mass in the `+ jets channel after all cuts, with
the expectation from SM background and two signal masses, a Z0 bo-
son with mZ0 = 800 GeV and a KK gluon with mgKK = 1300 GeV. The
electron and muon channels have been added together and all events
beyond the range of the histogram have been added to the last bin.
“Other backgrounds” includes single top, Z plus jets, diboson and mul-
tijet production. The hatched area shows the background normalization
uncertainties

The reconstructed mtt̄ distribution is shown for data and
background expectation as well as two signal masses in
Fig. 3. Figure 4 shows the HT + Emiss

T distribution for data
and SM expectation together with a hypothetical KK-gluon
signal with a mass of 1100 GeV for comparison. (The dilep-
ton channel has very limited sensitivity to topcolour Z0
bosons.) In both the ` + jets and dilepton channels good
agreement is found between data and expected background
in the event yields as well as the shapes of kinematic distri-
butions.
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Fig. 4 The HT + Emiss
T distribution after all selection require-

ments in the dilepton channel with a KK-gluon signal of mass
mgKK = 1100 GeV for comparison. “Other backgrounds” includes sin-
gle top, diboson, W plus jets, and multijet production. The hatched area
shows the background normalization uncertainties

11 Results

The results of this search are obtained by comparing the
mtt̄ and HT +Emiss

T distributions with background-only and
signal-plus-background hypotheses. The significance of a
potential signal is summarized by a p-value, the probability
of observing, in the absence of signal, an excess at least as
signal-like as the one observed in data. The outcome of the
search is ranked using the BUMPHUNTER [62] algorithm
for the ` + jets channel and a likelihood ratio test statistic
for the dilepton channel. No significant deviations from SM
expectations are observed.

Given the absence of a signal, upper limits are set on
cross-section times branching ratio (σ × BR) as a function
of mass using a Bayesian approach [63]. For the limit set-
ting, the ` + jets channel uses variable-size binning, with
bins ranging in size from 40 GeV to 500 GeV bins for nar-
row resonances, and 80 GeV to 500 GeV for Kaluza-Klein
gluons. These values are close to the mass resolution while
limiting bin-by-bin statistical fluctuations. Mass values be-
low 500 GeV, i.e. the t t̄ threshold region, are not considered.
A single bin contains all events with mtt̄ > 2.5 TeV. In the
dilepton channel variable-sized bins are used with bins rang-
ing in size from 50 GeV to 200 GeV to maximize sensitivity
while limiting bin-by-bin statistical fluctuations. The last bin
contains all events with HT + Emiss

T > 1.1 TeV.
The likelihood function is defined as the product of the

Poisson probabilities over all bins of the reconstructed t t̄ in-
variant mass or HT + Emiss

T distribution in the ` + jets or
dilepton channel, respectively. The Poisson probability in
each bin is evaluated for the observed number of data events
given the background and signal template expectation. The
total signal acceptance as a function of mass is propagated
into the expectation. To calculate a likelihood for combined

Fig. 5 Observed (solid line) and expected (dashed line) 95 % CL up-
per limits on (a) σ × BR(Z0 → t t̄ ) and (b) σ × BR(gKK → t t̄ ) for the
` + jets channel. The inner and outer bands show the range in which
the limit is expected to lie in 68 % and 95 % of pseudo-experiments,
respectively, and the bold lines correspond to the predicted cross-sec-
tion times branching ratio in the leptophobic topcolour and RS models.
The bands around the signal cross-section curves represent the effect
of the PDF uncertainty on the prediction

channels, the likelihoods of the individual channels are mul-
tiplied.

The posterior probability density is calculated using
Bayes’ theorem, with a flat positive prior in the signal cross-
section which is found to be a good approximation of the ref-
erence prior [64]. Systematic uncertainties are incorporated
using nuisance parameters that smear the parameters of the
Poisson probability in each bin. For each systematic uncer-
tainty a Gaussian prior controls the probability for a given
deviation of the parameter from the nominal value. The 95 %
credibility level (CL) upper limit on the signal cross-section
times branching ratio is identified with the 95 % point of the
posterior probability. The expected limits are determined by
using the background expectation instead of the data in the
limit computation, and the one and two standard-deviation
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Table 4 Expected and observed 95 % CL upper limits on σ ×
BR(Z0 → t t̄ ) for the ` + jets channel

Mass [GeV] Z0 Exp. [pb] Z0 Obs. [pb]

500 8.5 9.3

600 6.0 4.8

700 3.1 2.5

800 2.1 1.9

1000 1.1 2.4

1300 0.62 0.95

1600 0.46 0.76

2000 0.37 0.40

Table 5 Expected and observed 95 % CL upper limits on σ ×
BR(gKK → t t̄ )

Mass [GeV] gKK Exp. [pb] gKK Obs. [pb]

` + jets channel

500 10.3 10.1

600 6.0 5.0

700 4.2 3.1

800 2.7 2.2

1000 1.4 2.9

1300 0.90 1.6

1600 0.68 1.4

1800 0.41 0.60

Dilepton channel

500 17.0 19.6

600 11.3 18.5

700 7.6 11.7

800 5.7 7.6

1000 3.2 3.4

1300 2.7 2.3

1600 2.8 2.9

1800 3.1 3.4

bands around these limits are determined from the distribu-
tion of limits in pseudo-experiments.

Systematic uncertainties degrade the expected cross-
section limits by a factor ranging from 3.0 at low mass to
1.5 at high mass. Of the 32 systematic uncertainties consid-
ered, none contribute individually more than 15 % of the
degradation.

For the ` + jets channel the 95 % CL observed limits on
narrow and wide resonances are shown in Fig. 5, together
with the predicted cross-section times branching ratio for
the models considered and the expected limits. Numerical
values are given in Tables 4 and 5. The observed (expected)
95 % CL limit on σ × BR(Z0 → t t̄ ) ranges from 9.3 (8.5)
pb at mZ0 = 500 GeV to 0.95 (0.62) pb at mZ0 = 1300 GeV.

Fig. 6 Observed (solid line) and expected (dashed line) 95 % CL up-
per limits on σ × BR(gKK → t t̄ ) for the dilepton channel. The inner
and outer bands show the range in which the limit is expected to lie in
68 % and 95 % of pseudo-experiments, respectively, and the bold line
corresponds to the predicted cross-section times branching ratio for the
RS model. The band around the signal cross-section curve represents
the effect of the PDF uncertainty on the prediction

The mass range 500 GeV < mZ0 < 880 GeV is excluded
at 95 % CL. The expected mass exclusion is 500 GeV <

mZ0 < 1010 GeV.4 The observed (expected) 95 % CL limit
on σ ×BR(gKK → t t̄ ) ranges from 10.1 (10.3) pb at mgKK =
500 GeV to 1.6 (0.9) pb at mgKK = 1300 GeV. gKK reso-
nances with mass between 500 GeV and 1130 GeV are ex-
cluded at 95 % CL, while the expected mass exclusion is
500 GeV < mgKK < 1360 GeV.

For the dilepton channel, the 95 % CL limits on the
gKK resonance are shown in Fig. 6 with numerical values
summarized in Table 5. The observed (expected) 95 % CL
limit on σ × BR(gKK → t t̄ ) ranges from 19.6 (17.0) pb
at mgKK = 500 GeV to 2.3 (2.7) pb at mgKK = 1300 GeV.
This result excludes gKK resonances with masses between
500 GeV and 1080 GeV at 95 % CL while the expected
mass exclusion is 500 GeV < mgKK < 1070 GeV. No limit
is set on mZ0 in the dilepton channel.

Combining the ` + jets and dilepton channels does not
lead to a significant improvement in the limits. However,
the dilepton channel, with different background composition
and systematics, provides an important and largely indepen-
dent cross-check of the result.

12 Summary

A search for top quark pair resonances in the ` + jets and
dilepton final states has been performed with the ATLAS

4For comparison with the Tevatron, the observed (expected) 95 % CL
exclusion limit is 500 GeV < mZ0 < 860 (930) GeV when using the
old LO cross-section calculation [2].
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experiment at the LHC. The search uses a data sample corre-
sponding to an integrated luminosity of 2.05 fb−1, recorded
at a proton-proton centre-of-mass energy of 7 TeV. The data
are found to be consistent with Standard Model background
expectations. Using the reconstructed t t̄ mass (HT + Emiss

T )
spectrum in the ` + jets (dilepton) channel, limits are set
on the production cross-section times branching ratio to t t̄

for narrow and wide resonances. In the narrow Z0 bench-
mark model, observed 95 % CL limits range from 9.3 pb at
m = 500 GeV to 0.95 pb at m = 1300 GeV, and a leptopho-
bic topcolour Z0 boson with 500 GeV < mZ0 < 880 GeV
is excluded at 95 % CL. In the wide resonance bench-
mark model, Randall-Sundrum Kaluza-Klein gluons are ex-
cluded at 95 % CL with masses between 500 GeV and
1130 GeV.
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M. Ziolkowski141, R. Zitoun4, L. Živković34, V.V. Zmouchko128,*, G. Zobernig173, A. Zoccoli19a,19b, M. zur Nedden15,
V. Zutshi106, L. Zwalinski29

1University at Albany, Albany NY, United States of America
2Department of Physics, University of Alberta, Edmonton AB, Canada
3(a)Department of Physics, Ankara University, Ankara; (b)Department of Physics, Dumlupinar University, Kutahya;

(c)Department of Physics, Gazi University, Ankara; (d)Division of Physics, TOBB University of Economics and
Technology, Ankara; (e)Turkish Atomic Energy Authority, Ankara, Turkey

4LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
6Department of Physics, University of Arizona, Tucson AZ, United States of America
7Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
8Physics Department, University of Athens, Athens, Greece
9Physics Department, National Technical University of Athens, Zografou, Greece

10Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA,

Barcelona, Spain
12(a)Institute of Physics, University of Belgrade, Belgrade; (b)Vinca Institute of Nuclear Sciences, University of Belgrade,

Belgrade, Serbia
13Department for Physics and Technology, University of Bergen, Bergen, Norway
14Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of

America
15Department of Physics, Humboldt University, Berlin, Germany
16Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern,

Switzerland
17School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18(a)Department of Physics, Bogazici University, Istanbul; (b)Division of Physics, Dogus University, Istanbul;

(c)Department of Physics Engineering, Gaziantep University, Gaziantep; (d)Department of Physics, Istanbul Technical
University, Istanbul, Turkey

19(a)INFN Sezione di Bologna; (b)Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20Physikalisches Institut, University of Bonn, Bonn, Germany
21Department of Physics, Boston University, Boston MA, United States of America
22Department of Physics, Brandeis University, Waltham MA, United States of America
23(a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Federal University of Juiz de Fora (UFJF),

Juiz de Fora; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d)Instituto de Fisica, Universidade de
Sao Paulo, Sao Paulo, Brazil

24Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
25(a)National Institute of Physics and Nuclear Engineering, Bucharest; (b)University Politehnica Bucharest, Bucharest;

(c)West University in Timisoara, Timisoara, Romania



Eur. Phys. J. C (2012) 72:2083 Page 19 of 23

26Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28Department of Physics, Carleton University, Ottawa ON, Canada
29CERN, Geneva, Switzerland
30Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
31(a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b)Departamento de Física, Universidad

Técnica Federico Santa María, Valparaíso, Chile
32(a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b)Department of Modern Physics,

University of Science and Technology of China, Anhui; (c)Department of Physics, Nanjing University, Jiangsu; (d)School
of Physics, Shandong University, Shandong, China

33Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere
Cedex, France

34Nevis Laboratory, Columbia University, Irvington NY, United States of America
35Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36(a)INFN Gruppo Collegato di Cosenza; (b)Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39Physics Department, Southern Methodist University, Dallas TX, United States of America
40Physics Department, University of Texas at Dallas, Richardson TX, United States of America
41DESY, Hamburg and Zeuthen, Germany
42Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44Department of Physics, Duke University, Durham NC, United States of America
45SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
47INFN Laboratori Nazionali di Frascati, Frascati, Italy
48Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49Section de Physique, Université de Genève, Geneva, Switzerland
50(a)INFN Sezione di Genova; (b)Dipartimento di Fisica, Università di Genova, Genova, Italy
51(a)E.Andronikashvili Institute of Physics, Tbilisi State University; (b)High Energy Physics Institute, Tbilisi State

University, Tbilisi, Georgia
52II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut

National Polytechnique de Grenoble, Grenoble, France
56Department of Physics, Hampton University, Hampton VA, United States of America
57Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58(a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b)Physikalisches Institut,

Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c)ZITI Institut für technische Informatik,
Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

59Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60Department of Physics, Indiana University, Bloomington IN, United States of America
61Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
62University of Iowa, Iowa City IA, United States of America
63Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
64Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66Graduate School of Science, Kobe University, Kobe, Japan
67Faculty of Science, Kyoto University, Kyoto, Japan
68Kyoto University of Education, Kyoto, Japan
69Department of Physics, Kyushu University, Fukuoka, Japan
70Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina



Page 20 of 23 Eur. Phys. J. C (2012) 72:2083

71Physics Department, Lancaster University, Lancaster, United Kingdom
72(a)INFN Sezione di Lecce; (b)Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
73Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
74Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
76Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
77Department of Physics and Astronomy, University College London, London, United Kingdom
78Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris,

France
79Fysiska institutionen, Lunds universitet, Lund, Sweden
80Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
81Institut für Physik, Universität Mainz, Mainz, Germany
82School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
83CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
84Department of Physics, University of Massachusetts, Amherst MA, United States of America
85Department of Physics, McGill University, Montreal QC, Canada
86School of Physics, University of Melbourne, Victoria, Australia
87Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
88Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
89(a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Università di Milano, Milano, Italy
90B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
91National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
92Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
93Group of Particle Physics, University of Montreal, Montreal QC, Canada
94P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
97Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
98Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
99Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

100Nagasaki Institute of Applied Science, Nagasaki, Japan
101Graduate School of Science, Nagoya University, Nagoya, Japan
102(a)INFN Sezione di Napoli; (b)Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
103Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
104Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen,

Netherlands
105Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106Department of Physics, Northern Illinois University, DeKalb IL, United States of America
107Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
108Department of Physics, New York University, New York NY, United States of America
109Ohio State University, Columbus OH, United States of America
110Faculty of Science, Okayama University, Okayama, Japan
111Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of

America
112Department of Physics, Oklahoma State University, Stillwater OK, United States of America
113Palacký University, RCPTM, Olomouc, Czech Republic
114Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
115LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
116Graduate School of Science, Osaka University, Osaka, Japan
117Department of Physics, University of Oslo, Oslo, Norway
118Department of Physics, Oxford University, Oxford, United Kingdom
119(a)INFN Sezione di Pavia; (b)Dipartimento di Fisica, Università di Pavia, Pavia, Italy
120Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America



Eur. Phys. J. C (2012) 72:2083 Page 21 of 23

121Petersburg Nuclear Physics Institute, Gatchina, Russia
122(a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
124(a)Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b)Departamento de Fisica

Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
125Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
126Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
127Czech Technical University in Prague, Praha, Czech Republic
128State Research Center Institute for High Energy Physics, Protvino, Russia
129Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130Physics Department, University of Regina, Regina SK, Canada
131Ritsumeikan University, Kusatsu, Shiga, Japan
132(a)INFN Sezione di Roma I; (b)Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133(a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134(a)INFN Sezione di Roma Tre; (b)Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135(a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II,

Casablanca; (b)Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c)Faculté des Sciences
Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d)Faculté des Sciences, Université Mohamed Premier and
LPTPM, Oujda; (e)Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

136DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie
Atomique), Gif-sur-Yvette, France

137Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
138Department of Physics, University of Washington, Seattle WA, United States of America
139Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140Department of Physics, Shinshu University, Nagano, Japan
141Fachbereich Physik, Universität Siegen, Siegen, Germany
142Department of Physics, Simon Fraser University, Burnaby BC, Canada
143SLAC National Accelerator Laboratory, Stanford CA, United States of America
144(a)Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b)Department of Subnuclear

Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145(a)Department of Physics, University of Johannesburg; (b)School of Physics, University of the Witwatersrand,

Johannesburg, South Africa
146(a)Department of Physics, Stockholm University; (b)The Oskar Klein Centre, Stockholm, Sweden
147Physics Department, Royal Institute of Technology, Stockholm, Sweden
148Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of

America
149Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150School of Physics, University of Sydney, Sydney, Australia
151Institute of Physics, Academia Sinica, Taipei, Taiwan
152Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158Department of Physics, University of Toronto, Toronto ON, Canada
159(a)TRIUMF, Vancouver BC; (b)Department of Physics and Astronomy, York University, Toronto ON, Canada
160Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
161Science and Technology Center, Tufts University, Medford MA, United States of America
162Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia



Page 22 of 23 Eur. Phys. J. C (2012) 72:2083

163Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
164(a)INFN Gruppo Collegato di Udine, Udine; (b)ICTP, Trieste; (c)Dipartimento di Chimica, Fisica e Ambiente, Università

di Udine, Udine, Italy
165Department of Physics, University of Illinois, Urbana IL, United States of America
166Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de

Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC,
Valencia, Spain

168Department of Physics, University of British Columbia, Vancouver BC, Canada
169Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
170Department of Physics, University of Warwick, Coventry, United Kingdom
171Waseda University, Tokyo, Japan
172Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173Department of Physics, University of Wisconsin, Madison WI, United States of America
174Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176Department of Physics, Yale University, New Haven CT, United States of America
177Yerevan Physics Institute, Yerevan, Armenia
178Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

aAlso at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
bAlso at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
cAlso at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
dAlso at TRIUMF, Vancouver BC, Canada
eAlso at Department of Physics, California State University, Fresno CA, United States of America
fAlso at Novosibirsk State University, Novosibirsk, Russia
gAlso at Fermilab, Batavia IL, United States of America
hAlso at Department of Physics, University of Coimbra, Coimbra, Portugal
iAlso at Department of Physics, UASLP, San Luis Potosi, Mexico
jAlso at Università di Napoli Parthenope, Napoli, Italy
kAlso at Institute of Particle Physics (IPP), Canada
lAlso at Department of Physics, Middle East Technical University, Ankara, Turkey

mAlso at Louisiana Tech University, Ruston LA, United States of America
nAlso at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica,
Portugal

oAlso at Department of Physics and Astronomy, University College London, London, United Kingdom
pAlso at Group of Particle Physics, University of Montreal, Montreal QC, Canada
qAlso at Department of Physics, University of Cape Town, Cape Town, South Africa
rAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
sAlso at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
tAlso at Manhattan College, New York NY, United States of America
uAlso at School of Physics, Shandong University, Shandong, China
vAlso at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
wAlso at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
xAlso at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
yAlso at Dipartimento di Fisica, Università La Sapienza, Roma, Italy
zAlso at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a
l’Energie Atomique), Gif-sur-Yvette, France

aaAlso at Section de Physique, Université de Genève, Geneva, Switzerland
abAlso at Departamento de Fisica, Universidade de Minho, Braga, Portugal
acAlso at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
adAlso at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
aeAlso at California Institute of Technology, Pasadena CA, United States of America
afAlso at Institute of Physics, Jagiellonian University, Krakow, Poland



Eur. Phys. J. C (2012) 72:2083 Page 23 of 23

agAlso at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
ahAlso at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
aiAlso at Department of Physics, Oxford University, Oxford, United Kingdom
ajAlso at Institute of Physics, Academia Sinica, Taipei, Taiwan
akAlso at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
*Deceased


	A search for tt resonances with the ATLAS detector in 2.05 fb-1 of proton-proton collisions at s = 7 TeV
	Introduction
	The ATLAS detector
	Data sample
	Simulated samples
	Object reconstruction
	Event selection
	l+jets channel
	Dilepton channel

	Data-driven background modelling
	SM tt and single top modelling
	W plus jets corrections
	Z plus jets corrections
	Multijet background estimation

	Mass reconstruction
	l+jets channel
	Dilepton channel

	Systematic uncertainties
	Comparison of data and background expectation
	Results
	Summary
	Acknowledgements
	References
	The ATLAS Collaboration


