

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for massive long-lived highly ionising particles with the ATLAS detector at the LHC $^{\bigstar}$

ATLAS Collaboration*

ARTICLE INFO

Article history: Received 2 February 2011 Received in revised form 16 March 2011 Accepted 16 March 2011 Available online 23 March 2011 Editor: M. Cvetič

Keywords: High-energy collider experiment Long-lived particle Highly ionising New physics

1. Introduction

The observation of a massive long-lived highly ionising particle (HIP) possessing a large electric charge $|q| \gg e$, where e is the elementary charge, would represent striking evidence for physics beyond the Standard Model. Examples of putative particles which can give rise to HIP signatures include Q-balls [1], stable micro black-hole remnants [2], magnetic monopoles [3] and dyons [4]. Searches for HIPs are made in cosmic rays [5] and at colliders [3]; recent collider searches were performed at LEP [6-8] and the Tevatron [9-12]. Cross sections and event topologies associated with HIP production cannot be reliably predicted due to the fact that the coupling between a HIP and the photon is so strong that perturbative calculations are not possible. Therefore, search results at colliders are usually quoted as cross section limits in a range of charge and mass for given kinematics [3]. Also, for the same reason, limits obtained at different collision energies or for different types of collisions cannot be directly compared; rather, they are complementary.

HIP searches are part of a program of searches at the CERN Large Hadron Collider (LHC) which explore the multi-TeV energy regime. Further motivation is provided by the gauge hierarchy problem, to which proposed solutions typically postulate the existence of hitherto unobserved particles with TeV-scale masses. HIPs at the LHC can be sought at the dedicated MoEDAL plastic-track experiment [13] or, as in this work, via their active detection at a multipurpose detector.

ABSTRACT

A search is made for massive highly ionising particles with lifetimes in excess of 100 ns, with the ATLAS experiment at the Large Hadron Collider, using 3.1 pb⁻¹ of pp collision data taken at $\sqrt{s} = 7$ TeV. The signature of energy loss in the ATLAS inner detector and electromagnetic calorimeter is used. No such particles are found and limits on the production cross section for electric charges $6e \le |q| \le 17e$ and masses 200 GeV $\le m \le 1000$ GeV are set in the range 1–12 pb for different hypotheses on the production mechanism.

© 2011 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

Due to their assumed large mass (hundreds of GeV), HIPs are characterised by their non-relativistic speed. The expected large amounts of energy loss per unit length (dE/dx) through ionisation (no bremsstrahlung) are mainly due to the high particle charge, but also due to the low speed. The ATLAS detector is well suited to detect HIPs. A HIP with sufficient kinetic energy would leave a track in the inner detector tracking system of ATLAS and lose its energy on its way to and through the electromagnetic calorimeter, giving rise to an electron-like signature. The presence of a HIP can be inferred from measurements of the proportion of high-ionisation hits in the inner detector. In addition, assuming isolation, the lateral extent of the energy deposition in the calorimeter is a sensitive discriminant between HIPs and Standard Model particles.

The ranges of HIP charge, mass and lifetime for which unambiguous conclusions can be drawn are determined by the chosen trigger and event selections. The choice of an electromagnetic trigger limits the phase space to HIPs which stop in the electromagnetic calorimeter of ATLAS. The search is optimised for data collected at relatively low instantaneous luminosities (up to 10^{31} cm⁻² s⁻¹), for which a low (10 GeV) trigger transverse energy threshold is available. In the barrel region of the calorimeter, this gives access to energy depositions corresponding to HIPs with electric charges down to 6e. Standard electron reconstruction algorithms are used, which implies that tracks which bend like electrically charged particles are sought. Particles with magnetic charge, or electric charge above 17e, are not addressed here due to the bending along the beam axis in the case of a monopole, and due to effects from delta electrons and electron recombination in the active detector at the corresponding values of energy loss $(dE/dx > 2 \cdot 10^3 \text{ MeV/cm})$. For such types of HIPs, more detailed studies are needed to assess and minimise the impact of these

 $^{^{\}div}\,$ © CERN, for the benefit of the ATLAS Collaboration.

Open access under CC BY-NC-ND license.

^{*} E-mail address: atlas.publications@cern.ch

effects on the selection efficiency. The 1000 GeV upper bound in mass sensitivity is determined by trigger timing constraints, as a significantly heavier HIP (with charge 17*e* or lower) would be delayed by more than 12 ns with respect to $\beta = 1$ when it stops in the electromagnetic calorimeter (this corresponds to $\beta < 0.3$), and would thus risk being triggered in the next proton bunch crossing. The search is sensitive to HIP lifetimes larger than 100 ns since a particle which decays much earlier in the calorimeter (even after stopping) would spoil the signature of a narrow energy deposition.

2. The ATLAS detector

The ATLAS detector [14] is a multipurpose particle physics apparatus with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle.¹ A thin superconducting solenoid magnet surrounding the inner part of the ATLAS detector produces a field of approximately 2 T along the beam axis.

Inner detector (ID) tracking is performed by silicon-based detectors and an outer tracker using straw tubes with particle identification capabilities based on transition radiation (Transition Radiation Tracker, TRT). The TRT is divided into barrel (covering the pseudorapidity range $|\eta| < 1.0$) and endcap ($0.8 < |\eta| < 2.0$) components. A track gives a typical number of straw hits of 36. At the front-end electronics of the TRT, discriminators are used to compare the signal against low and high thresholds. While the TRT has two hit threshold levels, there is no upper limit to the amount of ionisation in a straw which will lead to a signal [15], guaranteeing that highly ionising particles would not escape detection in the TRT. Rather, they would produce a large number of high-threshold (HT) hits along their trajectories. The amount of ionisation in a straw tube needed for a TRT HT hit is roughly equivalent to three times that expected from a minimum ionising particle.

Liquid-argon sampling electromagnetic (EM) calorimeters, which comprise accordion-shaped electrodes and lead absorbers, surround the ID. The EM calorimeter barrel ($|\eta| < 1.475$) is used in this search. It is segmented transversely and divided in three layers in depth, denoted first, second, and third layer, respectively. In front of the accordion calorimeter a thin presampler layer is used to correct for fluctuations of energy loss. The typical cell granularity ($\Delta \eta \times \Delta \phi$) of the EM barrel is 0.003 × 0.1 in the first layer and 0.025 × 0.025 in the second layer. The signal expected for a HIP in the considered charge range lies in a region in time and energy where the electronic response in EM calorimeter cells is well understood and does not saturate. The robustness of the EM calorimeter energy reconstruction has been studied in detail and pulse shape predictions are consistent with the measured signals [16].

The stopping power of a HIP in the ATLAS detector depends on its charge, mass and energy, as well as the material budget along its path. Details of the latter are given in Ref. [17] in terms of number of radiation lengths X_0 , as a function of depth and pseudorapidity. The integrated radiation length between the interaction point and the exit of the TRT is 0.5 X_0 at $\eta = 0$ and 1.5 X_0 at $|\eta| = 1.3$. The additional amount of material before the first layer of the EM calorimeter is 2.0 X_0 at $\eta = 0$ and 3.5 X_0 at $|\eta| = 1.3$. The thicknesses of the first, second and third EM layers are 4.5 X_0 , 16.5 X_0 and 1.5 X_0 at $\eta = 0$ and 3 X_0 , 20 X_0 and 5 X_0 at $|\eta| = 1.3$, respectively.

Fig. 1. Distributions of pseudorapidity η (top) and kinetic energy E_{kin} (bottom) at origin for heavy fermions produced with the Drell–Yan process. The latter is given with a requirement of $|\eta| < 1.35$. The distributions for the three different masses are normalised to the same number of entries.

3. Simulated event samples

Signal events are generated with the PYTHIA Monte Carlo (MC) event generator [18] according to the fermion pair production process: $p + p \rightarrow f + \bar{f} + X$. Ref. [19] is used for the parton distributions of the proton. Direct pair production implies that the HIPs are not part of a jet and thus isolated. A Drell–Yan-like production mechanism, modified to take into account the mass of the HIP [20], is used to model the kinematic properties of the HIPs. Generated η distributions, as well as kinetic energy (E_{kin}) spectra in the central region ($|\eta| < 1.35$), are shown in Fig. 1 for the three mass points considered in this search.

An ATLAS detector simulation [21] based on GEANT-4 [22] is used, where the particle interactions include secondary ionisation by delta electrons in addition to the standard ionisation process based on the Bethe–Bloch formula. A correction for electron–ion recombination effects in the EM calorimeter (Birks' correction) is applied, with typical visible energy fractions between 0.2 and 0.5 for the signal particles considered. Effects of delays are simulated, except for the ability to trigger slow-moving particles within the proton bunch crossing time, which is considered separately as a systematic uncertainty (see Section 6). Samples of approximately 20000 events are produced for HIPs with masses of 200, 500 and 1000 GeV. For each mass point, HIPs with charges 6*e*, 10*e* and 17*e* are simulated.

A data-driven method is used in this work to estimate backgrounds surviving the final selections (see Section 4.2). However, in order to demonstrate that the distributions of the relevant observables are understood, a sample of simulated background events is used. The background sample, generated with PYTHIA [18] and labeled "Standard Model", consists mostly of QCD events in which

¹ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the *z*-axis coinciding with the axis of the beam pipe. The *x*-axis points from the IP to the centre of the LHC ring, and the *y* axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

the hard subprocess is a strong 2-to-2 process with a matrix element transverse momentum cut-off of 15 GeV, but also includes contributions from heavy quark and vector boson production. A true transverse energy larger than 17 GeV in a typical first level trigger tower is also required. This sample contains $4 \cdot 10^7$ events and corresponds roughly to an integrated luminosity of 0.8 pb⁻¹.

4. Trigger and event selection

The collected data sample corresponds to an integrated luminosity of 3.1 ± 0.3 pb⁻¹, using a first level trigger based on energy deposits in the calorimeters. At the first level of the trigger, socalled trigger towers with dimension $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ are defined. In each trigger tower the cells of the electromagnetic or hadronic calorimeter are summed. EM clusters with fixed size $\Delta \eta \times \Delta \phi = 0.2 \times 0.2$ are sought and are retained if the total transverse energy (E_T) in an adjacent pair of their four trigger towers is above 5 GeV. Further electron-like higher level trigger requirements are imposed on the candidate, including $E_T > 10$ GeV, a matching to a track in the ID and a veto on hadronic leakage [23]. The efficiency of this trigger for the data under consideration is measured to be (94.0 ± 1.5) % for electrons with $E_T > 15$ GeV and is well described by the simulation. The simulation predicts that a highly charged particle which stops in the EM barrel would be triggered with a similar efficiency or higher.

Offline electron candidates have cluster sizes of $\Delta \eta \times \Delta \phi = 0.075 \times 0.175$ in the EM barrel, with a matched track in a window of $\Delta \eta \times \Delta \phi = 0.05 \times 0.1$ amongst reconstructed tracks with transverse momentum larger than 0.5 GeV. Identification requirements corresponding to "medium" electrons [24], implying track and shower shape quality cuts, are applied to the candidates. These cuts filter out backgrounds but have a negligible impact on the signal, for which the cluster width is much narrower than for typical electrons. The cluster energy is estimated correcting for the energy deposited outside the active calorimeter regions, assuming an EM shower.

Further offline selections on the cluster transverse energy ($E_T > 15$ GeV) and pseudorapidity ($|\eta| < 1.35$) are imposed. The E_T selection guarantees that the trigger efficiency is higher than 94% for the objects under study. The restriction of $|\eta| < 1.35$ excludes the transition region between the EM calorimeter barrel and endcap, reducing the probability for backgrounds to fake a narrow energy deposition.

4.1. Selection cuts

A loose selection based on TRT and EM calorimeter information is also imposed on the candidates to ensure that the quality of the track and cluster associated to the electron-like object is good enough to ensure the robustness of the HIP selection variables, and to provide a data sample with which to estimate the background rate. Only candidates with more than 10 TRT hits are retained. In addition to the $E_T > 15$ GeV cut for the EM cluster associated with the candidate, a significant fraction of the total cluster energy is required to be contained in six calorimeter cells among the first and second EM layers. This is done by requiring the summed energy in the three most energetic cells in each of the first and second layers to be greater than 2 and 4 GeV, respectively. Following these selections, 137 503 candidates remain in the data.

Two sets of observables are used in the final selection. The ID-based observable is the fraction, f_{HI} , of TRT hits on the track which pass the high threshold. The calorimeter-based discriminants are the fractions of energies outside of the three most energetic cells associated to a selected EM cluster, in the first and second EM calorimeter layers: w_1 and w_2 .

Fig. 2. Distribution of the fraction of TRT high-threshold hits for candidates satisfying the loose selection. Data (dots) are compared with area-normalised signal (|q| = 10e and m = 500 GeV, dashed line) and Standard Model background (shaded area) simulations. The dotted line shows the selection cut value.

The f_{HT} distribution for loosely selected candidates is shown in Fig. 2. The data extend up to $f_{HT} = 0.8$. The prediction of the signal simulation for a HIP of mass 500 GeV and charge 10*e* is also shown. It peaks at $f_{HT} \sim 1$ and has a small tail extending into the Standard Model region.

The distributions of w_1 and w_2 also provide good discrimination between signal and background, as shown in Fig. 3. For a signal, energy is deposited only in the few cells along the particle trajectory (as opposed to backgrounds which induce showers in the EM calorimeter) and the distributions peak around zero for both variables. The shapes of the measured distributions are well described by the background simulation. A faint double-peak structure is visible in data and in background simulations for the f_{HT} , w_1 and w_2 distributions in Figs. 2 and 3, where the main peak (closest to the signal) corresponds to electrons and the secondary peak corresponds to hadrons which fake the electron identification signature.

Finally, the following HIP selection is made: $f_{HT} > 0.65$, $w_1 < 0.20$ and $w_2 < 0.15$. For signal particles, these cuts reject only candidates in the tails of the distributions, and varying them has a minor impact on the efficiency; this feature is common to all considered charge and mass points. The cut values were chosen to yield a very small ($\ll 1$ event) expected background (see Section 4.2) while retaining a high ($\sim 96\%$) efficiency for the signal. No candidates in data or in simulated Standard Model events pass this selection.

4.2. Data-driven background estimation

A data-driven method is used to quantify the expected background yield after the HIP selection. Potential backgrounds consist mainly of electrons. For Standard Model candidates, the ID and calorimeter observables are correlated in a way that further suppresses the backgrounds (see Fig. 4). The background estimation assumes that f_{HI} is uncorrelated with w_1 and w_2 and is thus conservative.

The yield of particle candidates passing the loose selection $N_{loose} = 137503$ can be divided into the following: N_0 , N_1 , $N_{f_{HT}}$, and N_w , which represent the number of candidates which satisfy both of the selections, neither of the selections, only the f_{HT} selection, and only the w_1 and w_2 selections taken together, respectively. Even in the presence of a signal, N_1 , $N_{f_{HT}}$ and N_w would be dominantly composed of background events. The probability of a background candidate passing the TRT requirement is

Fig. 3. Distributions of w_1 and w_2 following the loose selection. Data (dots) are compared with area-normalised signal (|q| = 10e and m = 500 GeV, dashed lines) and Standard Model background (shaded area) simulations. Negative values are caused by pedestal fluctuations. Dotted lines show the selection cut values.

then $P_{f_{HT}} = \frac{N_{f_{HT}}}{(N_1 + N_{f_{HT}})}$ and the probability to pass the calorimeter requirements is $P_w = \frac{N_w}{(N_1 + N_{W})}$, leading to an expectation of the number of background candidates entering the signal region: $N_{bg} = N_{loose}P_{f_{HT}}P_w$. The data sample yields $N_0 = 0$, $N_1 = 137342$, $N_{f_{HT}} = 18$ and $N_w = 143$, leading to $P_{f_{HT}} = (1.3 \pm 0.3) \cdot 10^{-4}$ and $P_w = (1.0 \pm 0.1) \cdot 10^{-3}$. The expected number of background candidates surviving the selection, and thereby the expected number of background events, is thus $N_{bg} = 0.019 \pm 0.005$. The quoted uncertainty is statistical.

5. Signal selection efficiency

5.1. Efficiencies in acceptance kinematic regions

The probability to retain a signal event can be factorised in two parts: acceptance (probability for a HIP in a region where the detector is sensitive) and efficiency (probability for this HIP to pass the selection cuts). The acceptance is defined here as the probability that at least one signal particle will be in the range $|\eta| < 1.35$ and stop in the second or third layer of the EM calorimeter. If this condition is satisfied, the simulation predicts a high probability to trigger on, reconstruct and select the event. This corresponds to the dark region in Fig. 5, which shows the predicted selection efficiency mapped as a function of the initial HIP pseudorapidity and kinetic energy, in the case of |q| = 10e and m = 500 GeV. Such acceptance kinematic regions can be parametrised with three values defining three corners of a parallelogram. These parameters are summarised in Table 1. For HIPs produced inside such regions, the

Fig. 4. Contours of w_2 versus f_{HT} distributions following loose selection, showing the density of entries on a log scale. Data and signal Monte Carlo (|q| = 10e and m = 500 GeV) are shown, and no candidates in the data appear near the signal region. The correlation factor between w_2 and f_{HT} in the data is positive (coefficient 0.15); the same trend is also true for the correlation between w_1 and f_{HT} (coefficient 0.18).

Table 1

Kinetic energies (in GeV) defining the acceptance kinematic ranges for HIPs with the masses and electric charges considered in this search. The three columns correspond to the lower left, lower right, and upper left corners of parallelograms in the $(|\eta|, E_{kin})$ plane.

q	<i>m</i> [GeV]	$\frac{E_{kin}^{min}}{(\eta = 0)}$	$\frac{E_{kin}^{min}}{(\eta = 1.35)}$	$\frac{E_{kin}^{max}}{(\eta = 0)}$
6e	200	40	50	50
6e	500	50	70	70
6e	1000	60	130	80
10e	200	50	80	90
10e	500	80	110	130
10e	1000	110	150	180
17e	200	100	150	190
17e	500	150	190	260
17e	1000	190	240	350

Table 2

Expected fractions of HIP candidates passing the final selection, assuming they are isolated and produced inside the acceptance regions defined by the values in Table 1. Uncertainties due to MC statistics are quoted; other systematic uncertainties are discussed in Section 6.

m [GeV]	q = 6e	q = 10e	q = 17e
200	0.822 ± 0.026	0.820 ± 0.015	0.484 ± 0.012
500	0.868 ± 0.021	0.856 ± 0.014	0.617 ± 0.011
1000	0.558 ± 0.019	0.858 ± 0.012	0.700 ± 0.012

candidate selection efficiency is flat within 10% and takes values between 0.5 and 0.9 depending on the charge and mass (see Table 2). For |q| = 17e, the main source of inefficiency is the requirement on the number of TRT HT hits, which contributes up to 20% signal loss. This is largely due to the presence of track segments from delta electrons, which have a non-negligible probability to be chosen by the standard electron track matching algorithm. For low charges, inefficiencies are dominated by the cluster E_T cut, typically accounting for $\sim 6\%$ loss. Other contributions, like trigger, electron reconstruction, and electron identification, can each cause 1–6% additional inefficiency.

5.2. Efficiencies for Drell-Yan kinematics

The estimated fractions of signal events where at least one candidate passes the final selection, assuming they are produced

Fig. 5. Probability to pass all selection criteria as a function of pseudorapidity and kinetic energy at origin, for a HIP with charge 10*e* and mass 500 GeV. The dark region corresponds to the kinetic range where the particle stops in or near the second layer of the EM calorimeter barrel and is parametrised with three energy values (dashed parallelogram, see Table 1).

Table 3

Expected fractions of signal events passing the final selection, assuming Drell–Yan kinematics. Uncertainties due to MC statistics are quoted; other systematic uncertainties are discussed in Section 6.

m [GeV]	q = 6e	q = 10e	q = 17e
200	0.102 ± 0.002	0.175 ± 0.003	0.112 ± 0.002
500	0.150 ± 0.003	0.236 ± 0.003	0.193 ± 0.003
1000	0.133 ± 0.002	0.299 ± 0.004	0.237 ± 0.004

with Drell–Yan kinematics, are shown in Table 3 for the values of charge and mass considered in this search. The dominant source of loss (70–85% loss) is from the kinematic acceptance, i.e., the production of HIPs with $|\eta| > 1.35$, as well as their stopping before they reach the second layer of the EM calorimeter, or after they reach the first layer of the hadronic calorimeter. The relative contributions from these various types of acceptance loss depend on mass and charge, as well as the kinematics of the assumed production model. The Drell–Yan production model implies that the fraction of HIPs produced in the acceptance region of pseudorapid-ity $|\eta| < 1.35$ is larger with increasing mass (see Fig. 1). Also, with the assumed energy spectra (bottom plot in Fig. 1), the acceptance is highest for intermediate charges (|q| = 10e), since HIPs with low charges tend to punch through the EM calorimeter and HIPs with high charges tend to stop before reaching it.

6. Systematic uncertainties

The major sources of systematic uncertainties affecting the efficiency estimation are summarised below. These mainly concern possible imperfections in the description of HIPs in the detector by the simulation.

• The recombination of electrons and ions in the sampling region of the EM calorimeter affects the measured current and thus the total visible energy. Recombination effects become larger with increasing dE/dx. In the ATLAS simulation, this is parametrised by Birks' law [25]. To estimate the uncertainty associated with the approximate modeling of recombination effects, predictions from the ATLAS implementation of Birks' correction [26] are compared to existing data of heavy ions punching through a layer of liquid argon [27–29]. In the range $2 \cdot 10^2 \text{ MeV/cm} < dE/dx < 2 \cdot 10^3 \text{ MeV/cm}$, which corresponds to typical HIP energy losses in the EM calorimeter for the

Table 4

Relative systematic uncertainties in efficiency, combining in quadrature all the effects described in the text.

m [GeV]	q = 6e	q = 10e	q = 17e
200	25%	11%	9%
500	17%	10%	9%
1000	28%	10%	9%

charges and masses under consideration, the uncertainty in the simulated visible energy fraction is $\pm 15\%$. This introduces between 4% and 23% uncertainty in the signal selection efficiency. The impact is largest for charge 6*e*, for which a lower visible energy would be more likely to push the candidate below the 15 GeV cluster E_T threshold.

- The fraction of HIPs which stop in the detector prior to reaching the EM calorimeter is affected by the assumed amount of material in the GEANT-4 simulation. Varying the material density within the assumed uncertainty range ($\pm \sim 10\%$ [30]), independently in the ID and EM calorimeter volumes, leads to a 6% uncertainty in signal acceptance.
- The modeling of inactive or inefficient EM calorimeter regions in the simulation results in a 2% uncertainty in the signal efficiency.
- Cross-talk effects between EM calorimeter cells affect the w₁ and w₂ variables and this may not be accurately described by the simulation for large energy depositions per cell. The resulting uncertainty in signal efficiency is 2%.
- Secondary ionisation by delta electrons affects the track reconstruction and the calorimeter energy output. The amount of delta electrons in ATLAS detectors as described in GEANT-4 depends on the cutoff parameter (the radius beyond which delta electrons are considered separate from the mother particle). Varying this parameter results in a 3% uncertainty in the signal efficiency.
- For clusters delayed by more than 10 ns with respect to the expected arrival time of a highly relativistic particle, which corresponds to $\beta < 0.37$, there is a significant chance that the event is triggered in the next bunch crossing by the first level EM trigger. In most of the mass and charge range considered in this search, more than 99% of the particles which are energetic enough to reach the EM calorimeter and pass the event selection are in the high-efficiency range $\beta > 0.4$. The only exception is |q| = 6e and m = 1000 GeV, for which the β distribution after selection peaks between 0.32 and 0.47. The trigger efficiency loss is corrected for, resulting in an additional 25% uncertainty for this particular case.
- Uncertainties in the choice of parametrisation for the parton density functions (pdfs) of the proton have an impact on the event kinematics. To test this effect, events were generated (see Section 3) with 7 different pdfs from various sources [19, 31–34]. Assuming that acceptance variations due to the choice of pdf are Gaussian, the resulting relative uncertainty in the acceptance is 3%.
- The relative uncertainty in efficiency due to MC statistics is of the order of 2%.

Other effects, like event pile-up and electron pick-up by positively charged particles, have been investigated and found to be negligible. Efficiency systematics are dominated by Birks' correction. The relative uncertainties in the signal selection efficiencies (Tables 2 and 3), obtained by adding all effects in quadrature, are shown in Table 4.

The systematic uncertainty in the absolute integrated luminosity is 11% [35].

Table 5

Inclusive HIP cross section upper limits (in pb) at 95% confidence level for isolated long-lived massive particles with high electric charges produced in regions of pseudorapidity and kinetic energy as defined in Table 1. Efficiencies in Table 2 and uncertainties in Table 4 were used in the cross section limit calculation.

m [GeV]	q = 6e	q = 10e	q = 17e
200	1.4	1.2	2.1
500	1.2	1.2	1.6
1000	2.2	1.2	1.5

Table 6

Pair production cross section upper limits (in pb) at 95% confidence level for longlived massive particles with high electric charges, assuming a Drell–Yan mechanism. Efficiencies in Table 3 and uncertainties in Table 4 were used in the cross section limit calculation.

m [GeV]	q = 6e	q = 10e	q = 17e
200	11.5	5.9	9.1
500	7.2	4.3	5.3
1000	9.3	3.4	4.3

7. Upper limit on the cross section

A very low (\ll 1 event) background yield is expected and no events are observed to pass the selection. Knowing the integrated luminosity (3.1 pb⁻¹) and the selection efficiency for various model assumptions (Tables 2 and 3), cross section limits are obtained. This is done using a Bayesian statistical approach with a uniform prior for the signal and the standard assumption that the uncertainties in integrated luminosity (11%) and efficiency (Table 4) are Gaussian and independent. The limits are presented in Table 5 (for a particle produced in the acceptance kinematic region defined by Table 1) and in Table 6 (assuming Drell–Yan kinematics).

These limits can be approximately interpolated to intermediate values of mass and charge. Also, the limits quoted in Table 5 can be used to extract cross section limits for any given model of kinematics by correcting for the acceptance (fraction of events with at least one generated HIP in the ranges defined by Table 1): such a procedure yields conservative limits thanks to the fact that candidates beyond the sharp edges of the acceptance regions defined in Table 1 can also be accepted.

8. Summary

A search has been made for HIPs with lifetimes in excess of 100 ns produced in the ATLAS detector at the LHC using 3.1 pb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ TeV. The signature of high ionisation in an inner detector track matched to a narrow calorimeter cluster has been used. Upper cross section limits between 1.2 pb and 11.5 pb have been extracted for HIPs with electric charges between 6*e* and 17*e* and masses between 200 GeV and 1000 GeV, under two kinematics assumptions: a generic isolated HIP in a fiducial range of pseudorapidity and kinetic energy, or a Drell–Yan fermion pair production mechanism. HIP mass ranges above 800 GeV [11] are probed for the first time at a particle collider. These limits are the first constraints obtained on long-lived highly charged particle production at LHC collision energies.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

- [1] A. Kusenko, M.E. Shaposhnikov, Phys. Lett. B 418 (1998) 46, arXiv:hep-ph/ 9709492.
- [2] B. Koch, M. Bleicher, H. Stoecker, J. Phys. G 34 (2007) 535, arXiv:hep-ph/ 0702187v2.
- [3] M. Fairbairn, et al., Phys. Rep. 438 (2007) 1, arXiv:hep-ph/0611040.
- [4] J.S. Schwinger, Phys. Rev. 144 (1966) 1087.
- [5] SLIM Collaboration, Eur. Phys. J. C 57 (2008) 525, arXiv:0805.1797 [hep-ex].
- [6] K. Kinoshita, et al., Phys. Rev. D 46 (1992) 881.
- [7] J.L. Pinfold, et al., Phys. Lett. B 316 (1993) 407.
- [8] OPAL Collaboration, Phys. Lett. B 663 (2008) 37, arXiv:0707.0404v1 [hep-ex].
- [9] P.B. Price, G.-X. Ren, K. Kinoshita, Phys. Rev. Lett. 59 (1987) 2523.
- [10] P.B. Price, G.-R. Jing, K. Kinoshita, Phys. Rev. Lett. 65 (1990) 149.
- [11] M. Bertani, et al., Europhys. Lett. 12 (1990) 613.
- [12] C.D.F. Collaboration, Phys. Rev. Lett. 96 (2006) 201801, arXiv:hep-ex/ 0509015v1.
- [13] Moedal Collaboration, J. Pinfold, et al., Technical Design Report of the Moedal Experiment, CERN-LHCC-2009-006; MOEDAL-TDR-001, http://cdsweb.cern.ch/ record/1181486, 2009.
- [14] ATLAS Collaboration, G. Aad, et al., JINST 3 (2008) S08003.
- [15] G. Abat, et al., JINST 3 (2008) P06007.
- [16] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 723, arXiv:0912.2642v4 [physics. ins-det].
- [17] ATLAS Collaboration, [INST 3 (2008) S08003.
- [18] T. Sjostrand, S. Mrenna, P. Skands, JHEP 0605 (2006) 026, arXiv:hep-ph/ 0603175.
- [19] A. Sherstnev, R.S. Thorne, Eur. Phys. J. C 55 (2008) 553, arXiv:0711.2473 [hepph].
- [20] G.R. Kalbfleisch, W. Luo, K.A. Milton, E.H. Smith, M.G. Strauss, Phys. Rev. D 69 (2004) 052002, arXiv:hep-ex/0306045.
- [21] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568v1 [physics. ins-det].
- [22] GEANT4 Collaboration, S. Agostinelli, et al., Nucl. Instrum. Methods A 506 (2003) 250.
- [23] ATLAS Collaboration, Performance of the electron and photon trigger in p–p collisions at $\sqrt{s} = 900$ GeV, ATLAS-CONF-2010-022, http://cdsweb.cern.ch/record/1277654, 2010.
- [24] ATLAS Collaboration, JHEP 1012 (2010) 1, arXiv:1010.2130v1 [hep-ex].
- [25] J. Birks, Phys. Rev. 86 (1952) 569.
- [26] ATLAS Collaboration, Response and shower topology of 2 to 180 GeV pions measured with the ATLAS barrel calorimeter at the CERN test-beam and comparison to Monte Carlo simulations, ATL-CAL-PUB-2010-001, http://cdsweb. cern.ch/record/1263861, 2010.
- [27] T. Doke, et al., Nucl. Instrum. Methods A 235 (1985) 136.
- [28] E. Shibamura, et al., Nucl. Instrum. Methods A 260 (1987) 437.
- [29] H.J. Crawford, et al., Nucl. Instrum. Methods A 256 (1987) 47.
- [30] ATLAS Collaboration, Phys. Lett. B 688 (2010) 21, arXiv:1003.3124v2 [hep-ex].
- [31] M. Gluck, E. Reya, A. Vogt, Z. Phys. C 67 (1995) 433.
- [32] CTEQ Collaboration, H.L. Lai, et al., Eur. Phys. J. C 12 (2000) 375, arXiv:hepph/9903282.
- [33] J. Pumplin, et al., JHEP 0207 (2002) 012, arXiv:hep-ph/0201195.
- [34] A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63 (2009) 189, arXiv:0901.0002 [hep-ph].
- [35] ATLAS Collaboration, Luminosity determination in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector at the LHC, arXiv:1101.2185v1 [hep-ex], Eur. Phys. J. C (2011), in press.

ATLAS Collaboration

G. Aad ⁴⁸, B. Abbott ¹¹¹, J. Abdallah ¹¹, A.A. Abdelalim ⁴⁹, A. Abdesselam ¹¹⁸, O. Abdinov ¹⁰, B. Abi ¹¹², M. Abolins ⁸⁸, H. Abramowicz ¹⁵³, H. Abreu ¹¹⁵, E. Acerbi ^{89a,89b}, B.S. Acharya ^{164a,164b}, D.L. Adams ²⁴, T.N. Addy ⁵⁶, J. Adelman ¹⁷⁵, M. Aderholz ⁹⁹, S. Adomeit ⁹⁸, P. Adragna ⁷⁵, T. Adye ¹²⁹, S. Aefsky ²², J.A. Aguilar-Saavedra ^{124b,a}, M. Aharrouche ⁸¹, S.P. Ahlen ²¹, F. Ahles ⁴⁸, A. Ahmad ¹⁴⁸, M. Ahsan ⁴⁰,

359

G. Aielli ^{133a,133b}, T. Akdogan ^{18a}, T.P.A. Åkesson ⁷⁹, G. Akimoto ¹⁵⁵, A.V. Akimov ⁹⁴, M.S. Alam ¹, M.A. Alam ⁷⁶, S. Albrand ⁵⁵, M. Aleksa²⁹, I.N. Aleksandrov⁶⁵, M. Aleppa ^{89a,89b}, F. Alessandria ^{89a}, C. Alexa ^{25a}, G. Alexander ¹⁵³, G. Alexandre ⁴⁹, T. Alexopoulos ⁹, M. Alhroob ²⁰, M. Aliev ¹⁵, G. Alimonti ^{89a}, J. Alison ¹²⁰, M. Aliyev ¹⁰, P.P. Allport ⁷³, S.E. Allwood-Spiers ⁵³, J. Almond ⁸², A. Aloisio ^{102a,102b}, R. Alon ¹⁷¹, A. Alonso ⁷⁹, M.G. Alviggi ^{102a,102b}, K. Amako ⁶⁶, P. Amaral ²⁹, C. Amelung ²², V.V. Ammosov ¹²⁸, A. Amorim ^{124a,b}, G. Amorós ¹⁶⁷, N. Amram ¹⁵³, C. Anastopoulos ¹³⁹, T. Andeen ³⁴, C.F. Anders ²⁰, K.J. Anderson ³⁰, A. Andreazza ^{89a,89b}, V. Andrei ^{58a}, M.-L. Andrieux ⁵⁵, X.S. Anduaga ⁷⁰, A. Angerami ³⁴, F. Anghinolfi ²⁹, N. Anjos ^{124a}, A. Annovi ⁴⁷, A. Antonaki ⁸, M. Antonelli ⁴⁷, S. Antonelli ^{19a,19b}, J. Antos ^{144b}, F. Anulli ^{132a}, S. Aoun ⁸³, L. Aperio Bella ⁴, R. Apolle ¹¹⁸, G. Arabidze ⁸⁸, I. Aracena ¹⁴³, Y. Arai ⁶⁶, A.T.H. Arce ⁴⁴, J.P. Archambault ²⁸, S. Arfaoui ^{29,c}, J.-F. Arguin ¹⁴, E. Arik ^{18a,*}, M. Arik ^{18a}, A.J. Armbruster ⁸⁷, S.R. Armstrong ²⁴, O. Arnaez ⁸¹, C. Arnault ¹¹⁵, A. Artamonov ⁹⁵, G. Artoni ^{132a,132b}, D. Arutinov ²⁰, S. Asai ¹⁵⁵, R. Asfandiyarov ¹⁷², S. Ask²⁷, B. Åsman ^{146a,146b}, L. Asquith ⁵, K. Assamagan ²⁴, A. Astbury ¹⁶⁹, A. Astvatsatourov ⁵², G. Atoian ¹⁷⁵, B. Aubert ⁴, B. Auerbach ¹⁷⁵, E. Auge ¹¹⁵, K. Augsten ¹²⁷, M. Aurousseau ⁴, N. Austin ⁷³, R. Avramidou ⁹, D. Axen ¹⁶⁸, C. Ay ⁵⁴, G. Azuelos ^{93,d}, Y. Azuma ¹⁵⁵, M.A. Baak ²⁹, G. Baccaglioni ^{89a}, C. Bacici ^{134a,134b}, A.M. Bach ¹⁴, H. Bachacou ¹³⁶, K. Bachas ²⁹, G. Bachy ²⁹, M. Backs ⁴⁹, M. Backhaus ²⁰, E. Badescu ^{25a}, P. Bagnaia ^{132a,132b}, S. Bahinipati ², Y. Bai ^{32a}, D.C. Bailey ¹⁵⁸, T. Bain ¹⁵⁸, J.T. Baines ¹²⁹, O.K. Baker ¹⁷⁵, M.D. Baker ²⁴, S. Baker ⁷⁷, F. Baltasar Dos Santos Pedrosa ²⁹, E. Banas ³⁸, P. Barenjee ⁹³, Sw. Banerjee ¹⁶⁹, D. Banfi ²⁹, A. Bangert ¹³⁷, V. Bansal ¹⁶⁹, H.S. Bansil M.A. Alam⁷⁶, S. Albrand⁵⁵, M. Aleksa²⁹, I.N. Aleksandrov⁶⁵, M. Aleppo^{89a,89b}, F. Alessandria^{89a}, M.D. Baker ²⁴, S. Baker ⁷⁷, F. Baltasar Dos Santos Pedrosa ²⁵, E. Banas ³⁶, P. Banerjee ³⁵, Sw. Banerjee ¹⁰⁵, D. Banfi ²⁹, A. Bangert ¹³⁷, V. Bansal ¹⁶⁹, H.S. Bansil ¹⁷, L. Barak ¹⁷¹, S.P. Baranov ⁹⁴, A. Barashkou ⁶⁵, A. Barbaro Galtieri ¹⁴, T. Barber ²⁷, E.L. Barberio ⁸⁶, D. Barberis ^{50a,50b}, M. Barbero ²⁰, D.Y. Bardin ⁶⁵, T. Barillari ⁹⁹, M. Barisonzi ¹⁷⁴, T. Barklow ¹⁴³, N. Barlow ²⁷, B.M. Barnett ¹²⁹, R.M. Barnett ¹⁴, A. Baroncelli ^{134a}, A.J. Barr ¹¹⁸, F. Barreiro ⁸⁰, J. Barreiro Guimarães da Costa ⁵⁷, P. Barrillon ¹¹⁵, R. Bartoldus ¹⁴³, A.E. Barton ⁷¹, D. Bartsch ²⁰, R.L. Bates ⁵³, L. Batkova ^{144a}, J.R. Batley ²⁷, A. Battaglia ¹⁶, M. Battistin ²⁹, G. Battistoni ^{89a}, F. Bauer ¹³⁶, H.S. Bawa ¹⁴³, B. Beare ¹⁵⁸, T. Beau ⁷⁸, P.H. Beauchemin ¹¹⁸, R. Beccherle^{50a}, P. Bechtle⁴¹, H.P. Beck¹⁶, M. Beckingham⁴⁸, K.H. Becks¹⁷⁴, A.J. Beddall^{18c}, A. Beddall ^{18c}, V.A. Bednyakov ⁶⁵, C. Bee ⁸³, M. Begel ²⁴, S. Behar Harpaz ¹⁵², P.K. Behera ⁶³, M. Beimforde ⁹⁹, C. Belanger-Champagne ¹⁶⁶, P.J. Bell ⁴⁹, W.H. Bell ⁴⁹, G. Bella ¹⁵³, L. Bellagamba ^{19a}, F. Bellina²⁹, G. Bellomo^{89a,89b}, M. Bellomo^{119a}, A. Belloni⁵⁷, K. Belotskiy⁹⁶, O. Beltramello²⁹, S. Ben Ami¹⁵², O. Benary¹⁵³, D. Benchekroun^{135a}, C. Benchouk⁸³, M. Bendel⁸¹, B.H. Benedict¹⁶³, N. Benekos¹⁶⁵, Y. Benhammou¹⁵³, D.P. Benjamin⁴⁴, M. Benoit¹¹⁵, J.R. Bensinger²², K. Benslama¹³⁰, N. Benekos ¹⁶⁵, Y. Benhammou ¹⁵³, D.P. Benjamin ⁴⁴, M. Benoit ¹¹⁵, J.R. Bensinger ²², K. Benslama ¹³⁰, S. Bentvelsen ¹⁰⁵, D. Berge ²⁹, E. Bergeaas Kuutmann ⁴¹, N. Berger ⁴, F. Berghaus ¹⁶⁹, E. Berglund ⁴⁹, J. Beringer ¹⁴, K. Bernardet ⁸³, P. Bernat ¹¹⁵, R. Bernhard ⁴⁸, C. Bernius ²⁴, T. Berry ⁷⁶, A. Bertin ^{19a,19b}, F. Bertinelli ²⁹, F. Bertolucci ^{122a,122b}, M.I. Besana ^{89a,89b}, N. Besson ¹³⁶, S. Bethke ⁹⁹, W. Bhimji ⁴⁵, R.M. Bianchi ²⁹, M. Bianco ^{72a,72b}, O. Biebel ⁹⁸, J. Biesiada ¹⁴, M. Biglietti ^{132a,132b}, H. Bilokon ⁴⁷, M. Bindi ^{19a,19b}, A. Bingul ^{18c}, C. Bini ^{132a,132b}, C. Biscarat ¹⁷⁷, U. Bitenc ⁴⁸, K.M. Black ²¹, R.E. Blair ⁵, J.-B. Blanchard ¹¹⁵, G. Blanchot ²⁹, C. Blocker ²², J. Blocki ³⁸, A. Blondel ⁴⁹, W. Blum ⁸¹, U. Blumenschein ⁵⁴, G.J. Bobbink ¹⁰⁵, V.B. Bobrovnikov ¹⁰⁷, A. Bocci ⁴⁴, R. Bock ²⁹, C.R. Boddy ¹¹⁸, M. Boehler ⁴¹, J. Boek ¹⁷⁴, N. Boelaert ³⁵, S. Böser ⁷⁷, J.A. Bogaerts ²⁹, A. Bogdanchikov ¹⁰⁷, A. Bogouch ^{90,*}, C. Bohm ^{146a}, V. Boisvert ⁷⁶, T. Bold ^{163,e}, V. Boldea ^{25a}, M. Bona ⁷⁵, M. Boonekamp ¹³⁶, G. Boorman ⁷⁶, C.N. Booth ¹³⁹, P. Booth ¹³⁹, S. Bordoni ⁷⁸, C. Borer ¹⁶, A. Borisov ¹²⁸, G. Borissov ⁷¹, I. Borjanovic ^{12a}, S. Borroni ^{132a,132b}, K. Bos ¹⁰⁵, D. Boscherini ^{19a}, M. Bosman ¹¹. H. Boterenbrood ¹⁰⁵, D. Botterill ¹²⁹ I. Bouchami ⁹³ K. Bos¹⁰⁵, D. Boscherini ^{19a}, M. Bosman¹¹, H. Boterenbrood ¹⁰⁵, D. Botterill ¹²⁹, J. Bouchami ⁹³, J. Boudreau ¹²³, E.V. Bouhova-Thacker⁷¹, C. Boulahouache ¹²³, C. Bourdarios ¹¹⁵, N. Bousson⁸³, A. Boveia³⁰, J. Boyd²⁹, I.R. Boyko⁶⁵, N.I. Bozhko¹²⁸, I. Bozovic-Jelisavcic^{12b}, J. Bracinik¹⁷, A. Braem²⁹, A. Boveia ⁵⁰, J. Boyd ²⁹, I.R. Boyko ⁶³, N.I. Bozhko ¹²⁸, I. Bozovic-Jelisavcic ^{12D}, J. Bracinik ¹⁷, A. Braem ²⁹, E. Brambilla ^{72a,72b}, P. Branchini ^{134a}, G.W. Brandenburg ⁵⁷, A. Brandt ⁷, G. Brandt ⁴¹, O. Brandt ⁵⁴, U. Bratzler ¹⁵⁶, B. Brau ⁸⁴, J.E. Brau ¹¹⁴, H.M. Braun ¹⁷⁴, B. Brelier ¹⁵⁸, J. Bremer ²⁹, R. Brenner ¹⁶⁶, S. Bressler ¹⁵², D. Breton ¹¹⁵, N.D. Brett ¹¹⁸, P.G. Bright-Thomas ¹⁷, D. Britton ⁵³, F.M. Brochu ²⁷, I. Brock ²⁰, R. Brock ⁸⁸, T.J. Brodbeck ⁷¹, E. Brodet ¹⁵³, F. Broggi ^{89a}, C. Bromberg ⁸⁸, G. Brooijmans ³⁴, W.K. Brooks ^{31b}, G. Brown ⁸², E. Brubaker ³⁰, P.A. Bruckman de Renstrom ³⁸, D. Bruncko ^{144b}, R. Bruneliere ⁴⁸, S. Brunet ⁶¹, A. Bruni ^{19a}, G. Bruni ^{19a}, M. Bruschi ^{19a}, T. Buanes ¹³, F. Bucci ⁴⁹, J. Buchanan ¹¹⁸, N.J. Buchanan ², P. Buchholz ¹⁴¹, R.M. Buckingham ¹¹⁸, A.G. Buckley ⁴⁵, S.I. Buda ^{25a}, I.A. Budagov ⁶⁵, B. Budick ¹⁰⁸, V. Büscher ⁸¹, L. Bugge ¹¹⁷, D. Buira-Clark ¹¹⁸, E.J. Buis ¹⁰⁵, O. Bulekov ⁹⁶, M. Bunse ⁴², T. Buran ¹¹⁷, H. Burckhart ²⁹, S. Burdin ⁷³, T. Burges ¹³, S. Burke ¹²⁹, F. Busato ³³, P. Bussev ⁵³, C. B. Buszello ¹⁶⁶ H. Burckhart²⁹, S. Burdin⁷³, T. Burgess¹³, S. Burke¹²⁹, E. Busato³³, P. Bussey⁵³, C.P. Buszello¹⁶⁶,

F. Butin²⁹, B. Butler¹⁴³, J.M. Butler²¹, C.M. Buttar⁵³, J.M. Butterworth⁷⁷, W. Buttinger²⁷, T. Byatt⁷⁷, S. Cabrera Urbán¹⁶⁷, M. Caccia^{89a,89b}, D. Caforio^{19a,19b}, O. Cakir^{3a}, P. Calafiura¹⁴, G. Calderini⁷⁸, P. Calfayān⁹⁸, R. Calkins¹⁰⁶, L.P. Caloba^{23a}, R. Caloi^{132a,132b}, D. Calvet³³, S. Calvet³³, R. Camacho Toro³³, A. Camard⁷⁸, P. Camarri^{133a,133b}, M. Cambiaghi^{119a,119b}, D. Cameron¹¹⁷, J. Cammin²⁰, S. Campana²⁹, M. Campanelli⁷⁷, V. Canale^{102a,102b}, F. Canelli³⁰, A. Canepa^{159a}, J. Cantero⁸⁰, L. Capasso^{102a,102b}, M.D.M. Capeans Garrido²⁹, I. Caprini^{25a}, M. Caprini^{25a}, D. Capriotti⁹⁹, M. Capua^{36a,36b}, R. Caputo¹⁴⁸, C. Caramarcu^{25a}, R. Cardarelli^{133a}, T. Carli²⁹, G. Carlino^{102a}, L. Carminati^{89a,89b}, B. Caron^{159a}, S. Cartor⁷⁵ S. Caron⁴⁸, C. Carpentieri⁴⁸, G.D. Carrillo Montoya¹⁷², S. Carron Montero¹⁵⁸, A.A. Carter⁷⁵, J.R. Carter²⁷, J. Carvalho^{124a,f}, D. Casadei¹⁰⁸, M.P. Casado¹¹, M. Cascella^{122a,122b}, C. Caso^{50a,50b,*}, A.M. Castaneda Hernandez¹⁷², E. Castaneda-Miranda¹⁷², V. Castillo Gimenez¹⁶⁷, N.F. Castro^{124b,a}, G. Cataldi^{72a}, F. Cataneo²⁹, A. Catinaccio²⁹, J.R. Catmore⁷¹, A. Cattai²⁹, G. Cattani^{133a,133b}, S. Caughron⁸⁸, D. Cauz^{164a,164c}, A. Cavallari ^{132a,132b}, P. Cavalleri ⁷⁸, D. Cavalli ^{89a}, M. Cavalli-Sforza¹¹, V. Cavasinni ^{122a,122b}, A. Cazzato ^{72a,72b}, F. Ceradini ^{134a,134b}, A.S. Cerqueira ^{23a}, A. Cerri ²⁹, L. Cerrito ⁷⁵, F. Cerutti ⁴⁷, S.A. Cetin ^{18b}, F. Cevenini ^{102a,102b}, A. Chafaq ^{135a}, D. Chakraborty ¹⁰⁶, K. Chan², B. Chapleau ⁸⁵, J.D. Chapman ²⁷, J.W. Chapman ⁸⁷, E. Chareyre ⁷⁸, D.G. Charlton ¹⁷, V. Chavda ⁸², S. Cheatham ⁷¹, S. Chekanov ⁵, S.V. Chekulaev ^{159a}, G.A. Chelkov ⁶⁵, H. Chen²⁴, L. Chen², S. Chen^{32c}, T. Chen^{32d}, A. Chenkulaev ⁶⁵, M.F. Chenene ⁶⁵, D. Chapman ⁵¹, D. Chapman ⁵¹, S. Chenene ^{32d}, A. Chenkulaev ^{159a}, Chenene ⁶⁵, M.F. Chenene ⁶⁵, D. Chapman ⁵¹, S. Chenene ^{32d}, A. Chenkulaev ^{159a}, Chenene ⁶⁵, M.F. Chenene ⁶⁵, D. Chapman ⁵¹, S. Chenene ^{32d}, A. Chenkulaev ^{159a}, Chenene ⁶⁵, M.F. Chenene ⁶⁵, D. Chapman ⁵¹, S. Chenene ^{32d}, A. Chenkulaev ^{159a}, Chenene ⁶⁵, M.F. Chenene ⁶⁵, D. Chapman ⁵¹, S. Chenene ^{32d}, A. Chenkulaev ^{159a}, Chenene ⁶⁵, M.F. Chenene ⁶⁵, D. Chapman ⁵¹, S. Chenene ^{32d}, A. Chenkulaev ^{159a}, Chenene ⁶⁵, M.F. Chenene ⁶⁵, D. Chapman ⁵¹, S. Chenene ^{32d}, A. Chenkulaev ^{159a}, Chenene ⁶⁵, M.F. Chenene ⁶⁵, D. Chapman ⁵¹, S. Chenene ^{32d}, A. Chenkulaev ^{159a}, Chenene ⁶⁵, M.F. Chenene ⁶⁵, D. Chapman ⁵¹, S. Chenene ^{32d}, A. Chenkulaev ^{159a}, Chenene ⁶⁵, M.F. Chenene ⁶⁵, D. Chapman ⁵¹, S. Chenkulaev ^{1135d}, ¹¹⁵, T. Chen^{32c}, X. Chen¹⁷², S. Cheng^{32a}, A. Cheplakov⁶⁵, V.F. Chepurnov⁶⁵, R. Cherkaoui El Moursli^{135d}, V. Chernyatin²⁴, E. Cheu⁶, S.L. Cheung¹⁵⁸, L. Chevalier¹³⁶, F. Chevallier¹³⁶, G. Chiefari^{102a,102b}, V. Chernyatin²⁴, E. Cheu⁶, S.L. Cheung¹⁵⁸, L. Chevalier¹³⁶, F. Chevallier¹³⁶, G. Chiefari ^{102a, 102D}, L. Chikovani⁵¹, J.T. Childers^{58a}, A. Chilingarov⁷¹, G. Chiodini^{72a}, M.V. Chizhov⁶⁵, G. Choudalakis³⁰, S. Chouridou¹³⁷, I.A. Christidi⁷⁷, A. Christov⁴⁸, D. Chromek-Burckhart²⁹, M.L. Chu¹⁵¹, J. Chudoba¹²⁵, G. Ciapetti^{132a, 132b}, A.K. Ciftci^{3a}, R. Ciftci^{3a}, D. Cinca³³, V. Cindro⁷⁴, M.D. Ciobotaru¹⁶³, C. Ciocca^{19a, 19b}, A. Ciocio¹⁴, M. Cirilli⁸⁷, M. Ciubancan^{25a}, A. Clark⁴⁹, P.J. Clark⁴⁵, W. Cleland¹²³, J.C. Clemens⁸³, B. Clement⁵⁵, C. Clement^{146a, 146b}, R.W. Clifft¹²⁹, Y. Coadou⁸³, M. Cobal^{164a, 164c}, A. Coccaro^{50a, 50b}, J. Cochran⁶⁴, P. Coe¹¹⁸, J.G. Cogan¹⁴³, J. Coggeshall¹⁶⁵, E. Cogneras¹⁷⁷, C.D. Cojocaru²⁸, J. Colas⁴, A.P. Colijn¹⁰⁵, C. Collard¹¹⁵, N.J. Collins¹⁷, C. Collins-Tooth⁵³, J. Collot⁵⁵, G. Colon⁸⁴, R. Coluccia^{72a, 72b}, G. Comune⁸⁸, P. Conde Muiño^{124a}, E. Coniavitis¹¹⁸, M.C. Conidi¹¹, M. Consonni¹⁰⁴, S. Constantinescu^{25a}, C. Conta^{119a, 119b}, F. Conventi^{102a,g}, J. Cook²⁹, M. Cooke¹⁴, B.D. Cooper⁷⁵, A.M. Cooper-Sarkar¹¹⁸ N.L. Cooper-Smith⁷⁶ K. Copic³⁴ T. Cornelissen^{50a, 50b}, M. Corradi^{19a}, S. Constantinescu ^{23a}, C. Conta ^{113a}, ^{113b}, F. Conventi ^{102a}, g. J. Cook ²³, M. Cooke ¹⁴, B.D. Cooper ⁷³, A.M. Cooper-Sarkar ¹¹⁸, N.J. Cooper-Smith ⁷⁶, K. Copic ³⁴, T. Cornelissen ^{50a,50b}, M. Corradi ^{19a}, F. Corriveau ^{85,h}, A. Cortes-Gonzalez ¹⁶⁵, G. Cortiana ⁹⁹, G. Costa ^{89a}, M.J. Costa ¹⁶⁷, D. Costanzo ¹³⁹, T. Costin ³⁰, D. Côté ²⁹, R. Coura Torres ^{23a}, L. Courneyea ¹⁶⁹, G. Cowan ⁷⁶, C. Cowden ²⁷, B.E. Cox ⁸², K. Cranmer ¹⁰⁸, M. Cristinziani ²⁰, G. Crosetti ^{36a,36b}, R. Crupi ^{72a,72b}, S. Crépé-Renaudin ⁵⁵, C. Cuenca Almenar ¹⁷⁵, T. Cuhadar Donszelmann ¹³⁹, S. Cuneo ^{50a,50b}, M. Curatolo ⁴⁷, C.J. Curtis ¹⁷, P. Cwetanski ⁶¹, H. Czirr ¹⁴¹, Z. Czyczula ¹¹⁷, S. D'Auria ⁵³, M. D'Onofrio ⁷³, A. D'Orazio ^{132a,132b}, P. Cwetanski ⁶¹, H. Czirr ¹⁴¹, Z. Czyczula ¹¹⁷, S. D'Auria ⁵³, M. D'Onofrio ⁷³, A. D'Orazio ^{132a,132b},
A. Da Rocha Gesualdi Mello ^{23a}, P.V.M. Da Silva ^{23a}, C. Da Via ⁸², W. Dabrowski ³⁷, A. Dahlhoff⁴⁸,
T. Dai ⁸⁷, C. Dallapiccola ⁸⁴, S.J. Dallison ^{129,*}, M. Dam ³⁵, M. Dameri ^{50a,50b}, D.S. Damiani ¹³⁷,
H.O. Danielsson ²⁹, R. Dankers ¹⁰⁵, D. Dannheim ⁹⁹, V. Dao ⁴⁹, G. Darbo ^{50a}, G.L. Darlea ^{25b}, C. Daum ¹⁰⁵,
J.P. Dauvergne ²⁹, W. Davey ⁸⁶, T. Davidek ¹²⁶, N. Davidson ⁸⁶, R. Davidson ⁷¹, M. Davies ⁹³, A.R. Davison ⁷⁷,
E. Dawe ¹⁴², I. Dawson ¹³⁹, J.W. Dawson ^{5,*}, R.K. Daya ³⁹, K. De ⁷, R. de Asmundis ^{102a}, S. De Castro ^{19a,19b},
P.E. De Castro Faria Salgado ²⁴, S. De Cecco ⁷⁸, J. de Graat ⁹⁸, N. De Groot ¹⁰⁴, P. de Jong ¹⁰⁵,
C. De La Taille ¹¹⁵, B. De Lotto ^{164a,164c}, L. De Mora ⁷¹, L. De Nooij ¹⁰⁵, M. De Oliveira Branco ²⁹,
D. De Pedis ^{132a}, P. de Saintignon ⁵⁵, A. De Salvo ^{132a}, U. De Sanctis ^{164a,164c}, A. De Santo ¹⁴⁹,
J.B. De Vivie De Regie ¹¹⁵, S. Dean ⁷⁷, G. Dedes ⁹⁹, D.V. Dedovich ⁶⁵, J. Degenhardt ¹²⁰, M. Delrhart ¹¹⁸,
M. Deile ⁹⁸, C. Del Papa ^{164a,164c}, J. Del Peso ⁸⁰, T. Del Prete ^{122a,122b}, A. Dell'Acqua ²⁹, L. Dell'Asta ^{89a,89b},
M. Della Pietra ^{102a,g}, D. della Volpe ^{102a,102b}, M. Delmastro ²⁹, P. Delpierre ⁸³, N. Delruelle ²⁹,
P.A. Delsart ⁵⁵, C. Deluca ¹⁴⁸, S. Demers ¹⁷⁵, M. Demichev ⁶⁵, B. Demirkoz ¹¹, J. Deng ¹⁶³, S.P. Denisov ¹²⁸,
C. Dennis ¹¹⁸, D. Derendarz ³⁸, J.E. Derkaoui ^{135c}, F. Derue ⁷⁸, P. Dervan ⁷³, K. Desch ²⁰, E. Devetak ¹⁴⁸,
P.O. Deviveiros ¹⁵⁸, A. Dewhurst ¹²⁹, B. DeWilde ¹⁴⁸, S. Dhaliwul ¹⁵⁸, R. Dhullipudi ^{24,i},
A. Di Ciaccio ^{133a,133b}, L. Di Ciaccio ⁴, A. Di Girolamo ²⁹, B. Di Girolamo ²⁹, S. Di Luise ^{134,134b},
A. Di Mattia ⁸⁸, B. Di Micco ^{134,134b} R. Djilkibaev¹⁰⁸, T. Djobava⁵¹, M.A.B. do Vale^{23a}, A. Do Valle Wemans^{124a}, T.K.O. Doan⁴, M. Dobbs⁸⁵,

361

R. Dobinson^{29,*}, D. Dobos⁴², E. Dobson²⁹, M. Dobson¹⁶³, J. Dodd³⁴, O.B. Dogan^{18a,*}, C. Doglioni¹¹⁸, T. Doherty⁵³, Y. Doi^{66,*}, J. Dolejsi¹²⁶, I. Dolenc⁷⁴, Z. Dolezal¹²⁶, B.A. Dolgoshein^{96,*}, T. Dohmae¹⁵⁵, M. Donadelli ^{23b}, M. Donega ¹²⁰, J. Donini ⁵⁵, J. Dopke ¹⁷⁴, A. Doria ^{102a}, A. Dos Anjos ¹⁷², M. Dosil ¹¹, A. Dotti ^{122a,122b}, M.T. Dova ⁷⁰, J.D. Dowell ¹⁷, A.D. Doxiadis ¹⁰⁵, A.T. Doyle ⁵³, Z. Drasal ¹²⁶, J. Drees ¹⁷⁴, N. Dressnandt ¹²⁰, H. Drevermann ²⁹, C. Driouichi ³⁵, M. Dris ⁹, J.G. Drohan ⁷⁷, J. Dubbert ⁹⁹, T. Dubbs ¹³⁷, S. Dube¹⁴, E. Duchovni¹⁷¹, G. Duckeck⁹⁸, A. Dudarev²⁹, F. Dudziak¹¹⁵, M. Dührssen²⁹, I.P. Duerdoth⁸², L. Duflot ¹¹⁵, M.-A. Dufour ⁸⁵, M. Dunford ²⁹, H. Duran Yildiz ^{3b}, R. Duxfield ¹³⁹, M. Dwuznik ³⁷, L. Duflot ¹¹⁵, M.-A. Dufour ⁸⁵, M. Dunford ²⁹, H. Duran Yildiz ^{3b}, R. Duxfield ¹³⁹, M. Dwuznik ³⁷, F. Dydak ²⁹, D. Dzahini ⁵⁵, M. Düren ⁵², J. Ebke ⁹⁸, S. Eckert ⁴⁸, S. Eckweiler ⁸¹, K. Edmonds ⁸¹, C.A. Edwards ⁷⁶, I. Efthymiopoulos ⁴⁹, W. Ehrenfeld ⁴¹, T. Ehrich ⁹⁹, T. Eifert ²⁹, G. Eigen ¹³, K. Einsweiler ¹⁴, E. Eisenhandler ⁷⁵, T. Ekelof ¹⁶⁶, M. El Kacimi ⁴, M. Ellert ¹⁶⁶, S. Elles ⁴, F. Ellinghaus ⁸¹, K. Ellis ⁷⁵, N. Ellis ²⁹, J. Elmsheuser ⁹⁸, M. Elsing ²⁹, R. Ely ¹⁴, D. Emeliyanov ¹²⁹, R. Engelmann ¹⁴⁸, A. Engl ⁹⁸, B. Epp ⁶², A. Eppig ⁸⁷, J. Erdmann ⁵⁴, A. Ereditato ¹⁶, D. Eriksson ^{146a}, J. Ernst ¹, M. Ernst ²⁴, J. Ernwein ¹³⁶, D. Errede ¹⁶⁵, S. Errede ¹⁶⁵, E. Ertel ⁸¹, M. Escalier ¹¹⁵, C. Escobar ¹⁶⁷, X. Espinal Curull ¹¹, B. Esposito ⁴⁷, F. Etienne ⁸³, A.I. Etienvre ¹³⁶, E. Etzion ¹⁵³, D. Evangelakou ⁵⁴, H. Evans ⁶¹, L. Fabbri ^{19a, 19b}, C. Fabre ²⁹, K. Facius ³⁵, R.M. Fakhrutdinov ¹²⁸, S. Falciano ^{132a}, A.C. Falou ¹¹⁵, Y. Fang ¹⁷², M. Fanti ^{89a, 89b}, A. Farbin ⁷, A. Farilla ^{134a}, J. Farley ¹⁴⁸, T. Farooque ¹⁵⁸, S.M. Farrington ¹¹⁸, P. Farthouat ²⁹, D. Fasching ¹⁷², P. Fassnacht ²⁹, D. Fassouliotis ⁸, B. Fatholahzadeh ¹⁵⁸, A. Favareto ^{89a, 89b}, L. Fayard ¹¹⁵, S. Fazio ^{36a, 36b}, R. Febbraro ³³, P. Federic ^{144a}, O.L. Fedin ¹²¹, I. Fedorko ²⁹, W. Fedorko ⁸⁸, M. Fehling-Kaschek ⁴⁸ P. Fassnacht²⁰, D. Fassounous⁵, B. Fatholanzaden¹²⁰, A. Favaleto¹²⁰, L. Fayalu¹²⁰, S. Fazio
R. Febbraro³³, P. Federic^{144a}, O.L. Fedin¹²¹, I. Fedorko²⁹, W. Fedorko⁸⁸, M. Fehling-Kaschek⁴⁸,
L. Feligioni⁸³, D. Fellmann⁵, C.U. Felzmann⁸⁶, C. Feng^{32d}, E.J. Feng³⁰, A.B. Fenyuk¹²⁸, J. Ferencei^{144b},
J. Ferland⁹³, B. Fernandes^{124a,j}, W. Fernando¹⁰⁹, S. Ferrag⁵³, J. Ferrando¹¹⁸, V. Ferrara⁴¹, A. Ferrari ¹⁶⁶, P. Ferrari ¹⁰⁵, R. Ferrari ^{119a}, A. Ferrer ¹⁶⁷, M.L. Ferrer ⁴⁷, D. Ferrere ⁴⁹, C. Ferretti ⁸⁷, A. Ferretto Parodi ^{50a,50b}, M. Fiascaris ³⁰, F. Fiedler ⁸¹, A. Filipčič ⁷⁴, A. Filippas ⁹, F. Filthaut ¹⁰⁴, M. Fincke-Keeler ¹⁶⁹, M.C.N. Fiolhais ^{124a,f}, L. Fiorini ¹¹, A. Firan ³⁹, G. Fischer ⁴¹, P. Fischer ²⁰, M.J. Fisher¹⁰⁹, S.M. Fisher¹²⁹, J. Flammer²⁹, M. Flechl⁴⁸, I. Fleck¹⁴¹, J. Fleckner⁸¹, P. Fleischmann¹⁷³, S. Fleischmann¹⁷⁴, T. Flick¹⁷⁴, L.R. Flores Castillo¹⁷², M.J. Flowerdew⁹⁹, F. Föhlisch^{58a}, M. Fokitis⁹, T. Fonseca Martin¹⁶, D.A. Forbush¹³⁸, A. Formica¹³⁶, A. Forti⁸², D. Fortin^{159a}, J.M. Foster⁸², D. Fournier¹¹⁵, A. Foussat²⁹, A.J. Fowler⁴⁴, K. Fowler¹³⁷, H. Fox⁷¹, P. Francavilla^{122a,122b}, S. Franchino ^{119a, 119b}, D. Francis ²⁹, T. Frank ¹⁷¹, M. Franklin ⁵⁷, S. Franz ²⁹, M. Fraternali ^{119a, 119b}, S. Fratina ¹²⁰, S.T. French ²⁷, R. Froeschl ²⁹, D. Froidevaux ²⁹, J.A. Frost ²⁷, C. Fukunaga ¹⁵⁶, S. Fratina ¹²⁰, S.T. French ²⁷, R. Froeschl ²⁹, D. Froidevaux ²⁹, J.A. Frost ²⁷, C. Fukunaga ¹⁵⁶, E. Fullana Torregrosa ²⁹, J. Fuster ¹⁶⁷, C. Gabaldon ²⁹, O. Gabizon ¹⁷¹, T. Gadfort ²⁴, S. Gadomski ⁴⁹, G. Gagliardi ^{50a,50b}, P. Gagnon ⁶¹, C. Galea ⁹⁸, E.J. Gallas ¹¹⁸, M.V. Gallas ²⁹, V. Gallo ¹⁶, B.J. Gallop ¹²⁹, P. Gallus ¹²⁵, E. Galyaev ⁴⁰, K.K. Gan ¹⁰⁹, Y.S. Gao ^{143,k}, V.A. Gapienko ¹²⁸, A. Gaponenko ¹⁴, F. Garberson ¹⁷⁵, M. Garcia-Sciveres ¹⁴, C. García ¹⁶⁷, J.E. García Navarro ⁴⁹, R.W. Gardner ³⁰, N. Garelli ²⁹, H. Garitaonandia ¹⁰⁵, V. Garonne ²⁹, J. Garvey ¹⁷, C. Gatti ⁴⁷, G. Gaudio ^{119a}, O. Gaumer ⁴⁹, B. Gaur ¹⁴¹, L. Gauthier ¹³⁶, I.L. Gavrilenko ⁹⁴, C. Gay ¹⁶⁸, G. Gaycken ²⁰, J.-C. Gayde ²⁹, E.N. Gazis ⁹, P. Ge ^{32d}, C.N.P. Gee ¹²⁹, Ch. Geich-Gimbel ²⁰, K. Gellerstedt ^{146a,146b}, C. Gemme ^{50a}, A. Gemmell ⁵³, M.H. Genest ⁹⁸, S. Gentile ^{132a,132b}, F. Georgatos ⁹, S. George ⁷⁶, P. Gerlach ¹⁷⁴, A. Gershon ¹⁵³, C. Geweniger ^{58a}, H. Ghazlane ^{135d}, P. Ghez ⁴, N. Ghodbane ³³, B. Giacobbe ^{19a}, S. Giagu ^{132a,132b}, V. Giakoumopoulou ⁸, V. Giangiobbe ^{122a,122b}, F. Cianotti ²⁹, B. Gibbard ²⁴, A. Gibson ¹⁵⁸, S. M. Gibson ²⁹, C. F. Cieraltowski ⁵ V. Giangiobbe ^{122a,122b}, F. Gianotti ²⁹, B. Gibbard ²⁴, A. Gibson ¹⁵⁸, S.M. Gibson ²⁹, G.F. Gieraltowski ⁵, L.M. Gilbert ¹¹⁸, M. Gilchriese ¹⁴, V. Gilewsky ⁹¹, D. Gillberg ²⁸, A.R. Gillman ¹²⁹, D.M. Gingrich ^{2,d}, J. Ginzburg¹⁵³, N. Giokaris⁸, R. Giordano^{102a,102b}, F.M. Giorgi¹⁵, P. Giovannini⁹⁹, P.F. Giraud¹³⁶, D. Giugni^{89a}, P. Giusti^{19a}, B.K. Gjelsten¹¹⁷, L.K. Gladilin⁹⁷, C. Glasman⁸⁰, J. Glatzer⁴⁸, A. Glazov⁴¹, K.W. Glitza¹⁷⁴, G.L. Glonti⁶⁵, J. Godfrey¹⁴², J. Godlewski²⁹, M. Goebel⁴¹, T. Göpfert⁴³, C. Goeringer⁸¹, C. Gössling⁴², T. Göttfert⁹⁹, S. Goldfarb⁸⁷, D. Goldin³⁹, T. Golling¹⁷⁵, N.P. Gollub²⁹, S.N. Golovnia¹²⁸, A. Gomes^{124a,l}, L.S. Gomez Fajardo⁴¹, R. Gonçalo⁷⁶, L. Gonella²⁰, A. Gonidec²⁹, S. Gonzalez¹⁷², S. González ⁶¹, M.L. Conzalez ⁶¹, Conzal S. González de la Hoz¹⁶⁷, M.L. Gonzalez Silva²⁶, S. Gonzalez-Sevilla⁴⁹, J.J. Goodson¹⁴⁸, L. Goossens²⁹, P.A. Gorbounov⁹⁵, H.A. Gordon²⁴, I. Gorelov¹⁰³, G. Gorfine¹⁷⁴, B. Gorini²⁹, E. Gorini^{72a,72b}, A. Gorišek⁷⁴, E. Gornicki³⁸, S.A. Gorokhov¹²⁸, V.N. Goryachev¹²⁸, B. Gosdzik⁴¹, M. Gosselink¹⁰⁵, M.I. Gostkin⁶⁵, M. Gouanère⁴, I. Gough Eschrich¹⁶³, M. Gouighri^{135a}, D. Goujdami^{135a}, M.P. Goulette⁴⁹, A.G. Goussiou¹³⁸, C. Goy⁴, I. Grabowska-Bold^{163,e}, V. Grabski¹⁷⁶, P. Grafström²⁹, C. Grah¹⁷⁴, K.-J. Grahn¹⁴⁷, F. Grancagnolo^{72a}, S. Grancagnolo¹⁵, V. Grassi¹⁴⁸, V. Gratchev¹²¹, N. Grau³⁴, H.M. Gray^{34,m}, J.A. Gray¹⁴⁸, E. Graziani^{134a}, O.G. Grebenyuk¹²¹, D. Greenfield¹²⁹, T. Greenshaw⁷³, Z.D. Greenwood ^{24,i}, I.M. Gregor ⁴¹, P. Grenier ¹⁴³, E. Griesmayer ⁴⁶, J. Griffiths ¹³⁸, N. Grigalashvili ⁶⁵, A.A. Grillo ¹³⁷, K. Grimm ¹⁴⁸, S. Grinstein ¹¹, P.L.Y. Gris ³³, Y.V. Grishkevich ⁹⁷, J.-F. Grivaz ¹¹⁵, J. Grognuz ²⁹, M. Groh ⁹⁹, E. Gross ¹⁷¹, J. Grosse-Knetter ⁵⁴, J. Groth-Jensen ⁷⁹, M. Gruwe ²⁹, K. Grybel ¹⁴¹, V.J. Guarino ⁵, C. Guicheney ³³, A. Guida ^{72a,72b}, T. Guillemin ⁴, S. Guindon ⁵⁴, H. Guler^{85,n}, J. Gunther ¹²⁵, B. Guo ¹⁵⁸, J. Guo ³⁴, A. Gupta ³⁰, Y. Gusakov ⁶⁵, V.N. Gushchin ¹²⁸, A. Gutierrez ⁹³, P. Gutierrez ¹¹¹, N. Guttman ¹⁵³, O. Gutzwiller ¹⁷², C. Guyot ¹³⁶, C. Gwenlan ¹¹⁸, C.B. Gwilliam ⁷³, A. Haas ¹⁴³, S. Haas ²⁹, C. Haber ¹⁴, R. Hackenburg ²⁴, H.K. Hadavand ³⁹, D.R. Hadley ¹⁷, P. Haefner ⁹⁹, F. Hahn ²⁹, S. Haider ²⁹, Z. Hajduk ³⁸, H. Hakobyan ¹⁷⁶, J. Haller ⁵⁴, K. Hamacher ¹⁷⁴, A. Hamilton ⁴⁹, S. Hamilton ¹⁶¹, H. Han ^{32a}, L. Han ^{32b}, K. Hanagaki ¹¹⁶, M. Hance ¹²⁰, C. Handel ⁸¹, P. Hanke ^{58a}, C.J. Hansen ¹⁶⁶, J.R. Hansen ³⁵, J.B. Hansen ³⁵, P. Hansson ¹⁴³, K. Hara ¹⁶⁰, G.A. Hare ¹³⁷, T. Harenberg ¹⁷⁴, D. Harper ⁸⁷, R.D. Harrington ²¹, O.M. Harris ¹³⁸, K. Harrison ¹⁷, J. Hartert ⁴⁸, F. Hartjes ¹⁰⁵, T. Haruyama ⁶⁶, A. Harvey ⁵⁶, S. Hasegawa ¹⁰¹, Y. Hasegawa ¹⁴⁰, S. Hassani ¹³⁶, M. Hatch ²⁹, D. Hauff ⁹⁹, S. Haug ¹⁶, M. Hauschild ²⁹, R. Hauser ⁸⁸, M. Havranek ¹²⁵, B.M. Hawes ¹¹⁸, C.M. Hawkes ¹⁷, R.J. Hawkings ²⁹, D. Hawkins ¹⁶³, T. Hayakawa ⁶⁷, D. Hayden ⁷⁶, H.S. Hayward ⁷³, S.J. Haywood ¹²⁹, E. Hazen ²¹, M. He ^{32d}, S.J. Head ¹⁷, V. Hedberg ⁷⁹, L. Heelan ²⁸, S. Heims ⁸⁸, B. Heinemann ¹⁴, S. Heisterkamp ³⁵, L. Helary ⁴, M. Heldmann ⁴⁸, M. Heller ¹¹⁵, S. Hellman ^{146a,146b}, C. Helsens ¹¹, R.C.W. Henderson ⁷¹, M. Henke ^{58a}, A. Henrichs ⁵⁴, A.M. Henriques Correia ²⁹, S. Henrot-Versille ¹¹⁵, F. Henry-Couannier ⁸³, C. Hensel ⁵⁴, T. Henß ¹⁷⁴, Y. Hernández Jiménez ¹⁶⁷, R. Her T. Henß ¹⁷⁴, Y. Hernández Jiménez ¹⁰⁷, R. Herrberg ¹³, A.D. Hershenhorn ¹³⁴, G. Herten⁴⁸, R. Hertenberger ⁹⁸, L. Hervas ²⁹, N.P. Hessey ¹⁰⁵, A. Hidvegi ^{146a}, E. Higón-Rodriguez ¹⁶⁷, D. Hill ^{5,*}, J.C. Hill ²⁷, N. Hill ⁵, K.H. Hiller ⁴¹, S. Hillert ²⁰, S.J. Hillier ¹⁷, I. Hinchliffe ¹⁴, E. Hines ¹²⁰, M. Hirose ¹¹⁶, F. Hirsch ⁴², D. Hirschbuehl ¹⁷⁴, J. Hobbs ¹⁴⁸, N. Hod ¹⁵³, M.C. Hodgkinson ¹³⁹, P. Hodgson ¹³⁹, A. Hoecker ²⁹, M.R. Hoeferkamp ¹⁰³, J. Hoffman ³⁹, D. Hoffmann ⁸³, M. Hohlfeld ⁸¹, M. Holder ¹⁴¹, A. Holmes ¹¹⁸, S.O. Holmgren ^{146a}, T. Holy ¹²⁷, J.L. Holzbauer ⁸⁸, R.J. Homer ¹⁷, Y. Homma ⁶⁷, L. Hooft van Huysduynen ¹⁰⁸, T. Horazdovsky ¹²⁷, C. Horn ¹⁴³, S. Horner ⁴⁸, K. Horton ¹¹⁸, J.-Y. Hostachy ⁵⁵, T. Hott ⁹⁹, S. Hou ¹⁵¹, M.A. Houlden ⁷³, A. Hoummada ^{135a}, J. Howarth ⁸², D.F. Howell ¹¹⁸, I. Hristova ⁴¹, J. Hrivnac ¹¹⁵, I. Hruska ¹²⁵, T. Hryn'ova ⁴, P.J. Hsu ¹⁷⁵, S.-C. Hsu ¹⁴, G.S. Huang ¹¹¹, Z. Hubacek ¹²⁷, F. Hubaut ⁸³, F. Huegging ²⁰, T.B. Huffman ¹¹⁸, E.W. Hughes ³⁴, G. Hughes ⁷¹, R.E. Hughes-Jones ⁸², M. Huhtinen ²⁹, P. Hurst ⁵⁷, M. Hurwitz ¹⁴, U. Husemann ⁴¹, N. Huseynov ^{65,}, J. Huston ⁸⁸, J. Huth ⁵⁷, G. Iacobucci ^{102a}, G. Iakovidis ⁹, M. Ibbotson ⁸², I. Ibragimov ¹⁴¹, R. Ichimiya ⁶⁷, L. Iconomidou-Fayard ¹¹⁵, J. Idarraga ¹¹⁵, M. Idzik ³⁷, P. lengo ⁴, O. Igonkina ¹⁰⁵, Y. Ikegami ⁶⁶, M. Ikeno ⁶⁶, Y. Ilchenko ³⁹, D. Iliadis ¹⁵⁴, D. Imbault ⁷⁸, M. Imhaeuser ¹⁷⁴, M. Imori ¹⁵⁵, T. Ince ²⁰, J. Inigo-Goffin ²⁹, P. Ioannou ⁸, M. Iodice ^{134a}, G. Ionescu ⁴, A. Irles Quiles ¹⁶⁷, K. Ishii ⁶⁶, A. Ishikawa ⁶⁷, M. Ishino ⁶⁶, R. Ishmukhametov ³⁹, T. Isobe ¹⁵⁵, C. Issever ¹¹⁸, S. Istin ^{18a}, Y. Itoh ¹⁰¹, A.V. Ivashin ¹²⁸, W. Iwanski ³⁸, H. Iwasaki ⁶⁶, J.M. Izen ⁴⁰, V. Izzo ^{102a}, B. Jackson ¹²⁰, J.N. Jackson ⁷³, P. Jackson ¹⁴³, M.R. Jaekel²⁹, V. Jain ⁶¹, K. Jakobs ⁴⁸, S. Jakobsen ³⁵, J. Jakubek M. Kagan ⁵⁷, S. Kaiser ⁹⁹, E. Kajomovitz ¹⁵², S. Kalinin ¹⁷⁴, L.V. Kalinovskaya ⁶⁵, S. Kama ³⁹, N. Kanaya ¹⁵⁵, M. Kaneda ¹⁵⁵, T. Kanno ¹⁵⁷, V.A. Kantserov ⁹⁶, J. Kanzaki ⁶⁶, B. Kaplan ¹⁷⁵, A. Kapliy ³⁰, J. Kaplon ²⁹, D. Kar ⁴³, M. Karagoz ¹¹⁸, M. Karnevskiy ⁴¹, K. Karr ⁵, V. Kartvelishvili ⁷¹, A.N. Karyukhin ¹²⁸, L. Kashif ⁵⁷, A. Kasmi ³⁹, R.D. Kass ¹⁰⁹, A. Kastanas ¹³, M. Kataoka ⁴, Y. Kataoka ¹⁵⁵, E. Katsoufis ⁹, J. Katzy ⁴¹, V. Kaushik ⁶, K. Kawagoe ⁶⁷, T. Kawamoto ¹⁵⁵, G. Kawamura ⁸¹, M.S. Kayl ¹⁰⁵, V.A. Kazanin ¹⁰⁷, M.Y. Kazarinov ⁶⁵, S.I. Kazi ⁸⁶, J.R. Keates ⁸², R. Keeler ¹⁶⁹, R. Kehoe ³⁹, M. Keil ⁵⁴, G.D. Kekelidze ⁶⁵, M. Kelly ⁸², J. Kennedy ⁹⁸, C.J. Kenney ¹⁴³, M. Kenyon ⁵³, O. Kepka ¹²⁵, N. Kerschen ²⁹, B.P. Kerševan ⁷⁴, S. Kersten ¹⁷⁴, K. Kessoku ¹⁵⁵, C. Ketterer ⁴⁸, M. Khakzad ²⁸, F. Khalil-zada ¹⁰, H. Khandanyan ¹⁶⁵, A. Khanov ¹¹², D. Kharchenko ⁶⁵, A. Khodinov ¹⁴⁸, A.G. Kholodenko ¹²⁸, A. Khomich ^{58a}, T.J. Khoo ²⁷, G. Khoriauli ²⁰, N. Khovanskiy ⁶⁵, V. Khovanskiy ⁹⁵, E. Khramov ⁶⁵, J. Khubua ⁵¹, G. Kilvington ⁷⁶,

363

H. Kim⁷, M.S. Kim², P.C. Kim¹⁴³, S.H. Kim¹⁶⁰, N. Kimura¹⁷⁰, O. Kind¹⁵, B.T. King⁷³, M. King⁶⁷, R.S.B. King¹¹⁸, J. Kirk¹²⁹, G.P. Kirsch¹¹⁸, L.E. Kirsch²², A.E. Kiryunin⁹⁹, D. Kisielewska³⁷, T. Kittelmann ¹²³, A.M. Kiver ¹²⁸, H. Kiyamura ⁶⁷, E. Kladiva ^{144b}, J. Klaiber-Lodewigs ⁴², M. Klein ⁷³, U. Klein ⁷³, K. Kleinknecht ⁸¹, M. Klemetti ⁸⁵, A. Klier ¹⁷¹, A. Klimentov ²⁴, R. Klingenberg ⁴², E.B. Klinkby ³⁵, T. Klioutchnikova ²⁹, P.F. Klok ¹⁰⁴, S. Klous ¹⁰⁵, E.-E. Kluge ^{58a}, T. Kluge ⁷³, P. Kluit ¹⁰⁵, S. Kluth ⁹⁹, E. Kneringer ⁶², J. Knobloch ²⁹, A. Knue ⁵⁴, B.R. Ko⁴⁴, T. Kobayashi ¹⁵⁵, M. Kobel ⁴³, B. Koblitz ²⁹, M. Kocian ¹⁴³, A. Kocnar ¹¹³, P. Kodys ¹²⁶, K. Köneke ²⁹, A.C. König ¹⁰⁴, S. Koenig ⁸¹, S. König ⁴⁸, L. Köpke ⁸¹, F. Koetsveld ¹⁰⁴, P. Koevesarki ²⁰, T. Koffas ²⁹, E. Koffeman ¹⁰⁵, F. Kohn ⁵⁴, Z. Kohout ¹²⁷, T. Kohriki ⁶⁶, T. Koi ¹⁴³, T. Kokott ²⁰, G.M. Kolachev ¹⁰⁷, H. Kolanoski ¹⁵, V. Kolesnikov ⁶⁵, I. Koletsou^{89a}, J. Koll⁸⁸, D. Kollar²⁹, M. Kollefrath⁴⁸, S.D. Kolya⁸², A.A. Komar⁹⁴, J.R. Komaragiri¹⁴², T. Kondo⁶⁶, T. Kono^{41, p}, A.I. Kononov⁴⁸, R. Konoplich^{108, q}, N. Konstantinidis⁷⁷, A. Kootz¹⁷⁴, S. Koperny³⁷, S.V. Kopikov¹²⁸, K. Korcyl³⁸, K. Kordas¹⁵⁴, V. Koreshev¹²⁸, A. Korn¹⁴, A. Korol¹⁰⁷ S. Koperny ³⁷, S.V. Kopikov ¹²⁸, K. Korcyl ³⁸, K. Kordas ¹³⁴, V. Koreshev ¹²⁸, A. Korn ¹⁴, A. Korol ¹⁰⁷, I. Korolkov ¹¹, E.V. Korolkova ¹³⁹, V.A. Korotkov ¹²⁸, O. Kortner ⁹⁹, S. Kortner ⁹⁹, V.V. Kostyukhin ²⁰, M.J. Kotamäki ²⁹, S. Kotov ⁹⁹, V.M. Kotov ⁶⁵, C. Kourkoumelis ⁸, V. Kouskoura ¹⁵⁴, A. Koutsman ¹⁰⁵, R. Kowalewski ¹⁶⁹, T.Z. Kowalski ³⁷, W. Kozanecki ¹³⁶, A.S. Kozhin ¹²⁸, V. Kral ¹²⁷, V.A. Kramarenko ⁹⁷, G. Kramberger ⁷⁴, O. Krasel ⁴², M.W. Krasny ⁷⁸, A. Krasznahorkay ¹⁰⁸, J. Kraus ⁸⁸, A. Kreisel ¹⁵³, F. Krejci ¹²⁷, J. Kretzschmar ⁷³, N. Krieger ⁵⁴, P. Krieger ¹⁵⁸, K. Kroeninger ⁵⁴, H. Kroha ⁹⁹, J. Kroll ¹²⁰, J. Kroseberg ²⁰, J. Krstic ^{12a}, U. Kruchonak ⁶⁵, H. Krüger ²⁰, Z.V. Krumshteyn ⁶⁵, A. Kruth ²⁰, T. Kubota ¹⁵⁵, S. Kuehn ⁴⁸, A. Kugel ^{58c}, T. Kuhl ¹⁷⁴, D. Kuhn ⁶², V. Kukhtin ⁶⁵, Y. Kulchitsky ⁹⁰, S. Kuleshov ^{31b}, C. Kummer 98 , M. Kuna 83 , N. Kundu 118 , J. Kunkle 120 , A. Kupco 125 , H. Kurashige 67 , M. Kurata 160 , Y.A. Kurochkin ⁹⁰, V. Kus¹²⁵, W. Kuykendall ¹³⁸, M. Kuze¹⁵⁷, P. Kuzhir ⁹¹, O. Kvasnicka ¹²⁵, R. Kwee¹⁵, A. La Rosa²⁹, L. La Rotonda ^{36a,36b}, L. Labarga⁸⁰, J. Labbe⁴, C. Lacasta ¹⁶⁷, F. Lacava ^{132a,132b}, H. Lacker ¹⁵, D. Lacour ⁷⁸, V.R. Lacuesta ¹⁶⁷, E. Ladygin ⁶⁵, R. Lafaye⁴, B. Laforge ⁷⁸, T. Lagouri ⁸⁰, S. Lai⁴⁸, E. Laisne ⁵⁵, M. Lamanna²⁹, C.L. Lampen⁶, W. Lampl⁶, E. Lancon¹³⁶, U. Landgraf⁴⁸, M.P.J. Landon⁷⁵, H. Landsman¹⁵², J.L. Lane⁸², C. Lange⁴¹, A.J. Lankford¹⁶³, F. Lanni²⁴, K. Lantzsch²⁹, V.V. Lapin^{128,*}, S. Laplace⁷⁸, C. Lapoire²⁰, J.F. Laporte¹³⁶, T. Lari^{89a}, A.V. Larionov¹²⁸, A. Larner¹¹⁸, C. Lasseur²⁹, M. Lassnig²⁹, W. Lau¹¹⁸, P. Laurelli⁴⁷, A. Lavorato¹¹⁸, W. Lavrijsen¹⁴, P. Laycock⁷³, A.B. Lazarev⁶⁵, A. Lazzaro^{89a,89b}, O. Le Dortz ⁷⁸, E. Le Guirriec ⁸³, C. Le Maner ¹⁵⁸, E. Le Menedeu ¹³⁶, M. Leahu ²⁹, A. Lebedev ⁶⁴, C. Lebel ⁹³, T. LeCompte ⁵, F. Ledroit-Guillon ⁵⁵, H. Lee ¹⁰⁵, J.S.H. Lee ¹⁵⁰, S.C. Lee ¹⁵¹, L. Lee ¹⁷⁵, M. Lefebvre ¹⁶⁹, M. Legendre ¹³⁶, A. Leger⁴⁹, B.C. LeGeyt ¹²⁰, F. Legger ⁹⁸, C. Leggett ¹⁴, M. Lehmacher ²⁰, G. Lehmann Miotto ²⁹, M. Lehto ¹³⁹, X. Lei⁶, M.A.L. Leite ^{23b}, R. Leitner ¹²⁶, D. Lellouch ¹⁷¹, J. Lellouch ⁷⁸, M. Leltchouk ³⁴, V. Lendermann ^{58a}, K.J.C. Leney ^{145b}, T. Lenz ¹⁷⁴, D. Lellouch ¹⁷⁷, J. Lellouch ⁷⁸, M. Leltchouk ⁵⁴, V. Lendermann ^{56a}, K.J.C. Leney ¹⁴³⁰, T. Lenz ¹⁷⁴, G. Lenzen ¹⁷⁴, B. Lenzi ¹³⁶, K. Leonhardt ⁴³, S. Leontsinis ⁹, C. Leroy ⁹³, J.-R. Lessard ¹⁶⁹, J. Lesser ^{146a}, C.G. Lester ²⁷, A. Leung Fook Cheong ¹⁷², J. Levêque ⁸³, D. Levin ⁸⁷, L.J. Levinson ¹⁷¹, M.S. Levitski ¹²⁸, M. Lewandowska ²¹, G.H. Lewis ¹⁰⁸, M. Leyton ¹⁵, B. Li⁸³, H. Li ¹⁷², S. Li ^{32b}, X. Li⁸⁷, Z. Liang ³⁹, Z. Liang ^{118,r}, B. Liberti ^{133a}, P. Lichard ²⁹, M. Lichtnecker ⁹⁸, K. Lie ¹⁶⁵, W. Liebig ¹³, R. Lifshitz ¹⁵², J.N. Lilley ¹⁷, A. Limosani ⁸⁶, M. Limper ⁶³, S.C. Lin ^{151,s}, F. Linde ¹⁰⁵, J.T. Linnemann ⁸⁸, E. Lipeles ¹²⁰, L. Lipinsky ¹²⁵, A. Lipniacka ¹³, T.M. Liss ¹⁶⁵, A. Lister ⁴⁹, A.M. Litke ¹³⁷, C. Liu ²⁸, D. Liu ^{151,t}, H. Liu ⁸⁷, J.B. Liu ⁸⁷, M. Liu ^{32b}, S. Liu ², Y. Liu ^{32b}, M. Livan ^{119a,119b}, S.S.A. Livermore ¹¹⁸, A. Lleres ⁵⁵, S.L. Lloyd ⁷⁵, E. Lobodzinska⁴¹, P. Loch⁶, W.S. Lockman¹³⁷, S. Lockwitz¹⁷⁵, T. Loddenkoetter²⁰, F.K. Loebinger⁸², A. Loginov¹⁷⁵, C.W. Loh¹⁶⁸, T. Lohse¹⁵, K. Lohwasser⁴⁸, M. Lokajicek¹²⁵, J. Loken¹¹⁸, V.P. Lombardo^{89a}, R.E. Long⁷¹, L. Lopes^{124a,b}, D. Lopez Mateos^{34,m}, M. Losada¹⁶², P. Loscutoff¹⁴, F. Lo Sterzo^{132a,132b}, R.E. Long ⁷¹, L. Lopes ^{124a,b}, D. Lopez Mateos ^{34,m}, M. Losada ¹⁶², P. Loscutoff ¹⁴, F. Lo Sterzo ^{132a,132b}, M.J. Losty ^{159a}, X. Lou ⁴⁰, A. Lounis ¹¹⁵, K.F. Loureiro ¹⁶², J. Love ²¹, P.A. Love ⁷¹, A.J. Lowe ¹⁴³, F. Lu ^{32a}, J. Lu ², L. Lu ³⁹, H.J. Lubatti ¹³⁸, C. Luci ^{132a,132b}, A. Lucotte ⁵⁵, A. Ludwig ⁴³, D. Ludwig ⁴¹, I. Ludwig ⁴⁸, J. Ludwig ⁴⁸, F. Luehring ⁶¹, G. Luijckx ¹⁰⁵, D. Lumb ⁴⁸, L. Luminari ^{132a}, E. Lund ¹¹⁷, B. Lund-Jensen ¹⁴⁷, B. Lundberg ⁷⁹, J. Lundberg ^{146a,146b}, J. Lundquist ³⁵, M. Lungwitz ⁸¹, A. Lupi ^{122a,122b}, G. Lutz ⁹⁹, D. Lynn ²⁴, J. Lys ¹⁴, E. Lytken ⁷⁹, H. Ma ²⁴, L.L. Ma ¹⁷², J.A. Macana Goia ⁹³, G. Maccarrone ⁴⁷, A. Macchiolo ⁹⁹, B. Maček ⁷⁴, J. Machado Miguens ^{124a,b}, D. Macina ⁴⁹, R. Mackeprang ³⁵, R.J. Madaras ¹⁴, W.F. Mader ⁴³, R. Maenner ^{58c}, T. Maeno ²⁴, P. Mättig ¹⁷⁴, S. Mättig ⁴¹, P.J. Magalhaes Martins ^{124a,f}, L. Magnoni ²⁹, E. Magradze ⁵¹, C.A. Magrath ¹⁰⁴, Y. Mahalalel ¹⁵³, K. Mahboubi ⁴⁸, G. Mahout ¹⁷, C. Maiani ^{132a,132b}, C. Maidantchik ^{23a}, A. Maio ^{124a,l}, S. Majewski ²⁴, Y. Makida ⁶⁶, N. Makovec ¹¹⁵, P. Mal ⁶ Pa Malecki ³⁸ P. Malecki ³⁸ V.P. Maleev ¹²¹ F. Malek ⁵⁵ U. Mallik ⁶³ D. Malon ⁵ S. Maltezos ⁹ P. Mal⁶, Pa. Malecki³⁸, P. Malecki³⁸, V.P. Maleev¹²¹, F. Malek⁵⁵, U. Mallik⁶³, D. Malon⁵, S. Maltezos⁹,

V. Malyshev ¹⁰⁷, S. Malyukov ⁶⁵, R. Mameghani ⁹⁸, J. Mamuzic ^{12b}, A. Manabe ⁶⁶, L. Mandelli ^{89a}, I. Mandić ⁷⁴, R. Mandrysch ¹⁵, J. Maneira ^{124a}, P.S. Mangeard ⁸⁸, I.D. Manjavidze ⁶⁵, A. Mann ⁵⁴, P.M. Manning ¹³⁷, A. Manousakis-Katsikakis ⁸, B. Mansoulie ¹³⁶, A. Manz ⁹⁹, A. Mapelli ²⁹, L. Mapelli ²⁹, L. March ⁸⁰, J.F. Marchand ²⁹, F. Marchese ^{133a,133b}, M. Marchesotti ²⁹, G. Marchiori ⁷⁸, M. Marcisovsky ¹²⁵, A. Marin ^{21,*}, C.P. Marino ⁶¹, F. Marroquim ^{23a}, R. Marshall ⁸², Z. Marshall ^{34,m}, F.K. Martens ¹⁵⁸, S. Marti-Garcia ¹⁶⁷, A.J. Martin ¹⁷⁵, B. Martin ²⁹, B. Martin ⁸⁸, F.F. Martin ¹²⁰, J.P. Martin ⁹³, Ph. Martin ⁵⁵, T.A. Martin ¹⁷, B. Martin dit Latour ⁴⁹, M. Martinez ¹¹, V. Martinez Outschoorn ⁵⁷, A.C. Martyniuk ⁸², M. Marx ⁸², F. Marzano ^{132a}, A. Marzin ¹¹¹, L. Masetti ⁸¹, T. Mashimo ¹⁵⁵, P. Mashinistov ⁹⁴, L. Masik ⁸² T.A. Martin ¹⁷, B. Martin dit Latour ⁴⁹, M. Martinez ¹¹, V. Martinez Outschoorn ⁵⁷, A.C. Martyniuk ⁸², M. Marx ⁸², F. Marzano ^{132a}, A. Marzin ¹¹¹, L. Masetti ⁸¹, T. Mashimo ¹⁵⁵, R. Mashinistov ⁹⁴, J. Masik ⁸², A.L. Maslennikov ¹⁰⁷, M. Maß ⁴², I. Massa ^{19a,19b}, G. Massaro ¹⁰⁵, N. Massol ⁴, A. Mastroberardino ^{36a,36b}, T. Masubuchi ¹⁵⁵, M. Mathes ²⁰, P. Matricon ¹¹⁵, H. Matsumoto ¹⁵⁵, H. Matsunaga ¹⁵⁵, T. Matsushita ⁶⁷, C. Mattravers ^{118,u}, J.M. Maugain ²⁹, S.J. Maxfield ⁷³, E.N. May ⁵, A. Mayne ¹³⁹, R. Mazini ¹⁵¹, M. Mazur ²⁰, M. Mazzanti ^{89a}, E. Mazzoni ^{122a,122b}, S.P. Mc Kee ⁸⁷, A. McCarn ¹⁶⁵, R.L. McCarthy ¹⁴⁸, T.G. McCarthy ²⁸, N.A. McCubbin ¹²⁹, K.W. McFarlane ⁵⁶, J.A. Mcfayden ¹³⁹, H. McGlone ⁵³, G. Mchedlidze ⁵¹, R.A. McLaren ²⁹, T. Mclaughlan ¹⁷, S.J. McMahon ¹²⁹, T.J. McMahon ¹⁷, R.A. McPherson ^{169,h}, A. Meade ⁸⁴, J. Mechnich ¹⁰⁵, M. Mechtel ¹⁷⁴, M. Medinnis ⁴¹, R. Meera-Lebbai ¹¹¹, T. Meguro ¹¹⁶, R. Mehdiyev ⁹³, S. Mehlhase ⁴¹, A. Mehta ⁷³, K. Meier ^{58a}, J. Meinhardt ⁴⁸, B. Meirose ⁷⁹, C. Melachrinos ³⁰, B.R. Mellado Garcia ¹⁷², L. Mendoza Navas ¹⁶², Z. Meng ^{151,t}, A. Mengarelli ^{19a,19b}, S. Menke ⁹⁹, C. Menot ²⁹, E. Meoni ¹¹, D. Merkl ⁹⁸, P. Mermod ¹¹⁸, L. Merola ^{102a,102b}, C. Meroni ^{89a}, F.S. Merritt ³⁰, A. Messina ²⁹, J. Metcalfe ¹⁰³, A.S. Mete ⁶⁴, S. Meuser ²⁰, C. Meyer ⁸¹, J.-P. Meyer ¹³⁶, J. Meyer ¹⁷³, J. Meyer ⁵⁴, T.C. Meyer ²⁹, W.T. Meyer ⁶⁴, J. Miao ^{32d}, S. Michal ²⁹, L. Micu ^{25a}, R.P. Middleton ¹²⁹, P. Miele ²⁹, S. Migas ⁷³, L. Mijović ⁴¹, G. Mikenberg ¹⁷¹, M. Mikestikova ¹²⁵, B. Mikulec ⁴⁹, M. Mikuž ⁷⁴, A. Messina²⁹, J. Metcalfe¹⁰³, A.S. Mete⁶⁴, S. Meuser²⁰, C. Meyer⁸¹, J.-P. Meyer¹³⁶, J. Meyer¹⁷³, J. Meyer⁵⁴, T.C. Meyer²⁹, W.T. Meyer⁶⁴, J. Miao^{32d}, S. Michal²⁹, L. Micu^{25a}, R.P. Middleton¹²⁹, P. Miele²⁹, S. Migas⁷³, L. Mijovi⁶⁴¹, G. Mikenberg¹⁷¹, M. Miketikova¹²⁵, R. Miklu²⁶⁴, M. Mikuž⁷⁴, D.W. Miller¹⁴³, R.J. Miller⁸³, W.J. Mills¹⁶⁸, C. Mills⁵⁷, A. Milov¹⁷¹, D.A. Milstead^{146a,146b}, D. Milstein¹⁷¹, A.A. Minaenko¹²⁸, M. Miñano¹⁶⁷, I.A. Minashvili⁶⁵, A.I. Mincer¹⁰⁸, B. Mindur³⁷, M. Mineev⁶⁵, Y. Ming¹³⁰, L.M. Mir¹¹, G. Mirabelli¹³²⁴, L. Mirales Verge¹¹, A. Misiguk⁷⁶, A. Mitra¹¹⁸, J. Mitrevski¹³⁷, G.Y. Mitrofanov¹²⁸, V.A. Mitsou¹⁶⁷, S. Mitsui⁶⁶, P.S. Miyagawa⁸², K. Miyazaki⁶⁷, J.U. Mjörnmark⁷⁹, T. Moa^{146a,146b}, P. Mockett¹³⁸, S. Model⁵⁷, V. Moeller²⁷, K. Mönig⁴¹, N. Möser²⁰, S. Mohapatra¹⁴⁸, B. Mohn¹³, W. Mohr⁴⁸, S. Mohrdieck-Möck⁹⁹, A.M. Moisseev^{128,*}, R. Moles-Valls¹⁶⁷, J. Molina-Perez²⁹, L. Moneta⁴⁹, J. Monk⁷⁷, E. Monnier⁸³, S. Montesano^{89a,89b}, F. Monticell⁷⁰, S. Monzani^{13a,19b}, R.W. Moore², G.F. MoorHead⁸⁶, C. Mora Herrera⁴⁹, A. Moraes⁵³, A. Morais^{124a,b}, N. Morange¹³⁶, J. Moril⁵⁴, G. Morello^{36a,36b}, D. Moreno⁸¹, M. Moraes⁵³, A. Morais^{124a,b}, N. Morais¹⁵, J. Morin⁷⁵, Y. Morita⁶⁶, A.K. Morley²⁹, G. Mornacchi²⁹, M.-C. Morone⁴⁹, J.D. Morris⁷⁵, H.G. Moser⁹⁹, M. Mosidze⁵¹, J. Moss¹⁰⁹, R. Mount¹⁴³, E. Mountricha⁹, S.V. Mouraviev⁹⁴, F.J.W. Moyse⁸⁴, M. Mudrinic^{12b}, F. Mueller¹³⁵, J. Mueller²¹³, K. Mueller²⁰, T.A. Müller⁹⁸, D. Muenstermann⁴², A. Muijs¹⁰⁵, A. Muir¹⁶⁸, Y. Munwes¹⁵³, K. Murakami⁶⁶, W.J. Murray¹²⁹, I. Mussch¹⁰⁵, E. Musto^{102a,102b}, A.G. Myagkov¹²⁸, M. Myska¹²⁵, J. Nadal¹¹, K. Nagai¹⁶⁰, K. Nagaan⁶⁶, Y. Nagasak⁶⁰, A.M. Nairz²⁹, Y. Nakahama¹¹⁵, K. Nakamura¹⁵⁵, I. Nakano¹¹⁶, G. Nanava²⁰, A. Nagai¹⁶¹, M. Nash^{77,u}, N.R. Nation²¹, T. Nattermann²⁰, Nausani¹⁵⁵, J. Nakan¹ I.M. Nugent ^{159a}, A.-E. Nuncio-Quiroz ²⁰, G. Nunes Hanninger ²⁰, T. Nunnemann ³⁰, E. Nurse ⁷⁷, T. Nyman ²⁹, B.J. O'Brien ⁴⁵, S.W. O'Neale ^{17,*}, D.C. O'Neil ¹⁴², V. O'Shea ⁵³, F.G. Oakham ^{28,d}, H. Oberlack ⁹⁹, J. Ocariz ⁷⁸, A. Ochi ⁶⁷, S. Oda ¹⁵⁵, S. Odaka ⁶⁶, J. Odier ⁸³, G.A. Odino ^{50a,50b}, H. Ogren ⁶¹, A. Oh ⁸², S.H. Oh ⁴⁴, C.C. Ohm ^{146a,146b}, T. Ohshima ¹⁰¹, H. Ohshita ¹⁴⁰, T.K. Ohska ⁶⁶, T. Ohsugi ⁵⁹, S. Okada ⁶⁷, H. Okawa ¹⁶³, Y. Okumura ¹⁰¹, T. Okuyama ¹⁵⁵, M. Olcese ^{50a}, A.G. Olchevski ⁶⁵, M. Oliveira ^{124a,f}, D. Oliveira Damazio ²⁴, E. Oliver Garcia ¹⁶⁷, D. Olivito ¹²⁰, A. Olszewski ³⁸, J. Olszowska ³⁸, C. Omachi ⁶⁷, A. Onofre ^{124a,v}, P.U.E. Onyisi ³⁰, C.J. Oram ^{159a}, G. Ordonez ¹⁰⁴, M.J. Oreglia ³⁰, F. Orellana ⁴⁹, Y. Oren ¹⁵³, D. Orestano ^{134a,134b}, I. Orlov ¹⁰⁷, C. Oropeza Barrera ⁵³, R.S. Orr ¹⁵⁸, E.O. Ortega ¹³⁰, B. Osculati ^{50a,50b},

R. Ospanov¹²⁰, C. Osuna¹¹, G. Otero y Garzon²⁶, J.P. Ottersbach¹⁰⁵, M. Ouchrif^{135c}, F. Ould-Saada¹¹⁷, A. Ouraou¹³⁶, Q. Ouyang^{32a}, M. Owen⁸², S. Owen¹³⁹, A. Oyarzun^{31b}, O.K. Øye¹³, V.E. Ozcan⁷⁷, A. Ouraou ¹⁵⁶, Q. Ouyang ³²⁴, M. Owen ⁸², S. Owen ¹⁵⁹, A. Oyarzun ^{51D}, O.K. Øye ¹⁵, V.E. Ozcan ⁷⁷, N. Ozturk ⁷, A. Pacheco Pages ¹¹, C. Padilla Aranda ¹¹, E. Paganis ¹³⁹, F. Paige ²⁴, K. Pajchel ¹¹⁷, S. Palestini ²⁹, D. Pallin ³³, A. Palma ^{124a,b}, J.D. Palmer ¹⁷, Y.B. Pan ¹⁷², E. Panagiotopoulou ⁹, B. Panes ^{31a}, N. Panikashvili ⁸⁷, S. Panitkin ²⁴, D. Pantea ^{25a}, M. Panuskova ¹²⁵, V. Paolone ¹²³, A. Paoloni ^{133a,133b}, A. Papadelis ^{146a}, Th.D. Papadopoulou ⁹, A. Paramonov ⁵, W. Park ^{24,w}, M.A. Parker ²⁷, F. Parodi ^{50a,50b}, J.A. Parsons ³⁴, U. Parzefall ⁴⁸, E. Pasqualucci ^{132a}, A. Passeri ^{134a}, F. Pastore ^{134a,134b}, Fr. Pastore ²⁹, G. Pásztor ^{49,x}, S. Pataraia ¹⁷², N. Patel ¹⁵⁰, J.R. Pater ⁸², S. Patricelli ^{102a,102b}, T. Pauly ²⁹, M. Pecsy ^{144a}, M.I. Pedraza Morales ¹⁷², S.V. Peleganchuk ¹⁰⁷, H. Peng ¹⁷², R. Pengo ²⁹, A. Penson ³⁴, J. Penwell ⁶¹, M. Perantoni ^{23a}, K. Perez ^{34,m}, T. Perez Cavalcanti ⁴¹, E. Perez Codina ¹¹, M.T. Pérez García-Estañ ¹⁶⁷, V. Perez Reale³⁴, I. Peric²⁰, L. Perini^{89a,89b}, H. Pernegger²⁹, R. Perrino^{72a}, P. Perrodo⁴, S. Persembe^{3a}, A. Perus ¹¹⁵, V.D. Peshekhonov ⁶⁵, O. Peters ¹⁰⁵, B.A. Petersen ²⁹, J. Petersen ²⁹, T.C. Petersen ³⁵, E. Petit ⁸³, A. Petridis ¹⁵⁴, C. Petridou ¹⁵⁴, E. Petrolo ^{132a}, F. Petrucci ^{134a,134b}, D. Petschull ⁴¹, M. Petteni ¹⁴², R. Pezoa ^{31b}, A. Phan ⁸⁶, A.W. Phillips ²⁷, P.W. Phillips ¹²⁹, G. Piacquadio ²⁹, E. Piccaro ⁷⁵, M. Piccinini ^{19a, 19b}, A. Pickford ⁵³, S.M. Piec⁴¹, R. Piegaia ²⁶, J.E. Pilcher ³⁰, A.D. Pilkington ⁸², J. Pina ^{124a,l}, M. Pinamonti ^{164a, 164c}, A. Pinder ¹¹⁸, J.L. Pinfold², J. Ping^{32c}, B. Pinto ^{124a,b}, O. Pirotte²⁹, C. Pizio ^{89a,89b}, R. Placakyte⁴¹, M. Plamondon ¹⁶⁹, W.G. Plano ⁸², M.-A. Pleier²⁴, A.V. Pleskach ¹²⁸, A. Poblaguev²⁴, S. Poddar^{58a}, F. Podlyski³³, L. Poggioli¹¹⁵, T. Poghosyan²⁰, M. Pohl⁴⁹, F. Polci⁵⁵, G. Polesello^{119a}, A. Policicchio¹³⁸, A. Polini^{19a}, J. Poll⁷⁵, V. Polychronakos²⁴, D.M. Pomarede¹³⁶, D. Pomeroy²², K. Pommès²⁹, L. Pontecorvo^{132a}, B.G. Pope⁸⁸, G.A. Popeneciu^{25a}, D.S. Popovic^{12a}, A. Poppleton²⁹, X. Portell Bueso⁴⁸, R. Porter¹⁶³, C. Posch²¹, G.E. Pospelov⁹⁹, S. Pospisil¹²⁷, I.N. Potrap⁹⁹, C.J. Potter¹⁴⁹, C.T. Potter⁸⁵, G. Poulard²⁹, J. Poveda¹⁷², R. Prabhu⁷⁷, P. Pralavorio⁸³, S. Prasad⁵⁷, R. Pravahan⁷, S. Prell⁶⁴, K. Pretzl¹⁶, L. Pribyl²⁹, D. Price⁶¹, L.E. Price⁵, M.J. Price²⁹, P.M. Prichard⁷³, D. Prieur¹²³, M. Primavera^{72a}, K. Prokofiev¹⁰⁸, F. Prokoshin^{31b}, S. Protopopescu²⁴, J. Proudfoot ⁵, X. Prudent ⁴³, H. Przysiezniak ⁴, S. Psoroulas ²⁰, E. Ptacek ¹¹⁴, J. Purdham ⁸⁷, M. Purohit ²⁴, ^w, P. Puzo ¹¹⁵, Y. Pylypchenko ¹¹⁷, J. Qian ⁸⁷, Z. Qian ⁸³, Z. Qin ⁴¹, A. Quadt ⁵⁴, D.R. Quarrie ¹⁴, W.B. Quayle¹⁷², F. Quinonez^{31a}, M. Raas¹⁰⁴, V. Radescu^{58b}, B. Radics²⁰, T. Rador^{18a}, F. Ragusa^{89a,89b}, G. Rahal¹⁷⁷, A.M. Rahimi¹⁰⁹, S. Rajagopalan²⁴, S. Rajek⁴², M. Rammensee⁴⁸, M. Rammes¹⁴¹, G. Kallal ¹¹⁷, A.M. Kallim ¹⁰⁵, S. Kajagopalan ²⁴, S. Kajek ¹², M. Kammensee ⁴⁶, M. Rammes ¹⁴¹, M. Ramstedt ^{146a, 146b}, K. Randrianarivony ²⁸, P.N. Ratoff ⁷¹, F. Rauscher ⁹⁸, E. Rauter ⁹⁹, M. Raymond ²⁹, A.L. Read ¹¹⁷, D.M. Rebuzzi ^{119a, 119b}, A. Redelbach ¹⁷³, G. Redlinger ²⁴, R. Reece ¹²⁰, K. Reeves ⁴⁰, A. Reichold ¹⁰⁵, E. Reinherz-Aronis ¹⁵³, A. Reinsch ¹¹⁴, I. Reisinger ⁴², D. Reljic ^{12a}, C. Rembser ²⁹, Z.L. Ren ¹⁵¹, A. Renaud ¹¹⁵, P. Renkel ³⁹, B. Rensch ³⁵, M. Rescigno ^{132a}, S. Resconi ^{89a}, B. Resende ¹³⁶, P. Reznicek ⁹⁸, R. Rezvani ¹⁵⁸, A. Richards ⁷⁷, R. Richter ⁹⁹, E. Richter-Was ^{38,y}, M. Ridel ⁷⁸, S. Rieke ⁸¹, M. Rijpstra ¹⁰⁵, M. Rijssenbeek ¹⁴⁸, A. Rimoldi ^{119a,119b}, L. Rinaldi ^{19a}, R.R. Rios ³⁹, I. Riu ¹¹, G. Rivoltella^{89a,89b}, F. Rizatdinova¹¹², E. Rizvi⁷⁵, S.H. Robertson^{85,h}, A. Robichaud-Veronneau⁴⁹, D. Robinson²⁷, J.E.M. Robinson⁷⁷, M. Robinson¹¹⁴, A. Robson⁵³, J.G. Rocha de Lima¹⁰⁶, C. Roda^{122a,122b}, D. Roda Dos Santos²⁹, S. Rodier⁸⁰, D. Rodriguez¹⁶², Y. Rodriguez Garcia¹⁵, A. Roe⁵⁴, S. Roe²⁹, O. Røhne¹¹⁷, V. Rojo¹, S. Rolli¹⁶¹, A. Romaniouk⁹⁶, V.M. Romanov⁶⁵, G. Romeo²⁶, D. Romero Maltrana^{31a}, L. Roos⁷⁸, E. Ros¹⁶⁷, S. Rosati¹³⁸, M. Rose⁷⁶, G.A. Rosenbaum¹⁵⁸, E.I. Rosenberg⁶⁴, P.L. Rosendahl¹³, L. Rosselet⁴⁹, V. Rossetti¹¹, E. Rossi^{102a,102b}, L.P. Rossi^{50a}, H.F.-W. Sadrozinski ¹³⁷, R. Sadykov ⁶⁵, F. Safai Tehrani ^{132a,132b}, H. Sakamoto ¹⁵⁵, G. Salamanna ¹⁰⁵, A. Salamon ^{133a}, M. Saleem ¹¹¹, D. Salihagic ⁹⁹, A. Salnikov ¹⁴³, J. Salt ¹⁶⁷, B.M. Salvachua Ferrando ⁵, D. Salvatore ^{36a, 36b}, F. Salvatore ¹⁴⁹, A. Salzburger ²⁹, D. Sampsonidis ¹⁵⁴, B.H. Samset ¹¹⁷, H. Sandaker ¹³, H.G. Sander ⁸¹, M.P. Sanders ⁹⁸, M. Sandhoff ¹⁷⁴, P. Sandhu ¹⁵⁸, T. Sandoval ²⁷, R. Sandstroem ¹⁰⁵, S. Sandvoss ¹⁷⁴, D.P.C. Sankey ¹²⁹, A. Sansoni ⁴⁷, C. Santamarina Rios ⁸⁵, C. Santoni ³³,

R. Santonico^{133a,133b}, H. Santos^{124a}, J.G. Saraiva^{124a,1}, T. Sarangi¹⁷², E. Sarkisyan-Grinbaum⁷, F. Sarri ^{122a, 122b}, G. Sartisohn ¹⁷⁴, O. Sasaki ⁶⁶, T. Sasaki ⁶⁶, N. Sasao ⁶⁸, I. Satsounkevitch ⁹⁰, G. Sauvage ⁴, J.B. Sauvan ¹¹⁵, P. Savard ^{158,d}, V. Savinov ¹²³, D.O. Savu ²⁹, P. Savva ⁹, L. Sawyer ^{24,i}, G. Sauvage⁴, J.B. Sauvan¹¹⁵, P. Savard^{158,d}, V. Savinov¹²³, D.O. Savu²⁹, P. Savva⁹, L. Sawyer^{24,i}, D.H. Saxon⁵³, L.P. Says³³, C. Sbarra^{19a,19b}, A. Sbrizzi^{19a,19b}, O. Scallon⁹³, D.A. Scannicchio¹⁶³, J. Schaarschmidt¹¹⁵, P. Schacht⁹⁹, U. Schäfer⁸¹, S. Schaetzel^{58b}, A.C. Schaffer¹¹⁵, D. Schaile⁹⁸, R.D. Schamberger¹⁴⁸, A.G. Schamov¹⁰⁷, V. Schaff^{58a}, V.A. Schegelsky¹²¹, D. Scheirich⁸⁷, M.I. Scherzer¹⁴, C. Schiavi^{50a,50b}, J. Schieck⁹⁸, M. Schioppa^{36a,36b}, S. Schlenker²⁹, J.L. Schlereth⁵, E. Schmidt⁴⁸, M.P. Schmidt^{175,*}, K. Schmieden²⁰, C. Schmitt⁸¹, M. Schmitz²⁰, A. Schöning^{58b}, M. Schott²⁹, D. Schouten¹⁴², J. Schovancova¹²⁵, M. Schram⁸⁵, C. Schroeder⁸¹, N. Schroer^{58c}, S. Schul²⁹, G. Schuler²⁹, J. Schultes¹⁷⁴, H.-C. Schultz-Coulon^{58a}, H. Schulz¹⁵, J.W. Schumacher²⁰, M. Schumacher⁴⁸, B.A. Schumm¹³⁷, Ph. Schune¹³⁶, C. Schwanenberger⁸², A. Schwartzman¹⁴³, Ph. Schwemling⁷⁸, R. Schwienhorst⁸⁸, R. Schwierz⁴³, J. Schwindling¹³⁶, W.G. Scott¹²⁹, J. Searcy¹¹⁴, E. Sedykh¹²¹, E. Segura¹¹, S.C. Seidel¹⁰³, A. Seiden¹³⁷, F. Seifert⁴³, J.M. Seixas^{23a}, G. Sekhniaidze^{102a}, D.M. Seliverstov¹²¹, B. Sellden^{146a}, G. Sellers⁷³, M. Seman^{144b}, N. Semprini-Cesari^{19a,19b}, C. Serfon⁹⁸, L. Serin¹¹⁵, R. Seuster⁹⁹, H. Severini¹¹¹, M.E. Sevior⁸⁶, A. Sfyrla²⁹, E. Shabalina⁵⁴. C. Serfon ⁹⁸, L. Serin ¹¹⁵, R. Seuster ⁹⁹, H. Severini ¹¹¹, M.E. Sevior ⁸⁶, A. Sfyrla ²⁹, E. Shabalina ⁵⁴, M. Shamim ¹¹⁴, L.Y. Shan ^{32a}, J.T. Shank ²¹, Q.T. Shao ⁸⁶, M. Shapiro ¹⁴, P.B. Shatalov ⁹⁵, L. Shaver ⁶, C. Shaw ⁵³, K. Shaw ^{164a,164c}, D. Sherman ¹⁷⁵, P. Sherwood ⁷⁷, A. Shibata ¹⁰⁸, S. Shimizu ²⁹, M. Shimojima ¹⁰⁰, T. Shin ⁵⁶, A. Shmeleva ⁹⁴, M.J. Shochet ³⁰, D. Short ¹¹⁸, M.A. Shupe ⁶, P. Sicho ¹²⁵, A. Sidoti ¹⁵, A. Siebel ¹⁷⁴, F. Siegert ⁴⁸, J. Siegrist ¹⁴, Dj. Sijacki ^{12a}, O. Silbert ¹⁷¹, J. Silva ^{124a,z}, Y. Silver ¹⁵³, D. Silverstein¹⁴³, S.B. Silverstein^{146a}, V. Simak¹²⁷, O. Simard¹³⁶, Lj. Simic^{12a}, S. Simion¹¹⁵, B. Simmons⁷⁷, M. Simonyan³⁵, P. Sinervo¹⁵⁸, N.B. Sinev¹¹⁴, V. Sipica¹⁴¹, G. Siragusa⁸¹, A.N. Sisakyan⁶⁵, S.Yu. Sivoklokov⁹⁷, J. Sjölin^{146a,146b}, T.B. Sjursen¹³, L.A. Skinnari¹⁴, K. Skovpen¹⁰⁷, P. Skubic¹¹¹, N. Skvorodnev²², M. Slater¹⁷, T. Slavicek¹²⁷, K. Sliwa¹⁶¹, T.J. Sloan⁷¹, J. Sloper²⁹, V. Smakhtin¹⁷¹, S.Yu. Smirnova⁹⁶, L.N. Smirnova⁹⁷, O. Smirnova⁷⁹, B.C. Smith⁵⁷, D. Smith¹⁴³, K.M. Smith⁵³, M. Smizanska⁷¹, K. Smolek¹²⁷, A.A. Snesarev⁹⁴, S.W. Snow⁸², J. Snow¹¹¹, J. Snuverink¹⁰⁵, S. Snyder²⁴, M. Soares¹²⁴⁴, P. Sobia^{169,h}, J. Sodomka¹²⁷, A. Soffer¹⁵³, C.A. Solara¹⁶⁷, M. Solar¹²⁷, J. Solar¹²⁷, J. Solar¹²⁷ M. Smizanska⁷¹, K. Smolek¹²⁷, A.A. Snesarev⁹⁴, S.W. Snow⁸², J. Snow¹¹¹, J. Snuverink¹⁰⁵, S. Snyder²⁴, M. Soares^{124a}, R. Sobie^{169,h}, J. Sodomka¹²⁷, A. Soffer¹⁵³, C.A. Solans¹⁶⁷, M. Solar¹²⁷, J. Solc¹²⁷, U. Soldevila¹⁶⁷, E. Solfaroli Camillocci^{132a,132b}, A.A. Solodkov¹²⁸, O.V. Solovyanov¹²⁸, J. Sondericker²⁴, N. Soni², V. Sopko¹²⁷, B. Sopko¹²⁷, M. Sorbi^{89a,89b}, M. Sosebee⁷, A. Soukharev¹⁰⁷, S. Spagnolo^{72a,72b}, F. Spanò³⁴, R. Spighi^{19a}, G. Spigo²⁹, F. Spila^{132a,132b}, E. Spiriti^{134a}, R. Spiwoks²⁹, M. Spousta¹²⁶, T. Spreitzer¹⁵⁸, B. Spurlock⁷, R.D.St. Denis⁵³, T. Stahl¹⁴¹, J. Stahlman¹²⁰, R. Stamen^{58a}, E. Stanecka²⁹, R.W. Stanek⁵, C. Stanescu^{134a}, S. Stapnes¹¹⁷, E.A. Starchenko¹²⁸, J. Stark⁵⁵, P. Staroba¹²⁵, P. Starovoitov⁹¹, A. Staude⁹⁸, P. Stavina^{144a}, G. Stavropoulos¹⁴, G. Steele⁵³, P. Steinbach⁴³, P. Steinberg²⁴, I. Stekl¹²⁷, B. Stelzer¹⁴², H.J. Stelzer⁴¹, O. Stelzer-Chilton^{159a}, H. Stenzel⁵², K. Stevenson⁷⁵, G.A. Stewart⁵³, J.A. Stillings²⁰, T. Stockmanns²⁰, M.C. Stockton²⁹, K. Stoerig⁴⁸, G. Stoicea^{25a}, S. Stoniek⁹⁹, P. Strachota¹²⁶, A.R. Stradling⁷, A. Straessner⁴³, J. Strandberg⁸⁷, K. Stevenson ⁷⁵, G.A. Stewart ⁵³, J.A. Stillings ²⁰, T. Stocket ⁷, O. Stekket ⁷⁹, M.C. Stockton ²⁹, K. Stoerig ⁴⁸, G. Stoicea ^{25a}, S. Stonjek ⁹⁹, P. Strachota ¹²⁶, A.R. Stradling ⁷, A. Straessner ⁴³, J. Strandberg ⁸⁷, S. Strandberg ^{146a,146b}, A. Strandlie ¹¹⁷, M. Strang ¹⁰⁹, E. Strauss ¹⁴³, M. Strauss ¹¹¹, P. Strizenec ^{144b}, R. Ströhmer ¹⁷³, D.M. Strom ¹¹⁴, J.A. Strong ^{76,*}, R. Stroynowski ³⁹, J. Strube ¹²⁹, B. Stugu ¹³, I. Stumer ^{24,*}, J. Stupak ¹⁴⁸, P. Sturm ¹⁷⁴, D.A. Soh ^{151,7}, D. Su ¹⁴³, S. Subramania ², Y. Sugaya ¹¹⁶, T. Sugimoto ¹⁰¹, C. Suhr ¹⁰⁶, K. Suita ⁶⁷, M. Suk ¹²⁶, V.V. Sulin ⁹⁴, S. Sultansoy ^{3d}, T. Sumida ²⁹, X. Sun ⁵⁵, J.E. Sundermann ⁴⁸, K. Suruliz ^{164a,164b}, S. Sushkov ¹¹, G. Susinno ^{36a,36b}, M.R. Sutton ¹³⁹, Y. Suzuki ⁶⁶, Yu.M. Sviridov ¹²⁸, S. Swedish ¹⁶⁸, I. Sykora ^{144a}, T. Sykora ¹²⁶, B. Szeless ²⁹, J. Sánchez ¹⁶⁷, D. Ta ¹⁰⁵, K. Tackmann ²⁹, A. Taffard ¹⁶³, R. Tafirout ^{159a}, A. Taga ¹¹⁷, N. Taiblum ¹⁵³, Y. Takahashi ¹⁰¹, H. Takai ²⁴, R. Takashima ⁶⁹, H. Takeda ⁶⁷, T. Takeshita ¹⁴⁰, M. Talby ⁸³, A. Talyshev ¹⁰⁷, M.C. Tamsett ²⁴, J. Tanaka ¹⁵⁵, R. Tanaka ¹¹⁵, S. Tanaka ⁶⁶, Y. Tanaka ¹⁰⁰, K. Tariafer ¹³⁹, P. Tas ¹²⁶, M. Tasevsky ¹²⁵, E. Tassi ^{36a,36b}, M. Tatarkhanov ¹⁴, C. Taylor ⁷⁷, F.E. Taylor ⁹², G. Taylor ¹³⁷, G.N. Taylor ⁸⁶, W. Taylor ^{159b}, M. Teixeira Dias Castanheira ⁷⁵, P. Teixeira ¹⁷⁴, J. Therhaag ²⁰, T. Thevenaux-Pelzer ⁷⁸, M. Thioye ¹⁷⁵, S. Thoma ¹⁵, P. Thomson ¹⁷, P.D. Thompson ¹⁵⁸, A.S. Thompson ⁵³, E. Thomson ¹²⁰, M. Thomson ²⁷, R.P. Thun ⁸⁷, T. Tic ¹²⁵, V.O. Tikhomirov ⁹⁴, Y.A. Tikhonov ¹⁰⁷, C.J.W.P. Timmermans ¹⁰⁴, P. Tipton ¹⁷⁵, F.J. Tique Aires Viegas ²⁹, S. Tisserant ⁸³, J. Tobias ⁴⁸, B. Toczek ³⁷,

T. Todorov⁴, S. Todorova-Nova¹⁶¹, B. Toggerson¹⁶³, J. Tojo⁶⁶, S. Tokár^{144a}, K. Tokunaga⁶⁷, T. Todorov⁴, S. Todorova-Nova¹⁶¹, B. Toggerson¹⁶³, J. Tojo⁶⁶, S. Tokár ^{144a}, K. Tokunaga⁶⁷, K. Tokushuku⁶⁶, K. Tollefson⁸⁸, M. Tomoto¹⁰¹, L. Tompkins¹⁴, K. Toms¹⁰³, A. Tonazzo^{134a,134b}, G. Tong^{32a}, A. Tonoyan¹³, C. Topfel¹⁶, N.D. Topilin⁶⁵, I. Torchiani²⁹, E. Torrence¹¹⁴, E. Torró Pastor¹⁶⁷, J. Toth^{83,x}, F. Touchard⁸³, D.R. Tovey¹³⁹, D. Traynor⁷⁵, T. Trefzger¹⁷³, J. Treis²⁰, L. Tremblet²⁹, A. Tricoli²⁹, I.M. Trigger^{159a}, S. Trincaz-Duvoid⁷⁸, T.N. Trinh⁷⁸, M.F. Tripiana⁷⁰, N. Triplett⁶⁴, W. Trischuk¹⁵⁸, A. Trivedi^{24,w}, B. Trocmé⁵⁵, C. Troncon^{89a}, M. Trottier-McDonald¹⁴², A. Trzupek³⁸, C. Tsarouchas²⁹, J.C.-L. Tseng¹¹⁸, M. Tsiakiris¹⁰⁵, P.V. Tsiareshka⁹⁰, D. Tsionou⁴, G. Tsipolitis⁹, V. Tsiskaridze⁴⁸, E.G. Tskhadadze⁵¹, I.I. Tsukerman⁹⁵, V. Tsulaia¹²³, J.-W. Tsung²⁰, S. Tsuno⁶⁶, D. Tsybychev¹⁴⁸, A. Tua¹³⁹, J.M. Tuggle³⁰, M. Turala³⁸, D. Turecek¹²⁷, I. Turk Cakir^{3e}, E. Turlay¹⁰⁵, P.M. Tuts³⁴, A. Tykhonov⁷⁴, M. Tylmad^{146a,146b}, M. Tyndel¹²⁹, D. Typaldos¹⁷, H. Tyrvainen²⁹, G. Tzanakos⁸ K. Uchida²⁰ I. Ueda¹⁵⁵ R. Ueno²⁸ M. Ugland¹³ M. Uhlenbrock²⁰ M. Uhrmacher⁵⁴ G. Tzanakos⁸, K. Uchida²⁰, I. Ueda¹⁵⁵, R. Ueno²⁸, M. Ugland¹³, M. Uhlenbrock²⁰, M. Uhrmacher⁵⁴, E. van der Kraaij ¹⁰⁵, E. van der Poel ¹⁰⁵, D. van der Ster ²⁹, B. Van Eijk ¹⁰⁵, N. van Eldik ⁸⁴, P. van Gemmeren ⁵, Z. van Kesteren ¹⁰⁵, I. van Vulpen ¹⁰⁵, W. Vandelli ²⁹, G. Vandoni ²⁹, A. Vaniachine ⁵, P. Vankov⁴¹, F. Vannucci⁷⁸, F. Varela Rodriguez²⁹, R. Vari^{132a}, E.W. Varnes⁶, D. Varouchas¹⁴, A. Vartapetian⁷, K.E. Varvell¹⁵⁰, V.I. Vassilakopoulos⁵⁶, F. Vazeille³³, G. Vegni^{89a,89b}, J.J. Veillet¹¹⁵, C. Vellidis⁸, F. Veloso^{124a}, R. Veness²⁹, S. Veneziano^{132a}, A. Ventura^{72a,72b}, D. Ventura¹³⁸, M. Venturi⁴⁸, N. Venturi¹⁶, V. Vercesi^{119a}, M. Verducci¹³⁸, W. Verkerke¹⁰⁵, J.C. Vermeulen¹⁰⁵, A. Vest⁴³, M.C. Vetterli^{142,d}, I. Vichou¹⁶⁵, T. Vickey^{145b,aa}, G.H.A. Viehhauser¹¹⁸, S. Viel¹⁶⁸, M. Villa^{19a,19b}, M. Villaplana Perez¹⁶⁷, E. Vilucchi⁴⁷, M.G. Vincter²⁸, E. Vinek²⁹, V.B. Vinogradov⁶⁵, M. Virchaux^{136,*}, S. Viret³³, J. Virzi¹⁴, A. Vitale^{19a,19b}, O. Vitells¹⁷¹, I. Vivarelli⁴⁸, F. Vives Vaque¹¹, S. Vlachos⁹, M. Vlasak¹²⁷, N. Vlasov²⁰, A. Vogel²⁰, P. Vokac¹²⁷, M. Volpi¹¹, G. Volpini^{89a}, H. von der Schmitt⁹⁹, J. von Loeben ⁹⁹, H. von Radziewski ⁴⁸, E. von Toerne ²⁰, V. Vorobel ¹²⁶, A.P. Vorobiev ¹²⁸, V. Vorwerk ¹¹, M. Vos¹⁶⁷, R. Voss²⁹, T.T. Voss¹⁷⁴, J.H. Vossebeld⁷³, A.S. Vovenko¹²⁸, N. Vranjes^{12a}, M. Vos¹⁰⁷, R. Voss²³, 1.1. Voss¹⁷⁴, J.H. Vossebeld⁷⁵, A.S. Vovenko¹²³, N. Vranjes¹²⁴, M. Vranjes Milosavljevic^{12a}, V. Vrba¹²⁵, M. Vreeswijk¹⁰⁵, T. Vu Anh⁸¹, R. Vuillermet²⁹, I. Vukotic¹¹⁵, W. Wagner¹⁷⁴, P. Wagner¹²⁰, H. Wahlen¹⁷⁴, J. Wakabayashi¹⁰¹, J. Walbersloh⁴², S. Walch⁸⁷, J. Walder⁷¹, R. Walker⁹⁸, W. Walkowiak¹⁴¹, R. Wall¹⁷⁵, P. Waller⁷³, C. Wang⁴⁴, H. Wang¹⁷², J. Wang¹⁵¹, J. Wang^{32d}, J.C. Wang¹³⁸, R. Wang¹⁰³, S.M. Wang¹⁵¹, A. Warburton⁸⁵, C.P. Ward²⁷, M. Warsinsky⁴⁸, P.M. Watkins¹⁷, A.T. Watson¹⁷, M.F. Watson¹⁷, G. Watts¹³⁸, S. Watts⁸², A.T. Waugh¹⁵⁰, B.M. Waugh⁷⁷, J. Weber⁴², M. Weber¹²⁹, M.S. Weber¹⁶, P. Weber⁵⁴, A.R. Weidberg¹¹⁸, J. Weingarten⁵⁴, G. Waisar⁴⁸, H. Wallanatain²², P.S. Walla²⁹, M. Wang⁴⁷, T. Wapag⁴⁴, S. Wang¹⁵¹, J. Wang¹⁵¹, J. C. Weiser⁴⁸, H. Wellenstein²², P.S. Wells²⁹, M. Wen⁴⁷, T. Wenaus²⁴, S. Wendler¹²³, Z. Weng^{151,r}, T. Wengler²⁹, S. Wenig²⁹, N. Wermes²⁰, M. Werner⁴⁸, P. Werner²⁹, M. Werth¹⁶³, M. Wessels^{58a}, T. Wengler²⁹, S. Wenig²⁹, N. Wermes²⁰, M. Werner⁴⁶, P. Werner²⁹, M. Werth¹⁰⁵, M. Wessels³⁰⁴, K. Whalen²⁸, S.J. Wheeler-Ellis¹⁶³, S.P. Whitaker²¹, A. White⁷, M.J. White⁸⁶, S. White²⁴, S.R. Whitehead¹¹⁸, D. Whiteson¹⁶³, D. Whittington⁶¹, F. Wicek¹¹⁵, D. Wicke¹⁷⁴, F.J. Wickens¹²⁹, W. Wiedenmann¹⁷², M. Wielers¹²⁹, P. Wienemann²⁰, C. Wiglesworth⁷³, L.A.M. Wiik⁴⁸, A. Wildauer¹⁶⁷, M.A. Wildt^{41,p}, I. Wilhelm¹²⁶, H.G. Wilkens²⁹, J.Z. Will⁹⁸, E. Williams³⁴, H.H. Williams¹²⁰, W. Willis³⁴, S. Willocq⁸⁴, J.A. Wilson¹⁷, M.G. Wilson¹⁴³, A. Wilson⁸⁷, I. Wingerter-Seez⁴, S. Winkelmann⁴⁸, F. Winklmeier²⁹, M. Wittgen¹⁴³, M.W. Wolter³⁸, H. Wolters^{124a,f}, G. Wooden¹¹⁸, B.K. Wosiek³⁸, J. Wotschack²⁹, M.J. Woudstra⁸⁴, K. Wraight⁵³, C. Wright⁵³, B. Wrona⁷³, S.L. Wu¹⁷², X. Wu⁴⁹, Y. Wu ^{32b}, E. Wulf ³⁴, R. Wunstorf ⁴², B.M. Wynne ⁴⁵, L. Xaplanteris ⁹, S. Xella ³⁵, S. Xie ⁴⁸, Y. Xie ^{32a}, C. Xu ^{32b}, D. Xu ¹³⁹, G. Xu ^{32a}, B. Yabsley ¹⁵⁰, M. Yamada ⁶⁶, A. Yamamoto ⁶⁶, K. Yamamoto ⁶⁴, S. Yamamoto ¹⁵⁵, T. Yamamura ¹⁵⁵, J. Yamaoka⁴⁴, T. Yamazaki ¹⁵⁵, Y. Yamazaki ⁶⁷, Z. Yan²¹, H. Yang ⁸⁷, U.K. Yang ⁸², Y. Yang ⁶¹, Y. Yang ^{32a}, Z. Yang ^{146a,146b}, S. Yanush ⁹¹, W.-M. Yao ¹⁴, Y. Yao ¹⁴, Y. Yasu ⁶⁶, J. Ye ³⁹, S. Ye ²⁴, M. Yilmaz ^{3c}, R. Yoosoofmiya ¹²³, K. Yorita ¹⁷⁰, R. Yoshida ⁵, C. Young ¹⁴³, S. Youssef ²¹, D. Yu²⁴, J. Yu⁷, J. Yu^{32c,ab}, L. Yuan^{32a,ac}, A. Yurkewicz¹⁴⁸, V.G. Zaets¹²⁸, R. Zaidan⁶³, A.M. Zaitsev¹²⁸,
Z. Zajacova²⁹, Yo.K. Zalite¹²¹, L. Zanello^{132a,132b}, P. Zarzhitsky³⁹, A. Zaytsev¹⁰⁷, C. Zeitnitz¹⁷⁴,
M. Zeller¹⁷⁵, P.F. Zema²⁹, A. Zemla³⁸, C. Zendler²⁰, A.V. Zenin¹²⁸, O. Zenin¹²⁸, T. Ženiš^{144a},
Z. Zenonos^{122a,122b}, S. Zenz¹⁴, D. Zerwas¹¹⁵, G. Zevi della Porta⁵⁷, Z. Zhan^{32d}, D. Zhang^{32b},

H. Zhang⁸⁸, J. Zhang⁵, X. Zhang^{32d}, Z. Zhang¹¹⁵, L. Zhao¹⁰⁸, T. Zhao¹³⁸, Z. Zhao^{32b}, A. Zhemchugov⁶⁵, S. Zheng^{32a}, J. Zhong^{151,ad}, B. Zhou⁸⁷, N. Zhou¹⁶³, Y. Zhou¹⁵¹, C.G. Zhu^{32d}, H. Zhu⁴¹, Y. Zhu¹⁷², X. Zhuang⁹⁸, V. Zhuravlov⁹⁹, D. Zieminska⁶¹, B. Zilka^{144a}, R. Zimmermann²⁰, S. Zimmermann²⁰, S. Zimmermann⁴⁸, M. Ziolkowski¹⁴¹, R. Zitoun⁴, L. Živković³⁴, V.V. Zmouchko^{128,*}, G. Zobernig¹⁷², A. Zoccoli^{19a,19b}, Y. Zolnierowski⁴, A. Zsenei²⁹, M. zur Nedden¹⁵, V. Zutshi¹⁰⁶, L. Zwalinski²⁹

- ³ Ankara University^(a), Faculty of Sciences, Department of Physics, TR-061000 Tandogan, Ankara; Dumlupinar University^(b), Faculty of Arts and Sciences, Department of Physics, Kutahya; Gazi University^(C), Faculty of Arts and Sciences, Department of Physics, 06500 Teknikokullar, Ankara; TOBB University of Economics and Technology^(d), Faculty of Arts and Sciences, Division of Physics, 06560 Sogutozu, Ankara; Turkish Atomic Energy Authority^(e), 06530 Lodumlu, Ankara, Turkey
- ⁴ LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux, France
- ⁵ Argonne National Laboratory, High Energy Physics Division, 9700 S. Cass Avenue, Argonne, IL 60439, United States
- ⁶ University of Arizona, Department of Physics, Tucson, AZ 85721, United States
- The University of Texas at Arlington, Department of Physics, Box 19059, Arlington, TX 76019, United States
- ⁸ University of Athens, Nuclear & Particle Physics, Department of Physics, Panepistimiopouli, Zografou, GR-15771 Athens, Greece
- ⁹ National Technical University of Athens, Physics Department, 9-Iroon Polytechniou, GR-15780 Zografou, Greece
- ¹⁰ Institute of Physics, Azerbaijan Academy of Sciences, H. Javid Avenue 33, AZ 143 Baku, Azerbaijan
- ¹¹ Institut de Física d'Altes Energies, IFAE, Edifici Cn, Universitat Autònoma de Barcelona, ES-08193 Bellaterra (Barcelona), Spain
- 12 University of Belgrade^(a), Institute of Physics, P.O. Box 57, 11001 Belgrade; Vinca Institute of Nuclear Sciences^(b), M. Petrovica Alasa 12-14, 11001 Belgrade, Serbia
- ¹³ University of Bergen, Department for Physics and Technology, Allegaten 55, NO-5007 Bergen, Norway
- 14 Lawrence Berkeley National Laboratory and University of California, Physics Division, MS50B-6227, 1 Cyclotron Road, Berkeley, CA 94720, United States
- ¹⁵ Humboldt University, Institute of Physics, Berlin, Newtonstr. 15, D-12489 Berlin, Germany
- ¹⁶ University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- ¹⁷ University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham B15 2TT, United Kingdom
- 18 Bogazici University^(a), Faculty of Sciences, Department of Physics, TR-80815 Bebek-Istanbul; Dogus University^(b), Faculty of Arts and Sciences, Department of Physics, 34722 Kadikov, Istanbul; Gaziantep University^(c), Faculty of Engineering, Department of Physics Engineering, 27310 Sehitkamil, Gaziantep; Istanbul Technical University^(d), Faculty of Arts and Sciences, Department of Physics, 34469 Maslak, Istanbul, Turkey
- ¹⁹ INFN Sezione di Bologna^(a); Università di Bologna, Dipartimento di Fisica^(a), viale C. Berti Pichat, 6/2, IT-40127 Bologna, Italy
- ²⁰ University of Bonn. Physikalisches Institut. Nussallee 12, D-53115 Bonn. Germany
- ²¹ Boston University, Department of Physics, 590 Commonwealth Avenue, Boston, MA 02215, United States
- ²² Brandeis University, Department of Physics, MS057, 415 South Street, Waltham, MA 02454, United States
- ²³ Universidade Federal do Rio De Janeiro, COPPE/EE/IF^(G), Caixa Postal 68528, Ilha do Fundao, BR-21945-970 Rio de Janeiro; Universidade de Sao Paulo^(b), Instituto de Fisica, R.do Matao Trav. R.187, Sao Paulo, SP 05508-900, Brazil
- ²⁴ Brookhaven National Laboratory, Physics Department, Bldg. 510A, Upton, NY 11973, United States
- ²⁵ National Institute of Physics and Nuclear Engineering^(a), Bucharest-Magurele, Str. Atomistilor 407, P.O. Box MG-6, R-077125; University Politehnica Bucharest^(b), Rectorat, AN 001, 313 Splaiul Independentei, sector 6, 060042 Bucuresti; West University^(C) in Timisoara, Bd. Vasile Parvan 4, Timisoara, Romania
- ²⁶ Universidad de Buenos Aires, FCEyN, Dto. Fisica, Pab I, C. Universitaria, 1428 Buenos Aires, Argentina
- ²⁷ University of Cambridge, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 OHE, United Kingdom ²⁸ Carleton University, Department of Physics, 1125 Colonel By Drive, Ottawa ON K1S 5B6, Canada
- ²⁹ CERN, CH-1211 Geneva 23, Switzerland
- ³⁰ University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637, United States
- 31 Pontificia Universidad Católica de Chile, Facultad de Fisica, Departamento de Fisica⁽⁰⁾, Avda. Vicuna Mackenna 4860, San Joaquin, Santiago; Universidad Técnica Federico Santa María, Departamento de Física^(b), Avda. Espana 1680, Casilla 110-V, Valparaíso, Chile
- 32 Institute of High Energy Physics, Chinese Academy of Sciences^(a), P.O. Box 918, 19 Yuquan Road, Shijing Shan District, CN, Beijing 100049; University of Science & Technology
- of China (USTC), Department of Modern Physics^(b), Hefei, CN, Anhui 230026; Nanjing University, Department of Physics^(c), Nanjing, CN, Jiangsu 210093; Shandong University, High Energy Physics Group^(d), Jinan, CN, Shandong 250100, China
- ³³ Laboratoire de Physique Corpusculaire, Clermont Université, Université Blaise Pascal, CNRS/IN2P3, FR-63177 Aubiere Cedex, France
- ³⁴ Columbia University, Nevis Laboratory, 136 So. Broadway, Irvington, NY 10533, United States
- ³⁵ University of Copenhagen, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Kobenhavn 0, Denmark
- ³⁶ INFN Gruppo Collegato di Cosenza^(a); Università della Calabria, Dipartimento di Fisica^(b), IT-87036 Arcavacata di Rende, Italy
- 37 Faculty of Physics and Applied Computer Science of the AGH–University of Science and Technology (FPACS, AGH–UST), al. Mickiewicza 30, PL-30059 Cracow, Poland
- 38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31342 Cracow, Poland
- 39 Southern Methodist University, Physics Department, 106 Fondren Science Building, Dallas, TX 75275-0175, United States
- ⁴⁰ University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, United States
- ⁴¹ DESY, Notkestr. 85, D-22603 Hamburg and Platanenallee 6, D-15738 Zeuthen, Germany
- ⁴² TU Dortmund, Experimentelle Physik IV, DE-44221 Dortmund, Germany
- ⁴³ Technical University Dresden, Institut für Kern- und Teilchenphysik, Zellescher Weg 19, D-01069 Dresden, Germany
- ⁴⁴ Duke University, Department of Physics, Durham, NC 27708, United States
- 45 University of Edinburgh, School of Physics & Astronomy, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
- ⁴⁶ Fachhochschule Wiener Neustadt; Johannes Gutenbergstrasse 3, AT-2700 Wiener Neustadt, Austria
- ⁴⁷ INFN Laboratori Nazionali di Frascati, via Enrico Fermi 40, IT-00044 Frascati, Italy
- ⁴⁸ Albert-Ludwigs-Universität, Fakultät für Mathematik und Physik, Hermann-Herder Str. 3, D-79104 Freiburg i.Br., Germany
- ⁴⁹ Université de Genève, Section de Physique, 24 rue Ernest Ansermet, CH-1211 Geneve 4, Switzerland
- ⁵⁰ INFN Sezione di Genova^(a); Università di Genova, Dipartimento di Fisica^(b), via Dodecaneso 33, IT-16146 Genova, Italy
- ⁵¹ Institute of Physics of the Georgian Academy of Sciences, 6 Tamarashvili St., GE-380077 Tbilisi; Tbilisi State University, HEP Institute, University St. 9, GE-380086 Tbilisi, Georgia
- ⁵² Justus-Liebig-Universität Giessen, II Physikalisches Institut, Heinrich-Buff Ring 16, D-35392 Giessen, Germany
- ⁵³ University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ, United Kingdom
- ⁵⁴ Georg-August-Universität, II Physikalisches Institut, Friedrich-Hund Platz 1, D-37077 Göttingen, Germany
- ⁵⁵ Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier, CNRS–IN2P3, INPG, Grenoble, France
- ⁵⁶ Hampton University, Department of Physics, Hampton, VA 23668, United States
- ⁵⁷ Harvard University, Laboratory for Particle Physics and Cosmology, 18 Hammond Street, Cambridge, MA 02138, United States
- 58 Ruprecht-Karls-Universität Heidelberg: Kirchhoff-Institut für Physik^(a), Im Neuenheimer Feld 227, D-69120 Heidelberg; Physikalisches Institut^(b), Philosophenweg 12,
- D-69120 Heidelberg; ZITI Ruprecht-Karls-University Heidelberg^(C), Lehrstuhl für Informatik V, B6, 23-29, D-68131 Mannheim, Germany
- ⁵⁹ Hiroshima University, Faculty of Science, 1-3-1 Kagamiyama, Higashihiroshima-shi, JP, Hiroshima 739-8526, Japan
- 60 Hiroshima Institute of Technology, Faculty of Applied Information Science, 2-1-1 Miyake Saeki-ku, Hiroshima-shi, JP, Hiroshima 731-5193, Japan
- ⁶¹ Indiana University, Department of Physics, Swain Hall West 117, Bloomington, IN 47405-7105, United States

¹ University at Albany, 1400 Washington Ave, Albany, NY 12222, United States

² University of Alberta, Department of Physics, Centre for Particle Physics, Edmonton, AB T6G 2G7, Canada

⁶² Institut für Astro- und Teilchenphysik, Technikerstrasse 25, A-6020 Innsbruck, Austria ⁶³ University of Iowa, 203 Van Allen Hall, Iowa City, IA 52242-1479, United States ⁶⁴ Iowa State University, Department of Physics and Astronomy, Ames High Energy Physics Group, Ames, IA 50011-3160, United States ⁶⁵ Joint Institute for Nuclear Research, JINR Dubna, RU-141980 Moscow Region, Russia ⁶⁶ KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801, Japan ⁶⁷ Kobe University, Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, JP, Kobe 657-8501, Japan 68 Kyoto University, Faculty of Science, Oiwake-cho, Kitashirakawa, Sakyou-ku, Kyoto-shi, JP Kyoto 606-8502, Japan ⁶⁹ Kyoto University of Education, 1 Fukakusa, Fujimori, Fushimi-ku, Kyoto-shi, JP, Kyoto 612-8522, Japan ⁷⁰ Universidad Nacional de La Plata, FCE, Departamento de Física, IFLP (CONICET–UNLP), C.C. 67, 1900 La Plata, Argentina ⁷¹ Lancaster University, Physics Department, Lancaster LA1 4YB, United Kingdom ⁷² INFN Sezione di Lecce^(d): Università del Salento. Dipartimento di Fisica^(b). Via Arnesano. IT-73100 Lecce. Italy 73 University of Liverpool, Oliver Lodge Laboratory, P.O. Box 147, Oxford Street, Liverpool L69 3BX, United Kingdom ⁷⁴ Jožef Stefan Institute and University of Ljubljana, Department of Physics, SI-1000 Ljubljana, Slovenia ⁷⁵ Queen Mary University of London, Department of Physics, Mile End Road, London E1 4NS, United Kingdom ⁷⁶ Royal Holloway, University of London, Department of Physics, Egham Hill, Egham, Surrey TW20 0EX, United Kingdom ⁷⁷ University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, United Kingdom ⁷⁸ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC, Université Paris Diderot, CNRS/IN2P3, 4 place Jussieu, FR-75252 Paris Cedex 05, France ⁷⁹ Fysiska Institutionen, Lunds Universitet, Box 118, SE-221 00 Lund, Sweden ⁸⁰ Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Fisica Teorica, ES-28049 Madrid, Spain ⁸¹ Universität Mainz, Institut für Physik, Staudinger Weg 7, DE-55099 Mainz, Germany ⁸² University of Manchester, School of Physics and Astronomy, Manchester M13 9PL, United Kingdom 83 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France ⁸⁴ University of Massachusetts, Department of Physics, 710 North Pleasant Street, Amherst, MA 01003, United States ⁸⁵ McGill University, High Energy Physics Group, 3600 University Street, Montreal, Quebec H3A 2T8, Canada ⁸⁶ University of Melbourne, School of Physics, AU, Parkville, Victoria 3010, Australia 87 The University of Michigan, Department of Physics, 2477 Randall Laboratory, 500 East University, Ann Arbor, MI 48109-1120, United States ⁸⁸ Michigan State University, Department of Physics and Astronomy, High Energy Physics Group, East Lansing, MI 48824-2320, United States ⁸⁹ INFN Sezione di Milano^(a); Università di Milano, Dipartimento di Fisica^(b), via Celoria 16, IT-20133 Milano, Italy
 ⁹⁰ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Independence Avenue 68, Minsk 220072, Belarus ⁹¹ National Scientific & Educational Centre for Particle & High Energy Physics, NC PHEP BSU, M. Bogdanovich St. 153, Minsk 220040, Belarus ⁹² Massachusetts Institute of Technology, Department of Physics, Room 24-516, Cambridge, MA 02139, United States ⁹³ University of Montreal, Group of Particle Physics, C.P. 6128, Succursale Centre-Ville, Montreal, Ouebec, H3C 317, Canada ⁹⁴ P.N. Lebedev Institute of Physics, Academy of Sciences, Leninsky pr. 53, RU-117 924 Moscow, Russia 95 Institute for Theoretical and Experimental Physics (ITEP), B. Cheremushkinskaya ul. 25, RU-117 218 Moscow, Russia ⁹⁶ Moscow Engineering & Physics Institute (MEPhI), Kashirskoe Shosse 31, RU-115409 Moscow, Russia 97 Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics (MSU SINP), 1(2), Leninskie gory, GSP-1, Moscow 119991 Russian Federation, Russia ⁹⁸ Ludwig-Maximilians-Universität München, Fakultät für Physik, Am Coulombwall 1, DE-85748 Garching, Germany ⁹⁹ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany ¹⁰⁰ Nagasaki Institute of Applied Science, 536 Aba-machi, JP, Nagasaki 851-0193, Japan

¹⁰¹ Nagoya University, Graduate School of Science, Furo-Cho, Chikusa-ku, Nagoya, 464-8602, Japan

102 INFN Sezione di Napoli^{(di}); Università di Napoli, Dipartimento di Scienze Fisiche^(b), Complesso Universitario di Monte Sant'Angelo, via Cinthia, IT-80126 Napoli, Italy

¹⁰³ University of New Mexico, Department of Physics and Astronomy, MSC07 4220, Albuquerque, NM 87131, United States

104 Radboud University Nijmegen/NIKHEF, Department of Experimental High Energy Physics, Heyendaalseweg 135, NL-6525 AJ, Nijmegen, Netherlands

¹⁰⁵ Nikhef National Institute for Subatomic Physics, and University of Amsterdam, Science Park 105, 1098 XG Amsterdam, Netherlands

¹⁰⁶ Department of Physics, Northern Illinois University, LaTourette Hall Normal Road, DeKalb, IL 60115, United States

¹⁰⁷ Budker Institute of Nuclear Physics (BINP), RU, Novosibirsk 630 090, Russia

¹⁰⁸ New York University, Department of Physics, 4 Washington Place, New York, NY 10003, United States

¹⁰⁹ Ohio State University, 191 West Woodruff Ave, Columbus, OH 43210-1117, United States

¹¹⁰ Okayama University, Faculty of Science, Tsushimanaka 3-1-1, Okayama 700-8530, Japan

111 University of Oklahoma, Homer L. Dodge Department of Physics and Astronomy, 440 West Brooks, Room 100, Norman, OK 73019-0225, United States

112 Oklahoma State University, Department of Physics, 145 Physical Sciences Building, Stillwater, OK 74078-3072, United States

¹¹³ Palacký University, 17. listopadu 50a, 772 07 Olomouc, Czech Republic

¹¹⁴ University of Oregon, Center for High Energy Physics, Eugene, OR 97403-1274, United States

115 LAL, Univ. Paris-Sud, IN2P3/CNRS, Orsay, France

¹¹⁶ Osaka University, Graduate School of Science, Machikaneyama-machi 1-1, Toyonaka, Osaka 560-0043, Japan

¹¹⁷ University of Oslo, Department of Physics, P.O. Box 1048, Blindern, NO-0316 Oslo 3, Norway

¹¹⁸ Oxford University, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom

¹¹⁹ INFN Sezione di Pavia^(a); Università di Pavia, Dipartimento di Fisica Nucleare e Teorica^(b), Via Bassi 6, IT-27100 Pavia, Italy

120 University of Pennsylvania, Department of Physics, High Energy Physics Group, 209 S. 33rd Street, Philadelphia, PA 19104, United States

121 Petersburg Nuclear Physics Institute, RU-188 300 Gatchina, Russia

¹²² INFN Sezione di Pisa^(a) : Università di Pisa, Dipartimento di Fisica E. Fermi^(b) , Largo B. Pontecorvo 3, IT-56127 Pisa, Italy

¹²³ University of Pittsburgh, Department of Physics and Astronomy, 3941 O'Hara Street, Pittsburgh, PA 15260, United States
¹²⁴ Laboratorio de Instrumentacao e Fisica Experimental de Particulas – LIP^(a), Avenida Elias Garcia 14-1, PT-1000-149 Lisboa; Universidad de Granada,

Departamento de Fisica Teorica y del Cosmos and CAFPE^(b), E-18071 Granada, Spain

Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Praha 8, Czech Republic

126 Charles University in Prague, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, V Holesovickach 2, CZ-18000 Praha 8, Czech Republic

¹²⁷ Czech Technical University in Prague, Zikova 4, CZ-166 35 Praha 6, Czech Republic

¹²⁸ State Research Center Institute for High Energy Physics, Moscow Region, 142281, Protvino, Pobeda street, 1, Russia

129 Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot 0X11 0QX, United Kingdom

¹³⁰ University of Regina, Physics Department, Canada

¹³¹ Ritsumeikan University, Noji Higashi 1 chome 1-1, JP, Kusatsu, Shiga 525-8577, Japan

¹³² INFN Sezione di Roma I^(a); Università La Sapienza, Dipartimento di Fisica^(b), Piazzale A. Moro 2, IT-00185 Roma, Italy

133 INFN Sezione di Roma Tor Vergata^(a); Università di Roma Tor Vergata, Dipartimento di Fisica^(b), via della Ricerca Scientifica, IT-00133 Roma, Italy

134 INFN Sezione di Roma Tre^(a); Università Roma Tre, Dipartimento di Fisica^(b), via della Vasca Navale 84, IT-00146 Roma, Italy

135 Réseau Universitaire de Physique des Hautes Energies (RUPHE): Université Hassan II, Faculté des Sciences Ain Chock^(a), B.P. 5366, MA, Casablanca;

Centre National de l'Energie des Sciences Techniques Nucleaires (CNESTEN)^(b), B.P. 1382 R.P. 10001 Rabat 10001; Université Mohamed Premier^(C), LPTPM, Faculté des Sciences, B.P. 717. Bd. Mohamed VI, 60000 Oujda; Université Mohammed V, Faculté des Sciences^(d), 4 Avenue Ibn Battouta, B.P. 1014 R.P., 10000 Rabat, Morocco

¹³⁶ CEA, DSM/IRFU, Centre d'Etudes de Saclay, FR-91191 Gif-sur-Yvette, France

¹³⁷ University of California Santa Cruz, Santa Cruz Institute for Particle Physics (SCIPP), Santa Cruz, CA 95064, United States

¹³⁸ University of Washington, Seattle, Department of Physics, Box 351560, Seattle, WA 98195-1560, United States

¹³⁹ University of Sheffield, Department of Physics & Astronomy, Hounsfield Road, Sheffield S3 7RH, United Kingdom

140 Shinshu University, Department of Physics, Faculty of Science, 3-1-1 Asahi, Matsumoto-shi, JP, Nagano 390-8621, Japan

¹⁴¹ Universität Siegen, Fachbereich Physik, D 57068 Siegen, Germany

¹⁴² Simon Fraser University, Department of Physics, 8888 University Drive, CA, Burnaby, BC V5A 1S6, Canada

¹⁴³ SLAC National Accelerator Laboratory, Stanford, California 94309, United States

144 Comenius University, Faculty of Mathematics, Physics & Informatics^(a), Mlynska dolina F2, SK-84248 Bratislava; Institute of Experimental Physics of the Slovak Academy of Sciences, Dept. of Subnuclear Physics^(b), Watsonova 47, SK-04353 Kosice, Slovak Republic

145 University of Iohannesburg, Department of Physics^(a), P.O. Box 524, Auckland Park, Iohannesburg 2006; School of Physics, University of the Witwatersrand^(b), Private Bag 3, Wits 2050, Johannesburg, South Africa

⁴⁶ Stockholm University, Department of Physics^(a); The Oskar Klein Centre^(b), AlbaNova, SE-106 91 Stockholm, Sweden

¹⁴⁷ Royal Institute of Technology (KTH), Physics Department, SE-106 91 Stockholm, Sweden

- 148 Stony Brook University, Department of Physics and Astronomy, Nicolls Road, Stony Brook, NY 11794-3800, United States
- 149 University of Sussex, Department of Physics and Astronomy Pevensey 2 Building, Falmer, Brighton BN1 90H, United Kingdom
- ¹⁵⁰ University of Sydney, School of Physics, AU, Sydney NSW 2006, Australia
- ¹⁵¹ Insitute of Physics, Academia Sinica, TW, Taipei 11529, Taiwan

¹⁵² Technion, Israel Inst. of Technology, Department of Physics, Technion City, IL, Haifa 32000, Israel

- ¹⁵³ Tel Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Ramat Aviv, IL, Tel Aviv 69978, Israel
- 154 Aristotle University of Thessaloniki, Faculty of Science, Department of Physics, Division of Nuclear & Particle Physics, University Campus, GR-54124, Thessaloniki, Greece
- 155 The University of Tokyo, International Center for Elementary Particle Physics and Department of Physics, 7-3-1 Hongo, Bunkyo-ku, JP, Tokyo 113-0033, Japan
- 156 Tokyo Metropolitan University, Graduate School of Science and Technology, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- ¹⁵⁷ Tokyo Institute of Technology, Department of Physics, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
- ¹⁵⁸ University of Toronto, Department of Physics, 60 Saint George Street, Toronto M5S 1A7, Ontario, Canada
- ¹⁵⁹ TRIUMF^(d), 4004 Wesbrook Mall, Vancouver, B.C. V6T 2A3; York University^(b), Department of Physics and Astronomy, 4700 Keele St., Toronto, Ontario, M3J 1P3, Canada
- ¹⁶⁰ University of Tsukuba, Institute of Pure and Applied Sciences, 1-1-1 Tennoudai, Tsukuba-shi, JP, Ibaraki 305-8571, Japan

¹⁶¹ Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, United States

¹⁶² Universidad Antonio Narino, Centro de Investigaciones, Cra 3 Este No.47A-15, Bogota, Colombia

¹⁶³ University of California, Irvine, Department of Physics & Astronomy, CA 92697-4575, United States

¹⁶⁴ INFN Gruppo Collegato di Udine^(a); ICTP^(b), Strada Costiera 11, IT-34014 Trieste; Università di Udine, Dipartimento di Fisica^(c), via delle Scienze 208, IT-33100 Udine, Italy

¹⁶⁵ University of Illinois, Department of Physics, 1110 West Green Street, Urbana, Illinois 61801, United States

- ¹⁶⁶ University of Uppsala, Department of Physics and Astronomy, P.O. Box 516, SE-751 20 Uppsala, Sweden
- 167 Instituto de Física Corpuscular (IFIC), Centro Mixto UVEG-CSIC, Apdo. 22085 ES-46071 Valencia, Dept. Física At. Mol. y Nuclear; Dept. Ing. Electrónica; Univ. of Valencia,
- and Inst. de Microelectrónica de Barcelona (IMB-CNM-CSIC), 08193 Bellaterra, Spain

¹⁶⁸ University of British Columbia, Department of Physics, 6224 Agricultural Road, CA, Vancouver, B.C. V6T 121, Canada

¹⁶⁹ University of Victoria, Department of Physics and Astronomy, P.O. Box 3055, Victoria B.C., V8W 3P6, Canada

¹⁷⁰ Waseda University, WISE, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan

- ¹⁷¹ The Weizmann Institute of Science, Department of Particle Physics, P.O. Box 26, IL-76100 Rehovot, Israel
- ¹⁷² University of Wisconsin, Department of Physics, 1150 University Avenue, WI 53706 Madison, Wisconsin, United States

¹⁷³ Julius-Maximilians-University of Würzburg, Physikalisches Institute, Am Hubland, 97074 Würzburg, Germany

- ¹⁷⁴ Bergische Universität, Fachbereich C, Physik, Postfach 100127, Gauss-Strasse 20, D-42097 Wuppertal, Germany
- ¹⁷⁵ Yale University, Department of Physics, PO Box 208121, New Haven CT, 06520-8121, United States
- ¹⁷⁶ Yerevan Physics Institute, Alikhanian Brothers Street 2, AM-375036 Yerevan, Armenia
- 177 Centre de Calcul CNRS/IN2P3, Domaine scientifique de la Doua, 27 bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
- ^a Also at LIP, Portugal.
- ^b Also at Faculdade de Ciencias, Universidade de Lisboa, Lisboa, Portugal.
- Also at CPPM, Marseille, France,
- Also at TRIUMF, Vancouver, Canada,
- Also at FPACS, AGH-UST, Cracow, Poland.
- Also at Department of Physics, University of Coimbra, Coimbra, Portugal,
- g Also at Università di Napoli Parthenope, Napoli, Italy.
- Also at Institute of Particle Physics (IPP), Canada.
- Also at Louisiana Tech University, Ruston, United States.
- Also at Universidade de Lisboa, Lisboa, Portugal,
- ^k At California State University, Fresno, United States.
- Also at Faculdade de Ciencias, Universidade de Lisboa and at Centro de Fisica Nuclear da Universidade de Lisboa, Lisboa, Portugal.
- Also at University of Montreal, Montreal, Canada.

- Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
- Also at Taiwan Tier-1, ASGC, Academia Sinica, Taipei, Taiwan.
- Also at School of Physics, Shandong University, Jinan, China,
- Also at Rutherford Appleton Laboratory, Didcot, UK.
- Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
- w Also at Department of Physics and Astronomy, University of South Carolina, Columbia, United States.
- Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary,
- Also at Institute of Physics, Jagiellonian University, Cracow, Poland.
- Also at Centro de Fisica Nuclear da Universidade de Lisboa, Lisboa, Portugal.
- Also at Department of Physics, Oxford University, Oxford, UK.
- ^{ab} Also at CEA, Gif sur Yvette, France.
- ac Also at LPNHE, Paris, France.
- ^{ad} Also at Nanjing University, Nanjing Jiangsu, China.
- Deceased

- Also at California Institute of Technology, Pasadena, United States.
- Also at Baku Institute of Physics, Baku, Azerbaijan.
- Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
- Also at Manhattan College, New York, United States.