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Results are presented of a search for supersymmetric particles in events with large missing transverse 
momentum and at least one heavy flavour jet candidate in s = 7 TeV proton–proton collisions. In a data 
sample corresponding to an integrated luminosity of 35 pb-1 recorded by the ATLAS experiment at the 
Large Hadron Collider, no significant excess is observed with respect to the prediction for Standard Model 
processes. For R -parity conserving models in which sbottoms (stops) are the only squarks to appear in 
the gluino decay cascade, gluino masses below 590 GeV (520 GeV) are excluded at the 95% C.L. The
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results are also interpreted in an MSUGRA/CMSSM supersymmetry breaking scenario with tanβ = 40 
and in an SO(10) model framework.
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1. Introduction

Supersymmetry (SUSY) [1] is one of the most compelling the
ories to describe physics beyond the Standard Model (SM). It nat
urally solves the hierarchy problem and provides a possible can
didate for dark matter. SUSY is a symmetry that relates fermionic 
and bosonic degrees of freedom, and postulates the existence of 
superpartners for the SM particles. Experimental data imply that 
supersymmetry is broken and that the superpartners are expected 
to be heavier than the SM partners. In the framework of a generic 
R -parity conserving minimal supersymmetric extension of the SM, 
the MSSM [2], SUSY particles are produced in pairs and the lightest 
supersymmetric particle (LSP) is stable. In a large variety of mod
els, the LSP is the lightest neutralino, χ˜10 , which is only weakly 
interacting.

If supersymmetric particles exist at the TeV energy scale, the 
coloured superpartners of quarks and gluons, the squarks (q˜ ) and 
gluinos (g˜ ), are expected to be copiously produced via the strong 
interaction at the Large Hadron Collider (LHC) [3,4]. Their decays 
via cascades ending with the LSP produce striking experimen
tal signatures leading to final states containing multi-jets, missing 
transverse momentum (its magnitude is referred to as E Tmiss in the 
following) – resulting from the undetected neutralinos – and pos
sibly leptons. First searches for the production of SUSY particles at 
the LHC have been published recently [5–7].
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In the MSSM, the scalar partners of right-handed and left
handed quarks, q˜ R and q˜L, can mix to form two mass eigenstates. 
These mixing effects are proportional to the corresponding fermion 
masses and therefore become important for the third generation. 
In particular, large mixing can yield sbottom (b˜ 1 ) and stop (t˜1) 
mass eigenstates which are significantly lighter than other squarks. 
Consequently, b˜ 1 and t˜1 could be produced with large cross sec
tions at the LHC, either via direct pair production or, if kinemati
cally allowed, through g˜ g˜ production with subsequent g˜ → b˜ 1b or 

g˜ → t˜1t decays. Depending on the SUSY particle mass spectrum, 
the cascade decays of gluino-mediated and pair-produced sbottoms 
or stops result in complex final states consisting of E Tmiss, several 
jets, among which b -quark jets (b-jets) are expected, and possibly 
leptons.

In this Letter, a search for final states involving E Tmiss and b - 
quark jets is discussed. Results on searches for direct sbottom [8, 
9], stop [10,11] and gluino mediated production [12] have been 
previously reported by the Tevatron experiments, placing exclusion 
limits on the mass of these particles in several MSSM scenarios.

The search described here is based on pp collision data at a 
centre-of-mass energy of 7 TeV recorded by the ATLAS experiment 
at the LHC in 2010. The total data set corresponds to an integrated 
luminosity of 35 pb-1 [13]. To enhance the sensitivity to different 
SUSY models, the search was performed using two mutually exclu
sive final states, characterised by the presence of leptons. They are 
referred to as zero-lepton and one-lepton analyses in the following.

In the zero-lepton analysis, events are required to contain en
ergetic jets, of which one must be identified as a b -jet, large 
E Tmiss and no isolated leptons (e or μ). The zero-lepton analysis 
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is employed to search for gluinos and sbottoms in MSSM scenarios 
where the b˜ 1 is the lightest squark, all other squarks are heav
ier than the gluino, and mg˜ > mb˜ > mχ˜ 0 , such that the branch

ing ratio for g˜ → b˜ 1 b decays is 100%. Sbottoms are produced via 
gluino-mediated processes or via direct pair production. They are 
assumed to decay exclusively via b˜ 1 → bχ˜10 , where mχ˜ 0 is assumed 
to be 60 GeV, above the present exclusion limit [14].

In the one-lepton analysis, events are required to contain ener
getic jets, of which one must be identified as a b-jet, large E Tmiss 
and at least one high-pT electron or muon. This analysis is sensi
tive to SUSY scenarios in which the stop is the lightest squark and 
mg˜ > mt̃1. If the stop decay channel t˜1 → bχ˜1± dominates, possible 
subsequent χ˜ 1± → χ  ̃10l± ν decays result in experimental signatures 
with energetic charged leptons in addition to b-jets and E Tmiss. In 
the present analysis, only g˜ g˜ and t˜1t˜1 pair production are consid
ered, with 100% branching ratios for the g˜ → t˜1t and t˜1 → bχ˜ 1± 
decays. The chargino is assumed to have a mass mχ± ^ 2 · mχ0 , 

χ˜1 χ˜1
with mχ˜ 0 = 60 GeV, and to decay through a virtual W boson 
(BR(χ˜1± → χ˜10l±ν) = 11%).

In addition to the aforementioned phenomenological MSSM 
models, the results are interpreted in the framework of minimal 
supergravity (MSUGRA/CMSSM [15]) and in specific Grand Unifi
cation Theories (GUTs) based on the gauge group SO(10) [16]. For 
MSUGRA/CMSSM, limits on the universal scalar and gaugino mass 
parameters (m0, m1/2) are presented for fixed values of the ratio of 
the Higgs vacuum expectation value, tanβ = 40, the common tri
linear coupling at the GUT scale A 0 = 0 GeV (-500 GeV), and the 
sign of the Higgsino mixing parameter μ > 0. Taking large values 
of tanβ or negative values of A0 with other model parameters held 
fixed leads to lower third generation sparticle masses compared to 
those of the other sparticles. Depending on m0 and m1/2 ,anyof 
the final states such as q˜q˜, q˜ g˜ and g˜ g˜ might be dominant. In the 
SO(10) scenario, the SUSY particle mass spectrum is characterised 
by the low masses of the gluinos (300–600 GeV), charginos (100– 
180 GeV) and neutralinos (50–90 GeV), whereas all scalar particles 
have masses beyond the TeV scale. Depending on the sparticle 
masses, chargino–neutralino and gluino-pair production dominate. 
The three-body gluino decays g˜ → bb¯ χ˜ 10 and g˜ → bb¯ χ˜ 20 are ex
pected to lead to final states with high b-jet multiplicities. Two 
specific models are considered [17], the D-term splitting model, 
DR3, and the Higgs splitting model, HS.

2. The ATLAS detector

The ATLAS detector [18] comprises an inner detector sur
rounded by a thin superconducting solenoid, and a calorimeter 
system. Outside the calorimeters is an extensive muon spectrome
ter in a toroidal magnetic field.

The inner detector system is immersed in a 2 T axial mag
netic field and provides tracking information for charged parti
cles in a pseudorapidity range |η| < 2.5.1 The highest granularity 
is achieved around the vertex region using silicon pixel and mi
crostrip detectors. These detectors allow for an efficient tagging of 
jets originating from b -quark decays using impact parameter mea
surements and the reconstruction of secondary decay vertices. The 
transition radiation tracker, which surrounds the silicon detectors, 
contributes to track reconstruction up to |η|=2.0 and improves 
the electron identification by the detection of transition radiation.

1 The azimuthal angle φ is measured around the beam axis and the polar angle θis the angle from the beam axis. The pseudorapidity is defined as η =-ln tan(θ/2). The distance ^ R in the η–φ space is defined as ^ R = (^η)2 + (^φ)2 .

The calorimeter system covers the pseudorapidity range 
|η| < 4.9. The highly segmented electromagnetic calorimeter con
sists of lead absorbers with liquid argon as the active material and 
covers the pseudorapidity range |η| < 3.2. In the region |η| < 1.8, 
a presampler detector consisting of a thin layer of liquid argon 
is used to correct for the energy lost by electrons, positrons, and 
photons upstream of the calorimeter. The hadronic tile calorimeter 
is a steel/scintillating-tile detector and is placed directly outside 
the envelope of the electromagnetic calorimeter. In the forward 
regions, it is complemented by two end-cap calorimeters using 
liquid argon as active material and copper or tungsten as absorber 
material.

Muon detection is based on the magnetic deflection of muon 
tracks in the large superconducting air-core toroid magnets, instru
mented with separate trigger and high-precision tracking cham
bers. A system of three toroids, a barrel and two end-caps, gener
ates the magnetic field for the muon spectrometer in the pseudo
rapidity range |η| < 2.7.

3. Simulated event samples

Simulated event samples were used to determine the detector 
acceptance, the reconstruction efficiencies and the expected event 
yields for signal and background processes.

SUSY signal processes were generated for various models us
ing the HERWIG++ [19] v2.4.2 Monte Carlo program. The parti
cle mass spectra and decay modes were determined using the 
ISASUSY from ISAJET [20] v7.80 and SUSYHIT [21] v1.3 pro
grams. The latter was used for the assumed MSSM scenarios, 
which are parametrised in the (mg˜ , mb˜ ) and (mg˜ ,mt̃1) planes, with 
gluino masses above 300 GeV. The SUSY sample yields were nor
malised to the results of next-to-leading order (NLO) calculations, 
as obtained using the PROSPINO [22] v2.1 program. For these cal
culations the CTEQ6.6M [23] parametrisation of the parton density 
functions (PDFs) was used and the renormalisation and factorisa
tion scales were set to the average mass of the sparticles produced 
in the hard interaction.

For the backgrounds the following Standard Model processes 
were considered:

• tt¯ and single top production: events were generated using the 
generator MC@NLO [31,32] v3.41. For the evaluation of system
atic uncertainties, additional tt¯ samples were generated using 
the POWHEG [33] and ACERMC [34] programs.

• W (→ ^ν) + jet, Z/γ ∗(→ ^+^-) + jet (where ^ = e,μ,τ ) and 
Z(→ νν¯ ) + jet production: events with light and heavy (b) 
flavour jets were generated using the ALPGEN [35] v2.13 pro
gram. A generator level cut m^^ > 40 GeV was applied to the 
Z/γ∗(→ ^+^-) process.

• Jet production via QCD processes (referred to as “QCD back
ground” in the following): events were generated using the 
PYTHIA [30] v6.4.21 generator. For the evaluation of system
atic uncertainties, samples produced with ALPGEN were used.

• Di-boson (WW, WZ and ZZ) production: events were gen
erated using ALPGEN, however, compared to the other back
grounds their contribution was found to be negligible, after 
the application of the selection criteria.

All signal and background samples were generated at s = 
7 TeV using the ATLAS MC09 parameter tune [36], processed with 
the GEANT4 [37] simulation of the ATLAS detector [38], and 
then reconstructed and passed through the same analysis chain 
as the data. For all generators, except for PYTHIA, the HERWIG 
+ JIMMY [19,39] modelling of the parton shower and underlying 
event was used (v6.510 and v4.31, respectively).
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Table 1The most important background processes and their production cross sections, multiplied by the relevant branching ratios (BR). Contributions from higher order QCD corrections are included for W and Z boson production (NNLO corrections) and for 
tt¯ production (NLO + NNLL corrections). The inclusive QCD jet cross section is given at leading order (LO). The QCD sample was generated with a cut on the transverse momentum of the partons involved in the hard-scattering process, pˆ T .Physics process σ · BR [nb]

W → ^ν ( + jets) 31.4 ± 1.6 [24–26]
Z/γ∗ →^+^- (+jets) 3.20± 0.16 [24–26]
Z → ν ν¯ (+jets) 5.82 ± 0.29 [24–26]
tt¯ +0.0110.165-0..016 [27–29]Single top 0.037 ± 0.002 [27–29]Dijet (pˆT > 8GeV) 10.47 × 106 [30]

For the comparison to data, all background cross sections, ex
cept the QCD background cross section, were normalised to the 
results of higher order QCD calculations. A summary of the rel
evant cross sections is given in Table 1. For the next-to-next-to- 
leading order (NNLO) W and Z/γ ∗ production cross sections, an 
uncertainty of ±5% is assumed [40]. For the tt¯ production cross 
section, the corresponding uncertainty on the NLO + NNLL (next- 
to-next-to-leading logarithms) cross section was estimated to be 
+69..55%%. For the QCD background, no reliable prediction can be ob
tained from a leading order Monte Carlo simulation and data- 
driven methods were used to determine the residual contributions 
of this background to the selected event samples, as discussed in 
Section 5.

4. Data and event selection

After the application of beam, detector and data-quality re
quirements, the data set used for this analysis resulted in a total 
integrated luminosity of 35 pb-1.

For the zero-lepton analysis, events were selected at the trig
ger level by requiring jets with high transverse momentum. The 
selection is fully efficient for events containing at least one jet 
with pT > 120 GeV. A further trigger level requirement of E Tmiss > 
25 GeV was applied [41]. For the one-lepton analysis, the trigger 
selection was based on single lepton triggers, which retain events 
if an electron with p T > 15 GeV or a muon with pT > 13 GeV is 
present within the trigger acceptance.

In the data sample selected, jet candidates were reconstructed 
by using the anti-kt jet clustering algorithm [42,43] with a dis
tance parameter of R = 0.4. The inputs to this algorithm are 
three-dimensional topological calorimeter energy clusters. The jet 
energies were corrected for inhomogeneities and for the non
compensating nature of the calorimeter by using p T- and η- 
dependent calibration factors. They were determined from Monte 
Carlo simulation and validated using extensive test-beam measure
ments and studies of pp collision data (Ref. [44] and references 
therein). Only jets with p T > 20 GeV and within |η| < 2.5 were 
retained. Candidates for b -jets were identified among jets with 
p T > 30 GeV using an algorithm that reconstructs a vertex from 
all tracks which are displaced from the primary vertex and asso
ciated with the jet. The parameters of the algorithm were chosen 
such that a tagging efficiency of 50% (1%) was achieved for b -jets 
(light flavour or gluon jets) in tt¯ events in Monte Carlo simula
tion [45].

Electron candidates were required to satisfy the ‘medium' (zero
lepton analysis) or ‘tight' (one-lepton analysis) selection criteria. 
Muon candidates were identified either as a match between an 
extrapolated inner detector track and one or more segments in the 
muon spectrometer, or by associating an inner detector track to 
a muon spectrometer track. The combined track parameters were 
derived from a statistical combination of the two sets of track pa

rameters. Electrons and muons were required to have pT > 20 GeV 
and |η| < 2.47 or |η| < 2.4, respectively. Further details on lepton 
identification can be found in Ref. [40].

The calculation of E Tmiss is based on the modulus of the vec
torial sum of the pT of the reconstructed jets (with pT > 20 GeV 
and over the full calorimeter coverage |η| < 4.9), leptons (including 
non-isolated muons) and the calorimeter clusters not belonging to 
reconstructed objects.

After object identification, overlaps were resolved. Any jet 
within a distance ^ R = 0.2 of a ‘medium' electron candidate was 
discarded. The event was rejected if one or more ‘medium' elec
trons were identified in the transition region 1.37 < |η| < 1.52 
between the barrel and endcap calorimeters. Any remaining lepton 
within ^ R = 0.4 of a jet was discarded.

Events were selected if a reconstructed primary vertex was 
found associated with five or more tracks, and if they passed ba
sic quality criteria against detector noise and non-collision back
grounds.

In the zero-lepton analysis, events were required to have at 
least one jet with p T > 120 GeV, two additional jets with p T > 
30 GeV and E Tmiss > 100 GeV. At least one jet is required to be 
b-tagged. Events containing identified ‘medium' electron or muon 
candidates were rejected. The effective mass, meff, is defined as 
the scalar sum of E Tmiss and the transverse momenta of the highest 
p T jets (up to a maximum of four). Events were required to have 
E Tmiss/meff > 0.2. In addition, the smallest azimuthal separation be
tween the E Tmiss direction and the three leading jets, ^φmin, was 
required to be larger than 0.4. The last requirement reduces the 
amount of QCD background effectively since, in this case, E Tmiss re
sults from mis-reconstructed jets or from neutrinos emitted along 
the direction of the jet axis by heavy flavour decays.

In the one-lepton analysis, events were required to have at 
least one muon or a ‘tight' electron, two jets with pT > 60 GeV 
and p T > 30 GeV respectively, E Tmiss > 80 GeV and mT > 100 GeV, 
where mT is the transverse mass constructed using the highest pT 
lepton and E Tmiss. At least one jet is required to be b-tagged. The 
mT cut rejects events with a W boson in the final state.

In both analyses, further cuts on meff were applied to maximise 
the sensitivity to gluino-mediated production of sbottoms or stops. 
A threshold on meff at 600 GeV (500 GeV) was chosen for the zero
lepton (one-lepton) analysis. It should be noted that for the one- 
lepton analysis the transverse momenta of reconstructed leptons 
are included in the definition of the meff.

The event selection efficiency for each SUSY signal hypothesis 
was calculated as the sum of the efficiencies for the g˜ g˜ and b˜ 1b˜1 
(t˜1t˜1) processes, weighted by their respective NLO cross sections. 
For the zero-lepton selection, the efficiency varies between 7% and 
50% across the (mg˜ ,mb˜ ) plane. The lowest values are found at 
large ^m = mg˜ - mb˜ , where the production of b˜ 1b˜ 1 pairs dom
inates. As ^m decreases, high efficiency values are found down 
to ^m ^ 20 GeV. For the one-lepton channel, the efficiency for 
(g˜ , t˜1)-type SUSY signals varies between 0.4% and 3% across the 
(mg˜,mt˜1) plane and depends on ^m = mg˜ - mt˜1 in a similar way 
to the gluino–sbottom case.

No additional dedicated optimisations were performed for the 
MSUGRA/CMSSM and SO(10) scenarios. The efficiencies for the 
zero-lepton (one-lepton) selection for MSUGRA/CMSSM range be
tween 8% (1%) for m1/2 ^ 130 GeV and 23% (12%) for m1/2 ^ 
340 GeV, with a smaller dependence on m0. For SO(10) models, 
the highest sensitivity is reached in the zero-lepton analysis, with 
dominant contributions via g˜ g˜ production. In this case, the effi
ciencies vary between 7% and 20% as the gluino mass increases 
and are generally found to be larger for the DR3 scenario than for 
the HS scenario.
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5. Standard model background estimation

Standard Model processes contribute to the events that sur
vive the selection described in the previous section. The dominant 
source is tt¯ production due to the presence of jets, E Tmiss and 
b -quarks in the final state.

The QCD background to the zero-lepton final state was es
timated by normalising the PYTHIA Monte Carlo prediction to 
data in a QCD-enriched control region defined by ^φmin < 0.4. 
The Monte Carlo was then used to evaluate the ratio between 
the number of events in this control region and the signal re
gion (^φmin > 0.4). In the one-lepton final state the number of 
QCD multi-jet events was estimated using a matrix method similar 
to the one described in Ref. [40]. Cuts on the electron and muon 
identification were relaxed to obtain “loose” control samples that 
are dominated by QCD jets.

The non-QCD background in the zero-lepton final state was es
timated using Monte Carlo simulation, while in the case of the 
one-lepton final state a data-driven technique is employed. This 
method exploits the low correlation between meff and mT.Fourre- 
gions were defined: (A) 40 < mT < 100 GeV and meff < 500 GeV, 
(B) mT > 100 GeV and meff < 500 GeV, (C) 40 < mT < 100 GeV 
and meff > 500 GeV and (D) mT > 100 GeV and meff > 500 GeV. 
Regions A–C are dominated by background from tt¯ and W + jet 
production. Assuming that the variables are uncorrelated, the num
ber of background events in the signal region is given by N D = 
NC × NB/NA, where N A, NB, NC are the numbers of events in 
the regions A, B and C, respectively. A Monte Carlo simulation 
was used to validate the method and to establish possible sources 
of systematic uncertainties. The small number of events in the 
control regions is the main limitation of the method. It was also 
checked that a SUSY signal contamination does not bias the esti
mated background and that any bias is smaller than the systematic 
uncertainties assigned to the method and on the expected SUSY 
prediction.

6. Systematic uncertainties

Various systematic uncertainties affecting signal and back
ground rates were considered.

For the zero-lepton analysis, the backgrounds from tt¯ and 
W/Z + jet production are taken from Monte Carlo simulation. The 
total uncertainty on this prediction was estimated to be ±35% af
ter the final selection. It is dominated by the uncertainty on the 
jet energy scale (JES) [44], the uncertainty on the theoretical pre
diction of the background processes and the uncertainty on the 
determination of the b -tagging efficiency [45]. The uncertainty on 
the jet energy scale varies as a function of jet p T, and decreases 
from 6% at 20 GeV to 4% at 100 GeV, with additional contributions 
taking into account the dependence of the jet response on the 
jet isolation and flavour. This translates into a ±25% uncertainty 
on the absolute prediction of the background from SM processes. 
Uncertainties on the theoretical cross sections of the background 
processes (see Section 3), on the modelling of initial and final-state 
soft gluon radiation and the limited knowledge of the PDFs of the 
proton lead to uncertainties of ±20% and ±25% on the absolute 
predictions of the tt¯ and the W/Z + jet backgrounds, respectively. 
The uncertainty on the determination of the tagging efficiency for 
b-jets, c -jets and light-jets introduces further uncertainties on the 
predicted background contributions at the level of ±12% for tt¯ and 
±25% for W / Z + jets. Other uncertainties result from the mod
elling of additional pile-up interactions (±5%) and of the trigger 
efficiency (±3%) in the Monte Carlo simulation. For the QCD back
ground estimation, the uncertainty is dominated by the limited 
number of Monte Carlo events available for the zero-lepton analy
sis.

For the one-lepton analysis, where a data-driven technique was 
employed, the small event number in the control regions was the 
dominant uncertainty (±25%). Residual uncertainties associated to 
the method due to the JES, b -tagging, lepton identification and 
theoretical predictions of the relative contributions of W and tt¯ 
backgrounds were studied using Monte Carlo simulation and esti
mated to be at the level of ±8%.

For the SUSY signal processes, various sources of uncertainties 
affect the theoretical NLO cross sections. Variations of the renor
malisation and factorisation scales by a factor of two result in 
uncertainties of ±16% for g˜ g˜ production and ±30% (±27%) for 
b˜1b˜ 1 (t˜1t˜1) pair production, almost independently of the sparticle 
mass and the SUSY model. Uncertainties for q˜q˜ and q˜ g˜ production, 
relevant in MSUGRA/CMSSM scenarios, were estimated to be at the 
level of ±10% and ±15%, respectively.

The number of predicted signal events is also affected by the 
PDF uncertainties, estimated using the CTEQ 6.6M PDF error eigen
vector sets at the 90% C.L. limit, and rescaled by 1/1.645. The 
relative uncertainties on the g˜ g˜ (b˜ 1b˜ 1, t˜1t˜1) cross sections were 
estimated to be in the range from ±11% to ±25% (±7% to ±16%) 
for the g˜ g˜ (b˜ 1b˜ 1, t˜1t˜1) processes, depending on the gluino (sbot- 
tom, stop) masses. For first and second generation squark-pair and 
associated gluino–squark production, the uncertainty on the PDFs 
varies between ±5% and ±15% as the squark masses increase. The 
impact of detector related uncertainties, such as the JES and b - 
tagging, on the signal event yields depends on the masses of the 
most copiously produced sparticles. The total uncertainty varies 
between ±25% and ±10% as the gluino/squark masses increase 
from 300 GeV to 1 TeV, across the different scenarios, and it is 
dominated by the JES and the b-tagging uncertainty for low and 
high mass sparticles, respectively.

Finally, an additional ±11% uncertainty on the quoted total in
tegrated luminosity was taken into account.

7. Results

In Fig. 1 the distributions of meff and of E Tmiss are shown for 
the two analyses. For the E Tmiss distributions all cuts described in 
Section 4 are applied. The meff distributions are shown after the 
application of all cuts, except for the meff cut.

The expectations from Standard Model background processes 
are superimposed. For illustration, the figures also include the dis
tributions expected for SUSY signals. For the zero-lepton channel, a 
scenario with mg˜ = 500 GeV and mb˜ = 380 GeV is chosen, while 
for the one-lepton channel the relevant masses are m g˜ = 400 GeV 
and mt˜1 = 210 GeV. In Table 2, the observed number of events and 
the predictions for contributions from Standard Model processes 
are presented. For both analyses, the data are in agreement with 
the Standard Model predictions, within uncertainties.

The results are translated into 95% C.L. upper limits on contri
butions from new physics. Limits were derived using a profile like
lihood ratio [46,47], Λ(s), where the likelihood function of the fit 
was written as L(n|s, b,θ)= Ps × CSyst; n represents the number of 
observed events in data, s is the SUSY signal under consideration, 
b is the background, and θ represents the systematic uncertain
ties. The P s function is a Poisson-probability distribution for event 
counts in the defined signal region and C Syst represents the con
straints on systematic uncertainties, which are treated as nuisance 
parameters with a Gaussian probability density function and corre
lated when appropriate. The exclusion p -values are obtained from 
the test statistic Λ(s) using pseudo-experiments. One-sided upper 
limits are set with the power-constrained limits procedure [48].

Upper limits at 95% C.L. on the number of signal events in the 
signal regions are obtained independently of new physics mod
els for the zero- and one-lepton final states. These numbers are
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Fig. 1. Distributions of the effective mass, meff (left) and the E Tmiss (right) for data and for the expectations from Standard Model processes after the baseline selections in the zero-lepton (top) and one-lepton channel (bottom). The data correspond to an integrated luminosity of 35 pb-1 . Black vertical bars show the statistical uncertainty of the data. The yellow band shows the full systematic uncertainty on the SM expectation. The E Tmiss distributions are shown after a cut on meff at 600 GeV (zero-lepton) and 500 GeV (one-lepton). For illustration, the distributions for one reference SUSY signal, relevant for each channel, are superimposed.
Table 2Summary of the expected and observed event yields. The QCD prediction for the zero-lepton channel is based on the semi-data-driven method described in the text. For the one-lepton channel, the results for both the Monte Carlo and the data-driven approach are given. Since the data-driven technique does not distinguish between top and W / Z backgrounds the total background estimate is shown in the top row. The errors are systematic for the expected Monte Carlo prediction and statistical for the data-driven technique. 0-lepton 1-lepton MonteCarlo 1-lepton data-driven

tt¯ and single top 12.2 ± 5.0 12.3± 4.0 14.7 ± 3.7
W and Z 6.0 ±2.6 0.8 ± 0.4 –QCD 1.4 ±1.0 0.4 ± 0.4 0+0.4

0-0.0Total SM 19.6 ± 6.9 13.5± 4.1 14.7 ± 3.7Data 15 9 9
11.1 and 5.2, respectively, and correspond to 95% C.L. upper lim
its on effective cross sections for new processes of 0.32 pb and 
0.15 pb for the zero- and one-lepton channel, respectively. These 
upper limits include the ±11% uncertainty on the quoted total in
tegrated luminosity.

These results can be interpreted in terms of 95% C.L. exclu
sion limits in several SUSY scenarios. In Fig. 2 the observed and 
expected exclusion regions are shown in the (mg˜ , mb˜ ) plane, for 
the hypothesis that the lightest squark b˜ 1 is produced via gluino- 

mediated or direct pair production and decays exclusively via b˜ 1 → 
bχ˜10 . The zero-lepton channel was considered for this model and 
the largest acceptance was found for g˜ g˜ production. The limits do 
not strongly depend on the neutralino mass assumption as long 
as mg˜ - mχ˜ 0 is larger than 250–300 GeV, due to the harsh kine
matic cuts. Gluino masses below 590 GeV are excluded for sbottom 
masses up to 500 GeV. These limits depend weakly – via the de
pendence of the production cross section for g˜ g˜ production – on 
the masses of the first and second generation squarks, q˜ 1,2. Vari
ations of these masses in the range between ∼3 TeV and 2 · m g˜ 
reduce the excluded mass region by less than 20 GeV.

The zero-lepton analysis was also employed to extract limits 
on the gluino mass in the two SO(10) scenarios, DR3 and HS. 
Gluino masses below 500 GeV are excluded for the DR3 models 
considered, where g˜ → bb¯ χ  ̃10 decays dominate. A lower sensitiv
ity (mg˜ < 420 GeV) was found for the HS model, where larger 
branching ratios of g˜ → bb¯ χ˜ 20 are expected and the efficiency of 
the selection is reduced with respect to the DR3 case.

The results of the one-lepton analysis were interpreted as ex
clusion limits on the (mg˜ ,mt˜1 ) plane in the hypothesis that the 
lightest t˜1 is produced via gluino-mediated or direct pair produc
tion. Stop masses above 130 GeV are considered, and t˜1 is as
sumed to decay exclusively via t˜1 → bχ  ̃1± .InFig. 3 the observed 
and expected exclusion limits are shown as a function of mg˜ for
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Fig. 2. Observed and expected 95% C.L. exclusion limits, as obtained with the zerolepton channel, in the (mg˜ , mb˜ ) plane. The neutralino mass is assumed to be 60 GeV and the NLO cross sections are calculated using PROSPINO in the hypothesis of mq˜ 1,2 ^ m g˜ . The result is compared to previous results from CDF searches which assume the same gluino–sbottom decays hypotheses, a neutralino mass of 60 GeV and mq˜1,2 = 500 GeV (^ m g˜ for the Tevatron kinematic range). Exclusion limits from the CDF and D0 experiments on direct sbottom pair production [8,9] are also reported.

Fig. 4. Observed and expected 95% C.L. exclusion limits as obtained from the zero- and one-lepton analyses, separately and combined, on MSUGRA/CMSSM scenario with tan β = 40, A 0 = 0, μ > 0. The light-grey dashed lines are the iso-mass curves for gluinos and sbottom – stop masses are 15% lower than sbottom masses, across the (m0, m1/2 ) parameter space. The results are compared to previous limits from the LEP experiments [14].

Fig. 3. Observed and expected 95% C.L. upper limits, as obtained with the one- lepton analysis, on the gluino-mediated and stop pair production cross section as a function of the gluino mass for two assumed values of the stop mass and BR(t˜1 → bχ˜ 1± ) = 1. The chargino is assumed to have twice the mass of the neu- tralino (= 60 GeV) and NLO cross sections are calculated using PROSPINO in the hypothesis of mq˜ 1,2 ^ m g˜ . Theoretical uncertainties on the NLO cross sections are included in the limit calculation.
two representative values of the stop mass. Gluino masses below 
520 GeV are excluded for stop masses in the range between 130 
and 300 GeV.

Finally, the results of both analyses were used to calculate 
95% C.L. exclusion limits in the MSUGRA/CMSSM framework with 
large tanβ. Fig. 4 shows the observed and expected limits in 
the (m0,m1/2) plane, assuming tanβ = 40, and fixing μ > 0 and 
A 0 = 0. The largest sensitivity is found for the zero-lepton anal
ysis. The combination of the two analyses, which takes account 
of correlations between systematic uncertainties of the two chan
nels, is also shown. Sbottom and stop masses below 550 GeV and 
470 GeV are excluded across the plane, respectively. Due to the 
MSUGRA/CMSSM constraints, this interpretation is also sensitive 

to first and second generation squarks. From the present analysis, 
masses of these squarks below 600 GeV are excluded for mg˜ ^ mq˜ . 
Gluino masses below 500 GeV are excluded for the m0 range be
tween 100 GeV and 1 TeV, independently on the squark masses. 
Changing the A 0 value from 0 to -500 GeV lead to significant 
variations in third generation squark mixing. Across the (m0 , m1/2) 
parameter space, sbottom and stop masses decrease by about 10% 
and 30%, respectively, if A0 is changed from 0 to -500 GeV. The 
exclusion region of the one-lepton analysis, mostly sensitive to 
stop final states, extends the zero-lepton reach by about 20 GeV 
in m1/2 for m0 < 600 GeV.

8. Conclusions

The ATLAS Collaboration has presented a first search for super
symmetry in final states with missing transverse momentum and 
at least one b-jet candidate in proton–proton collisions at 7 TeV. 
The results are based on data corresponding to an integrated lu
minosity of 35 pb-1 collected during 2010. These searches are 
sensitive to the gluino-mediated and direct production of sbot- 
toms and stops, the supersymmetric partners of the third gener
ation quarks, which, due to mixing effects, might be the lightest 
squarks.

Since no excess above the expectations from Standard Model 
processes was found, the results are used to exclude parameter 
regions in various R -parity conserving SUSY models. Under the 
assumption that the lightest squark b˜ 1 is produced via gluino- 
mediated processes or direct pair production and decays exclu
sively via b˜ 1 → bχ˜10 , gluino masses below 590 GeV are excluded 
with 95% C.L. up to sbottom masses of 500 GeV. Alternatively, 
assuming that t˜1 is the lightest squark and the gluino decays ex
clusively via g˜ → t˜1t , and t˜1 → bχ˜1± , gluino masses below 520 GeV 
are excluded for stop masses in the range between 130 and 
300 GeV.

In specific models based on the gauge group SO(10), gluinos 
with masses below 500 GeV and 420 GeV are excluded for the 
DR3 and HS models, respectively.

In an MSUGRA/CMSSM framework with large tanβ, a significant 
region in the (m0 , m1/2) plane can be excluded. For the parameters 
tanβ = 40, A0 = 0 and μ > 0, sbottom masses below 550 GeV 
and stop masses below 470 GeV are excluded with 95% C.L. Gluino 
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masses below 500 GeV are excluded for the m0 range between 
100 GeV and 1 TeV, independently on the squark masses.

These analyses improve significantly on the regions of SUSY pa
rameter space excluded by previous experiments that searched for 
similar scenarios.
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