Measurement of the transverse momentum distribution of Z / γ^{*} bosons in proton-proton collisions at $\sqrt{s}=7 \mathrm{TeV}$ with the ATLAS detector ${ }^{*}$

ATLAS Collaboration*

ARTICLE INFO

Article history:

Received 12 July 2011
Received in revised form 5 October 2011
Accepted 10 October 2011
Available online 13 October 2011
Editor: H. Weerts

Keywords:

Z bosons
Differential cross section
Perturbative QCD
Event generators
Monte Carlo models

Abstract

A measurement of the Z / γ^{*} transverse momentum (p_{T}^{Z}) distribution in proton-proton collisions at $\sqrt{s}=7 \mathrm{TeV}$ is presented using $Z / \gamma^{*} \rightarrow e^{+} e^{-}$and $Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}$decays collected with the ATLAS detector in data sets with integrated luminosities of $35 \mathrm{pb}^{-1}$ and $40 \mathrm{pb}^{-1}$, respectively. The normalized differential cross sections are measured separately for electron and muon decay channels as well as for their combination up to p_{T}^{Z} of 350 GeV for invariant dilepton masses $66 \mathrm{GeV}<m_{\ell \ell}<116 \mathrm{GeV}$. The measurement is compared to predictions of perturbative QCD and various event generators. The prediction of resummed QCD combined with fixed order perturbative QCD is found to be in good agreement with the data.

(c) 2011 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

In hadron collisions, the weak vector bosons W and Z are produced with a momentum component transverse to the beam axis, which is balanced by a recoiling hadronic system mainly arising from initial state QCD radiation of quarks and gluons. The measurement of the boson transverse momentum offers a very sensitive way of studying dynamical effects of the strong interaction, complementary to measurements of the associated production of the bosons with jets [1]. The simple signatures of $Z / \gamma^{*} \rightarrow e^{+} e^{-}$ and $Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}$production, which can be identified with little background, enable a precise measurement of the boson transverse momentum (p_{T}^{Z}) and thus provide an ideal testing ground for predictions of QCD and phenomenological models. Moreover, the knowledge of the p_{T}^{Z} distribution is crucial to improve the modelling of W boson production needed for a precise measurement of the W mass $[2,3]$, in particular in the low p_{T}^{2} region which dominates the cross section.

This Letter presents a measurement of the Z / γ^{*} normalized transverse momentum distribution in proton-proton collisions at $\sqrt{s}=7 \mathrm{TeV}$ using $Z / \gamma^{*} \rightarrow e^{+} e^{-}$and $Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}$decays collected in 2010 with the ATLAS detector in data sets with integrated luminosities of $35 \mathrm{pb}^{-1}$ and $40 \mathrm{pb}^{-1}$, respectively. In the normalized transverse momentum distribution, many systematic uncertainties cancel. In particular, the precision of the measurement

[^0]is not impaired by the uncertainty on the integrated luminosity. The normalized transverse momentum distribution is defined in the following way: $1 / \sigma^{\text {fid }} \times \mathrm{d} \sigma^{\text {fid }} / \mathrm{d} p_{\mathrm{T}}^{Z}$, where $\sigma^{\text {fid }}$ is the measured inclusive cross section of $p p \rightarrow Z / \gamma^{*}+X$ multiplied by the branching ratio of $Z / \gamma^{*} \rightarrow \ell^{+} \ell^{-}$within the fiducial acceptance, and X denotes the underlying event and the recoil system. For both the ee and $\mu \mu$ channels, the fiducial acceptance is defined by the lepton transverse momentum and pseudorapidity, ${ }^{1}$ and by the invariant mass of the lepton pair $m_{\ell \ell}: p_{\mathrm{T}}^{\ell}>20 \mathrm{GeV},\left|\eta^{\ell}\right|<2.4$ and $66 \mathrm{GeV}<m_{\ell \ell}<116 \mathrm{GeV}$. The measurements in both decay channels are corrected for detector effects and QED final state radiation (FSR). The combined result is compared to predictions of perturbative QCD calculations and QCD-inspired models implemented in various event generators.

Predictions and previous measurements are discussed in Section 2. The ATLAS detector and trigger are described in Section 3. In Sections 4 and 5 the event simulation and selections are described. Section 6 reports the p_{T}^{Z} measurements for different treatments of QED final state radiation. Systematic uncertainties are discussed in Section 7. Section 8 presents the combined result which is compared with various models.

[^1]
2. QCD predictions and previous measurements

Perturbative QCD (pQCD) calculations have been performed up to $\mathcal{O}\left(\alpha_{S}^{2}\right)$ in the strong coupling constant $\alpha_{S}[4,5]$ and are expected to be reliable at large p_{T}^{Z}. In this kinematic regime, the cross section is dominated by the radiation of a single parton. Fully differential inclusive boson production cross sections can be obtained at $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)$ with Fewz [6,7] and Dynnlo [8]. While the integrated $\mathcal{O}\left(\alpha_{S}^{2}\right)$ cross section predictions are finite, the fixed order PQCD prediction diverges at vanishing p_{T}^{Z}. In this regime, the leading contribution of multiple soft gluon emissions to the inclusive cross section can be resummed to all orders [9-11] up to next-to-next-to-leading logarithms (NNLL) [12] in α_{5}. The Resbos generator [13] matches the prediction of soft gluon resummation including a nonperturbative form factor [14] at low p_{T}^{Z} with the fixed order PQCD calculation at $\mathcal{O}\left(\alpha_{\mathrm{S}}\right)$ at high p_{T}^{2}, which is corrected to $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)$ using K-factors.

Similar to resummed calculations, parton showers provide an all-order approximation of parton radiation in the soft and collinear region. In order to describe the large p_{T}^{Z} region, the parton shower based leading-order event generators Pythia [15] and Herwig [16] apply weights to the first or hardest branching, respectively, to effectively merge the $\mathcal{O}\left(\alpha_{S}^{0}\right)$ and $\mathcal{O}\left(\alpha_{S}\right)$ pQCD predictions. The next-to-leading order (NLO) Monte Carlo generators Mc@nlo [17] and Powheg [18] incorporate NLO QCD matrix elements consistently into the parton shower frameworks of Herwig or Pythia.

The Alpgen [19] and Sherpa [20] event generators implement tree-level matrix elements for the generation of multiple hard partons in association with the weak boson. The matrix-element calculations for various parton multiplicities are matched with parton showers (which in the case of Alpgen are provided by either Pythia or Herwig) such that double counting is explicitly avoided by means of weighting procedures [21] or veto algorithms [19].

As the predictions of these generators differ significantly and show a considerable dependence on adjustable internal parameters [22], a precise measurement of the boson transverse momentum distribution is an important input to validate and tune these models.

The Z / γ^{*} boson p_{T} distribution has been measured in protonantiproton collisions at the Tevatron collider at centre of mass energies of $\sqrt{s}=1.8 \mathrm{TeV}$ and 1.96 TeV [23-27]. For $p_{\mathrm{T}}^{2} \lesssim 30 \mathrm{GeV}$, these measurements found a good agreement with Resbos and disfavoured models [28] suggesting a broadening of the p_{T}^{Z} distribution for small x values [25,27], where x is the fraction of the momentum of one of the two partons with respect to the proton momentum. At large p_{T}^{2}, the $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right) \mathrm{pQCD}$ prediction was reported to underestimate the measured cross section by up to about 25% [25,26].

3. The ATLAS detector

The ATLAS detector system [29] comprises an inner tracking detector immersed in a 2 T axial magnetic field, a calorimeter, and a large muon spectrometer with a superconducting toroid magnet system. Charged particle tracks and vertices are reconstructed with silicon pixel and strip detectors covering $|\eta|<2.5$ and transition radiation detectors covering $|\eta|<2.0$. These tracking detectors are surrounded by a finely segmented calorimeter system which provides three-dimensional reconstruction of particle showers up to $|\eta|<4.9$. The electromagnetic compartment uses liquid argon as the active material and is divided into barrel ($|\eta|<1.5$), end-cap $(1.4<|\eta|<3.2)$ and forward ($3.1<|\eta|<4.9$) components. The hadron calorimeter is based on scintillating tiles in the central re-
gion ($|\eta|<1.7$). It is extended up to 4.9 in pseudorapidity by endcaps and forward calorimeters which use liquid argon. The muon spectrometer is based on three large superconducting toroids arranged with an eight-fold azimuthal coil symmetry around the calorimeters, covering a range of $|\eta|<2.7$ and providing an integral magnetic field varying from about 1 to 8 Tm . Three stations of drift tubes and cathode strip chambers enable precise muon track measurements, and resistive-plate and thin-gap chambers provide muon triggering capability and additional measurements of the φ coordinate.

The ATLAS detector has a three-level trigger system which reduces the event rate to approximately 200 Hz before data transfer to mass storage. The triggers employed require the presence of a single electron or muon candidate with $p_{\mathrm{T}}>15 \mathrm{GeV}$ or $p_{\mathrm{T}}>13 \mathrm{GeV}$, respectively. Lower thresholds were used for the early data. The trigger efficiencies are defined for $Z / \gamma^{*} \rightarrow e^{+} e^{-}$ and $Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}$events as the fraction of triggered electrons or muons with respect to the reconstructed lepton and are studied as a function of their p_{T} and η. For muons, the efficiencies are also obtained separately in φ regions which match the geometry of the trigger chambers. The efficiency for single leptons is derived from data using $Z / \gamma^{*} \rightarrow \ell^{+} \ell^{-}$candidate events or using independent triggers by matching reconstructed lepton candidates to trigger signals in the calorimeter (muon spectrometer) in case of the ee $(\mu \mu)$ decay channel. For $p_{\mathrm{T}}^{\ell}>20 \mathrm{GeV}$, the efficiency is 99% for electrons and 77% (93%) for muons in the barrel (end-cap). For signatures with two high- E_{T} electrons, the trigger is fully efficient. The trigger efficiency for $Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}$events is determined to be on average 97.7% and to be constant as a function of p_{T}^{Z} within an uncertainty of $0.1-0.7 \%$ depending on p_{T}^{Z}.

4. Event simulation

The properties, including signal efficiencies and acceptances, of $Z / \gamma^{*} \rightarrow e^{+} e^{-}, Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}$and background processes are modelled with Pythia [15] using the MRST2007LO* [30] parton distribution functions (PDF), Mc@nlo [17] and Powheg using CTEQ6.6 [31] PDFs. Mc@nlo uses Herwig for the parton shower and Jimmy [32] for the underlying event. Powheg is interfaced to Pythia for the underlying event and the parton shower. The event generators are interfaced to Рнотоs [33] to simulate QED FSR. Version 6.4 of Pythia is used with the p_{T}-ordered parton shower and with parameters describing the properties of the underlying event which were tuned to Tevatron measurements [34]. For systematic studies and comparisons, a Mc@nlo based signal sample is used with underlying event parameters (Jimmy) tuned to Tevatron and 7 TeV ATLAS $p p$ collision data [35]. The response of the ATLAS detector to the generated particles is modelled using Geant4 [36], and the fully simulated events [37] are passed through the same reconstruction chain as the data. The Monte Carlo simulation (MC) is corrected for differences with respect to the data in the lepton reconstruction and identification efficiencies as well as in energy (momentum) scale and resolution. The efficiencies are determined from a tag-and-probe method based on reconstructed Z and W events $[38,39]$, while the resolution and scale corrections are obtained from a fit to the observed Z boson line shape. The lepton identification efficiencies can depend on the hadronic activity, which is correlated with the Z / γ^{*} transverse momentum. Therefore, using the tag-and-probe method, it is verified that the p_{T}^{Z} dependence of the single lepton efficiency is correctly modelled after efficiency corrections. Differences between data and simulation are mostly consistent with statistical fluctuations and are considered as systematic uncertainties due to the modelling of the efficiencies as described in Section 7.

Fig. 1. The observed (a) dielectron and (b) dimuon invariant mass distributions compared to simulation. The shaded bands indicate the systematic uncertainty on the MC prediction due to the lepton momentum resolution correction. The Pythia sample, which is normalized to the next-to-next-to-leading order (NNLO) prediction [40,6,7], is used for signal events. The total background, which is invisible on this scale, amounts to only 1.5% and 0.4% in the ee and $\mu \mu$ decay channels, respectively.

Multiple $p p$ interactions per bunch crossing (pileup) are accounted for by overlaying simulated minimum bias events. To match the observed instantaneous luminosity profile, the MC events are reweighted to yield the same distribution of the number of primary vertices as measured in the data.

In the following, if not stated otherwise, the generated samples are fully simulated, pileup and resolution corrected, and interfaced to Рнотоs, with Pythia as the default MC signal sample. The background samples are produced with Pythia for $W \rightarrow \ell \nu$, with Mc@nlo and Powheg for $t \bar{t}$, and with Pythia and Mc@nlo for $Z / \gamma^{*} \rightarrow \tau^{+} \tau^{-}$.

5. Event selection

The analysis uses data taken during stable beam conditions with properly operating inner detector, magnets, and calorimeter or muon spectrometer, in case of the ee or $\mu \mu$ channel, respectively. Events are required to have at least one primary vertex reconstructed from at least three tracks. Z / γ^{*} events are selected by requiring two oppositely charged electrons or muons, defined below, with an invariant mass $66 \mathrm{GeV}<m_{\ell \ell}<116 \mathrm{GeV}$.

Electrons are reconstructed from the energy deposits in the calorimeter matched to inner detector tracks. They are required to have a transverse energy $E_{T}^{e}>20 \mathrm{GeV}$ and pseudorapidity $\left|\eta^{e}\right|<2.4$, excluding the transition regions between the barrel and end-cap calorimeter components at $1.37<\left|\eta^{e}\right|<1.52$. They should pass medium identification criteria based on shower shape and track quality variables [38] to provide rejection against hadrons. The single electron selection efficiency varies in the range $90-96 \%$ depending on pseudorapidity and azimuthal angle.

Muons are reconstructed from matching tracks in the inner detector and muon spectrometer with $p_{\mathrm{T}}^{\mu}>20 \mathrm{GeV}$ and $\left|\eta^{\mu}\right|<2.4$ measured using the information from these two detector subcomponents. To ensure the compatibility of the muon track with the primary vertex, the corresponding impact parameters in the transverse and longitudinal direction with respect to the beam axis have to be smaller than 1 mm and 5 mm , respectively. The muon candidates are required to be isolated to suppress background from heavy flavour production using the transverse momentum sum of tracks with $p_{\mathrm{T}}>1 \mathrm{GeV}$ within a cone of size $\Delta R=\sqrt{(\Delta \eta)^{2}+(\Delta \varphi)^{2}}=0.2$ around the muon track. This sum has to be smaller than $0.2 \times p_{\mathrm{T}}^{\mu}$. The single muon selection efficiency is of the order of $87-95 \%$ depending on pseudorapidity and azimuthal angle.

After this selection, $8923 \mathrm{Z} / \gamma^{*} \rightarrow e^{+} e^{-}$and $15060 \mathrm{Z} / \gamma^{*} \rightarrow$ $\mu^{+} \mu^{-}$candidate events are found in the data. The main reasons for the difference in the number of candidate events in the ee and $\mu \mu$ decay channels are: the integrated luminosity for which all relevant detector components were operating properly; regions in the electromagnetic calorimeter with readout problems; a reduced acceptance for electrons in the transition region between the barrel and end-cap calorimeter. Fig. 1 demonstrates the agreement of the data and the simulation in the dilepton mass spectrum for the selected events including the background, after applying the corrections described in Section 4.

The background contribution from $Z / \gamma^{*} \rightarrow \tau^{+} \tau^{-}, W$ boson, and $t \bar{t}$ production is estimated as a function of p_{T}^{Z} using simulation, where the cross sections are normalized to next-to-next-toleading order (NNLO) predictions for Z / γ^{*} and W and NLL-NLO predictions for $t \bar{t}$ production. The procedure outlined in Ref. [38] is followed here.

For both ee and $\mu \mu$ channels, the main background at high p_{T}^{Z} arises from $t \bar{t}$ production. At low p_{T}^{2} the background is dominated by QCD multijet production, where a jet is falsely identified as a primary e or μ. Its contribution is determined from the data as follows.

In the ee channel, the normalization of the multijet contribution is derived from a fit of signal and background templates to the observed dilepton invariant mass distribution with loosened identification requirements for one of the two reconstructed electron candidates. An extended mass range of $50 \mathrm{GeV}<m_{e e}<130 \mathrm{GeV}$ is used which provides a better background constraint in the offresonance region. The normalization derived from this loosened selection has to be scaled to the Z / γ^{*} event selection, which requires two reconstructed electron candidates of medium quality. The scaling factor is determined from a QCD multijet enhanced control sample with single electron candidates which fulfil the loosened electron identification requirements. The contamination with other events, in particular the contribution from W production, is suppressed by rejecting events with large missing transverse energy. The remaining contamination is determined using simulated events. The systematic uncertainty of the normalization is determined by varying the background templates and the criteria for the loosened selection. The shape of the multijet background as a function of p_{T}^{Z} is determined from a dielectron sample with an invariant mass $66 \mathrm{GeV}<m_{e e}<116 \mathrm{GeV}$ for which exactly one electron passes and one fails the medium identification criteria. The difference between same and opposite sign events is taken as the shape uncertainty.

Table 1

 The relative statistical (stat.) and total systematic (syst.) uncertainties are given. The data can be obtained electronically through the HepData repository [43].

p_{T}^{2} bin (GeV)	$\begin{aligned} & 1 / \sigma^{\text {fid }} \mathrm{d} \sigma^{\text {fid }} / \mathrm{d} p_{\mathrm{T}}^{2}\left(\mathrm{GeV}^{-1}\right) \\ & Z / \gamma^{*} \rightarrow e^{+} e^{-} \end{aligned}$						$Z / \nu^{*} \rightarrow \mu^{+} \mu^{-}$				uncert. (\%)	
	propag.	dressed	bare	k	stat.	syst.	propag.	dressed	bare	k	stat.	syst.
0-3	3.48	3.40	3.21	10 0^{-2}	3.3	4.7	3.75	3.66	3.58	10 0^{-2}	2.6	5.0
3-6	5.85	5.78	5.60	10 0^{-2}	2.4	3.3	5.81	5.74	5.68	-10^{-2}	2.0	4.0
6-9	4.61	4.62	4.64	-10^{-2}	2.7	2.3	4.67	4.68	4.69	10^{-2}	2.1	1.6
9-12	3.43	3.46	3.56	-10^{-2}	3.1	2.4	3.50	3.54	3.58	10^{-2}	2.4	1.6
12-15	2.93	2.97	3.09	-10^{-2}	3.3	2.7	2.67	2.72	2.76	-10 0^{-2}	2.8	1.7
15-18	2.04	2.08	2.16	-10^{-2}	3.9	3.0	2.13	2.17	2.20	$.10^{-2}$	3.1	1.7
18-21	1.64	1.67	1.73	-10 ${ }^{-2}$	4.4	3.3	1.69	1.72	1.74	$.10^{-2}$	3.5	1.8
21-24	1.32	1.33	1.37	10 0^{-2}	4.8	3.6	1.35	1.36	1.37	10^{-2}	4.0	1.8
24-27	1.08	1.08	1.11	10 0^{-2}	5.5	3.8	1.15	1.16	1.17	-10 0^{-2}	4.3	1.9
27-30	1.02	1.03	1.03	-10^{-2}	6.5	4.0	0.87	0.88	0.88	10^{-2}	5.0	2.0
30-36	7.22	7.24	7.26	-10 ${ }^{-3}$	4.8	4.2	6.45	6.46	6.45	10^{-3}	4.1	2.1
36-42	4.89	4.88	4.85	-10 ${ }^{-3}$	5.8	4.5	4.63	4.63	4.62	-10 0^{-3}	4.9	2.2
42-48	3.66	3.64	3.59	-10^{-3}	7.0	4.8	3.97	3.95	3.94	. 10^{-3}	5.3	2.4
48-54	3.26	3.25	3.20	-10^{-3}	7.8	5.0	2.90	2.88	2.86	$.10^{-3}$	6.2	2.6
54-60	2.14	2.13	2.08	. 10^{-3}	9.2	5.4	2.14	2.13	2.11	. 10^{-3}	7.2	2.7
60-80	1.21	1.20	1.17	. 10^{-3}	6.5	5.7	1.31	1.30	1.28	. 10^{-3}	5.1	3.0
80-100	5.69	5.63	5.44	-10^{-4}	9.8	5.9	5.52	5.47	5.40	$.10^{-4}$	7.8	3.5
100-180	1.74	1.73	1.67	-10^{-4}	9.6	6.1	1.52	1.51	1.49	. 10^{-4}	7.5	4.4
180-350	0.78	0.77	0.73	10 ${ }^{-5}$	27.0	7.8	1.14	1.14	1.11	-10 0^{-5}	18.9	6.6

For the $\mu \mu$ selection, the multijet contribution is estimated from four two-dimensional regions which are obtained by changing the mass window to $40 \mathrm{GeV}<m_{\mu \mu}<60 \mathrm{GeV}$ or by inverting the isolation criterion. The normalization is determined from the number of candidate events in these four regions which is corrected by the expected number of non-QCD multijet background events and number of signal events. The number of signal events is determined from the measurement in the signal region which is corrected for the background including the multijet background, and extrapolated to the other regions using relative efficiencies extracted from the simulation. The resulting equation can be solved for the number of QCD multijet background events. The shape is determined from the control region where both muon candidates are non-isolated and their invariant mass is within $66 \mathrm{GeV}<m_{\mu \mu}<116 \mathrm{GeV}$. Systematic uncertainties are determined by comparing the results to those of alternative methods which use template fits or same sign and opposite sign events.

The total background contribution, which amounts to ($1.5 \pm$ $0.6) \%$ and (0.4 ± 0.2)\% in the ee and $\mu \mu$ channels, respectively, is found to increase from $0.5 \%(0.2 \%)$ to $3.5 \%(1.5 \%)$ as a function of p_{T}^{Z} in the ee $(\mu \mu)$ analysis.

6. The measured $p_{\mathrm{T}}^{\mathrm{Z}}$ distribution

The Z / γ^{*} transverse momentum is reconstructed from the measured lepton momenta. The p_{T}^{Z} range is divided into 19 bins from 0 GeV to 350 GeV with widths of 3 GeV for $p_{\mathrm{T}}^{2}<30 \mathrm{GeV}$ and increasing widths at larger transverse momenta as given in Table 1. For this binning, the fraction of simulated events reconstructed in a particular p_{T}^{Z} bin which have generator-level p_{T}^{Z} in the same bin is always better than 60% and reaches values above 90% in the highest p_{T}^{Z} bins for both decay channels. The bin-by-bin efficiency, defined as the ratio between the number of signal events which pass the final selection and the total number of generated events within the fiducial region, are on average about 56% in the ee and 83% in the $\mu \mu$ channel, respectively. Three Z / γ^{*} candidate events with $p_{\mathrm{T}}^{Z}>350 \mathrm{GeV}$ are found, which are not considered further due to the limited statistical significance.

The observed p_{T}^{Z} spectrum is found to be well described by the simulation, using the default MC signal samples and background estimations as described in Sections 4 and 5. A bin-by-bin efficiency correction is used to correct (unfold) the observed data for detector effects and QED FSR, where the correction factors are determined from the default MC signal sample. Alternative matrix unfolding methods [41,42], which explicitly take the bin-to-bin migration into account, yield compatible results. However, these techniques require higher data statistics to fully exploit their advantages. Therefore they are currently used only to estimate the systematic uncertainties due to the unfolding method as discussed in Section 7.

In Table 1, the cross section measurements in the ee and $\mu \mu$ decay channels are reported in the fiducial volume, which is defined by the lepton acceptance $p_{T}^{\ell}>20 \mathrm{GeV}$ and $\left|\eta^{\ell}\right|<2.4$, and the invariant mass of the lepton pair $66 \mathrm{GeV}<m_{\ell \ell}<116 \mathrm{GeV}$. This implies for the ee decay channel a small acceptance correction due to the discarded events, in which one or more electrons are within the calorimeter transition region, $1.37<\left|\eta^{e}\right|<1.52$. The resulting correction of the normalized differential cross section is smaller than 0.6%. The measurement is reported with respect to three distinct reference points at particle level regarding QED FSR corrections. The true dilepton mass $m_{\ell \ell}$ and transverse momentum p_{T}^{Z} are either defined by the final state leptons after QED FSR ("bare" leptons), or by recombining them with radiated photons within a cone of $\Delta R=0.1$ ("dressed" leptons), or by the Z / γ^{*} propagator. The propagator definition corresponds to a full correction for QED FSR effects, allows for a combination of the electron and muon channels, and facilitates a direct comparison of the measurement with QCD calculations. The QED FSR corrections are at most 8% (5\%) for the normalized differential cross section in the $e e(\mu \mu)$ decay channel.

7. Systematic uncertainties

Systematic uncertainties arise mainly from lepton efficiencies, momentum scale and resolution, and from the unfolding procedure. They are evaluated by varying separately each parameter in question and recalculating the bin-by-bin correction factors used to
unfold the p_{T}^{Z} spectrum. The observed deviation in the unfolded distributions is limited by the statistics of the simulated events. The statistical component of these deviations is estimated using a bootstrap method [44] based on multiple resampling of the simulated events. Each sample has the same size and may contain the same events multiple times. Symmetric systematic uncertainties are derived in such a way [45] that the area spanned by these uncertainties covers 68% of the integral over a Gaussian with mean and width equal to the mean and standard deviation of the bootstrap distributions. The resulting uncertainties are equal to the standard deviation if the bootstrap distribution is centred at zero, and approach the mean plus half the standard deviation if the mean deviates from zero.

The following sources of systematic uncertainties on the measured normalized differential cross section are evaluated, where the quoted uncertainties are relative percentages.

Lepton reconstruction and identification: The efficiencies are determined as a function of p_{T}^{Z} using a tag-and-probe method. Due to the limited statistics at high p_{T}^{Z}, the uncertainties are parametrized by a function which increases with p_{T}^{2}. For the ee analysis, the uncertainty due to the electron reconstruction and identification varies between 1.0% and 3.2%. An additional uncertainty of 0.1% arises from the modelling of local calorimeter readout problems. In the case of the $\mu \mu$ selection, the uncertainties due to the efficiencies on the trigger, on the muon reconstruction and identification, and on the isolation requirement are evaluated separately and are found to be within $0.4 \%, 2.3 \%$, and 1.0%, respectively, except for the three highest p_{T}^{Z} bins, where they reach 0.8%, 4.9%, and 2.7%.

Lepton energy (momentum) scale and resolution: The scale and resolution corrections of the simulation are varied within their uncertainties estimated from the fit to the observed Z / γ^{*} line shape. Correlations across p_{T}^{Z} bins are taken into account. Due to the normalization to the inclusive cross section, a systematic shift at low p_{T}^{Z} is balanced by a shift in the opposite direction at high p_{T}^{Z}. In the ee $(\mu \mu)$ analysis, the uncertainty due to scale variations is found to be $2.7 \%(0.2 \%)$ for the lowest bin, decreasing down to $0.2 \%(<0.1 \%)$ at $p_{\mathrm{T}_{\mathrm{Z}}}^{\mathrm{Z}} \sim 10 \mathrm{GeV}$, and then increasing up to $4.4 \%(0.4 \%)$ at the highest p_{T}^{Z} values. Uncertainties due to resolution are estimated to be 0.5% for the ee channel and between 0.1% and 0.7% for the $\mu \mu$ channel.

Unfolding procedure: The bin-by-bin correction factors depend on the shape of the assumed underlying p_{T}^{Z} distribution, which leads to a systematic uncertainty evaluated in the following way. The default MC signal sample (PYTHIA) is reweighted to different true p_{T}^{Z} shapes using Resbos and Mc@ ${ }_{\text {nlo. }}$. The variance of these generator predictions does not entirely cover the observed difference between simulation and data. Therefore the Pythia signal sample is reweighted, in addition, to distributions based on unfolded data. The spectra obtained by unfolding the data either with the bin-by-bin method or alternative matrix unfolding techniques $[41,42]$ are considered. These new corrected spectra feature different uncertainties. The bin-by-bin method suffers a larger systematic uncertainty due to the assumed true p_{T}^{Z} shape, whereas matrix-based unfolding is nearly independent of this assumption, but suffers from a larger statistical uncertainty. Each of the reweighted spectra is treated in the same way as the data, and is unfolded with the default bin-by-bin correction factors. The maximum deviation from the respective true p_{T}^{Z} spectrum is considered as a systematic uncertainty. A possible influence from the parton shower and hadronization model is estimated by comparing the bin-by-bin correction factors determined from either the default Pythia sample or the Mc@nlo sample. Mc@nlo uses Herwig for the parton shower and Jimmy for the underlying event. To separate these model uncertainties from the uncertainty due

Fig. 2. Ratio of the normalized differential cross section for $Z / \gamma^{*} \rightarrow e^{+} e^{-}$and $Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}$production as a function of p_{T}^{Z} at Z / γ^{*} propagator level using an integrated luminosity of $35 \mathrm{pb}^{-1}$ and $40 \mathrm{pb}^{-1}$, respectively. The error bars shown include statistical and systematic uncertainties. The systematic uncertainties due to the unfolding procedure and QED FSR, which are correlated between the electron and muon decay channel, are omitted.
to the underlying $p_{\mathrm{T}}^{\mathrm{Z}}$ distribution, which is already accounted for, the Mc@NLo sample is reweighted to the p_{T}^{Z} shape of the default MC signal sample. The uncertainties due to the shape of the p_{T}^{Z} distribution and due to the modelling of the parton shower and the hadronization are combined to yield the total unfolding uncertainty, which is found to be within $2.0 \%(1.3 \%)$ in the ee ($\mu \mu)$ channel for p_{T}^{2} between 6 GeV and 100 GeV . For $p_{\mathrm{T}}^{2}<6 \mathrm{GeV}$ the uncertainty is as large as $3.6 \%(4.7 \%)$ and for $p_{\mathrm{T}}^{Z}>100 \mathrm{GeV}$ it is as large as $4.2 \%(2.9 \%)$ in the ee ($\mu \mu$) channel. The unfolding uncertainty is dominated by the deviations observed when reweighting the default MC signal sample to the p_{T}^{Z} distributions obtained from the data with the matrix unfolding techniques.

Background contamination: Uncertainties in the estimation of the background from QCD multijet, weak boson, and $t \bar{t}$ production yield values of up to $1.4 \%(0.6 \%)$ for the $e e(\mu \mu)$ analysis when propagated to the normalized differential cross section.

Modelling of pileup corrections: Pileup has a small influence on this measurement. An uncertainty of 0.3% on the normalized differential cross section is derived.

MC sample statistics: The uncertainties are within $0.4 \%-1.5 \%$ $(0.3 \%-0.8 \%)$ in the ee ($\mu \mu)$ channel, except for highest p_{T}^{Z} values for which the uncertainties reach 3.6% (1.6%).

QED final state radiation: A conservative systematic uncertainty of 0.6% due to the p_{T}^{Z}-dependent modelling of QED FSR is assigned. This uncertainty addresses both potential differences between the approximation used in Рнотоs compared to exact second order QED FSR matrix element calculations $[46,47]$ and uncertainties in the simulation of the interaction of the radiated photons with the detector material [38].

The systematic uncertainties listed above are added quadratically to obtain the total systematic uncertainties listed in Table 1.

8. Results and conclusions

The normalized differential cross section measurements for $Z / \gamma^{*} \rightarrow e^{+} e^{-}$and $Z / \gamma^{*} \rightarrow \mu^{+} \mu^{-}$production are in good agreement with each other at the Z / γ^{*} propagator level; see Fig. 2 for the ratio of the measured cross sections. The two decay channels are combined at Z / γ^{*} propagator level using a χ^{2} minimization method which takes into account the correlated systematic uncertainties for the ee and $\mu \mu$ channels [48]. The uncertain-

Fig. 3. The combined normalized differential cross section at Z / γ^{*} propagator level as a function of p_{T}^{Z} for (a) the range $p_{\mathrm{T}}^{Z}<30 \mathrm{GeV}$ and (b) the full range compared to the predictions of Resbos, Pythia, and Fewz at $\mathcal{O}\left(\alpha_{S}^{2}\right)$. The error bars shown include statistical and systematic uncertainties. For the combination, the ee ($\mu \mu$) channel contributes with an integrated luminosity of $35 \mathrm{pb}^{-1}\left(40 \mathrm{pb}^{-1}\right)$. At low p_{T}^{Z} the Fewz prediction diverges and is omitted.

Table 2
The combined normalized differential cross section at Z / γ^{*} propagator level, $1 / \sigma^{\text {fid }} \mathrm{d} \sigma^{\text {fid }} / \mathrm{d} p_{\mathrm{T}}^{Z}$, as a function of the average Z / γ^{*} transverse momentum $\left\langle p_{\mathrm{T}}^{Z}\right\rangle$ with relative statistical and total systematic uncertainties. The multiplication with the inverse acceptance correction A_{c}^{-1} (given with uncertainties, "unc.") yields the normalized differential cross section $1 / \sigma^{t 0 t} \mathrm{~d} \sigma^{t o t} / \mathrm{d} p_{\mathrm{T}}^{z}$ extrapolated to the full lepton acceptance. The data can be obtained electronically through the HepData repository [43].

$\left\langle p_{\mathrm{T}}^{Z}\right\rangle$ (GeV)	$\sigma_{\sigma^{\text {fid }}} \frac{\mathrm{d} \sigma}{\mathrm{d} p_{\mathrm{T}}^{2}}$ $\left(\mathrm{GeV}^{-1}\right)$	stat. $(\%)$	syst. $(\%)$	A_{c}^{-1}	unc. $(\%)$
1.3	0.0366	2.0	4.7	1.047	3.7
4.8	0.0586	1.5	3.6	1.029	1.8
7.5	0.0466	1.7	1.5	1.014	1.5
10	0.0348	1.9	1.6	0.999	1.5
13	0.0277	2.2	1.7	0.999	1.4
16	0.0210	2.5	1.7	0.990	1.5
19	0.0167	2.8	1.8	0.989	1.5
22	0.0133	3.1	1.9	0.990	1.5
25	0.0112	3.4	2.0	0.994	2.3
28	0.0092	4.0	2.1	0.988	2.3
33	0.0067	3.2	2.1	0.987	3.2
39	0.0047	3.8	2.3	0.979	3.9
45	0.0038	4.2	2.4	0.965	4.3
51	0.0030	4.9	2.5	0.950	4.4
57	0.0021	5.7	2.7	0.938	5.3
69	0.0013	4.0	2.8	0.910	5.3
89	$5.5 \cdot 10^{-4}$	6.1	3.1	0.894	5.3
132	$1.6 \cdot 10^{-4}$	5.9	3.7	0.826	5.4
245	9.8	10^{-6}	15.6	5.4	0.672

ties due to the unfolding procedure and QED FSR are considered to be common for the two channels. The minimization yields a $\chi^{2} /$ d.o.f. $=17.0 / 19$ indicating the excellent compatibility of the electron and muon data.

The combined measurement of the normalized differential cross section within the fiducial lepton acceptance as a function of p_{T}^{Z}, $1 / \sigma^{\text {fid }} \mathrm{d} \sigma^{\text {fid }} / \mathrm{d} p_{T}^{Z}$, is shown in Fig. 3 and Table 2. In addition, the acceptance corrections A_{c} needed to extrapolate the measurement to full lepton acceptance, but keeping the mass range $66 \mathrm{GeV}<$ $m_{\ell \ell}<116 \mathrm{GeV}$, are reported. They are determined using Pythia and the MRST2007LO* PDF set. The acceptance for the inclusive fiducial cross section is 0.48 . However, the acceptance corrections A_{c} for the normalized differential cross section are within 10% of 1.0 for the bins with $p_{\mathrm{T}}^{\mathrm{Z}}<80 \mathrm{GeV}$. The uncertainty on A_{c} is estimated by: reweighting the PyThia prediction using the HERAPDF1.0 [49] and CTEQ6.6 [31] parton distribution functions; propagating
the CTEQ6.6 PDF error eigenvector sets; and by taking into account the difference to the predictions obtained with Mc@nlo, Resbos, and Fewz.

In Fig. 4, the measurement within the fiducial acceptance is compared with predictions of PQCD calculations and of various event generators introduced above. The $\mathcal{O}\left(\alpha_{\mathrm{S}}\right)$ and $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right) \mathrm{pQCD}$ predictions of the p_{T}^{Z} dependent cross section are obtained with Fewz v2.0 [7] and the MSTW2008 PDF sets [50]. The inclusive cross section, which is used to normalize the prediction, is calculated in the same way. The uncertainties on the normalized predictions are evaluated by variation of the renormalization and factorization scales by factors of two around the nominal scale $\mu_{R}=\mu_{F}=M_{Z}$ with the constraint $0.5 \leqslant \mu_{R} / \mu_{F} \leqslant 2$, by variation of α_{S} within a range corresponding to 90% confidence level limits [51], and by using the PDF error eigenvector sets at 90% confidence level. They amount to $\sim 10 \%$ and $\sim 8 \%$ for the $\mathcal{O}\left(\alpha_{S}\right)$ and $\mathcal{O}\left(\alpha_{S}^{2}\right)$ prediction, respectively, with a dominant contribution of 9% and 6.5% from the scale variations. In contrast to the Z / γ^{*} inclusive cross section, the prediction of the p_{T}^{Z} distribution suffers from substantial scale uncertainties indicating non-negligible missing higher order corrections. For $p_{\mathrm{T}}^{\mathrm{Z}}>18 \mathrm{GeV}$, the PQCD prediction receives an $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)$ correction of $26-36 \%$. Despite this correction, the $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)$ prediction undershoots the data by about 10%, which is comparable to the size of the scale uncertainty. This deficit is smaller compared to the $15-25 \%$ difference observed at the Tevatron [25,26]. At low boson transverse momenta, where fixed order PQCD calculations are not expected to give an adequate description of the cross section, the disagreement increases rapidly towards vanishing p_{T}^{Z}.

In addition, the measurement is compared to the predictions of Resbos and various event generators. The consistency with the data is verified with a χ^{2} test which uses the χ^{2} definition also used for the combination of the ee and $\mu \mu$ decay channels.

The Resbos [13] prediction, which combines resummed and fixed order pQCD calculations, is based on the CTEQ6.6 [31] PDF set and a resummation scale of m_{Z}. It is verified that the different PDF sets used for the Fewz and Resbos predictions lead to differences below 3%. Resbos shows good agreement with the measurement over the entire p_{T}^{Z} range ($\chi^{2} /$ d.o.f. $=21.7 / 19$), indicating the importance of resummation even at relatively large p_{T}^{Z}. However, its predictions are slightly higher than the data for p_{T}^{Z} values in the range of 10 GeV to 40 GeV and slightly lower above 40 GeV .

The Alpgen [19] and Sherpa [20] generators consider processes with up to five additional hard partons associated with the pro-

Fig. 4. Ratios of the combined data and various predictions over the Resbos prediction for the normalized differential cross section as a function of p_{T}^{Z} : (a) Fewz predictions at $\mathcal{O}\left(\alpha_{S}\right)$ and $\mathcal{O}\left(\alpha_{S}^{2}\right)$; (b) predictions from the generators Pythia, Mc@nlo, Powheg, Alpgen and Sherpa. The Fewz predictions are shown with combined scale, α_{S}, and PDF uncertainties. The data points are shown with combined statistical and systematic uncertainty. At low $p_{\mathrm{T}}^{\mathrm{Z}}$ the $\mathcal{O}\left(\alpha_{\mathrm{S}}\right)$ and $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)$ predictions of Fewz diverge and are omitted.
duced boson and give a good description of the entire measured spectrum, up to large p_{T}^{Z}, with $\chi^{2} /$ d.o.f. of $31.9 / 19$ and $16.8 / 19$, respectively. Here, the enhancement of the cross section compared to the $\mathcal{O}\left(\alpha_{S}^{2}\right)$ prediction can be attributed to processes with large parton multiplicities [52], which correspond to tree-level diagrams of higher order in the strong coupling. Sherpa v1.2.3 and Alpgen v2.13 are used, with the latter being interfaced to HerWIG v6.510 [16] for parton shower and fragmentation into particles, and to Jimmy v4.31 [32] to model underlying event contributions. For Alpgen, the CTEQ6L1 [53] PDF set is employed and the factorization scale is set to $\mu_{F}^{2}=m_{\ell \ell}^{2}+\sum p_{\mathrm{T}}^{2}$, where the sum extends over all associated partons. The Sherpa prediction uses the CTEQ6.6 PDF set and $\mu_{F}^{2}=m_{\ell \ell}^{2}+\left(p_{\mathrm{T}}^{2}\right)^{2}$.

The predictions of the parton shower event generators Pythia and Mc@nlo are based on the simulated samples as described above. Fig. 4 b also shows the predictions of Powheg v1.0 [18] interfaced to a Pythia version with an underlying event tune to Tevatron and $7 \mathrm{TeV} p p$ collision data [54]. Whereas Mc@nlo $\left(\chi^{2} /\right.$ d.o.f. $\left.=111.6 / 19\right)$ and Powheg $\left(\chi^{2} /\right.$ d.o.f. $\left.=100.4 / 19\right)$ deviate from the data at low and high p_{T}^{2}, PYthia describes the measurement well over the entire range of boson transverse momentum ($\chi^{2} /$ d.o.f. $=17.9 / 19$).

In summary, the Z / γ^{*} transverse momentum differential distribution has been measured up to $p_{\mathrm{T}}^{2}=350 \mathrm{GeV}$ for electron and muon pairs with invariant masses $66 \mathrm{GeV}<m_{\ell \ell}<116 \mathrm{GeV}$ produced in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ based on integrated luminosities of $35 \mathrm{pb}^{-1}$ and $40 \mathrm{pb}^{-1}$, respectively, recorded with the ATLAS detector. Resbos describes the spectrum well for the entire p_{T}^{Z} range. At $p_{\mathrm{T}}^{Z}>18 \mathrm{GeV}$, the central Fewz $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)$ prediction underestimates the data by about 10%, which is comparable to the size of the combined experimental and theoretical uncertainty. The measurement is compared to predictions of various event generators and a good agreement with Sherpa, Alpgen, and Pythia is found. Except for the lowest p_{T}^{Z} values, the measurement is limited by statistics rather than systematic uncertainties. The systematic uncertainties are also mostly limited by the size of the data sample and are expected to improve with increasing integrated luminosity.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and from the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[1] ATLAS Collaboration, Phys. Lett. B 698 (2011) 325.
[2] T. Aaltonen, et al., CDF Collaboration, Phys. Rev. D 77 (2008) 112001.
[3] V.M. Abazov, et al., D0 Collaboration, Phys. Rev. Lett. 103 (2009) 141801.
[4] P.B. Arnold, M.H. Reno, Nucl. Phys. B 319 (1989) 37.
[5] R.J. Gonsalves, J. Pawlowski, C.-F. Wai, Phys. Rev. D 40 (1989) 2245.
[6] K. Melnikov, F. Petriello, Phys. Rev. D 74 (2006) 114017.
[7] R. Gavin, Y. Li, F. Petriello, S. Quackenbush, Comput. Phys. Commun. 182 (2011) 2388, doi:10.1016/j.cpc.2011.06.008.
[8] S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini, Phys. Rev. Lett. 103 (2009) 082001.
[9] C.T.H. Davies, W.J. Stirling, Nucl. Phys. B 244 (1984) 337
[10] J.C. Collins, D.E. Soper, G.F. Sterman, Nucl. Phys. B 250 (1985) 199.
[11] G.A. Ladinsky, C.P. Yuan, Phys. Rev. D 50 (1994) 4239.
[12] G. Bozzi, S. Catani, G. Ferrera, D. de Florian, M. Grazzini, Phys. Lett. B 696 (2011) 207.
[13] C. Balazs, C.P. Yuan, Phys. Rev. D 56 (1997) 5558.
[14] F. Landry, R. Brock, P.M. Nadolsky, C.P. Yuan, Phys. Rev. D 67 (2003) 073016.
[15] T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 0605 (2006) 026
[16] G. Corcella, et al., JHEP 0101 (2001) 010.
[17] S. Frixione, B.R. Webber, JHEP 0206 (2002) 029.
[18] S. Frixione, P. Nason, C. Oleari, JHEP 0711 (2007) 070.
[19] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, JHEP 0307 (2003) 001.
[20] T. Gleisberg, et al., JHEP 0902 (2009) 007
[21] F. Krauss, JHEP 0208 (2002) 015.
[22] J. Alwall, et al., Eur. Phys. J. C 53 (2008) 473.
[23] A.A. Affolder, et al., CDF Collaboration, Phys. Rev. Lett. 84 (2000) 845.
[24] B. Abbott, et al., D0 Collaboration, Phys. Rev. Lett. 84 (2000) 2792.
[25] V. Abazov, et al., D0 Collaboration, Phys. Rev. Lett. 100 (2008) 102002.
[26] V.M. Abazov, et al., D0 Collaboration, Phys. Lett. B 693 (2010) 522.
[27] V.M. Abazov, et al., D0 Collaboration, Phys. Rev. Lett. 106 (2011) 122001.
[28] S. Berge, P.M. Nadolsky, F. Olness, C.P. Yuan, Phys. Rev. D 72 (2005) 033015.
[29] ATLAS Collaboration, JINST 3 (2008) S08003.
[30] A. Sherstnev, R.S. Thorne, Eur. Phys. J. C 55 (2008) 553.
[31] P.M. Nadolsky, et al., Phys. Rev. D 78 (2008) 013004.
[32] J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Z. Phys. C 72 (1996) 637.
[33] P. Golonka, Z. Was, Eur. Phys. J. C 45 (2006) 97.
[34] ATLAS Collaboration, ATLAS Monte Carlo tunes for MC09, ATL-PHYS-PUB-2010002, 2010, http://cdsweb.cern.ch/record/1247375/files/ATL-PHYS-PUB-2010 002.pdf.
[35] ATLAS Collaboration, First tuning of HERWIG/JIMMY to ATLAS data, ATL-PHYS PUB-2010-014, 2010, http://cdsweb.cern.ch/record/1303025/files/ATL-PHYS-PUB-2010-014.pdf.
[36] S. Agostinelli, et al., GEANT4 Collaboration, Nucl. Instrum. Meth. A 506 (2003) 250.
[37] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823.
[38] ATLAS Collaboration, JHEP 1012 (2010) 060.
[39] ATLAS Collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data, arXiv: 1110.3174 [hep-ex], Eur. Phys. J. C (2011), submitted for publication.
[40] R. Hamberg, W.L. van Neerven, T. Matsuura, Nucl. Phys. B 359 (1991) 343; R. Hamberg, W.L. van Neerven, T. Matsuura, Nucl. Phys. B 644 (2002) 403 (Erratum).
[41] P. Hansen, Rank-deficient and Discrete Ill-posed Problems, SIAM Monographs on Mathematical Modeling and Computation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. Numerical aspects of linear inversion.
[42] J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems, Sprin-ger-Verlag, New York, Dordrecht, 2005, electronic version.
[43] HepData, http://hepdata.cedar.ac.uk.
[44] B. Efron, Ann. Statist. 7 (1) (1979) 1.
[45] A. Alavi-Harati, et al., KTeV Collaboration, Phys. Rev. D 67 (2003) 012005.
[46] A. Andonov, et al., Comput. Phys. Commun. 181 (2010) 305.
[47] S. Jadach, B.F.L. Ward, Z. Was, Phys. Rev. D 63 (2001) 113009.
[48] F. Aaron, et al., H1 Collaboration, Eur. Phys. J. C 63 (2009) 625.
[49] F.D. Aaron, et al., H1 Collaboration, ZEUS Collaboration, JHEP 1001 (2010) 109.
[50] A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63 (2009) 189.
[51] A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 64 (2009) 653.
[52] F. Krauss, A. Schalicke, S. Schumann, G. Soff, Phys. Rev. D 72 (2005) 054017.
[53] J. Pumplin, et al., JHEP 0207 (2002) 012.
[54] ATLAS Collaboration, New J. Phys. 13 (2011) 053033.

ATLAS Collaboration

G. Aad ${ }^{48}$, B. Abbott ${ }^{111}$, J. Abdallah ${ }^{11}$, A.A. Abdelalim ${ }^{49}$, A. Abdesselam ${ }^{118}$, O. Abdinov ${ }^{10}$, B. Abi ${ }^{112}$, M. Abolins ${ }^{88}$, H. Abramowicz ${ }^{153}$, H. Abreu ${ }^{115}$, E. Acerbi ${ }^{89 a}$, 89 b , B.S. Acharya ${ }^{164 a, 164 b}$, D.L. Adams ${ }^{24}$, T.N. Addy ${ }^{56}$, J. Adelman ${ }^{175}$, M. Aderholz ${ }^{99}$, S. Adomeit ${ }^{98}$, P. Adragna ${ }^{75}$, T. Adye ${ }^{129}$, S. Aefsky ${ }^{22}$, J.A. Aguilar-Saavedra ${ }^{124 \mathrm{~b}, a}$, M. Aharrouche ${ }^{81}$, S.P. Ahlen ${ }^{21}$, F. Ahles ${ }^{48}$, A. Ahmad ${ }^{148}$, M. Ahsan ${ }^{40}$, G. Aielli ${ }^{133 a, 133 b}$, T. Akdogan ${ }^{18 a}$, T.P.A. Åkesson ${ }^{79}$, G. Akimoto ${ }^{155}$, A.V. Akimov ${ }^{94}$, A. Akiyama ${ }^{67}$, M.S. Alam ${ }^{1}$, M.A. Alam ${ }^{76}$, J. Albert ${ }^{169}$, S. Albrand ${ }^{55}$, M. Aleksa ${ }^{29}$, I.N. Aleksandrov ${ }^{65}$, F. Alessandria ${ }^{89 a}$, C. Alexa ${ }^{25 a}$, G. Alexander ${ }^{153}$, G. Alexandre ${ }^{49}$, T. Alexopoulos ${ }^{9}$, M. Alhroob ${ }^{20}$, M. Aliev ${ }^{15}$, G. Alimonti ${ }^{89 \mathrm{a}}$, J. Alison ${ }^{120}$, M. Aliyev ${ }^{10}$, P.P. Allport ${ }^{73}$, S.E. Allwood-Spiers ${ }^{53}$, J. Almond ${ }^{82}$, A. Aloisio ${ }^{102 a,} 102 \mathrm{~b}$, R. Alon ${ }^{171}$, A. Alonso ${ }^{79}$, M.G. Alviggi ${ }^{102 a, 102 b}$, K. Amako ${ }^{66}$, P. Amaral ${ }^{29}$, C. Amelung ${ }^{22}$, V.V. Ammosov ${ }^{128}$, A. Amorim ${ }^{124 a, b}$, G. Amorós ${ }^{167}$, N. Amram ${ }^{153}$, C. Anastopoulos ${ }^{29}$, N. Andari ${ }^{115}$, T. Andeen ${ }^{34}$, C.F. Anders ${ }^{20}$, K.J. Anderson ${ }^{30}$, A. Andreazza ${ }^{89 a, 89 b}$, V. Andrei ${ }^{58 a}$, M.-L. Andrieux ${ }^{55}$, X.S. Anduaga ${ }^{70}$, A. Angerami ${ }^{34}$, F. Anghinolfi ${ }^{29}$, N. Anjos ${ }^{124 \mathrm{a}}$, A. Annovi ${ }^{47}$, A. Antonaki ${ }^{8}$, M. Antonelli ${ }^{47}$, A. Antonov ${ }^{96}$, J. Antos ${ }^{144 \mathrm{~b}}$, F. Anulli ${ }^{132 \mathrm{a}}$, S. Aoun ${ }^{83}$, L. Aperio Bella ${ }^{4}$, R. Apolle ${ }^{118, c}$, G. Arabidze ${ }^{88}$, I. Aracena ${ }^{143}$, Y. Arai ${ }^{66}$, A.T.H. Arce ${ }^{44}$, J.P. Archambault ${ }^{28}$, S. Arfaoui ${ }^{29, d}$, J.-F. Arguin ${ }^{14}$, E. Arik ${ }^{18 a, *}$, M. Arik ${ }^{18 \mathrm{a}}$, A.J. Armbruster ${ }^{87}$, O. Arnaez ${ }^{81}$, C. Arnault ${ }^{115}$, A. Artamonov ${ }^{95}$, G. Artoni ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, D. Arutinov ${ }^{20}$, S. Asai ${ }^{155}$, R. Asfandiyarov ${ }^{172}$, S. Ask ${ }^{27}$, B. Åsman ${ }^{146 a, 146 b}$, L. Asquith ${ }^{5}$, K. Assamagan ${ }^{24}$, A. Astbury ${ }^{169}$, A. Astvatsatourov ${ }^{52}$, G. Atoian ${ }^{175}$, B. Aubert ${ }^{4}$, B. Auerbach ${ }^{175}$, E. Auge ${ }^{115}$, K. Augsten ${ }^{127}$, M. Aurousseau ${ }^{145 a}$, N. Austin ${ }^{73}$, G. Avolio ${ }^{163}$, R. Avramidou ${ }^{9}$, D. Axen ${ }^{168}$, C. Ay ${ }^{54}$, G. Azuelos ${ }^{93, e}$, Y. Azuma ${ }^{155}$, M.A. Baak 29, G. Baccaglioni ${ }^{89 \text { a }}$, C. Bacci ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, A.M. Bach ${ }^{14}$, H. Bachacou ${ }^{136}$, K. Bachas ${ }^{29}$, G. Bachy ${ }^{29}$, M. Backes ${ }^{49}$, M. Backhaus ${ }^{20}$, E. Badescu ${ }^{25 a}$, P. Bagnaia ${ }^{132 a, 132 b}$, S. Bahinipati ${ }^{2}$, Y. Bai ${ }^{32 a}$, D.C. Bailey ${ }^{158}$, T. Bain ${ }^{158}$, J.T. Baines ${ }^{129}$, O.K. Baker ${ }^{175}$, M.D. Baker ${ }^{24}$, S. Baker ${ }^{77}$, F. Baltasar Dos Santos Pedrosa ${ }^{29}$, E. Banas ${ }^{38}$, P. Banerjee ${ }^{93}$, Sw. Banerjee ${ }^{172}$, D. Banfi ${ }^{29}$, A. Bangert ${ }^{137}$, V. Bansal ${ }^{169}$, H.S. Bansil ${ }^{17}$, L. Barak ${ }^{171}$, S.P. Baranov ${ }^{94}$, A. Barashkou ${ }^{65}$, A. Barbaro Galtieri ${ }^{14}$, T. Barber ${ }^{27}$, E.L. Barberio ${ }^{86}$, D. Barberis ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, M. Barbero ${ }^{20}$, D.Y. Bardin ${ }^{65}$, T. Barillari ${ }^{99}$, M. Barisonzi ${ }^{174}$, T. Barklow ${ }^{143}$, N. Barlow ${ }^{27}$, B.M. Barnett ${ }^{129}$, R.M. Barnett ${ }^{14}$, A. Baroncelli ${ }^{134 a}$, G. Barone ${ }^{49}$, A.J. Barr ${ }^{118}$, F. Barreiro ${ }^{80}$, J. Barreiro Guimarães da Costa ${ }^{57}$, P. Barrillon ${ }^{115}$, R. Bartoldus ${ }^{143}$, A.E. Barton ${ }^{71}$, D. Bartsch ${ }^{20}$, V. Bartsch ${ }^{149}$, R.L. Bates ${ }^{53}$, L. Batkova ${ }^{144 a}$, J.R. Batley ${ }^{27}$, A. Battaglia ${ }^{16}$, M. Battistin ${ }^{29}$, G. Battistoni ${ }^{89 a}$, F. Bauer ${ }^{136}$, H.S. Bawa ${ }^{143, f}$, B. Beare ${ }^{158}$, T. Beau ${ }^{78}$, P.H. Beauchemin ${ }^{118}$,
R. Beccherle ${ }^{50 a}$, P. Bechtle ${ }^{41}$, H.P. Beck ${ }^{16}$, M. Beckingham ${ }^{48}$, K.H. Becks ${ }^{174}$, A.J. Beddall ${ }^{18 \mathrm{c}}$, A. Beddall ${ }^{18 \mathrm{c}}$, S. Bedikian ${ }^{175}$, V.A. Bednyakov ${ }^{65}$, C.P. Bee ${ }^{83}$, M. Begel ${ }^{24}$, S. Behar Harpaz ${ }^{152}$, P.K. Behera ${ }^{63}$, M. Beimforde ${ }^{99}$, C. Belanger-Champagne ${ }^{85}$, P.J. Bell ${ }^{49}$, W.H. Bell ${ }^{49}$, G. Bella ${ }^{153}$, L. Bellagamba ${ }^{19 \mathrm{a}}$, F. Bellina ${ }^{29}$, M. Bellomo ${ }^{119 \mathrm{a}}$, A. Belloni ${ }^{57}$, O. Beloborodova ${ }^{107}$, K. Belotskiy ${ }^{96}$, O. Beltramello ${ }^{29}$, S. Ben Ami ${ }^{152}$, O. Benary ${ }^{153}$, D. Benchekroun ${ }^{135 a}$, C. Benchouk ${ }^{83}$, M. Bendel ${ }^{81}$, B.H. Benedict ${ }^{163}$, N. Benekos ${ }^{165}$, Y. Benhammou ${ }^{\text {i53 }}$, D.P. Benjamin ${ }^{44}$, M. Benoit ${ }^{155}$, J.R. Bensinger ${ }^{22}$, K. Benslama ${ }^{130}$, S. Bentvelsen ${ }^{105}$, D. Berge ${ }^{29}$, E. Bergeaas Kuutmann ${ }^{41}$, N. Berger ${ }^{4}$, F. Berghaus ${ }^{169}$, E. Berglund ${ }^{49}$, J. Beringer ${ }^{14}$, K. Bernardet ${ }^{83}$, P. Bernat ${ }^{77}$, R. Bernhard ${ }^{48}$, C. Bernius ${ }^{24}$, T. Berry ${ }^{76}$, A. Bertin ${ }^{19 a, 19 \mathrm{~b}}$, F. Bertinelli ${ }^{29}$, F. Bertolucci ${ }^{1222^{2}, 122 \mathrm{~b}}$, M.I. Besana ${ }^{89 a, 89 b}$, N. Besson ${ }^{136}$, S. Bethke ${ }^{99}$, W. Bhimji ${ }^{45}$, R.M. Bianchi ${ }^{29}$, M. Bianco ${ }^{72 a, 72 b}$, O. Biebel ${ }^{98}$, S.P. Bieniek ${ }^{77}$, J. Biesiada ${ }^{14}$, M. Biglietti ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, H. Bilokon ${ }^{47}$, M. Bindi ${ }^{19 \mathrm{a}, 19 \mathrm{~b}}$, S. Binet ${ }^{115}$, A. Bingul ${ }^{18 \mathrm{c}}$, C. Bini ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, C. Biscarat ${ }^{177}$, U. Bitenc ${ }^{48}$, K.M. Black ${ }^{21}$, R.E. Blair ${ }^{5}$, J.-B. Blanchard ${ }^{115}$, G. Blanchot ${ }^{29}$, T. Blazek ${ }^{144 a}$, C. Blocker 22, J. Blocki ${ }^{38}$, A. Blondel ${ }^{49}$, W. Blum ${ }^{81}$, U. Blumenschein ${ }^{54}$, G.J. Bobbink ${ }^{105}$, V.B. Bobrovnikov ${ }^{107}$, S.S. Bocchetta ${ }^{79}$, A. Bocci ${ }^{44}$, C.R. Boddy ${ }^{118}$, M. Boehler ${ }^{41}$, J. Boek ${ }^{174}$, N. Boelaert ${ }^{35}$, S. Böser ${ }^{77}$, J.A. Bogaerts ${ }^{29}$, A. Bogdanchikov ${ }^{107}$, A. Bogouch ${ }^{90, *}$, C. Bohm ${ }^{146 a}$, V. Boisvert ${ }^{76}$, T. Bold ${ }^{163, g}$, V. Boldea ${ }^{25 a}$, N.M. Bolnet ${ }^{136}$, M. Bona ${ }^{75}$, V.G. Bondarenko ${ }^{96}$, M. Boonekamp ${ }^{136}$, G. Boorman ${ }^{76}$, C.N. Booth ${ }^{139}$, S. Bordoni ${ }^{78}$, C. Borer ${ }^{16}$, A. Borisov ${ }^{128}$, G. Borissov ${ }^{71}$, I. Borjanovic ${ }^{12 \mathrm{a}}$, S. Borroni ${ }^{\text {132a, }}{ }^{132 \mathrm{~b}}$, K. Bos ${ }^{105}$, D. Boscherini ${ }^{19 a}$, M. Bosman ${ }^{11}$, H. Boterenbrood ${ }^{105}$, D. Botterill ${ }^{129}$, J. Bouchami ${ }^{93}$, J. Boudreau ${ }^{123}$, E.V. Bouhova-Thacker ${ }^{71}$, C. Boulahouache ${ }^{123}$, C. Bourdarios ${ }^{115}$, N. Bousson ${ }^{83}$, A. Boveia ${ }^{30}$, J. Boyd ${ }^{29}$, I.R. Boyko ${ }^{65}$, N.I. Bozhko ${ }^{128}$, I. Bozovic-Jelisavcic ${ }^{12 \mathrm{~b}}$, J. Bracinik ${ }^{17}$, A. Braem ${ }^{29}$, P. Branchini ${ }^{134 \mathrm{a}}$, G.W. Brandenburg ${ }^{57}$, A. Brandt ${ }^{7}$, G. Brandt ${ }^{15}$, O. Brandt ${ }^{54}$, U. Bratzler ${ }^{156}$, B. Brau ${ }^{84}$, J.E. Brau ${ }^{114}$, H.M. Braun ${ }^{174}$, B. Brelier ${ }^{158}$, J. Bremer ${ }^{29}$, R. Brenner ${ }^{166}$, S. Bressler ${ }^{152}$, D. Breton ${ }^{115}$, D. Britton ${ }^{53}$, F.M. Brochu ${ }^{27}$, I. Brock ${ }^{20}$, R. Brock ${ }^{88}$, T.J. Brodbeck ${ }^{71}$, E. Brodet ${ }^{153}$, F. Broggi ${ }^{89 a}$, C. Bromberg ${ }^{88}$, G. Brooijmans ${ }^{34}$, W.K. Brooks ${ }^{31 \mathrm{~b}}$, G. Brown ${ }^{82}$, H. Brown ${ }^{7}$, P.A. Bruckman de Renstrom ${ }^{38}$, D. Bruncko ${ }^{144 b}$, R. Bruneliere ${ }^{48}$, S. Brunet ${ }^{61}$, A. Bruni ${ }^{19 a}$, G. Bruni ${ }^{19 a}$, M. Bruschi ${ }^{19 a}$, T. Buanes ${ }^{13}$, F. Bucci ${ }^{49}$, J. Buchanan ${ }^{118}$, N.J. Buchanan ${ }^{2}$, P. Buchholz ${ }^{141}$, R.M. Buckingham ${ }^{118}$, A.G. Buckley ${ }^{45}$, S.I. Buda ${ }^{25 a}$, I.A. Budagov ${ }^{65}$, B. Budick ${ }^{108}$, V. Büscher ${ }^{81}$, L. Bugge ${ }^{117}$, D. Buira-Clark ${ }^{118}$, O. Bulekov ${ }^{96}$, M. Bunse ${ }^{42}$, T. Buran ${ }^{117}$, H. Burckhart ${ }^{29}$, S. Burdin ${ }^{73}$, T. Burgess ${ }^{13}$, S. Burke ${ }^{129}$, E. Busato ${ }^{33}$, P. Bussey ${ }^{53}$, C.P. Buszello ${ }^{166}$, F. Butin ${ }^{29}$, B. Butler ${ }^{143}$, J.M. Butler ${ }^{21}$, C.M. Buttar ${ }^{53}$, J.M. Butterworth ${ }^{77}$, W. Buttinger ${ }^{27}$, T. Byatt ${ }^{77}$, S. Cabrera Urbán ${ }^{167}$, D. Caforio ${ }^{19 a}, 19 \mathrm{~b}$, O. Cakir ${ }^{3 a}$, P. Calafiura ${ }^{14}$, G. Calderini ${ }^{78}$, P. Calfayan ${ }^{98}$, R. Calkins ${ }^{106}$, L.P. Caloba ${ }^{23 a}$, R. Caloi ${ }^{132 a, 132 \mathrm{~b}}$, D. Calvet ${ }^{33}$, S. Calvet ${ }^{33}$, R. Camacho Toro ${ }^{33}$, P. Camarri ${ }^{133 a, 133 b}$, M. Cambiaghi ${ }^{119 a, 119 b}$, D. Cameron ${ }^{117}$, S. Campana ${ }^{29}$, M. Campanelli ${ }^{77}$, V. Canale ${ }^{102 \mathrm{a}, 102 \mathrm{~b}}$, F. Canelli ${ }^{30}$, A. Canepa ${ }^{159}{ }^{\prime}$, J. Cantero ${ }^{80}$, L. Capasso ${ }^{102 \mathrm{a}, 102 \mathrm{~b}}$, M.D.M. Capeans Garrido ${ }^{29}$, I. Caprini ${ }^{25 a}$, M. Caprini ${ }^{25 a}$, D. Capriotti ${ }^{99}$, M. Capua ${ }^{36 \mathrm{a}, 36 \mathrm{~b}}$, R. Caputo ${ }^{148}$, C. Caramarcu ${ }^{25 a}$, R. Cardarelli ${ }^{133 a}$, T. Carli ${ }^{29}$, G. Carlino ${ }^{102 a}$, L. Carminati ${ }^{89 a, 89 b}$, B. Caron ${ }^{159 a}$, S. Caron ${ }^{48}$, G.D. Carrillo Montoya ${ }^{172}$, A.A. Carter ${ }^{75}$, J.R. Carter ${ }^{27}$, J. Carvalho ${ }^{124 a, h}$, D. Casadei ${ }^{108}$, M.P. Casado ${ }^{11}$, M. Cascella ${ }^{122 a, 122 b}$, C. Caso ${ }^{50 \mathrm{a}, 50 \mathrm{~b}, *}$, A.M. Castaneda Hernandez ${ }^{172}$, E. Castaneda-Miranda ${ }^{172}$, V. Castillo Gimenez ${ }^{167}$, N.F. Castro ${ }^{124 a}$, G. Cataldi ${ }^{72 a}$, F. Cataneo ${ }^{29}$, A. Catinaccio ${ }^{29}$, J.R. Catmore ${ }^{71}$, A. Cattai ${ }^{29}$, G. Cattani ${ }^{133 a, 133 b}$, S. Caughron ${ }^{88}$, D. Cauz ${ }^{164 a, 164 \mathrm{c}}$, P. Cavalleri ${ }^{78}$, D. Cavalli ${ }^{89 a}$, M. Cavalli-Sforza ${ }^{11}$, V. Cavasinni ${ }^{122 \text { 2a, 122b }}$, F. Ceradini ${ }^{134 a, 134 b}$, A.S. Cerqueira ${ }^{23 a}$, A. Cerri ${ }^{29}$, L. Cerrito ${ }^{75}$, F. Cerutti ${ }^{47}$, S.A. Cetin ${ }^{18 b}$, F. Cevenini ${ }^{102 a, 102 b}$, A. Chafaq ${ }^{135 a}$, D. Chakraborty ${ }^{106}$, K. Chan ${ }^{2}$, B. Chapleau ${ }^{85}$, J.D. Chapman ${ }^{27}$, J.W. Chapman ${ }^{87}$, E. Chareyre ${ }^{78}$, D.G. Charlton ${ }^{17}$, V. Chavda ${ }^{82}$, C.A. Chavez Barajas ${ }^{29}$, S. Cheatham ${ }^{85}$, S. Chekanov ${ }^{5}$, S.V. Chekulaev ${ }^{159 a}$, G.A. Chelkov ${ }^{65}$, M.A. Chelstowska ${ }^{104}$, C. Chen ${ }^{64}$, H. Chen ${ }^{24}$, S. Chen ${ }^{32 c}$, T. Chen ${ }^{32 \mathrm{c}}$, X. Chen ${ }^{172}$, S. Cheng ${ }^{32 \mathrm{a}}$, A. Cheplakov ${ }^{65}$, V.F. Chepurnov ${ }^{65}$, R. Cherkaoui El Moursli ${ }^{135 e}$, V. Chernyatin ${ }^{24}$, E. Cheu ${ }^{6}$, S.L. Cheung ${ }^{158}$, L. Chevalier ${ }^{136}$, G. Chiefari ${ }^{102 a, 102 b}$, L. Chikovani ${ }^{51}$, J.T. Childers ${ }^{58 a}$, A. Chilingarov ${ }^{71}$, G. Chiodini ${ }^{72 \mathrm{a}}$, M.V. Chizhov ${ }^{65}$, G. Choudalakis ${ }^{30}$, S. Chouridou ${ }^{137}$, I.A. Christidi ${ }^{77}$, A. Christov ${ }^{48}$, D. Chromek-Burckhart ${ }^{29}$, M.L. Chu ${ }^{151}$, J. Chudoba ${ }^{125}$, G. Ciapetti ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, K. Ciba ${ }^{37}$, A.K. Ciftci ${ }^{37}$, R. Ciftci ${ }^{3 a}$, D. Cinca ${ }^{33}$, V. Cindro ${ }^{74}$, M.D. Ciobotaru ${ }^{163}$, C. Ciocca ${ }^{19 a, 19 b}$, A. Ciocio ${ }^{14}$, M. Cirilli ${ }^{87}$, M. Ciubancan ${ }^{25 a}$, A. Clark ${ }^{49}$, P.J. Clark ${ }^{45}$, W. Cleland ${ }^{123}$, J.C. Clemens ${ }^{83}$, B. Clement ${ }^{55}$, C. Clement ${ }^{146 a, 146 \mathrm{~b}}$, R.W. Clifft ${ }^{129}$, Y. Coadou ${ }^{83}$, M. Cobal 164a, 164c , A. Coccaro ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, J. Cochran ${ }^{64}$, P. Coe ${ }^{118}$, J.G. Cogan ${ }^{143}$, J. Coggeshall ${ }^{165}$, E. Cogneras ${ }^{177}$, C.D. Cojocaru ${ }^{28}$, J. Colas ${ }^{4}$, A.P. Colijn ${ }^{105}$,
C. Collard ${ }^{115}$, N.J. Collins ${ }^{17}$, C. Collins-Tooth ${ }^{53}$, J. Collot ${ }^{55}$, G. Colon ${ }^{84}$, P. Conde Muiño ${ }^{124 a}$, E. Coniavitis ${ }^{118}$, M.C. Conidi ${ }^{11}$, M. Consonni ${ }^{104}$, V. Consorti ${ }^{48}$, S. Constantinescu ${ }^{25 a}$, C. Conta ${ }^{119 a, 119 b}$, F. Conventi ${ }^{102 a, i}$, J. Cook ${ }^{29}$, M. Cooke ${ }^{14}$, B.D. Cooper ${ }^{77}$, A.M. Cooper-Sarkar ${ }^{118}$, N.J. Cooper-Smith ${ }^{76}$, K. Copic ${ }^{34}$, T. Cornelissen ${ }^{50 a, 50 b}$, M. Corradi ${ }^{19 a}$, F. Corriveau ${ }^{85, j}$, A. Cortes-Gonzalez ${ }^{165}$, G. Cortiana ${ }^{99}$, G. Costa ${ }^{89}$, M.J. Costa ${ }^{167}$, D. Costanzo ${ }^{139}$, T. Costin ${ }^{30}$, D. Côté ${ }^{29}$, R. Coura Torres ${ }^{23 a}$, L. Courneyed ${ }^{169}$, G. Cowan ${ }^{76}$, C. Cowden ${ }^{27}$, B.E. Cox ${ }^{82}$, K. Cranmer ${ }^{108}$, F. Crescioli ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, M. Cristinziani ${ }^{20}$, G. Crosetti ${ }^{36 \mathrm{Ga}, 36 \mathrm{~b}}$, R. Crupi ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, S. Crépé-Renaudin ${ }^{55}$, C.-M. Cuciuc ${ }^{25 a}$, C. Cuenca Almenar ${ }^{175}$, T. Cuhadar Donszelmann ${ }^{139}$, S. Cuneo ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, M. Curatolo ${ }^{47}$, C.J. Curtis ${ }^{17}$, P. Cwetanski ${ }^{61}$, H. Czirr ${ }^{141}$, Z. Czyczula ${ }^{117}$, S. D'Auria ${ }^{53}$, M. D'Onofrio ${ }^{73}$, A. D'Orazio ${ }^{132 \mathrm{a}}$, 132b , P.V.M. Da Silva ${ }^{23 a}$, C. Da Via ${ }^{82}$, W. Dabrowski ${ }^{37}$, T. Dai ${ }^{87}$, C. Dallapiccola ${ }^{84}$, M. Dam ${ }^{35}$, M. Dameri ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, D.S. Damiani ${ }^{137}$, H.O. Danielsson ${ }^{29}$, D. Dannheim ${ }^{99}$, V. Dao ${ }^{49}$, G. Darbo ${ }^{50}{ }^{30}$, G.L. Darlea ${ }^{25 b}$, C. Daum ${ }^{105}$, J.P. Dauvergne ${ }^{29}$, W. Davey ${ }^{86}$, T. Davidek ${ }^{126}$, N. Davidson ${ }^{86}$, R. Davidson ${ }^{71}$, E. Davies ${ }^{118, c}$, M. Davies ${ }^{93}$, A.R. Davison ${ }^{77}$, Y. Davygora ${ }^{58 a}$, E. Dawe ${ }^{142}$, I. Dawson ${ }^{139}$, J.W. Dawson ${ }^{5, *}$, R.K. Daya ${ }^{39}$, K. De ${ }^{7}$, R. de Asmundis ${ }^{102 a}$, S. De Castro ${ }^{19 a}$, ${ }^{\prime}{ }^{\text {b }}$, P.E. De Castro Faria Salgado ${ }^{24}$, S. De Cecco ${ }^{78}$, J. de Graat ${ }^{98}$, N. De Groot ${ }^{104}$, P. de Jong ${ }^{105}$, C. De La Taille ${ }^{115}$, H. De la Torre ${ }^{80}$, B. De Lotto ${ }^{164 a}$, 164 c , L. De Mora ${ }^{71}$, L. De Nooij ${ }^{105}$, M. De Oliveira Branco ${ }^{29}$, D. De Pedis ${ }^{132 a}$, P. de Saintignon ${ }^{55}$, A. De Salvo ${ }^{132 a}$, U. De Sanctis ${ }^{164 a}, 164 c^{\prime}$, A. De Santo ${ }^{149}$, J.B. De Vivie De Regie ${ }^{115}$, S. Dean ${ }^{77}$, D.V. Dedovich ${ }^{65}$, J. Degenhardt ${ }^{120}$, M. Dehchar ${ }^{118}$, M. Deile ${ }^{98}$, C. Del Papa ${ }^{164 a, 164 c}$, J. Del Peso ${ }^{80}$, T. Del Prete ${ }^{122 a, 122 b}$, M. Deliyergiyev ${ }^{74}$, A. Dell'Acqua ${ }^{29}$, L. Dell'Asta ${ }^{89 \mathrm{a}, 89 \mathrm{~b}}$, M. Della Pietra ${ }^{102 \mathrm{a}, i}$, D. della Volpe ${ }^{102 \mathrm{a}, 102 \mathrm{~b}}$, M. Delmastro ${ }^{29}$, P. Delpierre ${ }^{83}$, N. Delruelle ${ }^{29}$, P.A. Delsart ${ }^{55}$, C. Deluca ${ }^{148}$, S. Demers ${ }^{175}$, M. Demichev ${ }^{65}$, B. Demirkoz ${ }^{11, k}$, J. Deng ${ }^{163}$, S.P. Denisov ${ }^{128}$, D. Derendarz ${ }^{38}$, J.E. Derkaoui ${ }^{135 \mathrm{~d}}$, F. Derue ${ }^{78}$, P. Dervan ${ }^{73}$, K. Desch ${ }^{20}$, E. Devetak ${ }^{148}$, P.O. Deviveiros ${ }^{158}$, A. Dewhurst ${ }^{129}$, B. DeWilde ${ }^{148}$, S. Dhaliwal ${ }^{158}$, R. Dhullipudi ${ }^{24, l}$, A. Di Ciaccio ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, L. Di Ciaccio ${ }^{4}$, A. Di Girolamo ${ }^{29}$, B. Di Girolamo ${ }^{29}$, S. Di Luise ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, A. Di Mattia ${ }^{88}$, B. Di Micco ${ }^{29}$, R. Di Nardo ${ }^{133 a, 133 b}$, A. Di Simone ${ }^{133 a, 133 b}$, R. Di Sipio ${ }^{19 a, 19 b}$, M.A. Diaz ${ }^{31 \mathrm{a}}$, F. Diblen ${ }^{18 \mathrm{c}}$, E.B. Diehl ${ }^{87}$, J. Dietrich ${ }^{41}$, T.A. Dietzsch ${ }^{58 \mathrm{a}}$, S. Diglio ${ }^{115}$, K. Dindar Yagci ${ }^{39}$, J. Dingfelder ${ }^{20}$, C. Dionisi ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, P. Dita ${ }^{25 a}$, S. Dita ${ }^{25 a}$, F. Dittus ${ }^{29}$, F. Djama ${ }^{83}$, T. Djobava ${ }^{51}$, M.A.B. do Vale ${ }^{23 a}$, A. Do Valle Wemans ${ }^{124 a}$, T.K.O. Doan ${ }^{4}$, M. Dobbs ${ }^{85}$, R. Dobinson ${ }^{29, *}$, D. Dobos ${ }^{42}$, E. Dobson ${ }^{29}$, M. Dobson ${ }^{163}$, J. Dodd ${ }^{34}$, C. Doglioni ${ }^{118}$, T. Doherty ${ }^{53}$, Y. Doi ${ }^{66, *}$, J. Dolejsi ${ }^{126}$, I. Dolenc ${ }^{74}$, Z. Dolezal ${ }^{126}$, B.A. Dolgoshein ${ }^{96, *}$, T. Dohmae ${ }^{155}$, M. Donadelli ${ }^{23 b}$, M. Donega ${ }^{120}$, J. Donini ${ }^{55}$, J. Dopke ${ }^{29}$, A. Doria ${ }^{102 \mathrm{a}}$, A. Dos Anjos ${ }^{172}$, M. Dosil ${ }^{11}$, A. Dotti ${ }^{122 a, 122 \mathrm{~b}}$, M.T. Dova ${ }^{70}$, J.D. Dowell ${ }^{17}$, A.D. Doxiadis ${ }^{105}$, A.T. Doyle ${ }^{53}$, Z. Drasal ${ }^{126}$, J. Drees ${ }^{174}$, N. Dressnandt ${ }^{120}$, H. Drevermann ${ }^{29}$, C. Driouichi ${ }^{35}$, M. Dris ${ }^{9}$, J. Dubbert ${ }^{99}$, T. Dubbs ${ }^{137}$, S. Dube ${ }^{14}$, E. Duchovni ${ }^{171}$, G. Duckeck ${ }^{98}$, A. Dudarev ${ }^{29}$, F. Dudziak ${ }^{64}$, M. Dührssen ${ }^{29}$, I.P. Duerdoth ${ }^{82}$, L. Duflot ${ }^{115}$, M.-A. Dufour ${ }^{85}$, M. Dunford ${ }^{29}$, H. Duran Yildiz ${ }^{3 b}$, R. Duxfield ${ }^{139}$, M. Dwuznik ${ }^{37}$, F. Dydak ${ }^{29}$, D. Dzahini ${ }^{55}$, M. Düren ${ }^{52}$, W.L. Ebenstein ${ }^{44}$, J. Ebke ${ }^{98}$, S. Eckert ${ }^{48}$, S. Eckweiler ${ }^{81}$, K. Edmonds ${ }^{81}$, C.A. Edwards ${ }^{76}$, N.C. Edwards ${ }^{53}$, W. Ehrenfeld ${ }^{41}$, T. Ehrich ${ }^{99}$, T. Eifert ${ }^{29}$, G. Eigen ${ }^{13}$, K. Einsweiler ${ }^{14}$, E. Eisenhandler ${ }^{75}$, T. Ekelof ${ }^{166}$, M. El Kacimi ${ }^{135 \text { c }}$, M. Ellert ${ }^{166}$, S. Elles ${ }^{4}$, F. Ellinghaus ${ }^{81}$, K. Ellis ${ }^{75}$, N. Ellis ${ }^{29}$, J. Elmsheuser ${ }^{98}$, M. Elsing ${ }^{29}$, R. Ely ${ }^{14}$, D. Emeliyanov ${ }^{129}$, R. Engelmann ${ }^{148}$, A. Engl ${ }^{98}$, B. Epp ${ }^{62}$, A. Eppig ${ }^{87}$, J. Erdmann ${ }^{54}$, A. Ereditato ${ }^{16}$, D. Eriksson ${ }^{146 a}$, J. Ernst ${ }^{1}$, M. Ernst ${ }^{24}$, J. Ernwein ${ }^{136}$, D. Errede ${ }^{165}$, S. Errede ${ }^{165}$, E. Ertel ${ }^{81}$, M. Escalier ${ }^{115}$, C. Escobar ${ }^{167}$, X. Espinal Curull ${ }^{11}$, B. Esposito ${ }^{47}$, F. Etienne ${ }^{83}$, A.I. Etienvre ${ }^{136}$, E. Etzion ${ }^{153}$, D. Evangelakou ${ }^{54}$, H. Evans ${ }^{61}$, L. Fabbri ${ }^{19 a,}$, 19 b , C. Fabre ${ }^{29}$, R.M. Fakhrutdinov ${ }^{128}$, S. Falciano ${ }^{132 a}$, Y. Fang ${ }^{172}$, M. Fanti ${ }^{89 a, 89 b}$, A. Farbin ${ }^{\text {² }}$, A. Farilla ${ }^{134 a}$, J. Farley ${ }^{148}$, T. Farooque ${ }^{158}$, S.M. Farrington ${ }^{118}$, P. Farthouat ${ }^{29}$, P. Fassnacht ${ }^{29}$, D. Fassouliotis ${ }^{8}$, B. Fatholahzadeh ${ }^{158}$, A. Favareto ${ }^{89 a, 89 b}$, L. Fayard ${ }^{115}$, S. Fazio ${ }^{36 a, 36 b}$, R. Febbraro ${ }^{33}$, P. Federic ${ }^{144 a}$, O.L. Fedin ${ }^{121}$, W. Fedorko ${ }^{88}$, M. Fehling-Kaschek ${ }^{48}$, L. Feligioni ${ }^{83}$, D. Fellmann ${ }^{5}$, C.U. Felzmann ${ }^{86}$, C. Feng ${ }^{32 \mathrm{~d}}$, E.J. Feng ${ }^{30}$, A.B. Fenyuk ${ }^{128}$, J. Ferencei ${ }^{144 \mathrm{~b}}$, J. Ferland ${ }^{93}$, W. Fernando ${ }^{109}$, S. Ferrag ${ }^{53}$, J. Ferrando ${ }^{53}$, V. Ferrara ${ }^{41}$, A. Ferrari ${ }^{166}$, P. Ferrari ${ }^{105}$, R. Ferrari ${ }^{119 a}$, A. Ferrer ${ }^{167}$, M.L. Ferrer ${ }^{47}$, D. Ferrere ${ }^{49}$, C. Ferretti ${ }^{87}$, A. Ferretto Parodi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, M. Fiascaris ${ }^{30}$, F. Fiedler ${ }^{81}$, A. Filipčič ${ }^{74}$, A. Filippas ${ }^{9}$, F. Filthaut ${ }^{104}$, M. Fincke-Keeler ${ }^{169}$, M.C.N. Fiolhais ${ }^{124 a, h}$, L. Fiorini ${ }^{167}$, A. Firan ${ }^{39}$, G. Fischer ${ }^{41}$, P. Fischer ${ }^{20}$, M.J. Fisher ${ }^{109}$, S.M. Fisher ${ }^{129}$, M. Flechl ${ }^{48}$, I. Fleck ${ }^{141}$, J. Fleckner ${ }^{81}$, P. Fleischmann ${ }^{173}$, S. Fleischmann ${ }^{174}$, T. Flick ${ }^{174}$, L.R. Flores Castillo ${ }^{172}$, M.J. Flowerdew ${ }^{99}$, F. Föhlisch ${ }^{58 \mathrm{a}}$, M. Fokitis ${ }^{9}$, T. Fonseca Martin ${ }^{16}$, D.A. Forbush ${ }^{138}$, A. Formica ${ }^{136}$, A. Forti ${ }^{82}$, D. Fortin ${ }^{159 a}$, J.M. Foster ${ }^{82}$,
D. Fournier ${ }^{115}$, A. Foussat ${ }^{29}$, A.J. Fowler ${ }^{44}$, K. Fowler ${ }^{137}$, H. Fox ${ }^{71}$, P. Francavilla ${ }^{\text {122a, }}$, 122 b S. Franchino ${ }^{119 a, 119 b}$, D. Francis ${ }^{29}$, T. Frank ${ }^{171}$, M. Franklin ${ }^{57}$, S. Franz ${ }^{29}$, M. Fraternali ${ }^{119 a, 119 b \text {, }}$ S. Fratina ${ }^{120}$, S.T. French ${ }^{27}$, R. Froeschl ${ }^{29}$, D. Froidevaux ${ }^{29}$, J.A. Frost ${ }^{27}$, C. Fukunaga ${ }^{156}$, E. Fullana Torregrosa ${ }^{29}$, J. Fuster ${ }^{167}$, C. Gabaldon ${ }^{29}$, O. Gabizon ${ }^{171}$, T. Gadfort ${ }^{24}$, S. Gadomski ${ }^{49}$ G. Gagliardi ${ }^{50 a, 50 b}$, P. Gagnon ${ }^{61}$, C. Galea ${ }^{98}$, E.J. Gallas ${ }^{118}$, M.V. Gallas ${ }^{29}$, V. Gallo ${ }^{16}$, B.J. Gallop ${ }^{129}$, P. Gallus ${ }^{125}$, E. Galyaev ${ }^{40}$, K.K. Gan ${ }^{109}$, Y.S. Gao ${ }^{143, f}$, V.A. Gapienko ${ }^{128}$, A. Gaponenko ${ }^{14}$, F. Garberson ${ }^{175}$, M. Garcia-Sciveres ${ }^{14}$, C. García ${ }^{167}$, J.E. García Navarro ${ }^{49}$, R.W. Gardner ${ }^{30}$, N. Garelli ${ }^{29}$, H. Garitaonandia ${ }^{105}$, V. Garonne ${ }^{29}$, J. Garvey ${ }^{17}$, C. Gatti ${ }^{47}$, G. Gaudio ${ }^{119 \mathrm{a}}$, O. Gaumer ${ }^{49}$, B. Gaur ${ }^{141}$, L. Gauthier ${ }^{136}$, I.L. Gavrilenko ${ }^{94}$, C. Gay ${ }^{168}$, G. Gaycken ${ }^{20}$, J.-C. Gayde ${ }^{29}$, E.N. Gazis ${ }^{9}$, P. Ge ${ }^{32 \mathrm{~d}}$, C.N.P. Gee ${ }^{129}$, D.A.A. Geerts ${ }^{105}$, Ch. Geich-Gimbel ${ }^{20}$, K. Gellerstedt ${ }^{146 a, 146 \mathrm{~b}}$, C. Gemme ${ }^{50 \mathrm{a}}$, A. Gemmell ${ }^{53}$, M.H. Genest ${ }^{98}$, S. Gentile ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, M. George ${ }^{54}$, S. George ${ }^{76}$, P. Gerlach ${ }^{174}$, A. Gershon ${ }^{153}$, C. Geweniger ${ }^{58 \mathrm{a}}$, H. Ghazlane ${ }^{135 b^{\prime}}$, P. Ghez ${ }^{4}$, N. Ghodbane ${ }^{33}$, B. Giacobbe ${ }^{19 \mathrm{a}}$, S. Giagu ${ }^{132 a, 132 b}$, V. Giakoumopoulou ${ }^{8}$, V. Giangiobbe ${ }^{122 a, 122 b}$, F. Gianotti ${ }^{29}$, B. Gibbard ${ }^{24}$, A. Gibson ${ }^{158}$, S.M. Gibson ${ }^{29}$, L.M. Gilbert ${ }^{118}$, M. Gilchriese ${ }^{14}$, V. Gilewsky ${ }^{91}$, D. Gillberg ${ }^{28}$, A.R. Gillman ${ }^{\text {129 }}$, D.M. Gingrich ${ }^{2, e}$, J. Ginzburg ${ }^{153}$, N. Giokaris ${ }^{8}$, R. Giordano ${ }^{\text {102a, 102b }}$, F.M. Giorgi ${ }^{15}$, P. Giovannini ${ }^{99}$, P.F. Giraud ${ }^{136}$, D. Giugni ${ }^{89 a}$, M. Giunta ${ }^{132 a, 132 b}$, P. Giusti ${ }^{19 a}$, B.K. Gjelsten ${ }^{117}$, L.K. Gladilin ${ }^{97}$, C. Glasman ${ }^{80}$, J. Glatzer ${ }^{48}$, A. Glazov ${ }^{41}$, K.W. Glitza ${ }^{174}$, G.L. Glonti ${ }^{65}$, J. Godfrey ${ }^{142}$ J. Godlewski ${ }^{29^{\prime}}$, M. Goebel ${ }^{41}$, T. Göpfert ${ }^{43}$, C. Goeringer ${ }^{81}$, C. Gössling ${ }^{42}$, T. Göttfert ${ }^{99}$, S. Goldfarb ${ }^{87}$, D. Goldin ${ }^{39}$, T. Golling ${ }^{175}$, S.N. Golovnia ${ }^{128}$, A. Gomes ${ }^{124 a, b}$, L.S. Gomez Fajardo ${ }^{41}$, R. Gonçalo ${ }^{76}$, J. Goncalves Pinto Firmino Da Costa ${ }^{41}$, L. Gonella ${ }^{20}$, A. Gonidec ${ }^{29}$, S. Gonzalez ${ }^{172}$, S. González de la Hoz ${ }^{167}$, M.L. Gonzalez Silva ${ }^{26}$, S. Gonzalez-Sevilla ${ }^{49}$, J.J. Goodson ${ }^{148}$, L. Goossens ${ }^{29}$, P.A. Gorbounov ${ }^{95}$, H.A. Gordon ${ }^{24}$, I. Gorelov ${ }^{103}$, G. Gorfine ${ }^{174}$, B. Gorini ${ }^{29}$, E. Gorini ${ }^{72 a}, 72 \mathrm{~b}$, A. Gorišek ${ }^{74}$, E. Gornicki ${ }^{38}$, S.A. Gorokhov ${ }^{128}$, V.N. Goryachev ${ }^{128}$, B. Gosdzik ${ }^{41}$, M. Gosselink ${ }^{105}$, M.I. Gostkin ${ }^{65}$, M. Gouanère ${ }^{4}$, I. Gough Eschrich ${ }^{163}$, M. Gouighri ${ }^{135 \mathrm{a}}$, D. Goujdami ${ }^{135 \mathrm{c}}$, M.P. Goulette ${ }^{49}$, A.G. Goussiou ${ }^{138}$, C. Goy ${ }^{4}$, I. Grabowska-Bold ${ }^{163, g}$, V. Grabski ${ }^{176}$, P. Grafström ${ }^{29}$, C. Grah ${ }^{174}$, K.-J. Grahn ${ }^{41}$, F. Grancagnolo ${ }^{72 \mathrm{a}}$, S. Grancagnolo ${ }^{15}$, V. Grassi ${ }^{148}$, V. Gratchev ${ }^{121}$, N. Grau ${ }^{34}$, H.M. Gray ${ }^{29}$, J.A. Gray ${ }^{148}$, E. Graziani ${ }^{134 a}$, O.G. Grebenyuk ${ }^{121}$, D. Greenfield ${ }^{129}$, T. Greenshaw ${ }^{73}$, Z.D. Greenwood ${ }^{24, l}$, I.M. Gregor ${ }^{41}$, P. Grenier ${ }^{143}$, J. Griffiths ${ }^{138}$, N. Grigalashvili ${ }^{65}$, A.A. Grillo ${ }^{137}$, S. Grinstein ${ }^{11}$, Y.V. Grishkevich ${ }^{97}$, J.-F. Grivaz ${ }^{115}$, J. Grognuz ${ }^{29}$, M. Groh ${ }^{99}$, E. Gross ${ }^{171}$, J. Grosse-Knetter ${ }^{54}$, J. Groth-Jensen ${ }^{171}$, K. Grybel ${ }^{141}$, V.J. Guarino ${ }^{5}$, D. Guest ${ }^{175}$, C. Guicheney ${ }^{33}$, A. Guida ${ }^{72 a \mathrm{a}, 72 \mathrm{~b}}$, T. Guillemin ${ }^{4}$, S. Guindon ${ }^{54}$, H. Guler ${ }^{85, m}$, J. Gunther ${ }^{125}$, B. Guo ${ }^{158}$, J. Guo ${ }^{34}$, A. Gupta ${ }^{30}$, Y. Gusakov ${ }^{65}$, V.N. Gushchin ${ }^{128}$, A. Gutierrez ${ }^{93}$, P. Gutierrez ${ }^{111}$, N. Guttman ${ }^{153}$, O. Gutzwiller ${ }^{172}$, C. Guyot ${ }^{136}$, C. Gwenlan ${ }^{118}$, C.B. Gwilliam ${ }^{73}$, A. Haas ${ }^{143}$, S. Haas ${ }^{29}$, C. Haber ${ }^{14}$, R. Hackenburg ${ }^{24}$, H.K. Hadavand ${ }^{39}$, D.R. Hadley ${ }^{17}$, P. Haefner ${ }^{99}$, F. Hahn ${ }^{29}$, S. Haider ${ }^{29}$, Z. Hajduk ${ }^{38}$, H. Hakobyan ${ }^{176}$, J. Haller ${ }^{54}$, K. Hamacher ${ }^{174}$, P. Hamal ${ }^{113}$, A. Hamilton ${ }^{49}$, S. Hamilton ${ }^{161}$, H. Han ${ }^{32 a}$, L. Han ${ }^{32 b}$, K. Hanagaki ${ }^{116}$, M. Hance ${ }^{120}$, C. Handel ${ }^{81}$, P. Hanke ${ }^{58 a}$, J.R. Hansen ${ }^{35}$, J.B. Hansen ${ }^{35}$, J.D. Hansen ${ }^{35}$, P.H. Hansen ${ }^{35}$, P. Hansson ${ }^{143}$, K. Hara ${ }^{160}$, G.A. Hare ${ }^{137}$, T. Harenberg ${ }^{174}$, S. Harkusha ${ }^{90}$, D. Harper ${ }^{87}$, R.D. Harrington ${ }^{21}$, O.M. Harris ${ }^{138}$, K. Harrison ${ }^{17}$, J. Hartert ${ }^{48}$, F. Hartjes ${ }^{105}$, T. Haruyama ${ }^{66}$, A. Harvey ${ }^{56}$, S. Hasegawa ${ }^{101}$, Y. Hasegawa ${ }^{140}$, S. Hassani ${ }^{136}$, M. Hatch ${ }^{29}$, D. Hauff ${ }^{99}$, S. Haug ${ }^{16}$, M. Hauschild ${ }^{29}$, R. Hauser ${ }^{88}$, M. Havranek ${ }^{20}$, B.M. Hawes ${ }^{118}$, C.M. Hawkes ${ }^{17}$, R.J. Hawkings ${ }^{29}$, D. Hawkins ${ }^{163}$, T. Hayakawa ${ }^{67}$, D. Hayden ${ }^{76}$, H.S. Hayward ${ }^{73}$, S.J. Haywood ${ }^{129}$, E. Hazen ${ }^{21}$, M. He ${ }^{32 \mathrm{~d}}$, S.J. Head ${ }^{17}$, V. Hedberg ${ }^{79}$, L. Heelan ${ }^{7}$, S. Heim ${ }^{88}$, B. Heinemann ${ }^{14}$, S. Heisterkamp ${ }^{35}$, L. Helary ${ }^{4}$, M. Heller ${ }^{115}$, S. Hellman ${ }^{146 a,}{ }^{146 \mathrm{~b}}$, D. Hellmich ${ }^{20}$, C. Helsens ${ }^{11}$, R.C.W. Henderson ${ }^{71}$, M. Henke ${ }^{58 \mathrm{a}}$, A. Henrichs ${ }^{54}$, A.M. Henriques Correia ${ }^{29}$, S. Henrot-Versille ${ }^{115}$, F. Henry-Couannier ${ }^{83}$, C. Hensel ${ }^{54}$, T. Henß ${ }^{174}$, C.M. Hernandez ${ }^{7}$, Y. Hernández Jiménez ${ }^{167}$, R. Herrberg ${ }^{15}$, A.D. Hershenhorn ${ }^{152}$, G. Herten ${ }^{48}$, R. Hertenberger ${ }^{98}$, L. Hervas ${ }^{29}$, N.P. Hessey ${ }^{105}$, A. Hidvegi ${ }^{146 a}$, E. Higón-Rodriguez ${ }^{167}$, D. Hill ${ }^{5, *}$, J.C. Hill ${ }^{27}$, N. Hill ${ }^{5}$, K.H. Hiller ${ }^{41}$, S. Hillert ${ }^{20}$, S.J. Hillier ${ }^{17}$, I. Hinchliffe ${ }^{14}$, E. Hines ${ }^{120}$, M. Hirose ${ }^{116}$, F. Hirsch ${ }^{42}$, D. Hirschbuehl ${ }^{174}$, J. Hobbs ${ }^{148}$, N. Hod ${ }^{153}$, M.C. Hodgkinson ${ }^{139}$, P. Hodgson ${ }^{139}$,
A. Hoecker ${ }^{29}$, M.R. Hoeferkamp ${ }^{103}$, J. Hoffman ${ }^{39}$, D. Hoffmann ${ }^{83}$, M. Hohlfeld ${ }^{81}$, M. Holder ${ }^{141}$, A. Holmes ${ }^{118}$, S.O. Holmgren ${ }^{146 a}$, T. Holy ${ }^{127}$, J.L. Holzbauer ${ }^{88}$, Y. Homma ${ }^{67}$, T.M. Hong ${ }^{120}$, L. Hooft van Huysduynen ${ }^{108}$, T. Horazdovsky ${ }^{127}$, C. Horn ${ }^{143}$, S. Horner ${ }^{48}$, K. Horton ${ }^{118}$, J.-Y. Hostachy ${ }^{55}$, S. Hou ${ }^{151}$, M.A. Houlden ${ }^{73}$, A. Hoummada ${ }^{135 a}$, J. Howarth ${ }^{82}$, D.F. Howell ${ }^{118}$, I. Hristova ${ }^{15}$, J. Hrivnac ${ }^{115}$,
I. Hruska ${ }^{125}$, T. Hryn'ova ${ }^{4}$, P.J. Hsu ${ }^{175}$, S.-C. Hsu ${ }^{14}$, G.S. Huang ${ }^{111}$, Z. Hubacek ${ }^{127}$, F. Hubaut ${ }^{83}$, F. Huegging ${ }^{20}$, T.B. Huffman ${ }^{118}$, E.W. Hughes ${ }^{34}$, G. Hughes ${ }^{71}$, R.E. Hughes-Jones ${ }^{82}$, M. Huhtinen ${ }^{29}$, P. Hurst ${ }^{57}$, M. Hurwitz ${ }^{14}$, U. Husemann ${ }^{41}$, N. Huseynov ${ }^{65, n}$, J. Huston ${ }^{88}$, J. Huth ${ }^{57}$, G. Iacobucci ${ }^{49}$, G. Iakovidis ${ }^{9}$, M. Ibbotson ${ }^{82}$, I. Ibragimov ${ }^{141}$, R. Ichimiya ${ }^{67}$, L. Iconomidou-Fayard ${ }^{115}$, J. Idarraga ${ }^{115}$, M. Idzik ${ }^{37}$, P. Iengo ${ }^{102 a, 102 b}$, O. Igonkina ${ }^{105}$, Y. Ikegami ${ }^{66}$, M. Ikeno ${ }^{66}$, Y. Ilchenko ${ }^{39}$, D. Iliadis ${ }^{154}$, D. Imbault ${ }^{78}$, M. Imhaeuser ${ }^{174}$, M. Imori ${ }^{155}$, T. Ince ${ }^{20}$, J. Inigo-Golfin ${ }^{29}$, P. Ioannou ${ }^{8}$, M. Iodice ${ }^{1344^{2}}$, G. Ionescu ${ }^{4}$, A. Irles Quiles ${ }^{167}$, K. Ishiii ${ }^{66}$, A. Ishikawd ${ }^{67}$, M. Ishino ${ }^{66}$, R. Ishmukhametov ${ }^{39}$, C. Issever ${ }^{118}$, S. Istin ${ }^{18 a}$, Y. Itoh ${ }^{101}$, A.V. Ivashin ${ }^{128}$, W. Iwanski ${ }^{38}$, H. Iwasaki ${ }^{66}$, J.M. Izen ${ }^{40}$, V. Izzo ${ }^{102 a}$, B. Jackson ${ }^{120}$, J.N. Jackson ${ }^{73}$, P. Jackson ${ }^{143}$, M.R. Jaekel ${ }^{29}$, V. Jain ${ }^{61}$, K. Jakobs ${ }^{48}$, S. Jakobsen ${ }^{35}$, J. Jakubek ${ }^{127}$, D.K. Jana ${ }^{111}$, E. Jankowski ${ }^{158}$, E. Jansen ${ }^{77}$, A. Jantsch ${ }^{99}$, M. Janus ${ }^{20}$, G. Jarlskog ${ }^{79}$, L. Jeanty ${ }^{57}$, K. Jelen ${ }^{37}$, I. Jen-La Plante ${ }^{30}$, P. Jenni ${ }^{29}$, A. Jeremie ${ }^{4}$, P. Jež ${ }^{35}$, S. Jézéquel ${ }^{4}$, M.K. Jha ${ }^{19 a}$, H. Ji ${ }^{172}$, W. Ji ${ }^{81}$, J. Jia ${ }^{148}$, Y. Jiang ${ }^{32 b}$, M. Jimenez Belenguer ${ }^{41}$, G. Jin ${ }^{32 b}$, S. Jin ${ }^{32 \mathrm{a}}$, O. Jinnouchi ${ }^{157}$, M.D. Joergensen ${ }^{35}$, D. Joffe ${ }^{39}$, L.G. Johansen ${ }^{13}$, M. Johansen ${ }^{146 a}$, 146b , K.E. Johansson ${ }^{146 a}$, P. Johansson ${ }^{139}$, S. Johnert ${ }^{41}$, K.A. Johns ${ }^{6}$, K. Jon-And ${ }^{146 a, 146 \mathrm{~b}}$, G. Jones ${ }^{82}$, R.W.L. Jones ${ }^{71}$, T.W. Jones ${ }^{77}$, T.J. Jones ${ }^{73}$, O. Jonsson ${ }^{29}$, C. Joram ${ }^{29}$, P.M. Jorge ${ }^{124 a, b}$, J. Joseph ${ }^{14}$, T. Jovin ${ }^{12 b}$, X. Ju ${ }^{130}$, V. Juranek ${ }^{125}$, P. Jussel ${ }^{62}$, V.V. Kabachenko ${ }^{128}$, S. Kabana ${ }^{16}$, M. Kaci ${ }^{167}$, A. Kaczmarska ${ }^{38}$, P. Kadlecik ${ }^{35}$, M. Kado ${ }^{115}$, H. Kagan ${ }^{109}$, M. Kagan ${ }^{57}$, S. Kaiser ${ }^{99}$, E. Kajomovitz ${ }^{152}$, S. Kalinin ${ }^{174}$, L.V. Kalinovskaya ${ }^{65}$, S. Kama ${ }^{39}$, N. Kanaya ${ }^{155^{\prime}}$, M. Kaneda ${ }^{29}$, T. Kanno ${ }^{157}$, V.A. Kantserov ${ }^{96}$, J. Kanzaki ${ }^{66}$, B. Kaplan ${ }^{175}$, A. Kapliy ${ }^{30}$, J. Kaplon ${ }^{29}$, D. Kar ${ }^{43}$, M. Karagoz ${ }^{118}$, M. Karnevskiy ${ }^{41}$, K. Karr ${ }^{5}$, V. Kartvelishvili ${ }^{71}$, A.N. Karyukhin ${ }^{128}$, L. Kashif ${ }^{172}$, A. Kasmi ${ }^{39}$, R.D. Kass ${ }^{109}$, A. Kastanas ${ }^{13}$, M. Kataoka ${ }^{4}$, Y. Kataoka ${ }^{155}$, E. Katsoufis ${ }^{9}$, J. Katzy ${ }^{41}$, V. Kaushik ${ }^{6}$, K. Kawagoe ${ }^{67}$, T. Kawamoto ${ }^{155}$, G. Kawamura ${ }^{\text {81 }}$, M.S. Kayl ${ }^{105}$, V.A. Kazanin ${ }^{107}$, M.Y. Kazarinov ${ }^{65}$, J.R. Keates ${ }^{82}$, R. Keeler ${ }^{169}$, R. Kehoe ${ }^{39}$, M. Keil ${ }^{54}$, G.D. Kekelidze ${ }^{65}$, M. Kelly ${ }^{82}$, J. Kennedy ${ }^{98}$, C.J. Kenney ${ }^{143}$, M. Kenyon ${ }^{53}$, O. Kepka ${ }^{125}$, N. Kerschen ${ }^{29}$, B.P. Kerševan ${ }^{74}$, S. Kersten ${ }^{174}$, K. Kessoku ${ }^{155}$, C. Ketterer ${ }^{48}$, J. Keung ${ }^{158}$, M. Khakzad ${ }^{28}$, F. Khalil-zada ${ }^{10}$, H. Khandanyan ${ }^{165}$, A. Khanov ${ }^{112}$, D. Kharchenko ${ }^{65}$, A. Khodinov ${ }^{96}$, A.G. Kholodenko ${ }^{128}$, A. Khomich ${ }^{58 a}$, T.J. Khoo ${ }^{27}$, G. Khoriauli ${ }^{20}$, A. Khoroshilov ${ }^{174}$, N. Khovanskiy ${ }^{65}$, V. Khovanskiy ${ }^{95}$, E. Khramov ${ }^{65}$, J. Khubua ${ }^{51}$, H. Kim ${ }^{7}$, M.S. Kim ${ }^{2}$, P.C. Kim ${ }^{143}$, S.H. Kim 160, N. Kimura ${ }^{170}$, O. Kind 15, B.T. King ${ }^{73}$, M. King ${ }^{67}$, R.S.B. King ${ }^{118}$, J. Kirk ${ }^{129}$, G.P. Kirsch ${ }^{118}$, L.E. Kirsch ${ }^{22}$, A.E. Kiryunin ${ }^{99}$, D. Kisielewska ${ }^{37}$, T. Kittelmann ${ }^{123}$, A.M. Kiver ${ }^{128}$, H. Kiyamura ${ }^{67}$, E. Kladiva ${ }^{1445}$, J. Klaiber-Lodewigs ${ }^{42}$, M. Klein ${ }^{73}$, U. Klein ${ }^{73}$, K. Kleinknecht ${ }^{81}$, M. Klemetti ${ }^{85}$, A. Klier ${ }^{171}$, A. Klimentov ${ }^{24}$, R. Klingenberg ${ }^{42}$, E.B. Klinkby ${ }^{35}$, T. Klioutchnikova ${ }^{29}$, P.F. Klok ${ }^{104}$, S. Klous ${ }^{105}$, E.-E. Kluge ${ }^{\text {²8á }}$, T. Kluge ${ }^{73}$, P. Kluit ${ }^{105}$, S. Kluth ${ }^{99}$, E. Kneringer ${ }^{62}$, J. Knobloch ${ }^{29}$, E.B.F.G. Knoops ${ }^{83}$, A. Knue ${ }^{54}$, B.R. Ko ${ }^{44}$, T. Kobayashi ${ }^{155}$, M. Kobel ${ }^{43}$, M. Kocian ${ }^{143}$, A. Kocnar ${ }^{113}$, P. Kodys ${ }^{126}$, K. Köneke ${ }^{29}$, A.C. König ${ }^{104}$, S. Koenig ${ }^{81}$, L. Köpke ${ }^{81}$, F. Koetsveld ${ }^{1034}$, P. Koevesarki ${ }^{20}$, T. Koffas ${ }^{29}$, E. Koffeman ${ }^{105}$, F. Kohn ${ }^{54}$, Z. Kohout ${ }^{127}$, T. Kohriki ${ }^{6}$, ${ }^{\prime}$, T. Koi 143, T. Kokott ${ }^{20}$, G.M. Kolachev ${ }^{107}$, H. Kolanoski ${ }^{15}$, V. Kolesnikov ${ }^{65}$, I. Koletsou ${ }^{\text {89a }}$, J. Koll ${ }^{88}$, D. Kollar ${ }^{29}$, M. Kollefrath ${ }^{48}$, S.D. Kolya ${ }^{82}$, A.A. Komar ${ }^{94}$, J.R. Komaragiri ${ }^{142}$, Y. Komori ${ }^{155}$, T. Kondo ${ }^{66}$, T. Kono ${ }^{\text {31,0 }}$, A.I. Kononov ${ }^{48}$, R. Konoplich ${ }^{108, p}$, N. Konstantinidis ${ }^{77}$, A. Kootz ${ }^{174}$, S. Koperny ${ }^{37}$, S.V. Kopikov ${ }^{128}$, K. Korcyl ${ }^{38}$, K. Kordas ${ }^{154}$, V. Koreshev ${ }^{128}$, A. Korn ${ }^{14}$, A. Korol ${ }^{107}$, I. Korolkov ${ }^{11}$, E.V. Korolkova ${ }^{139}$, V.A. Korotkov ${ }^{128}$, O. Kortner ${ }^{99}$, S. Kortner ${ }^{99}$, V.V. Kostyukhin ${ }^{20}$, M.J. Kotamäki ${ }^{29}$, S. Kotov 99, V.M. Kotov ${ }^{65}$, A. Kotwal ${ }^{44}$, C. Kourkoumelis ${ }^{8}$, V. Kouskoura ${ }^{154}$, A. Koutsman ${ }^{105}$, R. Kowalewski ${ }^{169}$, T.Z. Kowalski ${ }^{37}$, W. Kozanecki ${ }^{136}$, A.S. Kozhin ${ }^{128}$, V. Kral ${ }^{127}$, V.A. Kramarenko ${ }^{97}$, G. Kramberger ${ }^{74}$, O. Krasel ${ }^{42}$, M.W. Krasny ${ }^{78}$, A. Krasznahorkay ${ }^{108}$, J. Kraus ${ }^{88}$, A. Kreisel ${ }^{153}$, F. Krejci ${ }^{127}$, J. Kretzschmar ${ }^{73}$, N. Krieger ${ }^{54}$, P. Krieger ${ }^{158}$, K. Kroeninger ${ }^{54}$, H. Kroha ${ }^{99}$, J. Kroll ${ }^{120}$, J. Kroseberg ${ }^{20}$, J. Krstic ${ }^{12 a}$, U. Kruchonak ${ }^{65}$, H. Krüger ${ }^{20}$, T. Kruker ${ }^{16}$, Z.V. Krumshteyn ${ }^{65}$, A. Kruth ${ }^{20}$, T. Kubota ${ }^{86}$, S. Kuehn ${ }^{48}$, A. Kugel ${ }^{58 \mathrm{C}}$, T. Kuhl ${ }^{41}$, D. Kuhn ${ }^{62}$, V. Kukhtin ${ }^{65}$, Y. Kulchitsky ${ }^{90}$, S. Kuleshov ${ }^{31 \mathrm{~b}}$, C. Kummer ${ }^{98}$, M. Kuna ${ }^{78}$, N. Kundu ${ }^{118}$, J. Kunkle ${ }^{120}$, A. Kupco ${ }^{125}$, H. Kurashige ${ }^{67}$, M. Kurata ${ }^{160}$, Y.A. Kurochkin ${ }^{90}$, V. Kus ${ }^{125}$, W. Kuykendall ${ }^{138}$, M. Kuze ${ }^{157}$, P. Kuzhir ${ }^{91}$, O. Kvasnicka ${ }^{125}$, J. Kvita ${ }^{29}$, R. Kwee ${ }^{15}$, A. La Rosa ${ }^{172}$, L. La Rotonda ${ }^{36 a, 36 b}$, L. Labarga ${ }^{80}$, J. Labbe ${ }^{4}$, S. Lablak ${ }^{135 a}$, C. Lacasta ${ }^{167}$, F. Lacava ${ }^{132 a, 132 b}$, H. Lacker ${ }^{15}$, D. Lacour ${ }^{78}$, V.R. Lacuesta ${ }^{167}$, E. Ladygin ${ }^{65}$, R. Lafaye ${ }^{4}$, B. Laforge ${ }^{78}$, T. Lagouri ${ }^{80}$, S. Lai ${ }^{48}$, E. Laisne ${ }^{55}$, M. Lamanna ${ }^{29}$, C.L. Lampen ${ }^{6}$, W. Lampl ${ }^{6}$, E. Lancon ${ }^{136}$, U. Landgraf ${ }^{48}$, M.P.J. Landon ${ }^{75}$, H. Landsman ${ }^{152}$, J.L. Lane ${ }^{82}$, C. Lange ${ }^{41}$, A.J. Lankford ${ }^{163}$, F. Lanni ${ }^{24}$, K. Lantzsch ${ }^{29}$, S. Laplace ${ }^{78}$, C. Lapoire ${ }^{20}$, J.F. Laporte ${ }^{136}$, T. Lari ${ }^{89 a}$, A.V. Larionov ${ }^{128}$, A. Larner ${ }^{118}$,
C. Lasseur ${ }^{29}$, M. Lassnig ${ }^{29}$, W. Lau ${ }^{118}$, P. Laurelli ${ }^{47}$, A. Lavorato ${ }^{118}$, W. Lavrijsen ${ }^{14}$, P. Laycock ${ }^{73}$, A.B. Lazarev ${ }^{65}$, A. Lazzaro ${ }^{89 a, 89 b}$, O. Le Dortz ${ }^{78}$, E. Le Guirriec ${ }^{83}$, C. Le Maner ${ }^{158}$, E. Le Menedeu ${ }^{136}$, C. Lebel ${ }^{93}$, T. LeCompte ${ }^{5}$, F. Ledroit-Guillon ${ }^{55}$, H. Lee ${ }^{105}$, J.S.H. Lee ${ }^{150}$, S.C. Lee ${ }^{151}$, L. Lee ${ }^{175}$, M. Lefebvre ${ }^{169}$, M. Legendre ${ }^{136}$, A. Leger ${ }^{49}$, B.C. LeGeyt ${ }^{120}$, F. Legger 98, C. Leggett 14, M. Lehmacher ${ }^{20}$, G. Lehmann Miotto ${ }^{29}$, X. Lei ${ }^{6}$, M.A.L. Leite ${ }^{23 \mathrm{~b}}$, R. Leitner ${ }^{126}$, D. Lellouch ${ }^{171}$, J. Lellouch ${ }^{78}$, M. Leltchouk ${ }^{34}$, V. Lendermann ${ }^{58 \mathrm{a}}$, K.J.C. Leney ${ }^{145 \mathrm{~b}}$, T. Lenz ${ }^{\text {174 }}$, G. Lenzen ${ }^{174}$, B. Lenzi ${ }^{29}$, K. Leonhardt ${ }^{43}$, S. Leontsinis ${ }^{9}$, C. Leroy ${ }^{93}$, J.-R. Lessard ${ }^{169}$, J. Lesser ${ }^{146 a}$, C.G. Lester ${ }^{27}$,
A. Leung Fook Cheong ${ }^{172}$, J. Levêque ${ }^{4}$, D. Levin ${ }^{87}$, L.J. Levinson ${ }^{171}$, M.S. Levitski ${ }^{128}$, M. Lewandowska ${ }^{21}$, A. Lewis ${ }^{118}$, G.H. Lewis ${ }^{108}$, A.M. Leyko ${ }^{20}$, M. Leyton ${ }^{15}$, B. Li ${ }^{83}$, H. Li^{172}, S. $\mathrm{Li}^{32 \mathrm{~b}, \mathrm{~d}}, \mathrm{X} . \mathrm{Li}^{87}, \mathrm{Z} . \operatorname{Liang}{ }^{39}$, Z. Liang ${ }^{118, q}$, B. Liberti ${ }^{133 a}$, P. Lichard ${ }^{29}$, M. Lichtnecker ${ }^{98}$, K. Lie ${ }^{165}$, W. Liebig ${ }^{13}$, R. Lifshitz ${ }^{152}$, J.N. Lilley ${ }^{17}$, C. Limbach ${ }^{20}$, A. Limosani ${ }^{86}$, M. Limper ${ }^{63}$, S.C. Lin ${ }^{151, r}$, F. Linde ${ }^{105}$, J.T. Linnemann ${ }^{88}$, E. Lipeles ${ }^{120}$, L. Lipinsky ${ }^{125}$, A. Lipniacka ${ }^{13}$, T.M. Liss ${ }^{165}$, D. Lissauer ${ }^{24}$, A. Lister ${ }^{49}$, A.M. Litke ${ }^{137}$, C. Liu ${ }^{28}$, D. Liu ${ }^{151, \text {, }}$, H. Liu ${ }^{87}$, J.B. Liu ${ }^{87}$, M. Liu ${ }^{32 \mathrm{~b}}$, S. Liu ${ }^{2}$, Y. Liu ${ }^{32 \mathrm{~b}}$, M. Livan ${ }^{119 \mathrm{a}, 119 \mathrm{~b}}$, S.S.A. Livermore ${ }^{118}$, A. Lleres ${ }^{55}$, J. Llorente Merino ${ }^{80}$, S.L. Lloyd ${ }^{75}$, E. Lobodzinska ${ }^{41}$, P. Loch ${ }^{6}$, W.S. Lockman ${ }^{137}$, S. Lockwitz ${ }^{175}$, T. Loddenkoetter ${ }^{20}$, F.K. Loebinger ${ }^{82}$, A. Loginov ${ }^{175}$, C.W. Loh ${ }^{168}$, T. Lohse ${ }^{15}$, K. Lohwasser ${ }^{48}$, M. Lokajicek ${ }^{125}$, J. Loken ${ }^{118}$, V.P. Lombardo ${ }^{4}$, R.E. Long ${ }^{71}$, L. Lopes ${ }^{124 a, b}$, D. Lopez Mateos ${ }^{34, t}$, M. Losada ${ }^{162}$, P. Loscutoff ${ }^{14}$, F. Lo Sterzo ${ }^{132 a, 132 b}$, M.J. Losty ${ }^{159 a}$, X. Lou ${ }^{40}$, A. Lounis ${ }^{115}$, K.F. Loureiro ${ }^{162}$, J. Love ${ }^{21}$, P.A. Love ${ }^{71}$, A.J. Lowe ${ }^{143, f}$, F. Lu ${ }^{32 \mathrm{a}}$, H.J. Lubatti ${ }^{138}$, C. Luci ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, A. Lucotte ${ }^{55}$, A. Ludwig ${ }^{43}$, D. Ludwig ${ }^{41}$, I. Ludwig ${ }^{48}$, J. Ludwig ${ }^{48}$, F. Luehring ${ }^{61}$, G. Luijckx ${ }^{105}$, D. Lumb ${ }^{48}$, L. Luminari ${ }^{132 a}$, E. Lund ${ }^{117}$, B. Lund-Jensen ${ }^{147}$, B. Lundberg ${ }^{79}$, J. Lundberg ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, J. Lundquist ${ }^{35}$, M. Lungwitz ${ }^{81}$, A. Lupi ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, G. Lutz ${ }^{99}$, D. Lynnn ${ }^{24}$, J. Lys ${ }^{14}$, E. Lytken ${ }^{79}$, H. Ma ${ }^{24}$, L.L. Ma ${ }^{172}$, J.A. Macana Goia ${ }^{93}$, G. Maccarrone ${ }^{47}$, A. Macchiolo ${ }^{99}$, B. Maček ${ }^{74}$, J. Machado Miguens ${ }^{124 a}$, D. Macina ${ }^{49}$, R. Mackeprang ${ }^{35}$, R.J. Madaras ${ }^{14}$, W.F. Mader ${ }^{43}$, R. Maenner ${ }^{58 c}$, T. Maeno ${ }^{24}$, P. Mättig ${ }^{174}$, S. Mättig ${ }^{41}$, P.J. Magalhaes Martins ${ }^{124 a, h}$, L. Magnoni ${ }^{29}$, E. Magradze ${ }^{54}$, Y. Mahalalel ${ }^{153}$, K. Mahboubi ${ }^{48}$, G. Mahout ${ }^{17}$, C. Maiani ${ }^{132 a, 132 b}$, C. Maidantchik ${ }^{23 a}$, A. Maio ${ }^{124 a, b}$, S. Majewski ${ }^{24}$, Y. Makida ${ }^{66}$, N. Makovec ${ }^{115}$, P. Mal ${ }^{6}$, Pa. Malecki ${ }^{38}$, P. Malecki ${ }^{38}$, V.P. Maleev ${ }^{121}$, F. Malek ${ }^{55}$, U. Mallik ${ }^{63}$, D. Malon ${ }^{5}$, S. Maltezos ${ }^{9}$, V. Malyshev ${ }^{107}$, S. Malyukov ${ }^{29}$, R. Mameghani ${ }^{98}$, J. Mamuzic ${ }^{12 \mathrm{~b}}$, A. Manabe ${ }^{66}$, L. Mandelli ${ }^{89 \mathrm{a}}$, I. Mandić ${ }^{74}$, R. Mandrysch ${ }^{15}$, J. Maneira ${ }^{124 a}$, P.S. Mangeard ${ }^{88}$, I.D. Manjavidze ${ }^{65}$, A. Mann ${ }^{54}$, P.M. Manning ${ }^{137}$,
A. Manousakis-Katsikakis ${ }^{8}$, B. Mansoulie ${ }^{136}$, A. Manz ${ }^{99}$, A. Mapelli ${ }^{29}$, L. Mapelli ${ }^{29}$, L. March ${ }^{80}$, J.F. Marchand ${ }^{29}$, F. Marchese ${ }^{133 a, 133 \mathrm{~b}}$, G. Marchiori ${ }^{78}$, M. Marcisovsky ${ }^{125}$, A. Marin ${ }^{\text {21,* }}$, C.P. Marino ${ }^{61}$, F. Marroquim ${ }^{23 a}$, R. Marshall ${ }^{82}$, Z. Marshall ${ }^{29}$, F.K. Martens ${ }^{158}$, S. Marti-Garcia ${ }^{167}$, A.J. Martin ${ }^{175}$, B. Martin ${ }^{29}$, B. Martin ${ }^{88}$, F.F. Martin ${ }^{120}$, J.P. Martin ${ }^{93}$, Ph. Martin ${ }^{55}$, T.A. Martin ${ }^{17}$, B. Martin dit Latour ${ }^{49}$, M. Martinez ${ }^{11}$, V. Martinez Outschoorn ${ }^{57}$, A.C. Martyniuk ${ }^{82}$, M. Marx ${ }^{82}$, F. Marzano ${ }^{132 a}$, A. Marzin ${ }^{111}$, L. Masetti ${ }^{81}$, T. Mashimo ${ }^{155}$, R. Mashinistov ${ }^{94}$, J. Masik ${ }^{82}$, A.L. Maslennikov ${ }^{107}$, M. Maß ${ }^{42}$, I. Massa ${ }^{19 \mathrm{a}, 19 \mathrm{~b}}$, G. Massaro ${ }^{105}$, N. Massol ${ }^{4}$, P. Mastrandrea ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, A. Mastroberardino ${ }^{36 \mathrm{a}, 36 \mathrm{~b}}$, T. Masubuchi ${ }^{155}$, M. Mathes ${ }^{20}$, P. Matricon ${ }^{115}$, H. Matsumoto ${ }^{155}$, H. Matsunaga ${ }^{155}$, T. Matsushita ${ }^{67}$, C. Mattravers ${ }^{118, c}$, J.M. Maugain ${ }^{29}$, S.J. Maxfield ${ }^{73}$, D.A. Maximov ${ }^{107}$, E.N. May ${ }^{5}$, A. Mayne ${ }^{139}$, R. Mazini ${ }^{151}$, M. Mazur ${ }^{20}$, M. Mazzanti ${ }^{89 a}$, E. Mazzoni ${ }^{122 a, ~ 122 b, ~ S . P . ~ M c ~ K e e ~}{ }^{87}$, A. McCarn ${ }^{165}$, R.L. McCarthy ${ }^{148}$, T.G. McCarthy ${ }^{28}$, N.A. McCubbin ${ }^{129}$, K.W. McFarlane ${ }^{56}$, J.A. Mcfayden ${ }^{139}$, H. McGlone ${ }^{53}$, G. Mchedlidze ${ }^{51}$, R.A. McLaren ${ }^{29}$, T. Mclaughlan ${ }^{17}$, S.J. McMahon ${ }^{129}$, R.A. McPherson ${ }^{169, j}$, A. Meade ${ }^{84}$, J. Mechnich ${ }^{105}$, M. Mechtel ${ }^{174}$, M. Medinnis ${ }^{41}$, R. Meera-Lebbai ${ }^{111}$, T. Meguro ${ }^{116}$, R. Mehdiyev ${ }^{93}$, S. Mehlhase ${ }^{35}$, A. Mehta ${ }^{73}$, K. Meier ${ }^{58 \mathrm{a}}$, J. Meinhardt ${ }^{48}$, B. Meirose ${ }^{79}$, C. Melachrinos ${ }^{30}$, B.R. Mellado Garcia ${ }^{172}$, L. Mendoza Navas ${ }^{162}$, Z. Meng ${ }^{151, s}$, A. Mengarelli ${ }^{19 a}{ }^{19 b}$, S. Menke ${ }^{99}$, C. Menot ${ }^{29}$, E. Meoni ${ }^{11}$, K.M. Mercurio ${ }^{57}$, P. Mermod ${ }^{118}$, L. Merola ${ }^{102 \mathrm{a}, 102 \mathrm{~b}}$, C. Meroni ${ }^{\text {89a }}$, F.S. Merritt ${ }^{30}$, A. Messind ${ }^{29}$, J. Metcalfe ${ }^{103}$, A.S. Mete ${ }^{64}$, S. Meuser ${ }^{20}$, C. Meyer ${ }^{81}$, J.-P. Meyer ${ }^{136}$, J. Meyer ${ }^{173}$, J. Meyer ${ }^{54}$, T.C. Meyer ${ }^{29}$, W.T. Meyer ${ }^{64}$, J. Miao ${ }^{32 \mathrm{~d}}$, S. Michal ${ }^{29}$, L. Micu ${ }^{25 \mathrm{a}}$, R.P. Middleton ${ }^{129}$, P. Miele ${ }^{29}$, S. Migas ${ }^{73}$, L. Mijović ${ }^{41}$, G. Mikenberg ${ }^{171}$, M. Mikestikova ${ }^{125}$, M. Mikuž ${ }^{74}$, D.W. Miller ${ }^{143}$, R.J. Miller ${ }^{88}$, W.J. Mills ${ }^{168}$, C. Mills ${ }^{57}$, A. Milov ${ }^{171}$, D.A. Milstead ${ }^{146 a, 146 b}$, D. Milstein ${ }^{171}$, A.A. Minaenko ${ }^{128}$, M. Miñano ${ }^{167}$, I.A. Minashvili ${ }^{65}$, A.I. Mincer ${ }^{108}$, B. Mindur ${ }^{37}$, M. Mineev ${ }^{65}$, Y. Ming ${ }^{130}$, L.M. Mir ${ }^{11}$, G. Mirabelli ${ }^{132 \mathrm{a}}$, L. Miralles Verge ${ }^{11}$, A. Misiejuk ${ }^{76}$, J. Mitrevski ${ }^{137}$, G.Y. Mitrofanov ${ }^{128}$, V.A. Mitsou ${ }^{167}$, S. Mitsui ${ }^{66}$, P.S. Miyagawa ${ }^{82}$, K. Miyazaki ${ }^{67}$,
J.U. Mjörnmark ${ }^{79}$, T. Moa ${ }^{146 a, 146 b}$, P. Mockett ${ }^{138}$, S. Moed ${ }^{57}$, V. Moeller ${ }^{27}$, K. Mönig ${ }^{41}$, N. Möser ${ }^{20}$, S. Mohapatra ${ }^{148}$, B. Mohn ${ }^{13}$, W. Mohr ${ }^{48}$, S. Mohrdieck-Möck ${ }^{99}$, A.M. Moisseev ${ }^{128, *}$, R. Moles-Valls ${ }^{167}$, J. Molina-Perez ${ }^{29}$, J. Monk ${ }^{77}$, E. Monnier ${ }^{83}$, S. Montesano ${ }^{89 a}$, $89{ }^{\prime}$, F. Monticelli ${ }^{70}$, S. Monzani ${ }^{19 a}$, 19b ${ }^{\text {, }}$ R.W. Moore ${ }^{2}$, G.F. Moorhead ${ }^{86}$, C. Mora Herrera ${ }^{49}$, A. Moraes ${ }^{53}$, A. Morais ${ }^{124 a, b}$, N. Morange ${ }^{136}$, J. Morel ${ }^{54}$, G. Morello ${ }^{36 a, 36 \mathrm{~b}}$, D. Moreno ${ }^{81}$, M. Moreno Llácer ${ }^{167}$, P. Morettini ${ }^{50 \mathrm{a}}$, M. Morii ${ }^{57}$, J. Morin ${ }^{75}$, Y. Morita ${ }^{66}$, A.K. Morley ${ }^{29}$, G. Mornacchi ${ }^{29}$, M.-C. Morone ${ }^{49}$, S.V. Morozov ${ }^{96}$, J.D. Morris ${ }^{75}$, L. Morvaj ${ }^{101}$, H.G. Moser ${ }^{99}$, M. Mosidze ${ }^{51}$, J. Moss ${ }^{109}$, R. Mount ${ }^{143}$, E. Mountricha ${ }^{136}$, S.V. Mouraviev ${ }^{94}$, E.J.W. Moyse ${ }^{84}$, M. Mudrinic ${ }^{12 \mathrm{~b}}$, F. Mueller ${ }^{58 \mathrm{a}}$, J. Mueller ${ }^{123}$, K. Mueller ${ }^{20}$, T.A. Müller ${ }^{98}$, D. Muenstermann ${ }^{29}$, A. Muijs ${ }^{105}$, A. Muir ${ }^{168}$, Y. Munwes ${ }^{153}$, K. Murakami ${ }^{66}$, W.J. Murray ${ }^{129}$, I. Mussche ${ }^{105}$, E. Musto ${ }^{102 a, 102 b}$, A.G. Myagkov ${ }^{128}$, M. Myska ${ }^{125}$, J. Nadal ${ }^{11}$, K. Nagai ${ }^{160}$, K. Nagano ${ }^{66}$, Y. Nagasaka ${ }^{60}$, A.M. Nairz ${ }^{29}$, Y. Nakahama ${ }^{29}$, K. Nakamura ${ }^{155}$, I. Nakano ${ }^{110}$, G. Nanava ${ }^{20}$, A. Napier ${ }^{161}$, M. Nash ${ }^{77, c}$, N.R. Nation ${ }^{21}$, T. Nattermann ${ }^{20}$, T. Naumann ${ }^{41}$, G. Navarro ${ }^{162}$, H.A. Neal ${ }^{87}$, E. Nebot ${ }^{80}$, P.Yu. Nechaeva ${ }^{94}$, A. Negri ${ }^{119 a, 119 b}$, G. Negri ${ }^{29}$, S. Nektarijevic ${ }^{49}$, S. Nelson ${ }^{143}$, T.K. Nelson ${ }^{143}$, S. Nemecek ${ }^{125}$, P. Nemethy ${ }^{108}$, A.A. Nepomuceno ${ }^{23 a}$, M. Nessi ${ }^{29}{ }^{29}$, S.Y. Nesterov ${ }^{121}$, M.S. Neubauer ${ }^{165}$, A. Neusiedl ${ }^{81}$, R.M. Neves ${ }^{108}$, P. Nevski ${ }^{24}$, P.R. Newman ${ }^{17}$, V. Nguyen Thi Hong ${ }^{136}$, R.B. Nickerson ${ }^{118}$, R. Nicolaidou ${ }^{136}$, L. Nicolas ${ }^{139}$, B. Nicquevert ${ }^{29}$, F. Niedercorn ${ }^{115}$, J. Nielsen ${ }^{137}$, T. Niinikoski ${ }^{29}$, A. Nikiforov ${ }^{15}$, V. Nikolaenko ${ }^{128}$, K. Nikolaev ${ }^{65}$, I. Nikolic-Audit ${ }^{78}$, K. Nikolics ${ }^{49}$, K. Nikolopoulos ${ }^{24}$, H. Nilsen ${ }^{48}$, P. Nilsson ${ }^{7}$, Y. Ninomiya ${ }^{155}$, A. Nisati ${ }^{132 \mathrm{a}}$, T. Nishiyama ${ }^{67}$, R. Nisius ${ }^{\text {99 }}$, L. Nodulman ${ }^{5}$, M. Nomachi ${ }^{116}$, I. Nomidis ${ }^{154}$, M. Nordberg ${ }^{29}$, B. Nordkvist ${ }^{146 a, 146 \mathrm{~b}}$, P.R. Norton ${ }^{129}$, J. Novakova ${ }^{126}$, M. Nozaki ${ }^{66}$, M. Nožička ${ }^{41}$, L. Nozka ${ }^{113}$, I.M. Nugent ${ }^{159 a}$, A.-E. Nuncio-Quiroz ${ }^{20}$, G. Nunes Hanninger ${ }^{86}$, T. Nunnemann ${ }^{98}$, E. Nurse ${ }^{77}$, T. Nyman ${ }^{29}$, B.J. O'Brien ${ }^{45}$, S.W. O'Neale ${ }^{17, *}$, D.C. O'Neil ${ }^{142}$, V. O'Shea ${ }^{53}$, F.G. Oakham ${ }^{28, e}$, H. Oberlack ${ }^{99}$, J. Ocariz ${ }^{78}$, A. Ochi ${ }^{67}$, S. Oda ${ }^{155}$, S. Odaka ${ }^{66}$, J. Odier ${ }^{83}$, H. Ogren ${ }^{61}$, A. Oh ${ }^{82}$, S.H. Oh ${ }^{44}$, C.C. Ohm ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$, T. Ohshima ${ }^{101}$, H. Ohshita ${ }^{140}$, T.K. Ohska ${ }^{66}$, T. Ohsugi ${ }^{59}$, S. Okada ${ }^{67}$, H. Okawa ${ }^{163}$, Y. Okumura ${ }^{101}$, T. Okuyama ${ }^{155}$, M. Olcese ${ }^{50 a}$, A.G. Olchevski ${ }^{65}$, M. Oliveira ${ }^{124 a, h}$, D. Oliveira Damazio ${ }^{24}$, E. Oliver Garcia ${ }^{167}$, D. Olivito ${ }^{120}$, A. Olszewski ${ }^{38}$, J. Olszowska ${ }^{38}$, C. Omachi 67, A. Onofre ${ }^{\text {i24a, } v}$, P.U.E. Onyisi ${ }^{30}$, C.J. Oram ${ }^{159 a^{\prime}}$, M.J. Oreglia ${ }^{30}$, Y. Oren ${ }^{153}$, D. Orestano ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, I. Orlov ${ }^{107}$, C. Oropeza Barrera ${ }^{53}$, R.S. Orr ${ }^{158}$, B. Osculati ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, R. Ospanov ${ }^{120}$,
 Q. Ouyang ${ }^{\text {32a }}$, M. Owen ${ }^{82}$, S. Owen ${ }^{139}$, O.K. Øye ${ }^{13}$, V.E. Ozcan ${ }^{18 a}$, N. Ozturk ${ }^{7}$, A. Pacheco Pages ${ }^{11}$, C. Padilla Aranda ${ }^{11}$, S. Pagan Griso ${ }^{14}$, E. Paganis ${ }^{139}$, F. Paige ${ }^{24}$, K. Pajchel ${ }^{117}$, S. Palestini ${ }^{29}$, D. Pallin ${ }^{33}$, A. Palma ${ }^{124 a, b}$, J.D. Palmer ${ }^{17}$, Y.B. Pan ${ }^{172}$, E. Panagiotopoulou ${ }^{9}$, B. Panes ${ }^{31 a}$, N. Panikashvili ${ }^{87}$,
 A. Paramonov ${ }^{5}$, W. Park ${ }^{24, w}$, M.A. Parker ${ }^{27}$, F. Parodi ${ }^{50 a, 50 b}$, J.A. Parsons ${ }^{34}$, U. Parzefall ${ }^{48}$, E. Pasqualucci ${ }^{132 \mathrm{a}}$, A. Passeri ${ }^{134 \mathrm{a}}$, F. Pastore ${ }^{\text {'134a, } 134 \mathrm{~b}}$, Fr. Pastore ${ }^{29}$, G. Pásztor ${ }^{49, x}$, S. Pataraia ${ }^{172}$, N. Patel ${ }^{150}$, J.R. Pater ${ }^{82}$, S. Patricelli ${ }^{102 \mathrm{a}, 102 \mathrm{~b}}$, T. Pauly ${ }^{29}$, M. Pecsy ${ }^{144 \mathrm{a}}$, M.I. Pedraza Morales ${ }^{172}$, S.V. Peleganchuk ${ }^{107}$, H. Peng ${ }^{172}$, R. Pengo ${ }^{29}$, A. Penson ${ }^{34}$, J. Penwell ${ }^{61}$, M. Perantoni ${ }^{23 a}$, K. Perez ${ }^{34, t}$, T. Perez Cavalcanti ${ }^{41}$, E. Perez Codina ${ }^{11}$, M.T. Pérez García-Estañ ${ }^{167}$, V. Perez Reale ${ }^{34}$, L. Perini ${ }^{89 a, 89 b}$, H. Pernegger ${ }^{29}$, R. Perrino ${ }^{72 a}$, P. Perrodo ${ }^{4}$, S. Persembe ${ }^{3 a}$, V.D. Peshekhonov ${ }^{65}$, O. Peters ${ }^{105}$, B.A. Petersen ${ }^{29}$, J. Petersen ${ }^{29}$, T.C. Petersen ${ }^{35}$, E. Petit ${ }^{83}$, A. Petridis ${ }^{154}$, C. Petridou ${ }^{154}$, E. Petrolo ${ }^{132 a}$, F. Petrucci ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$, D. Petschull ${ }^{41}$, M. Petteni ${ }^{142}$, R. Pezoa ${ }^{31 \mathrm{~b}}$, A. Phan ${ }^{86}$, A.W. Phillips ${ }^{27}$, P.W. Phillips ${ }^{129}$, G. Piacquadio ${ }^{29}$, E. Piccaro ${ }^{75}$, M. Piccinini ${ }^{19 a}$, 19b, A. Pickford ${ }^{53}$, S.M. Piec ${ }^{41}$, R. Piegaia ${ }^{26}$, J.E. Pilcher ${ }^{30}$, A.D. Pilkington ${ }^{82}$, J. Pina ${ }^{124 a, b}$, M. Pinamonti ${ }^{164 a, 164 \mathrm{c}}$, A. Pinder ${ }^{118}$, J.L. Pinfold ${ }^{2}$, J. Ping ${ }^{32 \mathrm{c}}$, B. Pinto ${ }^{124 \mathrm{a}, \mathrm{b}}$, O. Pirotte ${ }^{29}$, C. Pizio ${ }^{89 \mathrm{a}, 89 \mathrm{~b}}$, R. Placakyte ${ }^{41^{\prime}}$, M. Plamondon ${ }^{169}$, W.G. Plano ${ }^{82}$, M.-A. Pleier ${ }^{24}$, A.V. Pleskach ${ }^{128}$, A. Poblaguev ${ }^{24}$, S. Poddar ${ }^{58 \mathrm{a}}$, F. Podlyski ${ }^{33}$, L. Poggioli ${ }^{115}$, T. Poghosyan ${ }^{20}$, M. Pohl ${ }^{49}$, F. Polci ${ }^{55}$, G. Polesello ${ }^{119 a}$, A. Policicchio ${ }^{138}$, A. Polini ${ }^{19 a}$, J. Poll ${ }^{75}$, V. Polychronakos ${ }^{24}$, D.M. Pomarede ${ }^{136}$, D. Pomeroy ${ }^{22}$, K. Pommès ${ }^{29}$, L. Pontecorvo ${ }^{132 \mathrm{a}}$, B.G. Pope ${ }^{88}$, G.A. Popeneciu ${ }^{25 a}$, D.S. Popovic ${ }^{12 a}$, A. Poppleton ${ }^{29}$, X. Portell Bueso ${ }^{48}$, R. Porter ${ }^{163}$, C. Posch ${ }^{21}$, G.E. Pospelov ${ }^{99}$, S. Pospisil ${ }^{127}$, I.N. Potrap ${ }^{99}$, C.J. Potter ${ }^{149}$, C.T. Potter ${ }^{114}$, G. Poulard ${ }^{29}$, J. Poveda ${ }^{172}$, R. Prabhu ${ }^{77}$, P. Pralavorio ${ }^{83}$, S. Prasad ${ }^{57}$, R. Pravahan ${ }^{7}$, S. Prell ${ }^{64}$, K. Pretzl ${ }^{16}$, L. Pribyl ${ }^{29}$, D. Price ${ }^{61}$, L.E. Price ${ }^{5}$, M.J. Price ${ }^{29}$, P.M. Prichard ${ }^{73}$, D. Prieur ${ }^{123}$, M. Primavera ${ }^{72 \mathrm{a}}$, K. Prokofiev ${ }^{108}$, F. Prokoshin ${ }^{31 b}$, S. Protopopescu ${ }^{24}$, J. Proudfoot ${ }^{5}$, X. Prudent ${ }^{43}$, H. Przysiezniak ${ }^{4}$, S. Psoroulas ${ }^{20}$, E. Ptacek ${ }^{114}$, J. Purdham ${ }^{87}$, M. Purohit ${ }^{24, w}$, P. Puzo ${ }^{115}$, Y. Pylypchenko ${ }^{117}$, J. Qian ${ }^{87}$, Z. Qian ${ }^{83}$,
Z. Qin ${ }^{41}$, A. Quadt ${ }^{54}$, D.R. Quarrie ${ }^{14}$, W.B. Quayle ${ }^{172}$, F. Quinonez ${ }^{31 a}$, M. Raas ${ }^{104}$, V. Radescu ${ }^{58 b}$, B. Radics ${ }^{20}$, T. Rador ${ }^{18 a}$, F. Ragusa ${ }^{89 a, 89 b}$, G. Rahal ${ }^{177}$, A.M. Rahimi ${ }^{109}$, D. Rahm ${ }^{24}$, S. Rajagopalan ${ }^{24}$, M. Rammensee ${ }^{48}$, M. Rammes ${ }^{141}$, M. Ramstedt ${ }^{146 a, 146 \mathrm{~b}}$, K. Randrianarivony ${ }^{28}$, P.N. Ratoff ${ }^{71}$, F. Rauscher ${ }^{98}$, E. Rauter ${ }^{99}$, M. Raymond ${ }^{29}$, A.L. Read ${ }^{117}$, D.M. Rebuzzi ${ }^{119 a, 119 b}$, A. Redelbach ${ }^{173}$, G. Redlinger ${ }^{24}$, R. Reece ${ }^{120}$, K. Reeves ${ }^{40}$, A. Reichold ${ }^{105}$, E. Reinherz-Aronis ${ }^{153}$, A. Reinsch ${ }^{114}$, I. Reisinger ${ }^{42}$, D. Reljic ${ }^{12 a}$, C. Rembser ${ }^{29}$, Z.L. Ren ${ }^{151}$, A. Renaud ${ }^{115}$, P. Renkel ${ }^{39}$, M. Rescigno ${ }^{132 a}$, S. Resconi ${ }^{89}$, B. Resende ${ }^{136}$, P. Reznicek ${ }^{98}$, R. Rezvani ${ }^{158}$, A. Richards ${ }^{77}$, R. Richter ${ }^{99}$, E. Richter-Was ${ }^{38, y}$, M. Ridel ${ }^{78}$, S. Rieke ${ }^{81}$, M. Rijpstra ${ }^{105}$, M. Rijssenbeek ${ }^{148}$, A. Rimoldi ${ }^{119 a, 119 b}$, L. Rinaldi ${ }^{19 a}$, R.R. Rios ${ }^{39}$, I. Riu ${ }^{11}$, G. Rivoltella ${ }^{89 a}$, 89 b , F. Rizatdinova ${ }^{112}$, E. Rizvi ${ }^{75}$, S.H. Robertson ${ }^{85, j}$,
A. Robichaud-Veronneau ${ }^{49}$, D. Robinson ${ }^{27}$, J.E.M. Robinson ${ }^{77}$, M. Robinson ${ }^{114}$, A. Robson ${ }^{53}$, J.G. Rocha de Lima ${ }^{106}$, C. Roda ${ }^{122 a, 122 b}$, D. Roda Dos Santos ${ }^{29}$, S. Rodier ${ }^{80}$, D. Rodriguez ${ }^{162}$, A. Roe ${ }^{54}$, S. Roe ${ }^{29}$, O. Røhne ${ }^{117}$, V. Rojo ${ }^{1}$, S. Rolli ${ }^{161}$, A. Romaniouk ${ }^{96}$, V.M. Romanov ${ }^{65}$, G. Romeo ${ }^{26}$, D. Romero Maltrana ${ }^{31 a}$, L. Roos ${ }^{78}$, E. Ros ${ }^{167}$, S. Rosati ${ }^{132 \mathrm{a}}$, 132b , K. Rosbach ${ }^{49}$, M. Rose ${ }^{76}$, G.A. Rosenbaum ${ }^{158}$, E.I. Rosenberg ${ }^{64}$, P.L. Rosendahl ${ }^{13}$, L. Rosselet ${ }^{49}$, V. Rossetti ${ }^{11}$, E. Rossi ${ }^{102 \mathrm{a}, 102 \mathrm{~b}}$, L.P. Rossi ${ }^{50 \mathrm{a}}$, L. Rossi ${ }^{89 a}$, 89 b , M. Rotaru ${ }^{25 a}$, I. Roth ${ }^{171}$, J. Rothberg ${ }^{138}$, D. Rousseau ${ }^{115}$, C.R. Royon ${ }^{136}$, A. Rozanov ${ }^{83}$, Y. Rozen ${ }^{152}$, X. Ruan ${ }^{115}$, I. Rubinskiy ${ }^{41}$, B. Ruckert ${ }^{98}$, N. Ruckstuhl ${ }^{105}$, V.I. Rud ${ }^{97}$, C. Rudolph ${ }^{43}$, G. Rudolph ${ }^{62}$, F. Rühr ${ }^{6}$, F. Ruggieri ${ }^{134 a, 134 b}$, A. Ruiz-Martinez ${ }^{64}$, E. Rulikowska-Zarebska ${ }^{37}$, V. Rumiantsev ${ }^{91, *}$, L. Rumyantsev ${ }^{65}$, K. Runge ${ }^{48}$, O. Runolfsson ${ }^{20}$, Z. Rurikova ${ }^{48}$, N.A. Rusakovich ${ }^{65}$, D.R. Rust ${ }^{61}$, J.P. Rutherfoord ${ }^{6}$, C. Ruwiedel ${ }^{14}$, P. Ruzicka ${ }^{125}$, Y.F. Ryabov ${ }^{121}$, V. Ryadovikov ${ }^{128}$, P. Ryan ${ }^{88}$, M. Rybar ${ }^{126}$, G. Rybkin ${ }^{115}$, N.C. Ryder ${ }^{118}$, S. Rzaeva ${ }^{10}$, A.F. Sadvedra ${ }^{150}$, I. Sadeh ${ }^{153}$, H.F.-W. Sadrozinski ${ }^{137}$, R. Sadykov ${ }^{65}$, F. Safai Tehrani ${ }^{132}$ a, 132b, H. Sakamoto ${ }^{155}$, G. Salamanna ${ }^{75}$, A. Salamon ${ }^{133 a}$, M. Saleem ${ }^{111}$, D. Salihagic ${ }^{99}$, A. Salnikov ${ }^{143}$, J. Salt ${ }^{167}$, B.M. Salvachua Ferrando ${ }^{5}$, D. Salvatore ${ }^{36 a, 36 \mathrm{~b}}$, F. Salvatore ${ }^{149}$, A. Salvucci ${ }^{104}$, A. Salzburger ${ }^{29}$, D. Sampsonidis ${ }^{154}$, B.H. Samset ${ }^{117}$, A. Sanchez ${ }^{102 a, 102 b}$, H. Sandaker ${ }^{13}$, H.G. Sander ${ }^{81}$, M.P. Sanders ${ }^{98}$, M. Sandhoff ${ }^{174}$, T. Sandoval ${ }^{27}$, R. Sandstroem ${ }^{99}$, S. Sandvoss ${ }^{174}$, D.P.C. Sankey ${ }^{129}$, A. Sansoni ${ }^{47}$, C. Santamarina Rios ${ }^{85}$, C. Santoni ${ }^{33}$, R. Santonico ${ }^{133 a, 133 b}$, H. Santos ${ }^{124 a}$, J.G. Saraiva ${ }^{124 a, b}$, T. Sarangi ${ }^{172}$, E. Sarkisyan-Grinbaum ${ }^{7}$, F. Sarri ${ }^{122 a, 122 b}$, G. Sartisohn ${ }^{174}$, O. Sasaki ${ }^{66}$, T. Sasaki ${ }^{66}$, N. Sasao ${ }^{68}$, I. Satsounkevitch ${ }^{90}$, G. Sauvage ${ }^{4}$, E. Sauvan ${ }^{4}$, J.B. Sauvan ${ }^{115}$, P. Savard ${ }^{158, e}$, V. Savinov ${ }^{123}$, D.O. Savu ${ }^{29}$, P. Savva ${ }^{9}$, L. Sawyer ${ }^{24, l}$, D.H. Saxon ${ }^{53}$, L.P. Says ${ }^{33}$, C. Sbarra ${ }^{19 a}{ }^{19 b}$, A. Sbrizzi ${ }^{19 a, 19 b}$, O. Scallon ${ }^{93}$, D.A. Scannicchio ${ }^{163}$, J. Schaarschmidt ${ }^{115}$, P. Schacht ${ }^{99}$, U. Schäfer ${ }^{81}$, S. Schaepe ${ }^{20}$, S. Schaetzel ${ }^{58 b}$, A.C. Schaffer ${ }^{115}$, D. Schaile ${ }^{98}$, R.D. Schamberger ${ }^{148}$, A.G. Schamov ${ }^{107}$, V. Scharf ${ }^{58 a}$, V.A. Schegelsky ${ }^{121}$, D. Scheirich ${ }^{87}$, M. Schernau ${ }^{163}$, M.I. Scherzer ${ }^{14}$, C. Schiavi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, J. Schieck ${ }^{98}$, M. Schioppa ${ }^{36 \mathrm{a}, 36 \mathrm{~b}}$, S. Schlenker ${ }^{29}$, J.L. Schlereth ${ }^{5}$, E. Schmidt ${ }^{48}$, K. Schmieden ${ }^{20}$, C. Schmitt ${ }^{81}$, S. Schmitt ${ }^{58 \mathrm{~b}}$, M. Schmitz ${ }^{20}$, A. Schöning ${ }^{58 b}$, M. Schott ${ }^{29}$, D. Schouten ${ }^{142}$, J. Schovancova ${ }^{125}$, M. Schram ${ }^{85}$, C. Schroeder ${ }^{81}$, N. Schroer ${ }^{58 \mathrm{c}}$, S. Schuh ${ }^{29}$, G. Schuler ${ }^{29}$, J. Schultes ${ }^{174}$, H.-C. Schultz-Coulon ${ }^{58 \mathrm{a}}$, H. Schulz ${ }^{15}$, J.W. Schumacher ${ }^{20}$, M. Schumacher ${ }^{48}$, B.A. Schumm ${ }^{137}$, Ph. Schune ${ }^{136}$, C. Schwanenberger ${ }^{82}$, A. Schwartzman ${ }^{143}$, Ph. Schwemling ${ }^{78}$, R. Schwienhorst ${ }^{88}$, R. Schwierz ${ }^{43}$, J. Schwindling ${ }^{136}$, W.G. Scott ${ }^{129}$, J. Searcy ${ }^{114}$, E. Sedykh ${ }^{121}$, E. Segura ${ }^{11}$, S.C. Seidel ${ }^{103}$, A. Seiden ${ }^{137}$, F. Seifert ${ }^{43}$, J.M. Seixas ${ }^{23 a}$, G. Sekhniaidze ${ }^{102 a}$, D.M. Seliverstov ${ }^{121}$, B. Sellden ${ }^{146 a^{\prime}}$, G. Sellers ${ }^{73}$, M. Seman ${ }^{144 b \text { b }}$, N. Semprini-Cesari ${ }^{19 a, 19 b}$, C. Serfon ${ }^{98}$, L. Serin ${ }^{115}$, R. Seuster ${ }^{99}$, H. Severini ${ }^{111}$, M.E. Sevior ${ }^{86}$, A. Sfyrla ${ }^{29}$, E. Shabalina ${ }^{54}$, M. Shamim ${ }^{114}$, L.Y. Shan ${ }^{32 a}$, J.T. Shank ${ }^{21}$, Q.T. Shao ${ }^{86}$, M. Shapiro ${ }^{14}$, P.B. Shatalov ${ }^{95}$, L. Shaver ${ }^{6}$, C. Shaw ${ }^{53}$, K. Shaw ${ }^{164 a, 164 c}$, D. Sherman ${ }^{175}$, P. Sherwood ${ }^{77}$, A. Shibata ${ }^{108}$, H. Shichi ${ }^{101}$, S. Shimizu ${ }^{29}$, M. Shimojima ${ }^{100}$, T. Shin ${ }^{56}$, A. Shmeleva ${ }^{94}$, M.J. Shochet ${ }^{30}$, D. Short ${ }^{118}$, M.A. Shupe ${ }^{6}$, P. Sicho ${ }^{125}$, A. Sidoti ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, A. Siebel ${ }^{174}$, F. Siegert ${ }^{48}$, J. Siegrist ${ }^{14}$, Dj. Sijacki ${ }^{12 \mathrm{a}}$, O. Silbert ${ }^{171}$, J. Silva ${ }^{124 a, b}$, Y. Silver ${ }^{153}$, D. Silverstein ${ }^{143}$, S.B. Silverstein ${ }^{146 a}$, V. Simak ${ }^{127}$, O. Simard ${ }^{136}$, Lj. Simic ${ }^{12 a}$, S. Simion ${ }^{115}$, B. Simmons ${ }^{77}$, M. Simonyan ${ }^{35}$, P. Sinervo ${ }^{158}$, N.B. Sinev ${ }^{114}$, V. Sipica ${ }^{141}$, G. Siragusa ${ }^{173}$, A.N. Sisakyan ${ }^{65}$, S.Yu. Sivoklokov ${ }^{97}$, J. Sjölin ${ }^{146 a, 146 b}$, T.B. Sjursen ${ }^{13}$, L.A. Skinnari ${ }^{14}$, K. Skovpen ${ }^{107}$, P. Skubic ${ }^{111}$, N. Skvorodnev ${ }^{22}$, M. Slater ${ }^{17}$, T. Slavicek ${ }^{127}$, K. Sliwa ${ }^{161}$, T.J. Sloan ${ }^{71}$, J. Sloper ${ }^{29}$, V. Smakhtin ${ }^{171}$, S.Yu. Smirnov ${ }^{96}$, L.N. Smirnova ${ }^{97}$, O. Smirnova ${ }^{79}$, B.C. Smith ${ }^{57}$, D. Smith ${ }^{143}$, K.M. Smith ${ }^{53}$, M. Smizanska ${ }^{71}$, K. Smolek ${ }^{127}$, A.A. Snesarev ${ }^{94}$, S.W. Snow ${ }^{82}$, J. Snow ${ }^{111}$, J. Snuverink ${ }^{105}$, S. Snyder ${ }^{24}$, M. Soares ${ }^{124 a}$, R. Sobie ${ }^{169, j}$, J. Sodomka ${ }^{127}$, A. Soffer ${ }^{153}$, C.A. Solans ${ }^{167}$, M. Solar ${ }^{127}$, J. Solc ${ }^{127}$, E. Soldatov ${ }^{96}$, U. Soldevila ${ }^{167}$, E. Solfaroli Camillocci ${ }^{132 a, 132 b}$, A.A. Solodkov ${ }^{128}$,
O.V. Solovyanov ${ }^{128}$, J. Sondericker ${ }^{24}$, N. Soni ${ }^{2}$, V. Sopko ${ }^{127}$, B. Sopko ${ }^{127}$, M. Sorbi ${ }^{89 a}$, 89 b M. Sosebee ${ }^{7}$, A. Soukharev ${ }^{107}$, S. Spagnolo ${ }^{72 a, 72 b}$, F. Spanò ${ }^{34}$, R. Spighi ${ }^{19 a}$, G. Spigo ${ }^{29}$, F. Spila ${ }^{132 a, 132 b}$, E. Spiriti ${ }^{134 a}$, R. Spiwoks ${ }^{29}$, M. Spousta ${ }^{126}$, T. Spreitzer ${ }^{158}$, B. Spurlock ${ }^{7}$, R.D. St. Denis ${ }^{53}$, T. Stahl ${ }^{141}$, J. Stahlman ${ }^{120}$, R. Stamen ${ }^{58 \text { a }}$, E. Stanecka ${ }^{29}$, R.W. Stanek ${ }^{5}$, C. Stanescu ${ }^{134 a}$, S. Stapnes ${ }^{117}$, E.A. Starchenko ${ }^{128}$, J. Stark ${ }^{55}$ P. Staroba ${ }^{125}$, P. Starovoitov ${ }^{91}$, A. Staude ${ }^{98}$, P. Stavina ${ }^{144 a}$, G. Stavropoulos ${ }^{14}$, G. Steele ${ }^{53}$, P. Steinbach ${ }^{43}$, P. Steinberg ${ }^{24}$, I. Stekl ${ }^{127}$, B. Stelzer ${ }^{142}$, H.J. Stelzer ${ }^{41}$, O. Stelzer-Chilton ${ }^{159 a}$, H. Stenzel ${ }^{52}$, K. Stevenson ${ }^{75}$, G.A. Stewart ${ }^{29}$, J.A. Stillings ${ }^{20}$, T. Stockmanns ${ }^{20}$, M.C. Stockton ${ }^{29}$, K. Stoerig ${ }^{48}$, G. Stoicea ${ }^{25 \mathrm{a}}$, S. Stonjek ${ }^{99}$, P. Strachota ${ }^{126}$, A.R. Stradling ${ }^{7}$, A. Straessner ${ }^{43}$, J. Strandberg ${ }^{147}$, S. Strandberg ${ }^{146 a, 146 b}$, A. Strandlie ${ }^{117}$, M. Strang ${ }^{109}$, E. Strauss ${ }^{143}$, M. Strauss ${ }^{111}$, P. Strizenec ${ }^{144 b}$, R. Ströhmer ${ }^{173}$, D.M. Strom ${ }^{114}$, J.A. Strong ${ }^{76, *}$, R. Stroynowski ${ }^{39}$, J. Strube ${ }^{129}$, B. Stugu ${ }^{13}$, I. Stumer ${ }^{24, *}$, J. Stupak ${ }^{148}$, P. Sturm ${ }^{174}$, D.A. Soh ${ }^{151, q}$, D. Su ${ }^{143}$, H.S. Subramania ${ }^{2}$, A. Succurro ${ }^{11}$, Y. Sugaya ${ }^{116}$, T. Sugimoto ${ }^{101}$, C. Suhr ${ }^{106}$, K. Suita ${ }^{67}$, M. Suk ${ }^{126}$, V.V. Sulin ${ }^{94}$, S. Sultansoy ${ }^{3 d}$, T. Sumida ${ }^{29}$, X. Sun ${ }^{55}$, J.E. Sundermann ${ }^{48}$, K. Suruliz ${ }^{139}$, S. Sushkov ${ }^{11}$, G. Susinno ${ }^{36 a, 36 b}$, M.R. Sutton ${ }^{149}$, Y. Suzuki ${ }^{66}$, M. Svatos ${ }^{125}$, Yu.M. Sviridov ${ }^{128}$, S. Swedish ${ }^{168}$, I. Sykord ${ }^{144 a}$, T. Sykora ${ }^{126}$, B. Szeless ${ }^{29}$, J. Sánchez ${ }^{167}$, D. Ta^{105}, K. Tackmann ${ }^{41}$, A. Taffard ${ }^{163}$, R. Tafirout ${ }^{159 \mathrm{a}}$, A. Taga ${ }^{117}$, N. Taiblum ${ }^{153}$, Y. Takahashi ${ }^{101}$, H. Takai ${ }^{24}$, R. Takashima ${ }^{69}$, H. Takeda ${ }^{67}$, T. Takeshita ${ }^{140}$, M. Talby ${ }^{83}$, A. Talyshev ${ }^{107}$, M.C. Tamsett ${ }^{24}$, J. Tanaka ${ }^{155}$, R. Tanaka ${ }^{115}$, S. Tanaka ${ }^{131}$, S. Tanaka ${ }^{66}$, Y. Tanaka ${ }^{100}$, K. Tani ${ }^{67}$, N. Tannoury ${ }^{83}$, G.P. Tappern ${ }^{29}$, S. Tapprogge ${ }^{81}$, D. Tardif ${ }^{158}$, S. Tarem ${ }^{152}$, F. Tarrade ${ }^{24}$, G.F. Tartarelli ${ }^{89 a}$, P. Tas ${ }^{126}$, M. Tasevsky ${ }^{125}$, E. Tassi ${ }^{36 a, 36 b}$, M. Tatarkhanov ${ }^{14}$, C. Taylor ${ }^{77}$, F.E. Taylor ${ }^{92}$, G.N. Taylor ${ }^{\text {86 }}$, W. Taylor ${ }^{159 b}$, M. Teixeira Dias Castanheira ${ }^{75}$, P. Teixeira-Dias ${ }^{76}$, K.K. Temming ${ }^{48}$, H. Ten Kate ${ }^{29}$, P.K. Teng ${ }^{151}$, S. Terada ${ }^{66}$, K. Terashi ${ }^{155}$, J. Terron ${ }^{80}$, M. Terwort ${ }^{41,0}$, M. Testa ${ }^{47}$, R.J. Teuscher ${ }^{158, j}$, J. Thadome ${ }^{174}$, J. Therhaag ${ }^{20}$, T. Theveneaux-Pelzer ${ }^{78}$, M. Thioye ${ }^{175}$, S. Thoma ${ }^{48}$, J.P. Thomas ${ }^{17}$, E.N. Thompson ${ }^{84}$, P.D. Thompson ${ }^{17}$, P.D. Thompson ${ }^{158}$, A.S. Thompson ${ }^{53}$, E. Thomson ${ }^{120}$, M. Thomson ${ }^{27}$, R.P. Thun ${ }^{87}$, T. Tic ${ }^{125}$, V.O. Tikhomirov ${ }^{94}$, Y.A. Tikhonov ${ }^{107}$, C.J.W.P. Timmermans ${ }^{104}$, P. Tipton ${ }^{175}$,
F.J. Tique Aires Viegas ${ }^{29}$, S. Tisserant ${ }^{83}$, J. Tobias ${ }^{48}$, B. Toczek ${ }^{37}$, T. Todorov ${ }^{4}$, S. Todorova-Nova ${ }^{161}$, B. Toggerson ${ }^{163}$, J. Tojo ${ }^{66}$, S. Tokár ${ }^{144 a}$, K. Tokunaga ${ }^{67}$, K. Tokushuku ${ }^{66}$, K. Tollefson ${ }^{88}$, M. Tomoto ${ }^{101}$, L. Tompkins ${ }^{14}$, K. Toms ${ }^{103}$, G. Tong ${ }^{32 \mathrm{a}}$, A. Tonoyan ${ }^{13}$, C. Topfel ${ }^{16}$, N.D. Topilin ${ }^{65}$, I. Torchiani ${ }^{29}$, E. Torrence ${ }^{114}$, H. Torres ${ }^{78}$, E. Torró Pastor ${ }^{167}$, J. Toth ${ }^{83, x}$, F. Touchard ${ }^{83}$, D.R. Tovey ${ }^{139}$, D. Traynor ${ }^{75}$, T. Trefzger ${ }^{173}$, L. Tremblet ${ }^{29}$, A. Tricoli ${ }^{29}$, I.M. Trigger ${ }^{159 \mathrm{a}}$, S. Trincaz-Duvoid ${ }^{78}$, T.N. Trinh ${ }^{78}$, M.F. Tripiana ${ }^{70}$, W. Trischuk ${ }^{158}$, A. Trivedi ${ }^{24, w}$, B. Trocmé ${ }^{55}$, C. Troncon ${ }^{89 \mathrm{a}}$, M. Trottier-McDonald ${ }^{142}$, A. Trzupek ${ }^{38}$, C. Tsarouchas ${ }^{29}$, J.C.-L. Tseng ${ }^{118}$, M. Tsiakiris ${ }^{105}$, P.V. Tsiareshka ${ }^{90}$, D. Tsionou ${ }^{4}$, G. Tsipolitis ${ }^{9}$, V. Tsiskaridze ${ }^{48}$, E.G. Tskhadadze ${ }^{51}$, I.I. Tsukerman ${ }^{95}$, V. Tsulaia ${ }^{144^{\prime}}$, J.-W. Tsung ${ }^{20}$, S. Tsuno ${ }^{66}$, D. Tsybychev ${ }^{148}$, A. Tua ${ }^{139}$, J.M. Tuggle ${ }^{30}$, M. Turala ${ }^{38}$, D. Turecek ${ }^{127}$, I. Turk Cakir ${ }^{3 e}$, E. Turlay ${ }^{105}$, R. Turra ${ }^{89 a, 89 b}$, P.M. Tuts ${ }^{34}$, A. Tykhonov ${ }^{74}$, M. Tylmad ${ }^{146 a, 146 b}$, M. Tyndel ${ }^{129}$, H. Tyrvainen ${ }^{29}$, G. Tzanakos ${ }^{8}$, K. Uchida ${ }^{20}$, I. Ueda ${ }^{155}$, R. Ueno ${ }^{28}$, M. Ugland ${ }^{13}$, M. Uhlenbrock ${ }^{20}$, M. Uhrmacher ${ }^{54}$, F. Ukegawa ${ }^{160}$, G. Unal ${ }^{29}$, D.G. Underwood ${ }^{5}$, A. Undrus ${ }^{24}$, G. Unel ${ }^{163}$, Y. Unno ${ }^{66}$, D. Urbaniec ${ }^{34}$, E. Urkovsky ${ }^{153}$, P. Urrejola ${ }^{31 a}$, G. Usai ${ }^{7}$, M. Uslenghi ${ }^{119 a, 119 b}$, L. Vacavant ${ }^{83}$, V. Vacek ${ }^{127}$, B. Vachon ${ }^{85}$, S. Vahsen ${ }^{14}$, J. Valenta ${ }^{125}$, P. Valente ${ }^{132 \mathrm{a}}$, S. Valentinetti ${ }^{19 a}$, 19b , S. Valkar ${ }^{126}$, E. Valladolid Gallego ${ }^{167}$, S. Vallecorsa ${ }^{152}$, J.A. Valls Ferrer ${ }^{167}$, H. van der Graaf ${ }^{105}$, E. van der Kraaij ${ }^{105}$, R. Van Der Leeuw ${ }^{105}$, E. van der Poel ${ }^{105}$, D. van der Ster ${ }^{29}$, B. Van Eijk ${ }^{105}$, N. van Eldik ${ }^{84}$, P. van Gemmeren ${ }^{5}$, Z. van Kesteren ${ }^{105}$, I. van Vulpen ${ }^{105}$, W. Vandelli ${ }^{29}$, G. Vandoni ${ }^{29}$, A. Vaniachine ${ }^{5}$, P. Vankov ${ }^{41}$, F. Vannucci ${ }^{78}$, F. Varela Rodriguez ${ }^{29}$, R. Vari ${ }^{132 a}$, E.W. Varnes ${ }^{6}$, D. Varouchas ${ }^{14}$, A. Vartapetian ${ }^{7}$, K.E. Varvell ${ }^{150}$, V.I. Vassilakopoulos ${ }^{56}$, F. Vazeille ${ }^{33}$, G. Vegni ${ }^{89 a, 89 b}$, J.J. Veillet ${ }^{115}$,
 N. Venturi ${ }^{16}$, V. Vercesi ${ }^{119 a}$, M. Verducci ${ }^{138}$, W. Verkerke ${ }^{105}$, J.C. Vermeulen ${ }^{105}$, A. Vest ${ }^{43}$, M.C. Vetterli ${ }^{142, e}$, I. Vichou ${ }^{165}$, T. Vickey ${ }^{145 b, z}$, G.H.A. Viehhauser ${ }^{118}$, S. Viel ${ }^{168}$, M. Villa ${ }^{19 a}{ }^{\prime}, 19 \mathrm{~b}$, M. Villaplana Perez ${ }^{167}$, E. Vilucchi ${ }^{47}$, M.G. Vincter ${ }^{28}$, E. Vinek ${ }^{29}$, V.B. Vinogradov ${ }^{65}$, M. Virchaux ${ }^{136, *}$, J. Virzi ${ }^{14}$, O. Vitells ${ }^{171}$, M. Viti ${ }^{41}$, I. Vivarelli ${ }^{48}$, F. Vives Vaque ${ }^{11}$, S. Vlachos ${ }^{9}$, M. Vlasak ${ }^{127}$, N. Vlasov ${ }^{20}$, A. Vogel ${ }^{20}$, P. Vokac ${ }^{127}$, G. Volpi ${ }^{47}$, M. Volpi ${ }^{86}$, G. Volpini ${ }^{89 a}$, H. von der Schmitt ${ }^{99}$, J. von Loeben ${ }^{99}$, H. von Radziewski ${ }^{48}$, E. von Toerne ${ }^{20}$, V. Vorobel ${ }^{126}$, A.P. Vorobiev ${ }^{128}$, V. Vorwerk ${ }^{11}$, M. Vos ${ }^{167}$, R. Voss ${ }^{29}$, T.T. Voss ${ }^{174}$, J.H. Vossebeld ${ }^{73}$, N. Vranjes ${ }^{12 \mathrm{a}}$, M. Vranjes Milosavljevic ${ }^{12 \mathrm{a}}$, V. Vrba ${ }^{125}$, M. Vreeswijk ${ }^{105}$, T. Vu Anh ${ }^{81}$, R. Vuillermet ${ }^{29}$, I. Vukotic ${ }^{115}$, W. Wagner ${ }^{174}$, P. Wagner ${ }^{120}$,
H. Wahlen ${ }^{174}$, J. Wakabayashi ${ }^{101}$, J. Walbersloh ${ }^{42}$, S. Walch ${ }^{87}$, J. Walder ${ }^{71}$, R. Walker ${ }^{98}$, W. Walkowiak ${ }^{141}$, R. Wall ${ }^{175}$, P. Waller ${ }^{73}$, C. Wang ${ }^{44}$, H. Wang ${ }^{172}$, H. Wang ${ }^{32 \mathrm{~b}, a a}$, J. Wang ${ }^{151}$, J. Wang ${ }^{32 \mathrm{~d}}$, J.C. Wang ${ }^{138}$, R. Wang ${ }^{103}$, S.M. Wang ${ }^{151}$, A. Warburton ${ }^{85}$, C.P. Ward ${ }^{27}$, M. Warsinsky ${ }^{48}$, P.M. Watkins ${ }^{17}$, A.T. Watson ${ }^{17}$, M.F. Watson ${ }^{17}$, G. Watts ${ }^{138}$, S. Watts ${ }^{82}$, A.T. Waugh ${ }^{150}$, B.M. Waugh ${ }^{77}$, J. Weber ${ }^{42}$, M. Weber ${ }^{129}$, M.S. Weber ${ }^{16}$, P. Weber ${ }^{54}$, A.R. Weidberg ${ }^{118}$, P. Weigell ${ }^{99}$, J. Weingarten ${ }^{54}$, C. Weiser ${ }^{48}$, H. Wellenstein ${ }^{22}$, P.S. Wells ${ }^{29}$, M. Wen ${ }^{47}$, T. Wenaus ${ }^{24}$, S. Wendler ${ }^{123}$, Z. Weng ${ }^{151, q}$, T. Wengler ${ }^{29}$, S. Wenig ${ }^{29}$, N. Wermes ${ }^{20}$, M. Werner ${ }^{48}$, P. Werner ${ }^{29}$, M. Werth ${ }^{163}$, M. Wessels ${ }^{58 a}$, C. Weydert ${ }^{55}$, K. Whalen ${ }^{28}$, S.J. Wheeler-Ellis ${ }^{163}$, S.P. Whitaker ${ }^{21}$, A. White ${ }^{7}$, M.J. White ${ }^{86}$, S. White ${ }^{24}$, S.R. Whitehead ${ }^{118}$, D. Whiteson ${ }^{163}$, D. Whittington ${ }^{61}$, F. Wicek ${ }^{115}$, D. Wicke ${ }^{174}$, F.J. Wickens ${ }^{129}$, W. Wiedenmann ${ }^{172}$, M. Wielers ${ }^{129}$, P. Wienemann ${ }^{20}$, C. Wiglesworth ${ }^{75}$, L.A.M. Wiik ${ }^{48}$, P.A. Wijeratne ${ }^{77}$, A. Wildauer ${ }^{167}$, M.A. Wildt ${ }^{41,0}$, I. Wilhelm ${ }^{126}$, H.G. Wilkens ${ }^{29}$, J.Z. Will ${ }^{98}$, E. Williams ${ }^{34}$, H.H. Williams ${ }^{120}$, W. Willis ${ }^{34}$, S. Willocq ${ }^{84}$, J.A. Wilson ${ }^{17}$, M.G. Wilson ${ }^{143}$, A. Wilson ${ }^{87}$, I. Wingerter-Seez ${ }^{4}$, S. Winkelmann ${ }^{48}$, F. Winklmeier ${ }^{29}$, M. Wittgen ${ }^{143}$, M.W. Wolter ${ }^{38}$, H. Wolters ${ }^{124 a, h}$, G. Wooden ${ }^{118}$, B.K. Wosiek ${ }^{38}$, J. Wotschack ${ }^{29}$, M.J. Woudstra ${ }^{84}$, K. Wraight ${ }^{53}$, C. Wright ${ }^{53}$, B. Wrona ${ }^{73}$, S.L. $\mathrm{Wu}^{172}, \mathrm{X} . \mathrm{Wu}^{49}$, Y. Wu ${ }^{32 \mathrm{~b}, a b}$, E. Wulf ${ }^{34}$, R. Wunstorf ${ }^{42}$, B.M. Wynne ${ }^{45}$, L. Xaplanteris ${ }^{9}$, S. Xella ${ }^{35}$, S. Xie ${ }^{48}$, Y. Xie ${ }^{32 \mathrm{a}}$, C. Xu ${ }^{32 \mathrm{~b}, a c}$, D. Xu ${ }^{139}$, G. Xu ${ }^{32 \mathrm{a}}$, B. Yabsley ${ }^{150}$, M. Yamada ${ }^{66}$, A. Yamamoto ${ }^{66}$, K. Yamamoto ${ }^{64}$, S. Yamamoto ${ }^{155}$, T. Yamamura ${ }^{155^{\prime}}$, J. Yamaoka ${ }^{44^{\prime}}$, T. Yamazaki ${ }^{155}$, Y. Yamazaki ${ }^{67}$, Z. Yan ${ }^{21}$, H. Yang ${ }^{87}$, U.K. Yang ${ }^{82}$, Y. Yang ${ }^{61}$, Y. Yang ${ }^{32 \mathrm{a}}$, Z. Yang ${ }^{146 a, 146 \mathrm{~b}}$, S. Yanush ${ }^{91}$, W.-M. Yao ${ }^{14}$, Y. Yao ${ }^{14}$, Y. Yasu ${ }^{66}$, G.V. Ybeles Smit ${ }^{130}$, J. Ye ${ }^{39}$, S. Ye ${ }^{24}$, M. Yilmaz ${ }^{3 \mathrm{C}}$, R. Yoosoofmiya ${ }^{123}$, K. Yorita ${ }^{170}$, R. Yoshida ${ }^{5}$, C. Young ${ }^{143}$, S. Youssef ${ }^{21}$, D. Yu ${ }^{24}$, J. Yu ${ }^{7}$, J. Yu ${ }^{32 c, a c}$, L. Yuan ${ }^{32 a \mathrm{a}, a d}$, A. Yurkewicz ${ }^{148}$, V.G. Zaets ${ }^{128}$, R. Zaidan ${ }^{63}$, A.M. Zaitsev ${ }^{128}$, Z. Zajacova ${ }^{29}$, Yo.K. Zalite ${ }^{121}$, L. Zanello ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$, P. Zarzhitsky ${ }^{39}$, A. Zaytsev ${ }^{107}$, C. Zeitnitz ${ }^{174}$, M. Zeller ${ }^{175}$, A. Zemla ${ }^{38}$, C. Zendler ${ }^{20}$, A.V. Zenin ${ }^{128}$, O. Zenin ${ }^{128}$, T. Ženiš ${ }^{144 a}$, Z. Zenonos ${ }^{122 a, 122 b}$, S. Zenz ${ }^{14}$, D. Zerwas ${ }^{115}$, G. Zevi della Porta ${ }^{57}$, Z. Zhan ${ }^{32 d}$, D. Zhang ${ }^{32 \mathrm{~b}, a a}$, H. Zhang ${ }^{88}$, J. Zhang ${ }^{5}$, X. Zhang ${ }^{32 \mathrm{~d}}$, Z. Zhang ${ }^{115}$, L. Zhao ${ }^{108}$, T. Zhao ${ }^{138}$, Z. Zhao ${ }^{32 \mathrm{~b}}$, A. Zhemchugov ${ }^{65}$, S. Zheng ${ }^{32 \mathrm{a}}$, J. Zhong ${ }^{151, a e}$, B. Zhou ${ }^{87}$, N. Zhou ${ }^{163}$, Y. Zhou ${ }^{151}$, C.G. Zhu ${ }^{32 \mathrm{~d}}$, H. Zhu ${ }^{41}$, J. Zhu ${ }^{87}$, Y. Zhu ${ }^{172}$, X. Zhuang ${ }^{98}$, V. Zhuravlov ${ }^{99}$, D. Zieminska ${ }^{61}$, R. Zimmermann ${ }^{20}$, S. Zimmermann ${ }^{20}$, S. Zimmermann ${ }^{48}$, M. Ziolkowski ${ }^{141}$, R. Zitoun ${ }^{4}$, L. Živković ${ }^{34}$, V.V. Zmouchko ${ }^{128, *}$, G. Zobernig ${ }^{172}$, A. Zoccoli ${ }^{19 a, 19 b}$, Y. Zolnierowski ${ }^{4}$, A. Zsenei ${ }^{29}$, M. Zur Nedden ${ }^{15}$, V. Zutshi ${ }^{106}$, L. Zwalinski ${ }^{29}$

[^2]${ }^{34}$ Nevis Laboratory, Columbia University, Irvington, NY, United States
${ }^{35}$ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 (a) INFN Gruppo Collegato di Cosenza; ${ }^{(b)}$ Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
${ }^{37}$ Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
${ }^{39}$ Physics Department, Southern Methodist University, Dallas, TX, United States
${ }^{40}$ Physics Department, University of Texas at Dallas, Richardson, TX, United States
41 DESY, Hamburg and Zeuthen, Germany
${ }^{42}$ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{43}$ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
${ }^{44}$ Department of Physics, Duke University, Durham, NC, United States
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{46}$ Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
${ }^{47}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{48}$ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
${ }^{49}$ Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; ${ }^{(b)}$ Dipartimento di Fisica, Università di Genova, Genova, Italy
${ }^{51}$ Institute of Physics and HEP Institute, Georgian Academy of Sciences and Tbilisi State University, Tbilisi, Georgia
${ }^{52}$ II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{54}$ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
${ }^{55}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
${ }^{56}$ Department of Physics, Hampton University, Hampton, VA, United States
${ }^{57}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg;
${ }^{(c)}$ ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Science, Hiroshima University, Hiroshima, Japan
${ }^{60}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
${ }^{61}$ Department of Physics, Indiana University, Bloomington, IN, United States
${ }^{62}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City, IA, United States
${ }^{64}$ Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
${ }^{65}$ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
${ }^{67}$ Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
${ }^{69}$ Kyoto University of Education, Kyoto, Japan
${ }^{70}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{71}$ Physics Department, Lancaster University, Lancaster, United Kingdom
72 (a) INFN Sezione di Lecce; ${ }^{(b)}$ Dipartimento di Fisica, Università del Salento, Lecce, Italy
${ }^{73}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
74 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
${ }^{75}$ Department of Physics, Queen Mary University of London, London, United Kingdom
${ }^{76}$ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
${ }^{77}$ Department of Physics and Astronomy, University College London, London, United Kingdom
${ }^{78}$ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }^{79}$ Fysiska Institutionen, Lunds Universitet, Lund, Sweden
${ }^{80}$ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
${ }^{81}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{82}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{83}$ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{84}$ Department of Physics, University of Massachusetts, Amherst, MA, United States
${ }^{85}$ Department of Physics, McGill University, Montreal, QC, Canada
86 School of Physics, University of Melbourne, Victoria, Australia
${ }^{87}$ Department of Physics, The University of Michigan, Ann Arbor, MI, United States
${ }^{88}$ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
89 (a) INFN Sezione di Milano; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
${ }^{90}$ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
${ }^{93}$ Group of Particle Physics, University of Montreal, Montreal, QC, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{96}$ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
${ }^{97}$ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
${ }^{98}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
${ }^{99}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
${ }^{100}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
${ }^{101}$ Graduate School of Science, Nagoya University, Nagoya, Japan
$102{ }^{(a)}$ INFN Sezione di Napoli; ${ }^{(b)}$ Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
103 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
${ }^{104}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
${ }^{105}$ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, DeKalb, IL, United States
${ }^{107}$ Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
${ }^{108}$ Department of Physics, New York University, New York, NY, United States
109 Ohio State University, Columbus, OH, United States
110° Faculty of Science, Okayama University, Okayama, Japan
${ }^{111}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States

112 Department of Physics, Oklahoma State University, Stillwater, OK, United States
${ }^{113}$ Palackýy University, RCPTM, Olomouc, Czech Republic
${ }^{114}$ Center for High Energy Physics, University of Oregon, Eugene, OR, United States
${ }^{115}$ LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pernsylvania, Philadelphia, PA, United States
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
$122{ }^{(a)}$ INFN Sezione di Pisa; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
124 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada,
Granada, Spain
${ }^{125}$ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
${ }^{126}$ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
127 Czech Technical University in Prague, Praha, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
${ }^{129}$ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
${ }^{130}$ Physics Department, University of Regina, Regina, SK, Canada
${ }^{131}$ Ritsumeikan University, Kusatsu, Shiga, Japan
$132{ }^{(a)}$ INFN Sezione di Roma I; ${ }^{(b)}$ Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133 (a) INFN Sezione di Roma Tor Vergata; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
$134{ }^{(a)}$ INFN Sezione di Roma Tre; ${ }^{(b)}$ Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques

LPTPM, Oujda; ${ }^{(e)}$ Faculté des Sciences, Université Mohammed V, Rabat, Morocco
${ }^{136}$ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
${ }^{138}$ Department of Physics, University of Washington, Seattle, WA, United States
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
${ }^{141}$ Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
143 SLAC National Accelerator Laboratory. Stanford, CA, United States
$144{ }^{(a)}$ Faculty of Mathematics, Physics \& Informatics, Comenius University, Bratislava; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a) Department of Physics, University of Johannesburg, Johannesburg; ${ }^{(b)}$ School of Physics, University of the Witwatersrand, Johannesburg, South Africa
$146{ }^{(a)}$ Department of Physics, Stockholm University; ${ }^{(b)}$ The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, United States
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
${ }^{151}$ Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
${ }^{153}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 Intemational Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
${ }^{156}$ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto, ON, Canada
159 (a) TRIUMF, Vancouver, BC; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
160 Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
${ }^{161}$ Science and Technology Center, Tufts University, Medford, MA, United States
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
164 (a) INFN Gruppo Collegato di Udine; ${ }^{(b)}$ ICTP, Trieste; ${ }^{(c)}$ Dipartimento di Fisica, Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois, Urbana, IL, United States
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingenierá Electrónica and Instituto de Microelectrónica
de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver, BC, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
170 Waseda University, Tokyo, Japan
171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
172 Department of Physics, University of Wisconsin, Madison, WI, United States
${ }^{173}$ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
${ }^{174}$ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
${ }^{175}$ Department of Physics, Yale University, New Haven, CT, United States
176 Yerevan Physics Institute, Yerevan, Armenia
177 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
${ }^{a}$ Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal.
${ }^{b}$ Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
${ }^{d}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
e Also at TRIUMF, Vancouver, BC, Canada.
f Also at Department of Physics, California State University, Fresno, CA, United States.
${ }^{g}$ Also at Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Krakow, Poland.
${ }^{h}$ Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
${ }^{i}$ Also at Università di Napoli Parthenope, Napoli, Italy.
${ }^{j}$ Also at Institute of Particle Physics (IPP), Canada.
${ }^{k}$ Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
${ }^{l}$ Also at Louisiana Tech University, Ruston, LA, United States.
${ }^{m}$ Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
${ }^{n}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
${ }^{o}$ Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
${ }^{p}$ Also at Manhattan College, New York, NY, United States.
${ }^{q}$ Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
${ }^{r}$ Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
${ }^{s}$ Also at High Energy Physics Group, Shandong University, Shandong, China.
${ }^{t}$ Also at California Institute of Technology, Pasadena, CA, United States.
${ }^{u}$ Also at Section de Physique, Université de Genève, Geneva, Switzerland.
${ }^{v}$ Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
${ }^{w}$ Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
${ }^{x}$ Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
${ }^{y}$ Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
${ }^{z}$ Also at Department of Physics, Oxford University, Oxford, United Kingdom.
${ }^{a a}$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
${ }^{a b}$ Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
ac Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.
${ }^{\text {ad }}$ Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
ae Also at Department of Physics, Nanjing University, Jiangsu, China.

* Deceased.

[^0]: to CERN for the benefit of the ATLAS Collaboration.

 * E-mail address: atlas.publications@cern.ch.

[^1]: ${ }^{1}$ The nominal $p p$ interaction point at the centre of the detector is defined as the origin of a right-handed coordinate system. The positive x-axis is defined by the direction from the interaction point to the centre of the LHC ring, with the positive y-axis pointing upwards. The azimuthal angle φ is measured around the beam axis and the polar angle θ is the angle from the z-axis. The pseudorapidity is defined as $\eta=-\ln \tan (\theta / 2)$.

[^2]: ${ }^{1}$ University at Albany, Albany, NY, United States
 ${ }^{2}$ Department of Physics, University of Alberta, Edmonton, AB, Canada
 $3^{(a)}$ Department of Physics, Ankara University, Ankara; ${ }^{(b)}$ Department of Physics, Dumhupinar University, Kutahya; ${ }^{(c)}$ Department of Physics, Gazi University, Ankara;
 ${ }^{(d)}$ Division of Physics, TOBB University of Economics and Technology, Ankara; ${ }^{(e)}$ Turkish Atomic Energy Authority, Ankara, Turkey
 ${ }^{4}$ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
 ${ }^{5}$ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
 ${ }^{6}$ Department of Physics, University of Arizona, Tucson, AZ, United States
 ${ }^{7}$ Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
 ${ }^{8}$ Physics Department, University of Athens, Athens, Greece
 ${ }^{9}$ Physics Department, National Technical University of Athens, Zografou, Greece
 ${ }^{10}$ Institute of Physics, Azerbaïan Academy of Sciences, Baku, Azerbaijan
 ${ }^{11}$ Institut de Física d'Altes Energies and Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
 12 (a) Institute of Physics, University of Belgrade, Belgrade; ${ }^{(b)}$ Vinca Institute of Nuclear Sciences, Belgrade, Serbia
 ${ }^{13}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
 ${ }^{14}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
 ${ }^{15}$ Department of Physics, Humboldt University, Berlin, Germany
 ${ }^{16}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
 ${ }^{17}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
 18 (a) $^{(a)}$ Department of Physics, Bogazici University, Istanbui; (b) Division of Physics, Dogus University, Istanbul; ${ }^{(c)}$ Department of Physics Engineering, Gaziantep University, Gaziantep;
 ${ }^{(d)}$ Department of Physics, Istanbul Technical University, Istanbul, Turkey
 $19{ }^{(a)}$ INFN Sezione di Bologna; ${ }^{(b)}$ Dipartimento di Fisica, Università di Bologna, Bologna, Italy
 ${ }^{20}$ Physikalisches Institut, University of Bonn, Born, Germany
 ${ }^{21}$ Department of Physics, Boston University, Boston, MA, United States
 ${ }_{22}$ Department of Physics, Brandeis University, Waltham, MA, United States
 23 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ${ }^{(b)}$ Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
 ${ }_{24}$ Physics Department, Brookhaven National Laboratory, Upton, NY, United States
 ${ }^{25}{ }^{(a)}$ National Institute of Physics and Nuclear Engineering, Bucharest; ${ }^{(b)}$ University Politehnica Bucharest, Bucharest; ${ }^{(c)}$ West University in Timisoara, Timisoara, Romania
 ${ }^{26}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
 ${ }^{27}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
 28 Department of Physics, Carleton University, Ottawa, ON, Canada
 ${ }^{29}$ CERN, Geneva, Switzerland
 ${ }^{30}$ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
 $31{ }^{(a)}$ Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago: ${ }^{(b)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaîso, Chile
 ${ }^{32}{ }^{(a)}$ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ${ }^{(b)}$ Department of Modern Physics, University of Science and Technology of China, Anhui;
 ${ }^{(c)}$ Department of Physics, Nanjing University, Jiangsu; ${ }^{(d)}$ High Energy Physics Group, Shandong University, Shandong, China
 ${ }^{33}$ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

