Physics Letters B 706 (2011) 150-167

Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the inclusive isolated prompt photon cross-section in *pp* collisions at $\sqrt{s} = 7$ TeV using 35 pb⁻¹ of ATLAS data $\stackrel{\diamond}{\sim}$

ATLAS Collaboration*

ARTICLE INFO

Article history: Received 1 August 2011 Received in revised form 18 October 2011 Accepted 4 November 2011 Available online 6 November 2011 Editor: H. Weerts

Keywords: Photon ATLAS LHC Standard Model

ABSTRACT

A measurement of the differential cross-section for the inclusive production of isolated prompt photons in *pp* collisions at a center-of-mass energy $\sqrt{s} = 7$ TeV is presented. The measurement covers the pseudorapidity ranges $|\eta| < 1.37$ and $1.52 \leq |\eta| < 2.37$ in the transverse energy range $45 \leq E_T <$ 400 GeV. The results are based on an integrated luminosity of 35 pb⁻¹, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.

© 2011 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

The production of prompt photons at hadron colliders provides means for testing perturbative QCD predictions [1], providing a colorless probe of the hard scattering process. The measurement of the inclusive production of prompt photons could be used to constrain the parton distribution functions; in particular it is sensitive to the gluon content of the proton [2] through the $qg \rightarrow q\gamma$ subprocess, which at leading order dominates the inclusive prompt photon cross-section at the LHC.

ATLAS has recently published a measurement of the inclusive photon cross-section in *pp* collisions at $\sqrt{s} = 7$ TeV using an integrated luminosity of 880 nb⁻¹ [3]; a similar measurement has been performed by the CMS Collaboration [4] using an integrated luminosity of 2.9 pb⁻¹. Analogous measurements have been perfomed in $p\bar{p}$ collisions at a lower center of mass at the Tevatron [5,6], and in deep inelastic *ep* scattering at HERA [7,8]. This Letter presents the measurement of the differential production cross-section of isolated prompt photons with transverse energies $E_{\rm T}$ above 45 GeV using 34.6 ± 1.2 pb⁻¹ of *pp* collision data at $\sqrt{s} = 7$ TeV collected in 2010. Isolated prompt photons in the pseudo-rapidity ranges $|\eta| < 0.6, 0.6 \leq |\eta| < 1.37, 1.52 \leq |\eta| < 1.81$ and $1.81 \leq |\eta| < 2.37$ are studied.¹

In the following, all photons produced in pp collisions and not coming from hadron decays are considered as prompt; they include both direct photons, which originate from the hard subprocess, and fragmentation photons, which are the result of the fragmentation of a colored high- p_T parton [9,10]. Isolated photons are considered: from a theoretical perspective, photons are isolated if the transverse energy $E_{\rm T}^{\rm iso}$, within a cone of radius $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$ centered around the photon direction in the pseudorapidity (η) and azimuthal angle (ϕ) plane,² is smaller than E_T^{cut} . In JETPHOX [9], used for next-to-leading order (NLO) calculations, $E_{\rm T}^{\rm iso}$ is calculated from all partons. Similarly, a corresponding isolation prescription is applied experimentally on the reconstructed objects, based on the energy reconstructed in an R = 0.4 cone around the photon candidate, corrected for the effects associated with: the energy of the photon candidate itself, the underlying event and the collision pileup [3]. The main background to these isolated prompt photons is composed of photons from decays of light neutral mesons, such as the π^0 or η .

Photons are detected in ATLAS by a lead-liquid Argon sampling electromagnetic calorimeter (ECAL) with an accordion geometry, divided into a barrel section covering the pseudorapidity region $|\eta| < 1.475$ and two endcap sections covering the pseudorapidity regions $1.375 < |\eta| < 3.2$. It consists of three longitudinal layers. The first layer has a high granularity along the η direction (between 0.003 and 0.006 depending on η , with the exception of the regions $1.4 < |\eta| < 1.5$ and $|\eta| > 2.4$), sufficient to provide an event-by-event discrimination between single photon showers and

 $[\]stackrel{\star}{\scriptscriptstyle{\pi}}$ © CERN for the benefit of the ATLAS Collaboration.

^{*} E-mail address: atlas.publications@cern.ch,

¹ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the *z*-axis along the beam pipe. The *x*-axis points from the IP to the centre of the LHC ring, and the *y*-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the top data $rangle \phi$ as $n = -\ln \tan(\theta/2)$.

² See footnote 1.

showers coming from a π^0 decay. The second layer has a granularity of 0.025 × 0.025 in $\eta \times \phi$. A third layer is used to correct for the leakage beyond the electromagnetic calorimeter for highenergy showers, while in front of the accordion calorimeter a thin presampler layer, covering the pseudorapidity interval $|\eta| < 1.8$, is used to correct for the energy absorbed before the calorimeter.

The ECAL energy resolution is parametrized as $\sigma(E)/E = a/\sqrt{E}$ (GeV) $\oplus c$ with the largest contribution coming from the sampling term *a*, corresponding to approximately 10% (20%) in the barrel (endcap) region. For energies above 200 GeV the global constant term *c*, estimated to be $(1.2 \pm 0.6)\%$ ($(1.8 \pm 0.6)\%$) in the barrel (endcap) for the 2010 data, starts to dominate [11]. In front of the electromagnetic calorimeter the inner detector allows the reconstruction of tracks from the primary *pp* collision point and also from secondary vertices, permitting an efficient reconstruction of photon conversions in the beam pipe and inner detector, the electromagnetic calorimeter and the whole ATLAS detector are documented in Ref. [12].

Event samples simulated with PYTHIA 6.4.21 [13] are used to study the characteristics of signal and background events. To estimate systematic uncertainties related to the choice of the event generator and the parton shower model, alternative samples are generated with HERWIG 6.5 [14]. Events used in this analysis are triggered using a single-photon trigger with a nominal transverse energy threshold of 40 GeV. The trigger efficiency, $\varepsilon^{\text{trig}}$, is measured using a bootstrap method to be $(99.4^{+0.6}_{-0.2})\%$ for prompt photon candidates with $E_{\rm T} > 45$ GeV passing the selection criteria presented below. The same trigger condition was used for the whole dataset, even though the mean number of events per collision rose from <1 to ~3 as the instantaneous luminosity increased during 2010. Collision candidates are selected by requiring a primary vertex with at least three associated charged particle tracks, consistent with the beam interaction region. The total number of selected events in data after these requirements is almost 1.7 million, with a negligible amount of non-collision background.

Photon candidates are formed from clusters of energy deposits reconstructed in the electromagnetic calorimeter [15]. Clusters without matching tracks are classified as unconverted photon candidates. The presence of one or two tracks coming from a conversion vertex is used to distinguish converted photons from electrons. Converted photon clusters are rebuilt with a wider size in ϕ , to account for the opening angle between the conversion products due to the magnetic field. A specific energy calibration [15] is then applied separately for converted and unconverted photon candidates to account for energy loss in front of the ECAL and both lateral and longitudinal leakage. Photon clusters are removed if their barycenter lies in the transition between the barrel and endcap regions of the electromagnetic calorimeter, corresponding to 1.37 < |n| < 1.371.52, where larger uncertainties related to the efficiency measurement are expected. Clusters containing cells overlapping with the small number of regions with problematic calorimeter readout or with very noisy cells are also removed. Over 0.8 million photon candidates with $E_T > 45$ GeV remain in the data sample.

A measurement of the transverse isolation energy $E_{\rm T}^{\rm iso}$ is associated with each photon candidate, computed by summing the calorimeter energy in a cone of R = 0.4 around the candidate, as detailed in Ref. [3]. Corrections to this isolation energy are derived from simulation to remove the energy of the photon itself that leaks into the isolation cone. An event-by-event correction [16,17] is applied to subtract the estimated contributions from the underlying event and in-time pileup (i.e. from additional proton-proton interactions). The correction to $E_{\rm T}^{\rm iso}$ is typically 900 MeV. After this subtraction, the remaining fluctuations are dominated by electronic noise from the calorimeter measurement. The effect of the out-

of-time pileup, associated with collisions taking place in previous bunch-crossings, is found to be minimal (i.e. shifts of 200 MeV at most, towards lower isolation energies). The corrections mentioned above allow $E_{\rm T}^{\rm iso}$ to be directly compared to parton-level theoretical predictions.

All photon candidates having reconstructed isolation energy <3 GeV are considered as experimentally isolated. This definition is similar to applying a 4 GeV cut on the particle-level isolation, defined as the transverse energy of all stable particles in a cone of radius R = 0.4 around the photon direction (with the underlying event removed as before). The small difference between the two, caused by noise and other detector effects, is taken into account in the uncertainties associated with the photon reconstruction efficiency $\varepsilon^{\text{reco}}$ discussed below. The particle-level isolation can in turn be related to the parton-level isolation in JETPHOX that is used for the NLO predictions. The efficiency of the isolation criteria is found to be similar (i.e. within a few percent) at both the particle-level and the parton-level for simulated photons passing the selection described below.

As in Ref. [3], the reconstruction and preselection efficiency $\varepsilon^{\rm reco}$ is computed from simulated prompt photons as a function of the true photon $E_{\rm T}$. It is defined as the ratio between the number of photons reconstructed in a given $|\eta|$ interval with reconstructed E_{T}^{iso} < 3 GeV, and the total number of true prompt photons with true pseudorapidity in the same $|\eta|$ interval, and with particlelevel transverse isolation energy <4 GeV. The estimated $\varepsilon^{\text{reco}}$ for photons with $45 < E_{\rm T} < 400$ GeV is \sim 85% (75%) in the barrel (endcap) region. The main inefficiency ($\sim 10\%$) is due to the acceptance loss originating from a few inoperative optical links in the calorimeter readout. A similar reduction is caused by the isolation requirement in the pseudorapidity region $1.52 \leq |\eta| < 1.81$ where the calorimetric isolation suffers from larger detector effects. The systematic uncertainty on $\varepsilon^{\text{reco}}$ associated with the experimental isolation requirement is evaluated from the prompt photon simulation by varying the value of the isolation criterion by the average difference (~500 MeV) observed for electrons from $W \rightarrow e\nu$ events in data and simulation. The estimated uncertainty varies between 3 and 4% depending on η . The uncertainty associated with the imperfect knowledge of the material in front of the ECAL is estimated by comparing the expected efficiencies in a sample simulated with the nominal ATLAS setup, and one with increased material. It varies between 1 and 2.5%, depending on η .

Shape variables computed from the lateral and longitudinal energy profiles of the shower in the calorimeters are used to discriminate signal from background [15,18]. As detailed in Ref. [3], selection criteria on these variables, optimized independently for unconverted and converted photons, are applied to reconstructed photon candidates. The requirements on these variables are applied in stages resulting in *tight* candidates: firstly jets are removed whilst still keeping a high photon efficiency and then secondly wide or closely spaced showers (i.e. those consistent with jets or meson decays) are rejected. The selection criteria have been revised to minimize the systematics on the efficiency extraction, especially in the region $1.81 \leq |\eta| < 2.37$. The photon identification efficiency ε^{ID} is computed from simulation as a function of transverse energy in each pseudorapidity region. It is defined as the efficiency for reconstructed (true) prompt photons, with measured E_{T}^{iso} < 3 GeV, to pass the identification criteria mentioned above.

Following the same method as in Ref. [3], the value of ε^{ID} is determined after correcting the simulated shower shapes for the observed average differences with respect to data. In the present analysis, however, the corrections are estimated for unconverted and converted photons separately. This helps to reduce the systematic uncertainties associated with the correction procedure. The

Fig. 1. Distributions of $E_{\rm T}^{\rm iso}$ for photon candidates with $45 < E_{\rm T} < 55$ GeV in $|\eta| < 0.6$ passing the tight (solid dots) and non-tight (open triangles) shower-shape-based selection criteria. The non-tight distribution is normalized to the tight distribution for $E_{\rm T}^{\rm iso} > 5$ GeV (non-isolated region), where the signal contamination is fairly small.

value of $\varepsilon^{\rm ID}$ varies from 90 to 97%, depending on η and increasing with $E_{\rm T}$. The systematic uncertainty on $\varepsilon^{\rm ID}$ is also η dependent, ranging from 1.5 to 3%, with contributions from: detector simulation; background contamination; (un)converted photon misclassification; direct/fragmentation photon fraction; the choice of different Monte Carlo generators (MC). These uncertainties affect the reconstruction and identification efficiencies in a correlated way, and are treated as such in their combination. After applying the isolation criterion and the tight selection on the shape variables, almost 173,000 photon candidates remain in the data sample.

As in Ref. [3], a two-dimensional-sideband method is used to estimate the background contribution from data and to measure the prompt photon signal yield. The two dimensions are the transverse isolation energy $E_{\rm T}^{\rm iso}$ and the quality of the photon, defined by whether or not it passes the shower shape identification criteria. On the isolation axis, the signal region contains photon candidates with $E_{\rm T}^{\rm iso}$ < 3 GeV, while the sideband region contains *nonisolated* photon candidates with $E_{\rm T}^{\rm iso} > 5$ GeV. On the other axis, the signal photon candidates are required to pass the tight identification criteria (tight candidates). Those failing the tight criteria but passing a background-enriching subset of these criteria (non-tight candidates) are contained in the sideband. A typical distribution of E_{T}^{iso} for both tight and non-tight data is shown in Fig. 1 for photon candidates with $45 < E_{\rm T} < 55$ GeV in $|\eta| < 0.6$. The non-tight distribution is normalized to the tight one above 5 GeV where a only small signal contamination is expected.

Corrections for the signal contamination in the background control regions are computed using prompt photon Monte Carlo samples. For the tight isolated signal leaking into the non-isolated region, these are as large as 17% at high $E_{\rm T}$. Smaller leakages of up to 6% are expected for the other two background control regions. The purity of isolated prompt photons measured with this method increases with $E_{\rm T}$ from 91% at $E_{\rm T} = 45$ GeV to close to 100% at $E_{\rm T} > 200$ GeV.

The main contributions to the uncertainty on the yields come from the fragmentation fraction ($\lesssim 8\%$), estimated by conservatively varying the fraction from 0 to 100% in the signal sample, and pileup (5%, with fluctuations up to 8% for $1.52 \leqslant |\eta| < 1.81$), estimated by increasing the correction to $E_{\rm T}^{\rm iso}$ by 50% both in data and simulation. This scaling of the correction minimizes the residual dependency of the isolation on the number of primary vertices

(i.e. pileup) in data. The other contributions to the uncertainty are: correlated background in the two-dimensional-sideband regions (\lesssim 5% barrel and \lesssim 10% endcap, $E_{\rm T}$ dependent), definition of the two-dimensional-sideband regions (\lesssim 5% non-tight and 1% non-isolated), photon energy scale (2–8%, η dependent), slightly narrower showers in simulation than in data (2–5%, η and $E_{\rm T}$ dependent), isolation shower leakage corrections (1–5%), Monte Carlo generator (2%), material effects (<1%), and prompt electron misidentification (~0.5%, varying with $E_{\rm T}$). Globally, the uncertainties on the photon signal yields are less than 10%, and decrease with $E_{\rm T}$.

The average differential cross-section $\langle d\sigma_j^k/dE_T^{\text{true}} \rangle$ for the production of isolated prompt photons in a bin *j* of E_T^{true} (integrated over one true $|\eta|$ bin *k*) is related to the signal yield $N_i^{\gamma,\text{reco},k}$ (in the *k*th $|\eta|$ bin and *i*th E_T bin) by the relationship:

$$N_{i}^{\gamma, \text{reco}, k} = \left(\int \mathcal{L} \, dt\right) \varepsilon^{\text{trig}} \varepsilon_{i}^{\text{ID}, k} \times \sum_{j} R_{ij}^{k} \varepsilon_{j}^{\text{reco}, k} \Delta E_{\text{T}, j}^{\text{true}} \left\langle \frac{d\sigma_{j}^{k}}{dE_{\text{T}}^{\text{true}}} \right\rangle$$
(1)

where $\varepsilon_i^{\mathrm{ID},k}$ is the average identification efficiency and \mathbf{R}_{ij}^k is the $E_{\rm T}$ response matrix. The elements of R_{ij}^k are evaluated from the ratio of the true to reconstructed $E_{\rm T}$ distributions of photon candidates, using simulated samples of isolated prompt photons. The migration from one $E_{\rm T}$ bin to another is less than 10% in most $E_{\rm T}$ and η regions. A larger migration of up to 18% is observed in the region $1.52 \leq |\eta| < 1.81$, where more material is present in front of the electromagnetic calorimeter. Migrations between η bins are neglected given the large bin size and the excellent ECAL η resolution. A singular value decomposition (SVD) [19] is used to unfold the $E_{\rm T}$ distribution for detector effects. The regularization of the resulting unfolded distribution is tuned using simulated events and chosen to be very loose to avoid a potential bias toward the truth reference spectrum. The simulation model dependence is tested with pseudo-experiments, using PYTHIA and HERWIG simulated samples. The difference of the unfolded crosssection obtained in both cases is found to be <3%. The uncertainty associated with the ECAL energy resolution is \sim 1%. The lower and upper $E_{\rm T}$ constraints have negligible effect on the unfolded spectrum.

The measured inclusive isolated prompt photon production cross-sections are shown in Fig. 2. They are presented as a function of the photon transverse energy, for each of the four considered pseudorapidity intervals. They are also presented in tabular form in Appendix A. The error bars on the data points represent the combination of the statistical and systematic uncertainties: systematic uncertainties dominate over the entire kinematic range considered. The contribution from the luminosity uncertainty (3.4%) is shown separately as it represents a possible global change by a common multiplicative factor. The data agree with NLO pQCD calculations, obtained with [ETPHOX 1.2.2 [9] using the CTEQ 6.6 PDFs [20] and the BFG set II [21] fragmentation functions (FF). These predictions are negligibly affected when using BFG set I instead. The nominal renormalization, factorization and fragmentation scales are set to the $E_{\rm T}$ of the photon. Theoretical calculations using MSTW 2008 [22] and NNPDF2.0 [23] PDFs show a similarly good agreement to data. The central values obtained with the MSTW 2008 (NNPDF2.0) PDFs are 3 to 5% (1 to 4%) higher than those predicted using the CTEQ 6.6 PDFs. The total systematic uncertainties on the theoretical predictions are represented with a solid band. The scale uncertainty ($\sim 10\%$) is the leading theoretical systematic uncertainty. It is estimated from the enve-

Fig. 2. Measured (dots) and expected (shaded area) inclusive prompt photon production cross-sections, and their ratio, as a function of the photon E_T and in the range (a) $|\eta| < 0.6$, (b) $0.6 \le |\eta| < 1.37$, (c) $1.52 \le |\eta| < 1.81$ and (d) $1.81 \le |\eta| < 2.37$. The data error bars combine the statistical and systematic uncertainties, with the luminosity uncertainty shown separately (dotted bands).

lope of independent and coherent variations of the three scales, by a factor of two around the central value, with the renormalization scale (coherent variation) dominating this envelope at low (high) $E_{\rm T}$, while the fragmentation scale produces the smallest variation. The scale error is summed in quadrature with the contributions from the PDF uncertainty (5% at 68% C.L.) and the uncertainty associated with the choice of the parton-level isolation criterion (2%). The same quantities are also shown in the bottom panels after having been normalized to the expected NLO pQCD cross-sections.

In conclusion, the inclusive isolated prompt photon production cross-section in *pp* collisions at a center-of-mass energy $\sqrt{s} = 7$ TeV has been measured using 35 pb⁻¹ of integrated luminosity collected by the ATLAS detector at the LHC. The differential cross-section has been measured as a function of the prompt photon transverse energy between 45 and 400 GeV, in the pseudorapid-ity ranges $0.0 \leq |\eta| < 0.6$, $0.6 \leq |\eta| < 1.37$, $1.52 \leq |\eta| < 1.81$ and $1.81 \leq |\eta| < 2.37$. In general, good agreement between the data and the NLO pQCD predictions is observed. This measurement improves the precision and significantly extends the kinematic

regime explored in the previous measurement [3] and is consistent in the region where the two measurements overlap.

Over most of this extended kinematic range the experimental errors are smaller than the theoretical ones. The large theoretical scale error limits the discrimination between PDFs. Future measurements of this process in finer pseudorapidity binning and those of the photon + jet system should provide more insight into the PDF differences.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European

Table A.1

Measured isolated prompt photon cross-section for $|\eta| < 0.6$ with statistical and systematic uncertainties. The total uncertainty includes both the statistical and all systematic uncertainties (summed in quadrature), except for the uncertainty on the luminosity.

E ^{min} [GeV]	E ^{max} [GeV]	đσ /đE _T [pb/GeV]	δ _{stat} [pb/GeV]	δ _{yield} [pb/GeV]	^δ efficiency [pb/GeV]	δ _{corr} [pb/GeV]	δ _{unfolding} [pb/GeV]	δ _{tot} [pb/GeV]	δ _{lumi} [pb/GeV]
45	55	83.3	0.5	4.8	3.3	3.4	2.5	7.2	2.8
55	70	32.7	0.3	1.8	1.2	1.2	1.0	2.7	1.1
70	85	12.3	0.2	0.6	0.4	0.4	0.4	0.9	0.4
85	100	5.3	0.1	0.2	0.2	0.2	0.2	0.4	0.2
100	125	2.2	0.05	0.09	0.08	0.07	0.07	0.2	0.07
125	150	0.80	0.03	0.03	0.03	0.02	0.03	0.06	0.03
150	200	0.26	0.01	0.01	$9 imes 10^{-3}$	$7 imes 10^{-3}$	$8 imes 10^{-3}$	0.02	$9 imes 10^{-3}$
200	400	$2.8 imes10^{-2}$	$2 imes 10^{-3}$	$2 imes 10^{-3}$	$1 imes 10^{-3}$	$4 imes 10^{-4}$	$8 imes 10^{-4}$	$3 imes 10^{-3}$	$9 imes 10^{-4}$

Table A.2

Measured isolated prompt photon cross-section for $0.6 \le |\eta| < 1.37$, uncertainties as in Table A.1.

E ^{min} [GeV]	E _T ^{max} [GeV]	dσ/dE _T [pb/GeV]	δ _{stat} [pb/GeV]	δ _{yield} [pb/GeV]	δ _{efficiency} [pb/GeV]	δ _{corr} [pb/GeV]	δ _{unfolding} [pb/GeV]	δ _{tot} [pb/GeV]	δ _{lumi} [pb/GeV]
45	55	99.0	0.7	8.1	4.4	3.8	3.0	10.4	3.4
55	70	38.9	0.3	3.0	1.7	1.2	1.2	3.9	1.3
70	85	14.9	0.2	1.1	0.7	0.4	0.5	1.4	0.5
85	100	6.3	0.1	0.4	0.3	0.1	0.2	0.6	0.2
100	125	2.7	0.06	0.2	0.1	0.06	0.08	0.2	0.09
125	150	1.0	0.03	0.06	0.04	0.02	0.03	0.1	0.03
150	200	0.29	0.01	0.02	0.01	$7 imes 10^{-3}$	$9 imes 10^{-3}$	0.03	0.01
200	400	$3.2 imes10^{-2}$	$2 imes 10^{-3}$	$3 imes 10^{-3}$	$2 imes 10^{-3}$	$9 imes 10^{-4}$	$1 imes 10^{-3}$	$4 imes 10^{-3}$	$1 imes 10^{-3}$

Table A.3

Measured isolated prompt photon cross-section for $1.52 \leqslant |\eta| < 1.81$, uncertainties as in Table A.1.

E ^{min} [GeV]	E _T ^{max} [GeV]	dσ/dE _T [pb/GeV]	δ _{stat} [pb/GeV]	δ _{yield} [pb/GeV]	δ _{efficiency} [pb/GeV]	δ _{corr} [pb/GeV]	δ _{unfolding} [pb/GeV]	δ _{tot} [pb/GeV]	δ _{lumi} [pb/GeV]
45	55	41.9	0.4	4.6	3.1	1.2	1,3	5.8	1.4
55	70	15.7	0.2	1.6	1.0	0.4	0.5	2	0.5
70	85	6.4	0.2	0.5	0.4	0.2	0.2	0.7	0.2
85	100	2.4	0.08	0.2	0.2	0.05	0.08	0.3	0.08
100	125	1.0	0.04	0.07	0.08	0.02	0.03	0.1	0.03
125	150	0.36	0.02	0.03	0.03	$8 imes 10^{-3}$	0.01	0.05	0.01
150	200	0.11	$9 imes 10^{-3}$	0.01	$7 imes 10^{-3}$	$3 imes 10^{-3}$	$4 imes 10^{-3}$	0.02	$4 imes 10^{-3}$
200	400	$1.1 imes 10^{-2}$	$1 imes 10^{-3}$	$1 imes 10^{-3}$	$8 imes 10^{-4}$	$2 imes 10^{-4}$	$3 imes 10^{-4}$	$2 imes 10^{-3}$	$4 imes 10^{-4}$

Table A.4

Measured isolated prompt photon cross-section for $1.81 \leq |\eta| < 2.37$, uncertainties as in Table A.1.

E ^{min} [GeV]	ET ^{max} [GeV]	dσ/dE _T [pb/GeV]	δ _{stat} [pb/GeV]	δ _{yield} [pb/GeV]	δ _{efficiency} [pb/GeV]	δ _{corr} [pb/GeV]	δ _{unfolding} [pb/GeV]	δ _{tot} [pb/GeV]	δ _{lumi} [pb/GeV]
45	55	68.9	0.6	7.6	3.8	3.9	2.1	9.6	2,3
55	70	26.4	0.3	2.7	1.3	1.3	0.8	3.3	0.9
70	85	10.0	0.2	0.9	0.5	0.5	0.3	1.2	0.3
85	100	4.2	0.1	0.3	0.3	0.2	0.1	0.5	0.1
100	125	1.7	0.06	0.1	0.1	0.08	0.05	0.2	0.06
125	150	0.55	0.03	0.03	0.03	0.02	0.02	0.06	0.02
150	200	0.17	0.01	0.01	0.01	$6 imes 10^{-3}$	$6 imes 10^{-3}$	0.02	$6 imes 10^{-3}$
200	400	$1.2 imes 10^{-2}$	$1 imes 10^{-3}$	$6 imes 10^{-4}$	$3 imes 10^{-3}$	$3 imes 10^{-4}$	$4 imes 10^{-4}$	$3 imes 10^{-3}$	$4 imes 10^{-4}$

Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Appendix A. Cross-section measurements

Tables A.1–A.4 list the values of the measured isolated prompt photon production cross-sections, for the $0.0 \leq |\eta| < 0.6$, $0.6 \leq |\eta| < 1.37$, $1.52 \leq |\eta| < 1.81$ and $1.81 \leq |\eta| < 2.37$ regions, respectively. The various systematic uncertainties originating from the purity measurement, the photon selection and identification efficiency and the luminosity are shown. In addition, the correlated uncertainties between the efficiency and the purity determination

are propagated as such and included separately ($\sigma_{\rm corr}$). The total uncertainty is the combination of the statistical and systematic uncertainties (summed in quadrature), except for the uncertainty on the luminosity.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

- [1] P. Aurenche, R. Baier, M. Fontannaz, D. Schiff, Nucl. Phys. B 297 (1988) 661.
- [2] P. Aurenche, R. Baier, M. Fontannaz, J.F. Owens, M. Werlen, Phys. Rev. D 39 (1989) 3275.
- [3] ATLAS Collaboration, Phys. Rev. D 83 (2011) 052005.
- [4] CMS Collaboration, Phys. Rev. Lett. 106 (2011) 082001.
- [5] CDF Collaboration, Phys. Rev. D 80 (2009) 111106.

ATLAS Collaboration

- [6] DØ Collaboration, Phys. Lett. B 639 (2006) 151.
- [7] H1 Collaboration, Eur. Phys. J. C Part. Fields 54 (2008) 371, doi:10.1140/ epjc/s10052-008-0541-6.
- [8] ZEUS Collaboration, Phys. Lett. B 687 (2010) 16.
- [9] S. Catani, et al., JHEP 0205 (2002) 028.
- [10] P. Aurenche, et al., Phys. Rev. D 73 (2006) 094007.
- [11] ATLAS Collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton–proton collision data, ATLAS-PERF-2010-04-001, 2011, under approval.
- [12] ATLAS Collaboration, JINST 3 (2008) S08003.
- [13] T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 0605 (2006) 026.
- [14] G. Corcella, et al., JHEP 0101 (2001) 010.
- [15] ATLAS Collaboration, Expected performance of the ATLAS experiment detector, trigger and physics, arXiv:0901.0512, 2009.
- [16] M. Cacciari, G.P. Salam, G. Soyez, JHEP 0804 (2008) 005.
- [17] M. Cacciari, G.P. Salam, S. Sapeta, JHEP 1004 (2010) 065.
- [18] ATLAS Collaboration, Expected photon performance in the ATLAS experiment, ATL-PHYS-PUB-2011-007 2011
- [19] A. Höcker, V. Kartvelishvili, Nucl. Instrum. Meth. A 372 (1996) 469.
- [20] J. Pumplin, et al., JHEP 0207 (2002) 012.
- [21] L. Bourhis, M. Fontannaz, J.P. Guillet, M. Werlen, Eur. Phys. J. C 19 (2001) 89.
- [22] A. Martin, W. Stirling, R. Thorne, G. Watt, Eur. Phys. J. C 63 (2009) 189.
- [23] R.D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, et al., Nucl. Phys. B 838 (2010) 136.

G. Aad ⁴⁸, B. Abbott ¹¹¹, J. Abdallah ¹¹, A.A. Abdelalim ⁴⁹, A. Abdesselam ¹¹⁸, O. Abdinov ¹⁰, B. Abi ¹¹², M. Abolins ⁸⁸, H. Abramowicz ¹⁵³, H. Abreu ¹¹⁵, E. Acerbi ^{89a,89b}, B.S. Acharya ^{164a,164b}, D.L. Adams ²⁴, T.N. Addy ⁵⁶, J. Adelman ¹⁷⁵, M. Aderholz ⁹⁹, S. Adomeit ⁹⁸, P. Adragna ⁷⁵, T. Adye ¹²⁹, S. Aefsky ²², J.A. Aguilar-Saavedra ^{124b,a}, M. Aharrouche ⁸¹, S.P. Ahlen ²¹, F. Ahles ⁴⁸, A. Ahmad ¹⁴⁸, M. Ahsan ⁴⁰, G. Aielli ^{133a,133b}, T. Akdogan ^{18a}, T.P.A. Åkesson ⁷⁹, G. Akimoto ¹⁵⁵, A.V. Akimov ⁹⁴, A. Akiyama ⁶⁷, M.S. Alam¹, M.A. Alam⁷⁶, J. Albert¹⁶⁹, S. Albrand⁵⁵, M. Aleksa²⁹, I.N. Aleksandrov⁶⁵, F. Alessandria^{89a}, C. Alexa^{25a}, G. Alexander¹⁵³, G. Alexandre⁴⁹, T. Alexopoulos⁹, M. Alhroob²⁰, M. Aliev¹⁵, G. Alimonti^{89a}, J. Alison ¹²⁰, M. Aliyev ¹⁰, P.P. Allport ⁷³, S.E. Allwood-Spiers ⁵³, J. Almond ⁸², A. Aloisio ^{102a,102b}, R. Alon ¹⁷¹, A. Alonso ⁷⁹, M.G. Alviggi ^{102a,102b}, K. Amako ⁶⁶, P. Amaral ²⁹, C. Amelung ²², V.V. Ammosov ¹²⁸, A. Amorim ^{124a,b}, G. Amorós ¹⁶⁷, N. Amram ¹⁵³, C. Anastopoulos ²⁹, L.S. Ancu ¹⁶, N. Andari ¹¹⁵, T. Andeen ³⁴, C.F. Anders ²⁰, G. Anders ^{58a}, K.J. Anderson ³⁰, A. Andreazza ^{89a,89b}, ^{124a} N. Andari ¹¹⁵, T. Andeen ³⁴, C.F. Anders ²⁰, G. Anders ^{58a}, K.J. Anderson ³⁰, A. Andreazza ^{89a, 89b}, V. Andrei ^{58a}, M.-L. Andrieux ⁵⁵, X.S. Anduaga ⁷⁰, A. Angerami ³⁴, F. Anghinolfi ²⁹, N. Anjos ^{124a}, A. Annovi ⁴⁷, A. Antonaki ⁸, M. Antonelli ⁴⁷, A. Antonov ⁹⁶, J. Antos ^{144b}, F. Anulli ^{132a}, S. Aoun ⁸³, L. Aperio Bella ⁴, R. Apolle ^{118,c}, G. Arabidze ⁸⁸, I. Aracena ¹⁴³, Y. Arai ⁶⁶, A.T.H. Arce ⁴⁴, J.P. Archambault ²⁸, S. Arfaoui ^{29,d}, J.-F. Arguin ¹⁴, E. Arik ^{18a,*}, M. Arik ^{18a}, A.J. Armbruster ⁸⁷, O. Arnaez ⁸¹, C. Arnault ¹¹⁵, A. Artamonov ⁹⁵, G. Artoni ^{132a,132b}, D. Arutinov ²⁰, S. Asai ¹⁵⁵, R. Asfandiyarov ¹⁷², S. Ask²⁷, B. Åsman ^{146a,146b}, L. Asquith ⁵, K. Assamagan ²⁴, A. Astbury ¹⁶⁹, A. Astvatsatourov ⁵², G. Atoian ¹⁷⁵, B. Aubert ⁴, B. Auerbach ¹⁷⁵, E. Auge ¹¹⁵, K. Augsten ¹²⁷, M. Aurousseau ^{145a}, N. Austin ⁷³, G. Avolio ¹⁶³, R. Avramidou ⁹, D. Axen ¹⁶⁸, C. Ay ⁵⁴, G. Azuelos ^{93,e}, Y. Azuma ¹⁵⁵, M.A. Baak ²⁹, G. Baccaglioni ^{89a}, C. Bacci ^{134a,134b}, A.M. Bach ¹⁴, H. Bachacou ¹³⁶, K. Bachas ²⁹, G. Bachy ²⁹, M. Backes ⁴⁹, M. Backhaus ²⁰, E. Badescu ^{25a}, P. Bagnaia ^{132a,132b}, S. Bahinipati ², Y. Bai ^{32a}, D.C. Bailey ¹⁵⁸, T. Bain ¹⁵⁸, J.T. Baines ¹²⁹, O.K. Baker ¹⁷⁵, M.D. Baker ²⁴, S. Baker ⁷⁷, E. Banas ³⁸, P. Banerjee ⁹³, Sw. Banerjee ¹⁷², D. Banfi ²⁹, A. Bangert ¹³⁷, V. Bansal ¹⁶⁹, H.S. Bansil ¹⁷, L. Barak ¹⁷¹, S.P. Baranov ⁹⁴, A. Barashkou ⁶⁵, A. Barbaro Galtieri ¹⁴, T. Barber ²⁷, E.L. Barberio ⁸⁶, D. Barberis ^{50a,50b}, M. Barbero ²⁰, D.Y. Bardin ⁶⁵, T. Barillari ⁹⁹, M. Barisonzi ¹⁷⁴, T. Barklow ¹⁴³, N. Barlow ²⁷, B.M. Barnett ¹²⁹, R.M. Barnett ¹⁴, T. Barillari ⁹⁹, M. Barisonzi ¹⁷⁴, T. Barklow ¹⁴³, N. Barlow ²⁷, B.M. Barnett ¹²⁹, R.M. Barnett ¹⁴, A. Baroncelli ^{134a}, G. Barone ⁴⁹, A.J. Barr ¹¹⁸, F. Barreiro ⁸⁰, J. Barreiro Guimarães da Costa ⁵⁷, P. Barrillon ¹¹⁵, R. Bartoldus ¹⁴³, A.E. Barton ⁷¹, D. Bartsch ²⁰, V. Bartsch ¹⁴⁹, R.L. Bates ⁵³, L. Batkova ^{144a}, J.R. Batley ²⁷, A. Battaglia ¹⁶, M. Battistin ²⁹, G. Battistoni ^{89a}, F. Bauer ¹³⁶, H.S. Bawa ^{143, f}, B. Beare ¹⁵⁸, T. Beau ⁷⁸, P.H. Beauchemin ¹¹⁸, R. Beccherle ^{50a}, P. Bechtle ⁴¹, H.P. Beck ¹⁶, M. Beckingham ⁴⁸, K.H. Becks¹⁷⁴, A.J. Beddall^{18c}, A. Beddall^{18c}, S. Bedikian¹⁷⁵, V.A. Bednyakov⁶⁵, C.P. Bee⁸³, M. Begel²⁴, S. Behar Harpaz¹⁵², P.K. Behera⁶³, M. Beimforde⁹⁹, C. Belanger-Champagne⁸⁵, P.J. Bell⁴⁹, W.H. Bell⁴⁹, G. Bella¹⁵³, L. Bellagamba^{19a}, F. Bellina²⁹, M. Bellomo^{119a}, A. Belloni⁵⁷, O. Beloborodova¹⁰⁷, K. Belotskiy ⁹⁶, O. Beltramello ²⁹, S. Ben Ami ¹⁵², O. Benary ¹⁵³, D. Benchekroun ^{135a}, C. Benchouk ⁸³, M. Bendel ⁸¹, N. Benekos ¹⁶⁵, Y. Benhammou ¹⁵³, D.P. Benjamin ⁴⁴, M. Benoit ¹¹⁵, J.R. Bensinger ²²,

K. Benslama ¹³⁰, S. Bentvelsen ¹⁰⁵, D. Berge ²⁹, E. Bergeaas Kuutmann ⁴¹, N. Berger ⁴, F. Berghaus ¹⁶⁹,
E. Berglund ⁴⁹, J. Beringer ¹⁴, K. Bernardet ⁸³, P. Bernat ⁷⁷, R. Bernhard ⁴⁸, C. Bernius ²⁴, T. Berry ⁷⁶,
A. Bertin ^{19a,19b}, F. Bertinelli ²⁹, F. Bertolucci ^{122a,122b}, M.I. Besana ^{89a,89b}, N. Besson ¹³⁶, S. Bethke ⁹⁹,
W. Bhimji ⁴⁵, R.M. Bianchi ²⁹, M. Bianco ^{72a,72b}, O. Biebel ⁹⁸, S.P. Bieniek ⁷⁷, K. Bierwagen ⁵⁴, J. Biesiada ¹⁴,
M. Biglietti ^{134a,134b}, H. Bilokon ⁴⁷, M. Bindi ^{19a,19b}, S. Binet ¹¹⁵, A. Bingul ^{18c}, C. Bini ^{132a,132b},
C. Biscarat ¹⁷⁷, U. Bitenc ⁴⁸, K.M. Black ²¹, R.E. Blair ⁵, J.-B. Blanchard ¹¹⁵, G. Blanchot ²⁹, T. Blazek ^{144a},
C. Blocker ²², J. Blocki ³⁸, A. Blondel ⁴⁹, W. Blum ⁸¹, U. Blumenschein ⁵⁴, G.J. Bobbink ¹⁰⁵,
V.B. Bobrovnikov ¹⁰⁷, S.S. Bocchetta ⁷⁹, A. Bocci ⁴⁴, C.R. Boddy ¹¹⁸, M. Boehler ⁴¹, J. Boek ¹⁷⁴, N. Boelaert ³⁵,
S. Böser ⁷⁷, J.A. Bogaerts ²⁹, A. Bogdanchikov ¹⁰⁷, A. Bogouch ^{90,*}, C. Bohm ^{146a}, V. Boisvert ⁷⁶, T. Bold ^{163,g},
V. Boldea ^{25a}, N.M. Bolnet ¹³⁶, M. Bona ⁷⁵, V.G. Bondarenko ⁹⁶, M. Boonekamp ¹³⁶, G. Boorman ⁷⁶,
C.N. Booth ¹³⁹, S. Bordoni ⁷⁸, C. Borer ¹⁶, A. Borisov ¹²⁸, G. Borisov ⁷¹, I. Borjanovic ^{12a}, S. Borroni ^{132a,132b},
K. Bos ¹⁰⁵, D. Boscherini ^{19a}, M. Bosman ¹¹, H. Boterenbrood ¹⁰⁵, D. Botterill ¹²⁹, J. Bouchami⁹³,
J. Boudreau ¹²³, E.V. Bouhova-Thacker ⁷¹, C. Bourdarios ¹¹⁵, N. Bousson ⁸³, A. Boveia ³⁰, J. Boyd ²⁹,
I.R. Boyko ⁶⁵, N.I. Bozhko ¹²⁸, J. Bremer ²⁹, R. Brenner ¹⁶⁶, S. Bressler ¹⁵², D. Breton ¹¹⁵, D. Britton ⁵³,
F.M. Braud ¹⁷⁴, B. Brelier ¹⁵⁸, J. Bremer ²⁹, R. Brenner ¹⁶⁶, S. Bressler ¹⁵², D. Breton ¹¹⁵, D. Britton ⁵³,
F.M. Brochu ²⁷, I. Brock²⁰, R. Brock ⁸⁸, T.J. Brodbeck ⁷¹, E. Brodet ¹⁵³, F. Broggi ⁸⁹ F.M. Brochu²⁷, I. Brock²⁰, R. Brock⁸⁸, T.J. Brodbeck⁷¹, E. Brodet¹⁵³, F. Broggi^{89a}, C. Bromberg⁸⁸, G. Brooijmans³⁴, W.K. Brooks^{31b}, G. Brown⁸², H. Brown⁷, P.A. Bruckman de Renstrom³⁸, D. Bruncko^{144b}, R. Bruneliere⁴⁸, S. Brunet⁶¹, A. Bruni^{19a}, G. Bruni^{19a}, M. Bruschi^{19a}, T. Buanes¹³, F. Bucci⁴⁹, J. Buchanan¹¹⁸, N.J. Buchanan², P. Bucholz¹⁴¹, R.M. Buckingham¹¹⁸, A.G. Buckley⁴⁵, S.I. Buda^{25a}, I.A. Budagov⁶⁵, B. Budick¹⁰⁸, V. Büscher⁸¹, L. Bugge¹¹⁷, D. Buira-Clark¹¹⁸, O. Bulekov⁹⁶, M. Bunse⁴², T. Buran¹¹⁷, H. Burckhart²⁹, S. Burdin⁷³, T. Burgess¹³, S. Burke¹²⁹, E. Busato³³, P. Bussey⁵³, C.P. Buszello¹⁶⁶, F. Butin²⁹, B. Butler¹⁴³, J.M. Butler²¹, C.M. Buttar⁵³, J.M. Butterworth⁷⁷, W. Buttinger²⁷, T. Byatt⁷⁷, S. Cabrera Urbán¹⁶⁷, D. Caforio^{19a,19b}, O. Cakir^{3a}, P. Calafiura¹⁴, G. Calderini⁷⁸, P. Calfayan⁹⁸, R. Calkins¹⁰⁶, L.P. Caloba^{23a}, R. Caloi^{132a,132b}, D. Calvet³³, S. Calvet³³, R. Camaacho Toro³³, P. Camarri^{133a,133b}, M. Cambiaghi^{119a,119b}, D. Cameron¹¹⁷, S. Campana²⁹, M. Campanelli⁷⁷, V. Canale^{102a,102b}, F. Canelli³⁰, A. Canepa^{159a}, J. Cantero⁸⁰, L. Capasso^{102a,102b}, M.D.M. Capeans Garrido²⁹, I. Caprini^{25a}, M. Caprini^{25a}, D. Capriotti⁹⁹, M. Capua^{36a,36b}, R. Caputo¹⁴⁸, C. Caramarcu^{25a}, R. Cardarelli^{133a}, T. Carli²⁹, G. Carlino^{102a}, L. Carminati^{89a,89b}, B. Caron^{159a}, S. Caron⁴⁸, G.D. Carrillo Montoya¹⁷², A.A. Carter⁷⁵, J.R. Carter²⁷, J. Carvalho^{124a,h}, D. Casadei¹⁰⁸, M.P. Casado¹¹, M. Cascella^{122a,122b}, C. Caso^{50a,50b,*}, A.M. Castaneda Hernandez¹⁷², E. Castaneda-Miranda¹⁷², V. Castillo Gimenez¹⁶⁷, N.F. Castro^{124a}, G. Cataldi^{72a}, F. Cataneo²⁹, S. Caron ¹⁰, G.D. Carrillo Montoya ¹², A.A. Carter ¹⁵, J.K. Carter ¹⁵, J.K. Carter ¹⁵, J.K. Carter ¹⁷, J.K. Carter ¹⁷, J.K. Carter ¹⁷, M. Casadel ¹⁰⁰, M.P. Casado ¹¹, M. Cascella ^{122a,122b}, C. Caso ^{50a,50b,*}, A.M. Castaneda Hernandez ¹⁷², E. Cataneo ²⁹, A. Catinaccio ²⁹, J.R. Catmore ⁷¹, A. Cattal ²⁹, G. Cattani ^{133a,133b}, S. Caughron ⁸⁸, D. Cauz ^{164a,164c}, P. Cavalleri ⁷⁸, D. Cavalli ^{89a}, M. Cavalli-Sforza ¹¹, V. Cavasinni ^{122a,122b}, F. Ceradini ^{134a,134b}, A.S. Cerqueira ^{23a}, A. Cerri ²⁹, L. Cerrito ⁷⁵, F. Cerutti ⁴⁷, S.A. Cetin ^{18b}, F. Cevenini ^{102a,102b}, A. Chafaq ^{135a}, D. Chakraborty ¹⁰⁶, K. Chan ², B. Chapleau ⁸⁵, J.D. Chapman ²⁷, J.W. Chapman ⁸⁷, E. Chareyre ⁷⁸, D.G. Charlton ¹⁷, V. Chavda ⁸², C.A. Chavez Barajas ²⁹, S. Cheetham ⁸⁵, S. Cheekanov ⁵, S.V. Chekulaev ^{159a}, G.A. Chelkov ⁶⁵, M.A. Chelstowska ¹⁰⁴, C. Chen ⁶⁴, H. Chen ²⁴, S. Chen ^{32c}, T. Chen ^{32c}, X. Chen ¹⁷², S. Cheng ^{32a}, A. Cheplakov ⁶⁵, V.F. Chepurnov ⁶⁵, R. Cherkaoui El Moursli ^{135e}, V. Chernyatin ²⁴, E. Cheu ⁶, S.L. Cheung ¹⁵⁸, L. Chevalier ¹³⁶, G. Chiefari ^{102a,102b}, L. Chikovani ⁵¹, J.T. Childers ^{58a}, A. Chilingarov ⁷¹, G. Chiodini ^{72a}, M.V. Chizhov ⁶⁵, G. Choudalakis ³⁰, S. Chouridou ¹³⁷, I.A. Christidi ⁷⁷, A. Christov ⁴⁸, D. Chromek-Burckhart ²⁹, M.L. Chu ¹⁵¹, J. Chudoba ¹²⁵, C. Ciapetti ^{132a,132b}, K. Ciba ³⁷, A.K. Ciftci ^{3a}, R. Ciftci ^{3a}, D. Cinca ³³, V. Cindro ⁷⁴, M.D. Ciobotaru ¹⁶³, C. Ciocca ^{19a,19b}, A. Ciocio ¹⁴, M. Cirilli ⁸⁷, C. Clement ^{146a,146b}, R.W. Clifft ¹²⁹, Y. Coadou ⁸³, M. Cobal ^{164a,164c}, A. Coccaro ^{50a,50b}, J. Cochran ⁶⁴, P. Coel ¹¹⁸, J.G. Cogan ¹⁴³, J. Coggeshall ¹⁶⁵, E. Cogneras ¹⁷⁷, C.D. Cojocaru ²⁸, J. Colas ⁴, A.P. Colijn ¹⁰⁵, C. Collard ¹¹⁵, N.J. Collins ¹⁷, C. Collins ⁷⁵, G. Colon ⁸⁴, P. Conde Muiño ^{124a}, E. Coniavitis ¹¹⁸, M.C. Conidi ¹¹, M. Consonni ¹⁰⁴, V. Consorti ⁴⁸, S. Constantinescu ^{25a}, C. Conta ¹¹

G. Crosetti ^{36a, 36b}, R. Crupi ^{72a, 72b}, S. Crépé-Renaudin ⁵⁵, C.-M. Cuciuc ^{25a}, C. Cuenca Almenar ¹⁷⁵, T. Cuhadar Donszelmann¹³⁹, M. Curatolo⁴⁷, C.J. Curtis¹⁷, P. Cwetanski⁶¹, H. Czirr¹⁴¹, Z. Czyczula¹¹⁷, S. D'Auria⁵³, M. D'Onofrio⁷³, A. D'Orazio^{132a,132b}, P.V.M. Da Silva^{23a}, C. Da Via⁸², W. Dabrowski³⁷, T. Dai⁸⁷, C. Dallapiccola⁸⁴, M. Dam³⁵, M. Dameri^{50a,50b}, D.S. Damiani¹³⁷, H.O. Danielsson²⁹, D. Dannheim ⁹⁹, V. Dao ⁴⁹, G. Darbo ^{50a}, G.L. Darlea ^{25b}, C. Daum ¹⁰⁵, J.P. Dauvergne ²⁹, W. Davey ⁸⁶, T. Davidek ¹²⁶, N. Davidson ⁸⁶, R. Davidson ⁷¹, E. Davies ^{118,c}, M. Davies ⁹³, A.R. Davison ⁷⁷, Y. Davygora ^{58a}, E. Dawe ¹⁴², I. Dawson ¹³⁹, J.W. Dawson ^{5,*}, R.K. Daya ³⁹, K. De⁷, R. de Asmundis ^{102a}, S. De Castro ^{19a,19b}, P.E. De Castro Faria Salgado ²⁴, S. De Cecco ⁷⁸, J. de Graat ⁹⁸, N. De Groot ¹⁰⁴, P. de Jong ¹⁰⁵, C. De La Taille ¹¹⁵, H. De la Torre ⁸⁰, B. De Lotto ^{164a,164c}, L. De Mora ⁷¹, L. De Nooij ¹⁰⁵, M. De Oliveira Branco²⁹, D. De Pedis^{132a}, A. De Salvo^{132a}, U. De Sanctis^{164a,164c}, A. De Santo¹⁴⁹, J.B. De Vivie De Regie¹¹⁵, S. Dean⁷⁷, D.V. Dedovich⁶⁵, J. Degenhardt¹²⁰, M. Dehchar¹¹⁸, C. Del Papa^{164a,164c}, J. Del Peso⁸⁰, T. Del Prete^{122a,122b}, M. Deliyergiyev⁷⁴, A. Dell'Acqua²⁹, L. Dell'Asta^{89a,89b}, M. Della Pietra^{102a,i}, D. della Volpe^{102a,102b}, M. Delmastro²⁹, P. Delpierre⁸³, L. Dell'Asta ^{83a,850}, M. Della Pietra ^{102a,1}, D. della Volpe ^{102a,102b}, M. Delmastro²⁹, P. Delpierre⁸³, N. Delruelle²⁹, P.A. Delsart ⁵⁵, C. Deluca ¹⁴⁸, S. Demers ¹⁷⁵, M. Demichev⁶⁵, B. Demirkoz ^{11,k}, J. Deng ¹⁶³, S.P. Denisov ¹²⁸, D. Derendarz ³⁸, J.E. Derkaoui ^{135d}, F. Derue ⁷⁸, P. Dervan ⁷³, K. Desch²⁰, E. Devetak ¹⁴⁸, P.O. Deviveiros ¹⁵⁸, A. Dewhurst ¹²⁹, B. DeWilde ¹⁴⁸, S. Dhaliwal ¹⁵⁸, R. Dhullipudi ^{24,1}, A. Di Ciaccio ^{133a,133b}, L. Di Ciaccio⁴, A. Di Girolamo ²⁹, B. Di Girolamo ²⁹, S. Di Luise ^{134a,134b}, A. Di Mattia ⁸⁸, B. Di Micco ²⁹, R. Di Nardo ^{133a,133b}, A. Di Simone ^{133a,133b}, R. Di Sipio ^{19a,19b}, M.A. Diaz ^{31a}, F. Diblen ^{18c}, E.B. Diehl ⁸⁷, J. Dietrich ⁴¹, T.A. Dietzsch ^{58a}, S. Diglio ¹¹⁵, K. Dindar Yagci ³⁹, J. Dingfelder ²⁰, C. Dionisi ^{132a,132b}, P. Dita ^{25a}, S. Dita ^{25a}, F. Dittus ²⁹, F. Djama ⁸³, T. Djobava ⁵¹, M.A.B. do Vale ^{23a}, A. Do Valle Wemans ^{124a}, T.K.O. Doan⁴, M. Dobbs ⁸⁵, R. Dobinson ^{29,*}, D. Dobos ⁴², E. Dobson ²⁹, M. Dobson ¹⁶³, J. Dodd ³⁴, C. Doglioni ¹¹⁸, T. Doherty ⁵³, Y. Doi ^{66,*}, J. Dolejsi ¹²⁶, I. Dolenc ⁷⁴, Z. Dolezal ¹²⁶, B.A. Dolgoshein ^{96,*}, T. Dohmae ¹⁵⁵, M. Donadelli ^{23d}, M. Donega ¹²⁰, J. Donini ⁵⁵, J. Dopke²⁹, A. Doria^{102a}, A. Dos Anjos¹⁷², M. Dosil¹¹, A. Dotti^{122a,122b}, M.T. Dova⁷⁰, J.D. Dowell¹⁷, A.D. Doxiadis 105 , A.T. Doyle 53 , Z. Drasal 126 , J. Drees 174 , N. Dressnandt 120 , H. Drevermann 29 , C. Driouichi ³⁵, M. Dris⁹, J. Dubbert ⁹⁹, T. Dubbs ¹³⁷, S. Dube ¹⁴, E. Duchovni ¹⁷¹, G. Duckeck ⁹⁸, A. Dudarev ²⁹, F. Dudziak ⁶⁴, M. Dührssen ²⁹, I.P. Duerdoth ⁸², L. Duflot ¹¹⁵, M.-A. Dufour ⁸⁵, M. Dunford ²⁹, H. Duran Yildiz ^{3b}, R. Duxfield ¹³⁹, M. Dwuznik ³⁷, F. Dydak ²⁹, D. Dzahini ⁵⁵, M. Düren ⁵², W.L. Ebenstein ⁴⁴, J. Ebke ⁹⁸, S. Eckert ⁴⁸, S. Eckweiler ⁸¹, K. Edmonds ⁸¹, C.A. Edwards ⁷⁶, N.C. Edwards ⁵³,
W. Ehrenfeld ⁴¹, T. Ehrich ⁹⁹, T. Eifert ²⁹, G. Eigen ¹³, K. Einsweiler ¹⁴, E. Eisenhandler ⁷⁵, T. Ekelof ¹⁶⁶,
M. El Kacimi ^{135c}, M. Ellert ¹⁶⁶, S. Elles ⁴, F. Ellinghaus ⁸¹, K. Ellis ⁷⁵, N. Ellis ²⁹, J. Elmsheuser ⁹⁸,
M. Elsing ²⁹, D. Emeliyanov ¹²⁹, R. Engelmann ¹⁴⁸, A. Engl ⁹⁸, B. Epp ⁶², A. Eppig ⁸⁷, J. Erdmann ⁵⁴,
A. Ereditato ¹⁶, D. Eriksson ^{146a}, J. Ernst ¹, M. Ernst ²⁴, J. Ernwein ¹³⁶, D. Errede ¹⁶⁵, S. Errede ¹⁶⁵, E. Ertel⁸¹, M. Escalier¹¹⁵, C. Escobar¹⁶⁷, X. Espinal Curull¹¹, B. Esposito⁴⁷, F. Etienne⁸³, A.I. Etienvre¹³⁶, E. Etzion¹⁵³, D. Evangelakou⁵⁴, H. Evans⁶¹, L. Fabbri^{19a,19b}, C. Fabre²⁹, R.M. Fakhrutdinov¹²⁸, S. Falciano^{132a}, Y. Fang¹⁷², M. Fanti^{89a,89b}, A. Farbin⁷, A. Farilla^{134a}, J. Farley¹⁴⁸, T. Farooque¹⁵⁸, S.M. Farrington¹¹⁸, P. Farthouat²⁹, P. Fassnacht²⁹, D. Fassouliotis⁸, B. Fatholahzadeh¹⁵⁸, A. Favareto^{89a,89b}, L. Fayard¹¹⁵, S. Fazio^{36a,36b}, R. Febbraro³³, P. Federic^{144a}, O.L. Fedin¹²¹, A. Favareto ^{53a,505}, L. Fayard ¹¹⁵, S. Fazio ^{50a,505}, R. Febbraro ⁵⁵, P. Federic ¹¹¹, O.L. Fedin ¹²¹,
W. Fedorko ⁸⁸, M. Fehling-Kaschek ⁴⁸, L. Feligioni ⁸³, D. Fellmann ⁵, C.U. Felzmann ⁸⁶, C. Feng ^{32d},
E.J. Feng ³⁰, A.B. Fenyuk ¹²⁸, J. Ferencei ^{144b}, J. Ferland ⁹³, W. Fernando ¹⁰⁹, S. Ferrag ⁵³, J. Ferrando ⁵³,
V. Ferrara ⁴¹, A. Ferrari ¹⁶⁶, P. Ferrari ¹⁰⁵, R. Ferrari ^{119a}, A. Ferrer ¹⁶⁷, M.L. Ferrer ⁴⁷, D. Ferrere ⁴⁹,
C. Ferretti ⁸⁷, A. Ferretto Parodi ^{50a,50b}, M. Fiascaris ³⁰, F. Fiedler ⁸¹, A. Filipčič ⁷⁴, A. Filippas ⁹,
F. Filthaut ¹⁰⁴, M. Fincke-Keeler ¹⁶⁹, M.C.N. Fiolhais ^{124a,h}, L. Fiorini ¹⁶⁷, A. Firan ³⁹, G. Fischer ⁴¹,
P. Fischer ²⁰, M.J. Fisher ¹⁰⁹, S.M. Fisher ¹²⁹, M. Flechl ⁴⁸, I. Fleck ¹⁴¹, J. Fleckner ⁸¹, P. Fleischmann ¹⁷³, S. Fleischmann¹⁷⁴, T. Flick¹⁷⁴, L.R. Flores Castillo¹⁷², M.J. Flowerdew⁹⁹, M. Fokitis⁹, T. Fonseca Martin¹⁶, D.A. Forbush¹³⁸, A. Formica¹³⁶, A. Forti⁸², D. Fortin^{159a}, J.M. Foster⁸², D. Fournier¹¹⁵, A. Fousat²⁹, A. Fordush ¹³⁵, A. Formica ¹³⁶, A. Forti ¹³⁷, D. Fortin ^{135a}, J.M. Foster ¹², D. Fournier ¹¹⁵, A. Foussat ²⁹, A.J. Fowler ⁴⁴, K. Fowler ¹³⁷, H. Fox ⁷¹, P. Francavilla ^{122a,122b}, S. Franchino ^{119a,119b}, D. Francis ²⁹, T. Frank ¹⁷¹, M. Franklin ⁵⁷, S. Franz ²⁹, M. Fraternali ^{119a,119b}, S. Fratina ¹²⁰, S.T. French ²⁷, F. Friedrich ⁴³, R. Froeschl ²⁹, D. Froidevaux ²⁹, J.A. Frost ²⁷, C. Fukunaga ¹⁵⁶, E. Fullana Torregrosa ²⁹, J. Fuster ¹⁶⁷, C. Gabaldon ²⁹, O. Gabizon ¹⁷¹, T. Gadfort ²⁴, S. Gadomski ⁴⁹, G. Gagliardi ^{50a,50b}, P. Gagnon ⁶¹, C. Galea ⁹⁸, E.J. Gallas ¹¹⁸, M.V. Gallas ²⁹, V. Gallo ¹⁶, B.J. Gallop ¹²⁹, P. Gallus ¹²⁵, E. Galyaev ⁴⁰, K.K. Gan ¹⁰⁹, Y.S. Gao ^{143, f}, V.A. Gapienko ¹²⁸, A. Gaponenko ¹⁴, F. Garberson ¹⁷⁵, M. Garcia-Sciveres ¹⁴, C. García ¹⁶⁷,

J.E. García Navarro⁴⁹, R.W. Gardner³⁰, N. Garelli²⁹, H. Garitaonandia¹⁰⁵, V. Garonne²⁹, J. Garvey¹⁷, C. Gatti⁴⁷, G. Gaudio^{119a}, O. Gaumer⁴⁹, B. Gaur¹⁴¹, L. Gauthier¹³⁶, I.L. Gavrilenko⁹⁴, C. Gay¹⁶⁸, G. Gaycken²⁰, J.-C. Gayde²⁹, E.N. Gazis⁹, P. Ge^{32d}, C.N.P. Gee¹²⁹, D.A.A. Geerts¹⁰⁵, Ch. Geich-Gimbel²⁰, K. Gellerstedt^{146a,146b}, C. Gemme^{50a}, A. Gemmell⁵³, M.H. Genest⁹⁸, S. Gentile^{132a,132b}, M. George⁵⁴, S. George⁷⁶, P. Gerlach¹⁷⁴, A. Gershon¹⁵³, C. Geweniger^{58a}, H. Ghazlane^{135b}, P. Ghez⁴, N. Ghodbane³³, B. Giacobbe^{19a}, S. Giagu^{132a,132b}, V. Giakoumopoulou⁸, V. Giangiobbe^{122a,122b}, F. Gianotti²⁹, B. Gibbard²⁴, A. Gibson¹⁵⁸, S.M. Gibson²⁹, L.M. Gilbert¹¹⁸, M. Gilchriese¹⁴, V. Gilewsky⁹¹, D. Gillberg²⁸, A.R. Gillman¹²⁹, D.M. Gingrich^{2,e}, J. Ginzburg¹⁵³, N. Giokaris⁸, R. Giordano^{102a,102b}, F.M. Giorgi¹⁵, P. Giovannini⁹⁹, P.F. Giraud¹³⁶, D. Giugni^{89a}, M. Giunta^{132a,132b}, P. Giusti^{19a}, B.K. Gjelsten¹¹⁷, L.K. Gladilin⁹⁷, C. Glasman⁸⁰, J. Glatzer⁴⁸, A. Glazov⁴¹, K.W. Glitza¹⁷⁴, G.L. Glonti⁶⁵, J. Godfrey¹⁴², J. Godlewski²⁹, M. Goebel⁴¹, T. Göpfert⁴³, C. Goeringer⁸¹, C. Gössling⁴², T. Göttfert⁹⁹, S. Goldfarb⁸⁷, D. Goldin³⁹, T. Golling¹⁷⁵, S.N. Golovnia¹²⁸, A. Gomes^{124a,b}, L.S. Gomez Fajardo⁴¹, R. Gonçalo⁷⁶, J. González de la Hoz¹⁶⁷, M.L. Gonzalez Silva²⁶, S. Gonzalez-Sevilla⁴⁹, I.I. Goodson¹⁴⁸, L. Goossens²⁹, J. Godlewski⁴⁷, M. Goebel⁴⁴, T. Göpfert⁴³, C. Goeringer⁴³, L. Gössling⁴², T. Göttfert²⁹, S. M. Glovni ¹²⁸, A. Gomes^{124,a,b}, S. Gomzalez⁴⁷, S. Gonzalez⁷⁷, S. Gonzalez Sita⁴⁷, M. L. Gonzalez Sita⁴⁰, A. Gonidec²⁹, S. Gonzalez ¹⁷², S. Gonzalez de la Hoz¹⁶⁷, M.L. Gonzalez Sita⁴⁰, J. Gordson¹²⁴, J. B. Gorlin¹²⁶, J. E. Gorlin^{172,72b}, A. Gorišek⁷⁴, E. Gornick¹³⁸, S. A. Gorokhov¹²⁸, V. Goryachev¹²⁸, B. Gorlin^{172,72b}, A. Gorišek⁷⁴, E. Gornick¹³⁸, S. A. Gorokhov¹²⁸, V. Goryachev¹²⁸, B. Gords¹²⁴, M. Cosselink¹⁰⁵, M. Goselink¹⁰⁵, J. Gorghi, E. Gorzin^{174,72b}, A. Gorišek⁷⁴, E. Gornick¹³⁸, S. A. Gorokhov¹²⁸, V. Grassl¹⁴⁹, M. Coulette⁴⁹, A.G. Goussiou¹³⁸, C. Goy⁴, I. Grahovaka-Bold^{163,4}, V. Gratchev¹²⁹, N. Corjata⁴¹, H.M. Grav²⁹, J. A. Gray¹⁴⁸, E. Grazin¹¹⁴⁴, G. Grenen¹¹⁵⁴, D. Greenfiell¹²⁹, T. Greenshaw⁷³, Z.D. Greenwod^{24,1}, K. Gregersen¹⁵, I.M. Gregor⁴¹, P. Grenier¹⁴³, J. Griffiths¹³⁸, N. Grigalashvili⁶⁵, A.A. Grilo¹³⁷, S. Grinstein¹¹, Y.V. Grishkevich⁹⁷, J. F. Grivaz¹¹⁵, J. Grognuz²⁰, M. Groh⁹⁹, E. Gross¹⁷¹, J. Gruthert⁴¹, J. Gruth-Jensen¹⁷¹, K. Grybel¹⁴¹, V.J. Guarino⁵, D. Guet¹⁷⁵, C. Guicheney³³, A. Guid^{222,720}, T. Guillemin⁴, S. Guindon⁴⁵⁴, H. Guler⁴⁵⁵, M. Guiterraz⁵¹, J. G. Guiterraz⁵¹, J. Guiterraz⁵¹, J. Guiterraz⁵¹, C. Guicheney³³, A. Guid^{222,720}, T. Guillemin⁴⁵, C. Gwenlan¹¹⁸, C.B. Gwilliam⁷³, A. Haas¹⁴³, S. Haas²⁶, C. Haber¹⁴⁴, R. Hackenburg²⁴, H.K. Hadavand³⁹, D.R. Hadley¹⁷, P. Haefne⁹⁹, F. Hahn¹²⁹, S. Haider²⁹, Z. Hajdut³⁸, J. Haarso³⁵, P.H. Hanse³⁵, P.H. Hanse³⁵, P.H. Hanse³⁵, P.H. Hanse³⁵, P.H. Hanse³⁵, H. Hanse³¹⁵, H. Hanse³¹⁵, H. Hanse³⁵, P.H. Hanse³⁵, P. Hanse³⁵, H. Hanse³⁶, M. Harrigton²¹

159

S. Istin ^{18a}, A.V. Ivashin ¹²⁸, W. Iwanski ³⁸, H. Iwasaki ⁶⁶, J.M. Izen ⁴⁰, V. Izzo ^{102a}, B. Jackson ¹²⁰, J.N. Jackson ⁷³, P. Jackson ¹⁴³, M.R. Jaekel ²⁹, V. Jain ⁶¹, K. Jakobs ⁴⁸, S. Jakobsen ³⁵, J. Jakubek ¹²⁷, D.K. Jana ¹¹¹, E. Jankowski ¹⁵⁸, E. Jansen ⁷⁷, A. Jantsch ⁹⁹, M. Janus ²⁰, G. Jarlskog ⁷⁹, L. Jeanty ⁵⁷, K. Jelen ³⁷, I. Jen-La Plante ³⁰, P. Jenni ²⁹, A. Jeremie⁴, P. Jež ³⁵, S. Jézéquel⁴, M.K. Jha ^{19a}, H. Ji ¹⁷², W. Ji ⁸¹, J. Jia ¹⁴⁸, Y. Jiang ^{32b}, M. Jimenez Belenguer ⁴¹, G. Jin ^{32b}, S. Jin ^{32a}, O. Jinnouchi ¹⁵⁷, M.D. Joergensen ³⁵, D. Joffe ³⁹, L.G. Johansen ¹³, M. Johansen ^{146a,146b}, K.E. Johansson ^{146a}, P. Johansson ¹³⁹, S. Johnert ⁴¹, K.A. Johns ⁶, K. Jon-And ^{146a,146b}, G. Jones ⁸², R.W.L. Jones ⁷¹, T.W. Jones ⁷⁷, T.J. Jones ⁷³, O. Jonsson ²⁹, C. Joram ²⁹, P.M. Jorge ^{124a,b}, J. Joseph ¹⁴, T. Jovin ^{12b}, X. Ju ¹³⁰, V. Juranek ¹²⁵, P. Jussel ⁶², A. Juste Rozas ¹¹, V.V. Kabachenko ¹²⁸, S. Kabana ¹⁶, M. Kaci ¹⁶⁷, A. Kaczmarska ³⁸, P. Kadlecik ³⁵, M. Kado ¹¹⁵, H. Kagan ¹⁰⁹, M. Kagan ⁵⁷, S. Kaiser ⁹⁹, E. Kajomovitz ¹⁵², S. Kalinin ¹⁷⁴, L.V. Kalinovskaya ⁶⁵, S. Kama ³⁹, N. Kanaya ¹⁵⁵, M. Kaneda ²⁹, T. Kanno ¹⁵⁷, V.A. Kantserov ⁹⁶, J. Kanzaki ⁶⁶, B. Kaplan ¹⁷⁵, A. Kapliy ³⁰, J. Kaplon ²⁹, D. Kar ⁴³, M. Karagoz ¹¹⁸, M. Karnevskiy ⁴¹, K. Karr ⁵, V. Kartvelishvili ⁷¹, A.N. Karyukhin ¹²⁸, L. Kashif ¹⁷², A. Kasmi ³⁹, R.D. Kass ¹⁰⁹, A. Kastanas ¹³, M. Kataoka ⁴, Y. Kataoka ¹⁵⁵, E. Katsoufis ⁹, J. Katzy ⁴¹, V. Kaushik ⁶. K. Kawagoe ⁶⁷, T. Kawamoto ¹⁵⁵, G. Kawamura ⁸¹, M.S. Kayl ¹⁰⁵, V.A. Kazanin ¹⁰⁷, A. Kasmi ³⁹, R.D. Kass ¹⁰⁹, A. Kastanas ¹³, M. Kataoka ⁴, Y. Kataoka ¹⁵⁵, E. Katsoufis ⁹, J. Katzy ⁴¹, V. Kaushik ⁶, K. Kawagoe ⁶⁷, T. Kawamoto ¹⁵⁵, G. Kawamura ⁸¹, M.S. Kayl ¹⁰⁵, V.A. Kazanin ¹⁰⁷, M.Y. Kazarinov ⁶⁵, J.R. Keates ⁸², R. Keeler ¹⁶⁹, R. Kehoe ³⁹, M. Keil ⁵⁴, G.D. Kekelidze ⁶⁵, M. Kelly ⁸², J. Kennedy ⁹⁸, C.J. Kenney ¹⁴³, M. Kenyon ⁵³, O. Kepka ¹²⁵, N. Kerschen ²⁹, B.P. Kerševan ⁷⁴, S. Kersten ¹⁷⁴, K. Kessoku ¹⁵⁵, C. Ketterer ⁴⁸, J. Keung ¹⁵⁸, M. Khakzad ²⁸, F. Khalil-zada ¹⁰, H. Khandanyan ¹⁶⁵, A. Khanov ¹¹², D. Kharchenko ⁶⁵, A. Khodinov ⁹⁶, A.G. Kholodenko ¹²⁸, A. Khomich ^{58a}, T.J. Khoo ²⁷, G. Khoriauli ²⁰, A. Khoroshilov ¹⁷⁴, N. Khovanskiy ⁶⁵, V. Khovanskiy ⁹⁵, E. Khramov ⁶⁵, J. Khubua ⁵¹, H. Kim ⁷, M.S. Kim ², P.C. Kim ¹⁴³, S.H. Kim ¹⁶⁰, N. Kimura ¹⁷⁰, O. Kind ¹⁵, B.T. King ⁷³, M. King ⁶⁷, R.S.B. King ¹¹⁸, J. Kirk ¹²⁹, G.P. Kirsch ¹¹⁸, L.E. Kirsch ²², A.E. Kiryunin ⁹⁹, T. Kishimoto ⁶⁷, D. Kisielewska ³⁷, T. Kittelmann ¹²³, A.M. Kiver ¹²⁸, H. Kiyamura ⁶⁷, E. Kladiva ^{144b}, J. Klaiber-Lodewigs ⁴², M. Klein ⁷³, U. Klein ⁷³, K. Kleinknecht ⁸¹, M. Klemetti ⁸⁵, A. Klier ¹⁷¹, A. Klimentov ²⁴, R. Klingenberg ⁴², E.B. Klinkby ³⁵, T. Klioutchnikova ²⁹, P.F. Klok ¹⁰⁴, S. Klous ¹⁰⁵, E.-E. Kluge ^{58a}, T. Kluge ⁷³, P. Kluit ¹⁰⁵, S. Kluth ⁹⁹, N.S. Knecht ¹⁵⁸, E. Kneringer ⁶², J. Knobloch ²⁹, E.B.F.G. Knoops ⁸³, A. Knue ⁵⁴, B.R. Ko ⁴⁴ S. Kluth ⁹⁹, N.S. Knecht ¹⁵⁸, E. Kneringer ⁶², J. Knobloch ²⁹, E.B.F.G. Knoops ⁸³, A. Knue ⁵⁴, B.R. Ko⁴⁴, T. Kobayashi ¹⁵⁵, M. Kobel ⁴³, M. Kocian ¹⁴³, A. Kocnar ¹¹³, P. Kodys ¹²⁶, K. Köneke ²⁹, A.C. König ¹⁰⁴, S. Koenig ⁸¹, L. Köpke ⁸¹, F. Koetsveld ¹⁰⁴, P. Koevesarki ²⁰, T. Koffas ²⁹, E. Koffeman ¹⁰⁵, F. Kohn ⁵⁴, Z. Kohout ¹²⁷, T. Kohriki ⁶⁶, T. Koi ¹⁴³, T. Kokott ²⁰, G.M. Kolachev ¹⁰⁷, H. Kolanoski ¹⁵, V. Kolesnikov ⁶⁵, I. Koletsou ^{89a}, J. Koll ⁸⁸, D. Kollar ²⁹, M. Kollefrath ⁴⁸, S.D. Kolya ⁸², A.A. Komar ⁹⁴, J.R. Komaragiri ¹⁴², Y. Komori ¹⁵⁵, T. Kondo ⁶⁶, T. Kono ^{41,0}, A.I. Kononov ⁴⁸, R. Konoplich ^{108,p}, N. Konstantinidis ⁷⁷, A. Kootz ¹⁷⁴, S. Koperny ³⁷, S.V. Kopikov ¹²⁸, K. Korcyl ³⁸, K. Kordas ¹⁵⁴, V. Koreshev ¹²⁸, A. Korn ¹⁴, A. Korol¹⁰⁷, I. Korolkov¹¹, E.V. Korolkova¹³⁹, V.A. Korotkov¹²⁸, O. Kortner⁹⁹, S. Kortner⁹⁹, V.V. Kostyukhin²⁰, M.J. Kotamäki²⁹, S. Kotov⁹⁹, V.M. Kotov⁶⁵, A. Kotwal⁴⁴, C. Kourkoumelis⁸, V.V. Kostyukhin²⁰, M.J. Kotamäki²⁹, S. Kotov⁹⁹, V.M. Kotov⁶⁵, A. Kotwal⁴⁴, C. Kourkoumelis⁸, V. Kouskoura¹⁵⁴, A. Koutsman¹⁰⁵, R. Kowalewski¹⁶⁹, T.Z. Kowalski³⁷, W. Kozanecki¹³⁶, A.S. Kozhin¹²⁸, V. Kral¹²⁷, V.A. Kramarenko⁹⁷, G. Kramberger⁷⁴, M.W. Krasny⁷⁸, A. Krasznahorkay¹⁰⁸, J. Kraus⁸⁸, A. Kreisel¹⁵³, F. Krejci¹²⁷, J. Kretzschmar⁷³, N. Krieger⁵⁴, P. Krieger¹⁵⁸, K. Kroeninger⁵⁴, H. Kroha⁹⁹, J. Kroll¹²⁰, J. Kroseberg²⁰, J. Krstic^{12a}, U. Kruchonak⁶⁵, H. Krüger²⁰, T. Kruker¹⁶, Z.V. Krumshteyn⁶⁵, A. Kruth²⁰, T. Kubota⁸⁶, S. Kuehn⁴⁸, A. Kugel^{58c}, T. Kuhl⁴¹, D. Kuhn⁶², V. Kukhtin⁶⁵, Y. Kulchitsky⁹⁰, S. Kuleshov^{31b}, C. Kummer⁹⁸, M. Kuna⁷⁸, N. Kundu¹¹⁸, J. Kunkle¹²⁰, A. Kupco¹²⁵, H. Kurashige⁶⁷, M. Kurata¹⁶⁰, Y.A. Kurochkin⁹⁰, V. Kus¹²⁵, W. Kuykendall¹³⁸, M. Kuze¹⁵⁷, P. Kuzhir⁹¹, J. Kvita²⁹, R. Kwee¹⁵, A. La Rosa¹⁷², L. La Rotonda^{36a,36b}, L. Labarga⁸⁰, J. Labbe⁴, S. Lablak^{135a}, C. Lacasta¹⁶⁷, F. Lacava^{132a,132b}, H. Lacker¹⁵, D. Lacour⁷⁸, V.R. Lacuesta¹⁶⁷, E. Ladygin⁶⁵, R. Lafaye⁴, B. Laforge⁷⁸, T. Lagouri⁸⁰, S. Lai⁴⁸, F. Laisne⁵⁵, M. Lamanna²⁹, C.L. Lampen⁶, W. Lampl⁶, F. Lancon¹³⁶, H. Landgraf⁴⁴ T. Lagouri⁸⁰, S. Lai⁴⁸, E. Laisne⁵⁵, M. Lamanna²⁹, C.L. Lampen⁶, W. Lampl⁶, E. Lancon¹³⁶, U. Landgraf⁴⁸, M.P.J. Landon⁷⁵, H. Landsman¹⁵², J.L. Lane⁸², C. Lange⁴¹, A.J. Lankford¹⁶³, F. Lanni²⁴, K. Lantzsch²⁹, S. Laplace ⁷⁸, C. Lapoire ²⁰, J.F. Laporte ¹³⁶, T. Lari ^{89a}, A.V. Larionov ¹²⁸, A. Larner ¹¹⁸, C. Lasseur ²⁹, M. Lassnig ²⁹, P. Laurelli ⁴⁷, A. Lavorato ¹¹⁸, W. Lavrijsen ¹⁴, P. Laycock ⁷³, A.B. Lazarev ⁶⁵, O. Le Dortz ⁷⁸, E. Le Guirriec ⁸³, C. Le Maner ¹⁵⁸, E. Le Menedeu ¹³⁶, C. Lebel ⁹³, T. LeCompte ⁵, F. Ledroit-Guillon ⁵⁵, H. Lee ¹⁰⁵, J.S.H. Lee ¹⁵⁰, S.C. Lee ¹⁵¹, L. Lee ¹⁷⁵, M. Lefebvre ¹⁶⁹, M. Legendre ¹³⁶, A. Leger ⁴⁹, B.C. LeGeyt ¹²⁰, F. Legger ⁹⁸, C. Leggett ¹⁴, M. Lehmacher ²⁰, G. Lehmann Miotto ²⁹, X. Lei ⁶, M.A.L. Leite^{23d}, R. Leitner¹²⁶, D. Lellouch¹⁷¹, M. Leltchouk³⁴, B. Lemmer⁵⁴, V. Lendermann^{58a}, K.J.C. Leney^{145b}, T. Lenz¹⁰⁵, G. Lenzen¹⁷⁴, B. Lenzi²⁹, K. Leonhardt⁴³, S. Leontsinis⁹, C. Leroy⁹³, J.-R. Lessard¹⁶⁹, J. Lesser^{146a}, C.G. Lester²⁷, A. Leung Fook Cheong¹⁷², J. Levêque⁴, D. Levin⁸⁷,

LJ. Levinson ¹⁷¹, M.S. Levitski ¹²⁸, M. Lewandowska ²¹, A. Lewis ¹¹⁸, G.H. Lewis ¹⁰⁸, A.M. Leyko ²⁰, M. Leyton ¹⁵, B. Li⁸³, H. Li ¹⁷², S. Li ^{32b,d}, X. Li ⁸⁷, Z. Liang ³⁹, Z. Liang ^{118,q}, B. Liberti ^{133a}, P. Lichard ²⁹, M. Lichtnecker ⁹⁸, K. Lie ¹⁶⁵, W. Liebig ¹³, R. Lifshitz ¹⁵², J.N. Lilley ¹⁷, C. Limbach ²⁰, A. Limosani ⁸⁶, M. Limper ⁶³, S.C. Lin ^{151,r}, F. Linde ¹⁰⁵, J.T. Linnemann ⁸⁸, E. Lipeles ¹²⁰, L. Lipinsky ¹²⁵, A. Lipniacka ¹³, T.M. Liss ¹⁶⁵, D. Lissauer ²⁴, A. Lister ⁴⁹, A.M. Litke ¹³⁷, C. Liu ²⁸, D. Liu ^{151,s}, H. Liu ⁸⁷, J.B. Liu ⁸⁷, M. Liu ^{32b}, S. Liu ², Y. Liu ^{32b}, M. Livan ^{119a,119b}, S.S.A. Livermore ¹¹⁸, A. Lleres ⁵⁵, J. Llorente Merino ⁸⁰, S.L. Lloyd ⁷⁵, E. Lobodzinska ⁴¹, P. Loch ⁶, W.S. Lockman ¹³⁷, S. Lockwitz ¹⁷⁵, T. Loddenkoetter ²⁰, F.K. Loebinger ⁸², A. Loginov ¹⁷⁵, C.W. Loh ¹⁶⁸, T. Lohse ¹⁵, K. Lohwasser ⁴⁸, M. Lokajicek ¹²⁵, J. Loken ¹¹⁸, V.P. Lombardo ⁴, R.E. Long ⁷¹, L. Lopes ^{124a,b}, D. Lopez Mateos ⁵⁷, M. Losada ¹⁶², P. Loscutoff ¹⁴, F. Lo Sterzo ^{132a,132b}, M.J. Losty ^{159a}, X. Lou ⁴⁰, A. Lounis ¹¹⁵, K.F. Loureiro ¹⁶², J. Love ²¹, P.A. Love ⁷¹, A.J. Lowe ^{143,f}, F. Lu ^{32a}, H.J. Lubatti ¹³⁸, C. Luci ^{132a,132b}, A. Lucotte ⁵⁵, A. Ludwig ⁴³, D. Ludwig ⁴¹, I. Ludwig ⁴⁸, J. Ludwig ⁴⁸, F. Luehring ⁶¹, G. Luijckx ¹⁰⁵, D. Lumb ⁴⁸, L. Luminari ^{132a}, E. Lund ¹¹⁷, B. Lund-Jensen ¹⁴⁷, B. Lundberg ⁷⁹, J. Lundberg ^{146a,146b}, J. Lundquist ³⁵, M. Lungwitz ⁸¹, A. Lupi ^{122a,122b}, G. Lutz ⁹⁹, D. Lynn ²⁴, J. Lys ¹⁴, E. Lytken ⁷⁹, H. Ma ²⁴, L.L. Ma ¹⁷², J.A. Macana Goia ⁹³, G. Maccarrone ⁴⁷, A. Macchiolo ⁹⁹, B. Maček ⁷⁴, J. Machado Miguens ^{124a}, R. Mackeprang ³⁵, R.J. Madaras ¹⁴, W.F. Mader ⁴³, R. Maenner ^{58c}, T. Maeno ²⁴, P. Mättig ¹⁷⁴, S. Mättig ⁴¹, P.J. Magalhaes Martins ^{124a,h}, L. Magnoni ²⁹, E. Magradze ⁵⁴, Y. Mahalalel ¹⁵³, J. Machado Miguens ^{124a}, R. Mackeprang ³⁵, R.J. Madaras ¹⁴, W.F. Mader ⁴³, R. Maenner ^{58c}, T. Maeno ²⁴, P. Mättig ¹⁷⁴, S. Mättig ⁴¹, P.J. Magalhaes Martins ^{124a,h}, L. Magnoni ²⁹, E. Magradze ⁵⁴, Y. Mahalalel ¹⁵³, K. Mahboubi ⁴⁸, G. Mahout ¹⁷, C. Maiani ^{132a,132b}, C. Maidantchik ^{23a}, A. Maio ^{124a,b}, S. Majewski ²⁴, Y. Makida ⁶⁶, N. Makovec ¹¹⁵, P. Mal ⁶, Pa. Malecki ³⁸, P. Malecki ³⁸, V.P. Maleev ¹²¹, F. Malek ⁵⁵, U. Mallik ⁶³, D. Malon ⁵, S. Maltezos ⁹, V. Malyshev ¹⁰⁷, S. Malyukov ²⁹, R. Mameghani ⁹⁸, J. Mamuzic ^{12b}, A. Manabe ⁶⁶, L. Mandelli ^{89a}, I. Mandić ⁷⁴, R. Mandrysch ¹⁵, J. Maneira ^{124a}, P.S. Mangeard ⁸⁸, I.D. Manjavidze ⁶⁵, A. Mann ⁵⁴, P.M. Manning ¹³⁷, A. Manousakis-Katsikakis ⁸, B. Mansoulie ¹³⁶, A. Manz ⁹⁹, A. Mapelli ²⁹, L. Mapelli ²⁹, L. March ⁸⁰, J.F. Marchand ²⁹, F. Marchese ^{133a,133b}, G. Marchiori ⁷⁸, M. Marcisovsky ¹²⁵, A. Marin ^{21,*}, C.P. Marino ⁶¹, F. Marroquim ^{23a}, R. Marshall ⁸², Z. Marshall ²⁹, F.K. Martens ¹⁵⁸, S. Marti-Garcia ¹⁶⁷, A.J. Martin ¹⁷⁵, B. Martin ²⁹, B. Martin ⁸⁸, F.F. Martin ¹²⁰, I.P. Martin ⁹³, Ph. Martin ⁵⁵, T.A. Martin ¹⁷, B. Martin dit Latour ⁴⁹, S. Martin-Haugh ¹⁴⁹, M. Martinez ¹¹ J.P. Martin ⁹³, Ph. Martin ⁵⁵, T.A. Martin ¹⁷, B. Martin dit Latour ⁴⁹, S. Martin-Haugh ¹⁴⁹, M. Martinez ¹¹, V. Martinez Outschoorn ⁵⁷, A.C. Martyniuk ⁸², M. Marx ⁸², F. Marzano ^{132a}, A. Marzin ¹¹¹, L. Masetti ⁸¹, T. Mashimo ¹⁵⁵, R. Mashinistov ⁹⁴, J. Masik ⁸², A.L. Maslennikov ¹⁰⁷, I. Massa ^{19a,19b}, G. Massaro ¹⁰⁵, N. Massol⁴, P. Mastrandrea ^{132a,132b}, A. Mastroberardino ^{36a,36b}, T. Masubuchi ¹⁵⁵, M. Mathes ²⁰, N. Massol⁴, P. Mastrandrea^{132a,132b}, A. Mastroberardino^{36a,36b}, T. Masubuchi¹⁵⁵, M. Mathes²⁰, P. Matricon¹¹⁵, H. Matsumoto¹⁵⁵, H. Matsunaga¹⁵⁵, T. Matsushita⁶⁷, C. Mattravers^{118,c}, J.M. Maugain²⁹, S.J. Maxfield⁷³, D.A. Maximov¹⁰⁷, E.N. May⁵, A. Mayne¹³⁹, R. Mazini¹⁵¹, M. Mazur²⁰, M. Mazzanti^{89a}, E. Mazzoni^{122a,122b}, S.P. Mc Kee⁸⁷, A. McCarn¹⁶⁵, R.L. McCarthy¹⁴⁸, T.G. McCarthy²⁸, N.A. McCubbin¹²⁹, K.W. McFarlane⁵⁶, J.A. Mcfayden¹³⁹, H. McGlone⁵³, G. Mchedlidze⁵¹, R.A. McLaren²⁹, T. Mclaughlan¹⁷, S.J. McMahon¹²⁹, R.A. McPherson^{169,j}, A. Meade⁸⁴, J. Mechnich¹⁰⁵, M. Mechtel¹⁷⁴, M. Medinnis⁴¹, R. Meera-Lebbai¹¹¹, T. Meguro¹¹⁶, R. Mehdiyev⁹³, S. Mehlhase³⁵, A. Mehta⁷³, K. Meier^{58a}, J. Meinhardt⁴⁸, B. Meirose⁷⁹, C. Melachrinos³⁰, B.R. Mellado Garcia¹⁷², L. Mendoza Navas¹⁶², Z. Meng^{151,s}, A. Mengarelli^{19a,19b}, S. Menke⁹⁹, C. Menot²⁹, E. Meoni¹¹, K.M. Mercurio⁵⁷, P. Mermod¹¹⁸, L. Merola^{102a,102b}, C. Meroni^{89a}, F.S. Merritt³⁰, A. Messina²⁹, J. Metcalfe¹⁰³, A.S. Mete⁶⁴, S. Meuse²⁰, C. Meyer⁸¹, J.-P. Meyer¹³⁶, J. Meyer¹⁷³, J. Meyer⁵⁴, T.C. Meyer²⁹, W.T. Meyer⁶⁴, J. Miao^{32d}, S. Michal²⁹, L. Micu^{25a}, R.P. Middleton¹²⁹, P. Miele²⁹, S. Migas⁷³, L. Mijović⁴¹, G. Mikenberg¹⁷¹, M. Mikestikova¹²⁵, M. Mikuž⁷⁴, D.W. Miller¹⁴³, R.J. Miller⁸⁸, W.J. Mills¹⁶⁸, C. Mills⁵⁷, A. Milov¹⁷¹, D.A. Milstead^{146a,146b}, D. Milstein¹⁷¹, A.A. Minaenko¹²⁸, M. Miñano¹⁶⁷, I.A. Minashvili⁶⁵, A.I. Mincer¹⁰⁸, B. Mindur³⁷, M. Mineev⁶⁵, Y. Ming¹³⁰, L.M. Mir¹¹, G. Mirabelli^{132a}, L. Miralles Verge¹¹, A. Misiejuk⁷⁶, J. Mitrevski¹³⁷, G.Y. Mitrofanov¹²⁸, V.A. Mitsou¹⁶⁷, S. Mitsui⁶⁶, K. Miyazaki⁶⁷, J.U. Mjörnmark⁷⁹, J. Mitrevski ¹³⁷, G.Y. Mitrofanov ¹²⁸, V.A. Mitsou ¹⁶⁷, S. Mitsui ⁶⁶, K. Miyazaki ⁶⁷, J.U. Mjörnmark ⁷⁹, T. Moa ^{146a, 146b}, P. Mockett ¹³⁸, S. Moed ⁵⁷, V. Moeller ²⁷, K. Mönig ⁴¹, N. Möser ²⁰, S. Mohapatra ¹⁴⁸, T. Moa ^{146a, 146b}, P. Mockett ¹³⁸, S. Moed ⁵⁷, V. Moeller ²⁷, K. Mönig ⁴¹, N. Möser ²⁰, S. Mohapatra ¹⁴⁸, W. Mohr ⁴⁸, S. Mohrdieck-Möck ⁹⁹, A.M. Moisseev ^{128,*}, R. Moles-Valls ¹⁶⁷, J. Molina-Perez ²⁹, J. Monk ⁷⁷, E. Monnier ⁸³, S. Montesano ^{89a,89b}, F. Monticelli ⁷⁰, S. Monzani ^{19a,19b}, R.W. Moore ², G.F. Moorhead ⁸⁶, C. Mora Herrera ⁴⁹, A. Moraes ⁵³, N. Morange ¹³⁶, J. Morel ⁵⁴, G. Morello ^{36a,36b}, D. Moreno ⁸¹, M. Moreno Llácer ¹⁶⁷, P. Morettini ^{50a}, M. Morii ⁵⁷, J. Morin ⁷⁵, Y. Morita ⁶⁶, A.K. Morley ²⁹, G. Mornacchi ²⁹, S.V. Morozov ⁹⁶, J.D. Morris ⁷⁵, L. Morvaj ¹⁰¹, H.G. Moser ⁹⁹, M. Mosidze ⁵¹, J. Moss ¹⁰⁹, R. Mount ¹⁴³, E. Mountricha ¹³⁶, S.V. Mouraviev ⁹⁴, E.J.W. Moyse ⁸⁴, M. Mudrinic ^{12b}, F. Mueller ^{58a}, J. Mueller ¹²³, K. Mueller ²⁰, T.A. Müller ⁹⁸, D. Muenstermann ²⁹, A. Muir ¹⁶⁸, Y. Munwes ¹⁵³, W.J. Murray ¹²⁹, I. Mussche ¹⁰⁵, E. Musto ^{102a,102b}, A.G. Myagkov ¹²⁸, M. Myska ¹²⁵, J. Nadal ¹¹,

161

K. Nagai ¹⁶⁰, K. Nagano ⁶⁶, Y. Nagasaka ⁶⁰, A.M. Nairz ²⁹, Y. Nakahama ²⁹, K. Nakamura ¹⁵⁵, I. Nakano ¹¹⁰, G. Nanava ²⁰, A. Napier ¹⁶¹, M. Nash ^{77,c}, N.R. Nation ²¹, T. Nattermann ²⁰, T. Naumann ⁴¹, G. Navarro ¹⁶², H.A. Neal⁸⁷, E. Nebot⁸⁰, P.Yu. Nechaeva⁹⁴, A. Negri^{119a,119b}, G. Negri²⁹, S. Nektarijevic⁴⁹, S. Nelson¹⁴³, T.K. Nelson¹⁴³, S. Nemecek¹²⁵, P. Nemethy¹⁰⁸, A.A. Nepomuceno^{23a}, M. Nessi^{29,t}, S.Y. Nesterov¹²¹, T.K. Nelson ¹⁴³, S. Nemecek ¹²⁵, P. Nemethy ¹⁰⁸, A.A. Nepomuceno ^{23a}, M. Nessi ^{29,t}, S.Y. Nesterov ¹²¹,
M.S. Neubauer ¹⁶⁵, A. Neusiedl ⁸¹, R.M. Neves ¹⁰⁸, P. Nevski ²⁴, P.R. Newman ¹⁷, V. Nguyen Thi Hong ¹³⁶,
R.B. Nickerson ¹¹⁸, R. Nicolaidou ¹³⁶, L. Nicolas ¹³⁹, B. Nicquevert ²⁹, F. Niedercorn ¹¹⁵, J. Nielsen ¹³⁷,
T. Niinikoski ²⁹, N. Nikiforou ³⁴, A. Nikiforov ¹⁵, V. Nikolaenko ¹²⁸, K. Nikolaev ⁶⁵, I. Nikolic-Audit ⁷⁸,
K. Nikolopoulos ²⁴, H. Nilsen ⁴⁸, P. Nilsson ⁷, Y. Ninomiya ¹⁵⁵, A. Nisati ^{132a}, T. Nishiyama ⁶⁷,
R. Nisius ⁹⁹, L. Nodulman ⁵, M. Nomachi ¹¹⁶, I. Nomidis ¹⁵⁴, M. Nordberg ²⁹, B. Nordkvist ^{146a,146b},
P.R. Norton ¹²⁹, J. Novakova ¹²⁶, M. Nozaki ⁶⁶, M. Nožička ⁴¹, L. Nozka ¹¹³, I.M. Nugent ^{159a},
A.-E. Nuncio-Quiroz ²⁰, G. Nunes Hanninger ⁸⁶, T. Nunnemann ⁹⁸, E. Nurse ⁷⁷, T. Nyman ²⁹, B.J. O'Brien ⁴⁵,
S.W. O'Neale ^{17,*}, D.C. O'Neil ¹⁴², V. O'Shea ⁵³, F.G. Oakham ^{28,e}, H. Oberlack ⁹⁹, J. Ocariz ⁷⁸, A. Ochi ⁶⁷,
S. Oda ¹⁵⁵, S. Odaka ⁶⁶, J. Odier ⁸³, H. Ogren ⁶¹, A. Oh ⁸², S.H. Oh ⁴⁴, C.C. Ohm ^{146a,146b}, T. Ohshima ¹⁰¹,
H. Ohshita ¹⁴⁰, T.K. Ohska ⁶⁶, T. Ohsugi ⁵⁹, S. Okada ⁶⁷, H. Okawa ¹⁶³, Y. Okumura ¹⁰¹, T. Okuyama ¹⁵⁵,
M. Olcese ^{50a}, A.G. Olchevski ⁶⁵, M. Oliveira ^{124a,h}, D. Oliveira Damazio ²⁴, E. Oliver Garcia ¹⁶⁷,
D. Olivito ¹²⁰, A. Olszewski ³⁸, J. Olszowska ³⁸, C. Omachi ⁶⁷, A. Onofre ^{124a,u}, P.U.E. Onyisi ³⁰,
C.J. Oram ^{159a}, M.J. Oreglia ³⁰, Y. Oren ¹⁵³, D. Orestano ^{134a,134b}, I. Orlov ¹⁰⁷, C. Oropeza Barrera ⁵³,
R.S. Orr ¹⁵⁸, B. Osculati ^{50a,50b}, R. Ospanov ¹²⁰, C. Osuna ¹¹, G. Otero y Garzon ²⁶, J.P. Ottersbach ¹⁰⁵,
M. Ouchrif ^{135d}, F. Ould-Saada ¹¹⁷, A. Ouraou ¹³⁶, Q. Ouyang ^{32a}, M. Owen ⁸², S. Owen ¹³⁹, V.E. Ozcan ^{18a},
N. Ozturk ⁷, A. Pachec N. Ozturk⁷, A. Pacheco Pages¹¹, C. Padilla Aranda¹¹, S. Pagan Griso¹⁴, E. Paganis¹³⁹, F. Paige²⁴, K. Pajchel¹¹⁷, C.P. Paleari⁶, S. Palestini²⁹, D. Pallin³³, A. Palma^{124a,b}, J.D. Palmer¹⁷, Y.B. Pan¹⁷², E. Panagiotopoulou⁹, B. Panes^{31a}, N. Panikashvili⁸⁷, S. Panitkin²⁴, D. Pantea^{25a}, M. Panuskova¹²⁵, V. Paolone ¹²³, A. Papadelis ^{146a}, Th.D. Papadopoulou ⁹, A. Paramonov ⁵, W. Park ^{24,v}, M.A. Parker ²⁷, F. Parodi ^{50a,50b}, J.A. Parsons ³⁴, U. Parzefall ⁴⁸, E. Pasqualucci ^{132a}, A. Passeri ^{134a}, F. Pastore ^{134a,134b}, Fr. Pastore ²⁹, G. Pásztor ^{49,w}, S. Pataraia ¹⁷², N. Patel ¹⁵⁰, J.R. Pater ⁸², S. Patricelli ^{102a,102b}, T. Pauly ²⁹, M. Pecsy ^{144a}, M.I. Pedraza Morales ¹⁷², S.V. Peleganchuk ¹⁰⁷, H. Peng ^{32b}, R. Pengo ²⁹, A. Penson ³⁴, J. Penwell ⁶¹, M. Perantoni ^{23a}, K. Perez ^{34,x}, T. Perez Cavalcanti ⁴¹, E. Perez Codina ¹¹, M.T. Pórez Carría, Fatagi ¹⁶⁷, W. Parge Pagla ³⁴, L. Parist ⁸⁹, ^{89b}, W. P. 200, p. 4, ^{72c}, M.T. Pérez García-Estañ¹⁶⁷, V. Perez Reale³⁴, L. Perini^{89a,89b}, H. Pernegger²⁹, R. Perrino^{72a}, P. Perrodo⁴, M.T. Pérez García-Estañ ¹⁶⁷, V. Perez Reale ³⁴, L. Perini ^{89a,89b}, H. Pernegger ²⁹, R. Perrino ^{72a}, P. Perrodo⁴, S. Persembe ^{3a}, V.D. Peshekhonov ⁶⁵, B.A. Petersen ²⁹, J. Petersen ²⁹, T.C. Petersen ³⁵, E. Petit ⁸³, A. Petridis ¹⁵⁴, C. Petridou ¹⁵⁴, E. Petrolo ^{132a}, F. Petrucci ^{134a,134b}, D. Petschull ⁴¹, M. Petteni ¹⁴², R. Pezoa ^{31b}, A. Phan ⁸⁶, A.W. Phillips ²⁷, P.W. Phillips ¹²⁹, G. Piacquadio ²⁹, E. Piccaro ⁷⁵, M. Piccinini ^{19a,19b}, A. Pickford ⁵³, S.M. Piec ⁴¹, R. Piegaia ²⁶, J.E. Pilcher ³⁰, A.D. Pilkington ⁸², J. Pina ^{124a,b}, M. Pinamonti ^{164a,164c}, A. Pinder ¹¹⁸, J.L. Pinfold ², J. Ping ^{32c}, B. Pinto ^{124a,b}, O. Pirotte ²⁹, C. Pizio ^{89a,89b}, R. Placakyte ⁴¹, M. Plamondon ¹⁶⁹, W.G. Plano ⁸², M.-A. Pleier ²⁴, A.V. Pleskach ¹²⁸, A. Poblaguev ²⁴, S. Poddar ^{58a}, F. Podlyski ³³, L. Poggioli ¹¹⁵, T. Poghosyan ²⁰, M. Pohl ⁴⁹, F. Polci ⁵⁵, G. Polesello ^{119a}, A. Policicchio ¹³⁸, A. Polini ^{19a}, J. Poll ⁷⁵, V. Polychronakos ²⁴, D.M. Pomarede ¹³⁶, D. Pomeroy ²², K. Pommès ²⁹, L. Pontecorvo ^{132a}, B.G. Pope ⁸⁸, G.A. Popeneciu ^{25a}, D.S. Popovic ^{12a}, A. Poppleton ²⁹, X. Portell Bueso ²⁹, R. Porter ¹⁶³, C. Posch ²¹, G.E. Pospelov ⁹⁹, S. Pospisil ¹²⁷, I.N. Potrap ⁹⁹, C.J. Potter ¹⁴⁹, C.T. Potter ¹¹⁴, G. Poulard ²⁹, I. Poveda ¹⁷², R. Prabhu ⁷⁷, P. Pralavorio ⁸³, S. Prasad ⁵⁷, R. Pravahan ⁷, X. Portell Bueso²⁵, R. Porter¹⁰⁵, C. Posch²⁷, G.E. Pospelov³⁵, S. Pospisli¹²⁷, I.N. Potrap³⁵, C.J. Potter¹¹⁸, C.T. Potter¹¹⁴, G. Poulard²⁹, J. Poveda¹⁷², R. Prabhu⁷⁷, P. Pralavorio⁸³, S. Prasad⁵⁷, R. Pravahan⁷, S. Prell⁶⁴, K. Pretzl¹⁶, L. Pribyl²⁹, D. Price⁶¹, L.E. Price⁵, M.J. Price²⁹, P.M. Prichard⁷³, D. Prieur¹²³, M. Primavera^{72a}, K. Prokofiev¹⁰⁸, F. Prokoshin^{31b}, S. Protopopescu²⁴, J. Proudfoot⁵, X. Prudent⁴³, H. Przysiezniak⁴, S. Psoroulas²⁰, E. Ptacek¹¹⁴, E. Pueschel⁸⁴, J. Purdham⁸⁷, M. Purohit^{24,v}, P. Puzo¹¹⁵, Y. Pylypchenko¹¹⁷, J. Qian⁸⁷, Z. Qian⁸³, Z. Qin⁴¹, A. Quadt⁵⁴, D.R. Quarrie¹⁴, W.B. Quayle¹⁷², F. Quinonez^{31a}, M. Raas¹⁰⁴, V. Radescu^{58b}, B. Radics²⁰, T. Rador^{18a}, F. Ragusa^{89a,89b}, G. Rahal¹⁷⁷, A.M. Rabimi¹⁰⁹, D. Rabm²⁴, S. Rajagopalan²⁴, M. Rammensee⁴⁸, M. Rammes¹⁴¹, M. Ramstedt^{146a,146b} A.M. Rahimi¹⁰⁹, D. Rahm²⁴, S. Rajagopalan²⁴, M. Rammensee⁴⁸, M. Rammens¹⁴¹, M. Ramstedt ^{146a, 146b}, A.S. Randle-Conde³⁹, K. Randrianarivony²⁸, P.N. Ratoff⁷¹, F. Rauscher⁹⁸, E. Rauter⁹⁹, M. Raymond²⁹, A.S. Kalule-Conde⁻⁻, K. Kalulianivony⁻, P.N. Katon⁻, F. Kauscher⁻, E. Kauter⁻, M. Kaymond⁻ A.L. Read ¹¹⁷, D.M. Rebuzzi^{119a,119b}, A. Redelbach¹⁷³, G. Redlinger²⁴, R. Reece¹²⁰, K. Reeves⁴⁰, A. Reichold ¹⁰⁵, E. Reinherz-Aronis¹⁵³, A. Reinsch¹¹⁴, I. Reisinger⁴², D. Reljic^{12a}, C. Rembser²⁹, Z.L. Ren¹⁵¹, A. Renaud¹¹⁵, P. Renkel³⁹, M. Rescigno^{132a}, S. Resconi^{89a}, B. Resende¹³⁶, P. Reznicek⁹⁸, R. Rezvani¹⁵⁸, A. Richards⁷⁷, R. Richter⁹⁹, E. Richter-Was^{38,y}, M. Ridel⁷⁸, S. Rieke⁸¹, M. Rijpstra¹⁰⁵, M. Rijssenbeek¹⁴⁸, A. Rimoldi^{119a,119b}, L. Rinaldi^{19a}, R.R. Rios³⁹, I. Riu¹¹, G. Rivoltella^{89a,89b}, F. Rizatdinova¹¹², E. Rizvi⁷⁵, S.H. Robertson^{85, j}, A. Robichaud-Veronneau⁴⁹, D. Robinson²⁷,

<page-header> G. Stoicea^{25a}, S. Stonjek⁹⁹, P. Strachota¹²⁶, A.R. Stradling⁷, A. Straessner⁴³, J. Strandberg¹⁴⁷, S. Strandberg^{146a, 146b}, A. Strandlie¹¹⁷, M. Strang¹⁰⁹, E. Strauss¹⁴³, M. Strauss¹¹¹, P. Strizenec^{144b},

163

R. Ströhmer¹⁷³, D.M. Strom¹¹⁴, J.A. Strong^{76,*}, R. Stroynowski³⁹, J. Strube¹²⁹, B. Stugu¹³, I. Stumer^{24,*}, J. Stupak¹⁴⁸, P. Sturm¹⁷⁴, D.A. Soh^{151,q}, D. Su¹⁴³, H.S. Subramania², A. Succurro¹¹, Y. Sugaya¹¹⁶, T. Sugimoto¹⁰¹, C. Suhr¹⁰⁶, K. Suita⁶⁷, M. Suk¹²⁶, V.V. Sulin⁹⁴, S. Sultansoy^{3d}, T. Sumida²⁹, X. Sun⁵⁵, J.E. Sundermann⁴⁸, K. Suruliz¹³⁹, S. Sushkov¹¹, G. Susinno^{36a,36b}, M.R. Sutton¹⁴⁹, Y. Suzuki⁶⁶, J.E. Sundermann⁴⁸, K. Suruliz¹³⁹, S. Sushkov¹¹, G. Susinno^{50a,500}, M.R. Sutton¹⁴⁰, Y. Suzuki⁶⁷, M. Svatos¹²⁵, Yu.M. Sviridov¹²⁸, S. Swedish¹⁶⁸, I. Sykora^{144a}, T. Sykora¹²⁶, B. Szeless²⁹, J. Sánchez¹⁶⁷, D. Ta¹⁰⁵, K. Tackmann⁴¹, A. Taffard¹⁶³, R. Tafirout^{159a}, A. Taga¹¹⁷, N. Taiblum¹⁵³, Y. Takahashi¹⁰¹, H. Takai²⁴, R. Takashima⁶⁹, H. Takeda⁶⁷, T. Takeshita¹⁴⁰, M. Talby⁸³, A. Talyshev¹⁰⁷, M.C. Tamsett²⁴, J. Tanaka¹⁵⁵, R. Tanaka¹¹⁵, S. Tanaka¹³¹, S. Tanaka⁶⁶, Y. Tanaka¹⁰⁰, K. Tani⁶⁷, N. Tanoury⁸³, G.P. Tappern²⁹, S. Tapprogge⁸¹, D. Tardif¹⁵⁸, S. Tarem¹⁵², F. Tarrade²⁸, G.F. Tartarelli^{89a}, P. Tas¹²⁶, M. Tasevsky¹²⁵, E. Tassi^{36a,36b}, M. Tatarkhanov¹⁴, C. Taylor⁷⁷, F.E. Taylor⁹², G.N. Taylor⁸⁶, W. Taylor^{159b}, M. Teinturier¹¹⁵, M. Teixeira Dias Castanheira⁷⁵, P. Teixeira-Dias⁷⁶, K.K. Temming⁴⁸, H. Tava Kata²⁹, D.K. Tanaka²⁹, D.K. Tarrada⁶⁶, K. Tarrachi¹⁵⁵, I. Tarrachi⁸⁰, M. Terwort^{41,9}, M. Testa⁴⁷ W. Taylor ¹⁰⁰⁵, M. Teintumer ¹⁰⁵, M. Teixella Dias Castalinella ¹⁰⁵, P. Teixella-Dias ¹⁰⁵, K.K. Teinling ¹⁰⁵, H. Ten Kate ²⁹, P.K. Teng ¹⁵¹, S. Terada ⁶⁶, K. Terashi ¹⁵⁵, J. Terron ⁸⁰, M. Terwort ^{41,o}, M. Testa ⁴⁷, R.J. Teuscher ^{158,j}, J. Thadome ¹⁷⁴, J. Therhaag ²⁰, T. Theveneaux-Pelzer ⁷⁸, M. Thioye ¹⁷⁵, S. Thoma ⁴⁸, J.P. Thomas ¹⁷, E.N. Thompson ⁸⁴, P.D. Thompson ¹⁷, P.D. Thompson ¹⁵⁸, A.S. Thompson ⁵³, E. Thomson ¹²⁰, M. Thomson ²⁷, R.P. Thun ⁸⁷, F. Tian ³⁴, T. Tic ¹²⁵, V.O. Tikhomirov ⁹⁴, Y.A. Tikhonov ¹⁰⁷, M. Thomson²⁷, R.P. Thun⁶⁷, F. Han⁵⁷, T. Tic¹²⁵, V.O. Tikhomirov⁵⁷, Y.A. Tikhonov¹⁶⁷, C.J.W.P. Timmermans¹⁰⁴, P. Tipton¹⁷⁵, F.J. Tique Aires Viegas²⁹, S. Tisserant⁸³, J. Tobias⁴⁸, B. Toczek³⁷, T. Todorov⁴, S. Todorova-Nova¹⁶¹, B. Toggerson¹⁶³, J. Tojo⁶⁶, S. Tokár^{144a}, K. Tokunaga⁶⁷, K. Tokushuku⁶⁶, K. Tollefson⁸⁸, M. Tomoto¹⁰¹, L. Tompkins¹⁴, K. Toms¹⁰³, G. Tong^{32a}, A. Tonoyan¹³, C. Topfel¹⁶, N.D. Topilin⁶⁵, I. Torchiani²⁹, E. Torrence¹¹⁴, H. Torres⁷⁸, E. Torró Pastor¹⁶⁷, J. Toth^{83,w}, F. Touchard⁸³, D.R. Tovey¹³⁹, D. Traynor⁷⁵, T. Trefzger¹⁷³, L. Tremblet²⁹, A. Tricoli²⁹, I.M. Trigger^{159a}, S. Trincaz-Duvoid⁷⁸, T.N. Trinh⁷⁸, M.F. Tripiana⁷⁰, W. Trischuk¹⁵⁸, A. Trivedi^{24,v}, B. Trocmé⁵⁵, C. Troncon^{89a}, M. Trottier-McDonald¹⁴², A. Trzupek³⁸, C. Tsarouchas²⁹, J.C.-L. Tseng¹¹⁸, M. Tsiakiris¹⁰⁵, C. Troncon⁸⁹⁴, M. Trottier-McDonald¹⁴², A. Trzupek³⁸, C. Tsarouchas²⁹, J.C.-L. Tseng¹¹⁸, M. Tsiakiris¹⁰⁵, P.V. Tsiareshka⁹⁰, D. Tsionou⁴, G. Tsipolitis⁹, V. Tsiskaridze⁴⁸, E.G. Tskhadadze⁵¹, I.I. Tsukerman⁹⁵, V. Tsulaia¹⁴, J.-W. Tsung²⁰, S. Tsuno⁶⁶, D. Tsybychev¹⁴⁸, A. Tua¹³⁹, J.M. Tuggle³⁰, M. Turala³⁸, D. Turecek¹²⁷, I. Turk Cakir^{3e}, E. Turlay¹⁰⁵, R. Turra^{89a,89b}, P.M. Tuts³⁴, A. Tykhonov⁷⁴, M. Tylmad^{146a,146b}, M. Tyndel¹²⁹, H. Tyrvainen²⁹, G. Tzanakos⁸, K. Uchida²⁰, I. Ueda¹⁵⁵, R. Ueno²⁸, M. Ugland¹³, M. Uhlenbrock²⁰, M. Uhrmacher⁵⁴, F. Ukegawa¹⁶⁰, G. Unal²⁹, D.G. Underwood⁵, A. Undrus²⁴, G. Unel¹⁶³, Y. Unno⁶⁶, D. Urbaniec³⁴, E. Urkovsky¹⁵³, P. Urrejola^{31a}, G. Usai⁷, M. Uslenghi^{119a,119b}, L. Vacavant⁸³, V. Vacek¹²⁷, B. Vachon⁸⁵, S. Vahsen¹⁴, J. Valenta¹²⁵, P. Valente^{132a}, S. Valentinetti^{19a,19b}, S. Valkar¹²⁶, E. Valladolid Gallego¹⁶⁷, S. Vallecorsa¹⁵², J.A. Valls Ferrer¹⁶⁷, H. van der Graaf¹⁰⁵, E. van der Kraaij¹⁰⁵, R. Van Der Leeuw¹⁰⁵, E. van der Poel¹⁰⁵, D. van der Ster²⁹, B. Van Eijk¹⁰⁵, N. van Eldik⁸⁴, P. van Gemmeren⁵, Z. van Kesteren¹⁰⁵, L. van Vulpen¹⁰⁵, W. Vandelli²⁹ H. Van der Graat Co., E. Van der Kraal Co., R. Van Der Leeuw Co., E. Van der Poer Co., D. Van der Ster Co., B. Van der Ster Co., D. Van der Ster Co., B. Van Eijk ¹⁰⁵, N. van Eldik ⁸⁴, P. van Gemmeren ⁵, Z. van Kesteren ¹⁰⁵, I. van Vulpen ¹⁰⁵, W. Vandelli ²⁹, G. Vandoni ²⁹, A. Vaniachine ⁵, P. Vankov ⁴¹, F. Vannucci ⁷⁸, F. Varela Rodriguez ²⁹, R. Vari ^{132a}, E.W. Varnes ⁶, D. Varouchas ¹⁴, A. Vartapetian ⁷, K.E. Varvell ¹⁵⁰, V.I. Vassilakopoulos ⁵⁶, F. Vazeille ³³, G. Vegni ^{89a,89b}, J.J. Veillet ¹¹⁵, C. Vellidis ⁸, F. Veloso ^{124a}, R. Veness ²⁹, S. Veneziano ^{132a}, A. Ventura ^{72a,72b}, D. Ventura ¹³⁸, M. Venturi ⁴⁸, N. Venturi ¹⁶, V. Vercesi ^{119a}, M. Verducci ¹³⁸, W. Verkerke ¹⁰⁵, J.C. Vermeulen ¹⁰⁵, A. Vest ⁴³, M.C. Vetterli ^{142,e}, I. Vichou ¹⁶⁵, T. Vickey ^{145b,z}, C. U. Vin der Ster ^{19a}, ^{19b}, M. Ville ^{19a}, ^{19b}, M. Ville ^{19a}, ^{19b}, M. Ville ^{19a}, ^{19b}, G.H.A. Viehkerse, J.C. Verheulen V., A. Vest V., M.C. Vettern V., T. Vichou V., T. Vickey V., G.H.A. Viehhauser ¹¹⁸, S. Viel ¹⁶⁸, M. Villa ^{19a,19b}, M. Villaplana Perez ¹⁶⁷, E. Vilucchi ⁴⁷, M.G. Vincter ²⁸, E. Vinek ²⁹, V.B. Vinogradov ⁶⁵, M. Virchaux ^{136,*}, J. Virzi ¹⁴, O. Vitells ¹⁷¹, M. Viti ⁴¹, I. Vivarelli ⁴⁸, F. Vives Vaque ¹¹, S. Vlachos ⁹, M. Vlasak ¹²⁷, N. Vlasov ²⁰, A. Vogel ²⁰, P. Vokac ¹²⁷, G. Volpi ⁴⁷, M. Volpi ⁸⁶, G. Volpini ^{89a}, H. von der Schmitt ⁹⁹, J. von Loeben ⁹⁹, H. von Radziewski ⁴⁸, E. von Toerne ²⁰, V. Vorobel ¹²⁶, A.P. Vorobiev ¹²⁸, V. Vorwerk ¹¹, M. Vos ¹⁶⁷, R. Voss ²⁹, T.T. Voss ¹⁷⁴, J.H. Vossebeld ⁷³, N. Vranjes ^{12a}, M. Vranjes Milosavljevic¹⁰⁵, V. Vrba¹²⁵, M. Vreeswijk¹⁰⁵, T. Vu Anh⁸¹, R. Vuillermet²⁹, I. Vukotic¹¹⁵, W. Wagner¹⁷⁴, P. Wagner¹²⁰, H. Wahlen¹⁷⁴, J. Wakabayashi¹⁰¹, J. Walbersloh⁴², S. Walch⁸⁷, J. Walder⁷¹, R. Walker⁹⁸, W. Walkowiak¹⁴¹, R. Wall¹⁷⁵, P. Waller⁷³, C. Wang⁴⁴, H. Wang¹⁷², H. Wang^{32b,aa}, J. Wang¹⁵¹, J. Wang^{32d}, J.C. Wang¹³⁸, R. Wang¹⁰³, S.M. Wang¹⁵¹, A. Warburton⁸⁵, C.P. Ward²⁷, M. Warsinsky⁴⁸, P.M. Watkins¹⁷, A.T. Watson¹⁷, M.F. Watson¹⁷, G. Watts¹³⁸, S. Watts⁸², A.T. Waygh¹⁵⁰, P.M. Waygh⁷⁷, L. Weber⁴², M. Wabar¹²⁹, M.S. Micher¹⁶, P. Walter⁵⁴, A.P. Martin ¹¹⁸ A.T. Waugh ¹⁵⁰, B.M. Waugh ⁷⁷, J. Weber ⁴², M. Weber ¹²⁹, M.S. Weber ¹⁶, P. Weber ⁵⁴, A.R. Weidberg ¹¹⁸, P. Weigell ⁹⁹, J. Weingarten ⁵⁴, C. Weiser ⁴⁸, H. Wellenstein ²², P.S. Wells ²⁹, M. Wen⁴⁷, T. Wenaus ²⁴, S. Wendler ¹²³, Z. Weng ^{151,q}, T. Wengler ²⁹, S. Wenig ²⁹, N. Wermes ²⁰, M. Werner ⁴⁸, P. Werner ²⁹, M. Werth ¹⁶³, M. Wessels ^{58a}, C. Weydert ⁵⁵, K. Whalen ²⁸, S.J. Wheeler-Ellis ¹⁶³, S.P. Whitaker ²¹, A. White⁷, M.J. White⁸⁶, S.R. Whitehead¹¹⁸, D. Whiteson¹⁶³, D. Whittington⁶¹, F. Wicek¹¹⁵,

D. Wicke ¹⁷⁴, F.J. Wickens ¹²⁹, W. Wiedenmann ¹⁷², M. Wielers ¹²⁹, P. Wienemann ²⁰, C. Wiglesworth ⁷⁵, L.A.M. Wilk⁴⁸, P.A. Wijeratne ⁷⁷, A. Wildauer ¹⁶⁷, M.A. Wildt ^{41,o}, I. Wilhelm ¹²⁶, H.G. Wilkens ²⁹, J.Z. Will ⁹⁸, E. Williams ³⁴, H.H. Williams ¹²⁰, W. Willis ³⁴, S. Willocq ⁸⁴, J.A. Wilson ¹⁷, M.G. Wilson ¹⁴³, A. Wilson ⁸⁷, I. Wingerter-Seez ⁴, S. Winkelmann ⁴⁸, F. Winklmeier ²⁹, M. Wittgen ¹⁴³, M.W. Wolter ³⁸, H. Wolters ^{124a,h}, W.C. Wong ⁴⁰, G. Wooden ¹¹⁸, B.K. Wosiek ³⁸, J. Wotschack ²⁹, M.J. Woudstra ⁸⁴, K. Wraight ⁵³, C. Wright ⁵³, B. Wrona ⁷³, S.L. Wu ¹⁷², X. Wu ⁴⁹, Y. Wu ^{32b,ab}, E. Wulf ³⁴, R. Wunstorf ⁴², B.M. Wynne ⁴⁵, L. Xaplanteris ⁹, S. Xella ³⁵, S. Xie ⁴⁸, Y. Xie ^{32a}, C. Xu ^{32b,ac}, D. Xu ¹³⁹, G. Xu ^{32a}, B. Yabsley ¹⁵⁰, S. Yacoob ^{145b}, M. Yamada ⁶⁶, H. Yamaguchi ¹⁵⁵, A. Yamazoki ¹⁵⁵, Y. Yamazaki ⁶⁷, Z. Yan ²¹, H. Yang ⁸⁷, U.K. Yang ⁸², Y. Yang ⁶¹, Y. Yang ^{32a}, Z. Yang ^{146a,146b}, S. Yanush ⁹¹, W.-M. Yao ¹⁴, Y. Yao ⁶⁶, G. V. Ybeles Smit ¹³⁰, J. Ye ³⁹, S. Ye ²⁴, M. Yilmaz ^{3c}, R. Yoosoofmiya ¹²³, K. Yorita ¹⁷⁰, R. Yoshida ⁵, C. Young ¹⁴³, S. Youssef ²¹, D. Yu ²⁴, J. Yu ⁷, J. Yu ^{32c,ac}, L. Yuan ^{32a,ad}, A. Yurkewicz ¹⁴⁸, V.G. Zaets ¹²⁸, R. Zaidan ⁶³, A.M. Zaitsev ¹²⁸, Z. Zajacova ²⁹, Yo.K. Zalite ¹²¹, L. Zanello ^{132a,132b}, P. Zarzhitsky ³⁹, A. Zaytsev ¹⁰⁷, C. Zeitnitz ¹⁷⁴, M. Zeller ¹⁷⁵, M. Zeman ¹²⁵, A. Zemla ³⁸, C. Zendler ²⁰, O. Zenin ¹²⁸, T. Ženiš ¹⁴⁴⁴, Z. Zenonos ^{122a,122b}, S. Zenz ¹⁴, D. Zerwas ¹¹⁵, G. Zevi della Porta ⁵⁷, Z. Zhan ^{32d}, D. Zhang ^{32b,aa}, H. Zhang ⁸⁸, J. Zhang ⁵, X. Zhang ^{32d}, Z. Zhang ¹¹⁵, L. Zhao ¹⁰⁸, T. Zhao ¹³⁸, Z. Zhao ^{32b}, A. Zhemchugov ⁶⁵, S. Zheng ^{32a}, J. Zhong ^{151,ae}, B. Zhou ⁸⁷, N. Zhou ¹⁶³, Y. Zhou ¹⁵¹, C.G. Zhu ^{32d}, H. Zhu ⁴¹, J. Zhu ⁸⁷, Y. Zhu ¹⁷², X. Zhuang ⁹⁸, V. Zhuravlov ⁹⁹, D. Zieminska ⁶¹, R. Zimmermann ²⁰, S. Zimmermann ²⁰, S. Zi

- ³ (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupinar University, Kutahya; (c) Department of Physics, Gazi University, Ankara;
- ^(d) Division of Physics, TOBB University of Economics and Technology, Ankara; ^(e) Turkish Atomic Energy Authority, Ankara, Turkey
- ⁴ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
- ⁵ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
- ⁶ Department of Physics, University of Arizona, Tucson, AZ, United States
- ⁷ Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
- ⁸ Physics Department, University of Athens, Athens, Greece
- ⁹ Physics Department, National Technical University of Athens, Zografou, Greece
- ¹⁰ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ¹¹ Institut de Física d'Altes Energies and Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
- ¹² ^(a) Institute of Physics, University of Belgrade, Belgrade; ^(b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- ¹³ Department for Physics and Technology, University of Bergen, Bergen, Norway
- ¹⁴ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
- ¹⁵ Department of Physics, Humboldt University, Berlin, Germany
- ¹⁶ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
- ¹⁷ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
- 18 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep;
- ^(d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
- ¹⁹ ^(a) INFN Sezione di Bologna; ^(b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
- ²⁰ Physikalisches Institut, University of Bonn, Bonn, Germany
- ²¹ Department of Physics, Boston University, Boston, MA, United States
- ²² Department of Physics, Brandeis University, Waltham, MA, United States
- ²³ ^(a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ^(b) Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; ^(c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; ^(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
- ²⁴ Physics Department, Brookhaven National Laboratory, Upton, NY, United States
- 25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
- ²⁶ Departamento de Física. Universidad de Buenos Aires. Buenos Aires. Argentina
- ²⁷ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- ²⁸ Department of Physics, Carleton University, Ottawa, ON, Canada
- ²⁹ CERN, Geneva, Switzerland
- ³⁰ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
- ³¹ ^(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ^(b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile ³² ^(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ^(b) Department of Modern Physics, University of Science and Technology of China, Anhui;
- ^(c) Department of Physics, Nanjing University, Jiangsu; ^(d) High Energy Physics Group, Shandong University, Shandong, China
- 33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
- ³⁴ Nevis Laboratory, Columbia University, Irvington, NY, United States
- ³⁵ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
- ³⁶ ^(a) INFN Gruppo Collegato di Cosenza; ^(b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
- ³⁷ Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
- ³⁸ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
- ³⁹ Physics Department, Southern Methodist University, Dallas, TX, United States
- ⁴⁰ Physics Department, University of Texas at Dallas, Richardson, TX, United States
- ⁴¹ DESY, Hamburg and Zeuthen, Germany
- ⁴² Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
- ⁴³ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
- ⁴⁴ Department of Physics, Duke University, Durham, NC, United States

¹ University at Albany, Albany, NY, United States

² Department of Physics, University of Alberta, Edmonton, AB, Canada

⁴⁵ SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

⁴⁶ Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria

⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy

⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany

⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland

⁵⁰ ^(a)INFN Sezione di Genova; ^(b)Dipartimento di Fisica, Università di Genova, Genova, Italy

⁵¹ Institute of Physics and HEP Institute, Georgian Academy of Sciences and Tbilisi State University, Tbilisi, Georgia

⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

⁵³ SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

⁵⁵ Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

⁵⁶ Department of Physics, Hampton University, Hampton, VA, United States

⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States

58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, '(b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg;

^(c) ZITI Institut für Technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

⁵⁹ Faculty of Science, Hiroshima University, Hiroshima, Japan

⁶⁰ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

⁶¹ Department of Physics, Indiana University, Bloomington, IN, United States

62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

⁶³ University of Iowa, Iowa City, IA, United States

⁶⁴ Department of Physics and Astronomy, Iowa State University, Ames, IA, United States

⁶⁵ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

⁶⁶ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

⁶⁷ Graduate School of Science, Kobe University, Kobe, Japan

⁶⁸ Faculty of Science, Kyoto University, Kyoto, Japan

⁶⁹ Kyoto University of Education, Kyoto, Japan

⁷⁰ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

⁷¹ Physics Department, Lancaster University, Lancaster, United Kingdom

⁷² ^(a) INFN Sezione di Lecce; ^(b) Dipartimento di Fisica, Università del Salento, Lecce, Italy

⁷³ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

⁷⁴ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

⁷⁵ Department of Physics, Queen Mary University of London, London, United Kingdom

⁷⁶ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom

⁷⁷ Department of Physics and Astronomy, University College London, London, United Kingdom

⁷⁸ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

⁷⁹ Fysiska Institutionen, Lunds Universitet, Lund, Sweden

⁸⁰ Departamento de Fisica Teorica, C-15, Universidad Autonoma de Madrid, Madrid, Spain

⁸¹ Institut für Physik, Universität Mainz, Mainz, Germany

⁸² School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

⁸⁴ Department of Physics, University of Massachusetts, Amherst, MA, United States

⁸⁵ Department of Physics, McGill University, Montreal, QC, Canada

⁸⁶ School of Physics, University of Melbourne, Victoria, Australia

⁸⁷ Department of Physics, The University of Michigan, Ann Arbor, MI, United States

⁸⁸ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States

⁸⁹ ^(a) INFN Sezione di Milano; ^(b) Dipartimento di Fisica, Università di Milano, Milano, Italy

⁹⁰ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

⁹¹ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus

⁹² Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States

⁹³ Group of Particle Physics, University of Montreal, Montreal, QC, Canada

⁹⁴ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

⁹⁵ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

⁹⁶ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

⁹⁷ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

¹⁰⁰ Nagasaki Institute of Applied Science, Nagasaki, Japan

¹⁰¹ Graduate School of Science, Nagoya University, Nagoya, Japan
 ¹⁰² ^(a) INFN Sezione di Napoli; ^(b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy

¹⁰³ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States

¹⁰⁴ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

¹⁰⁵ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

¹⁰⁶ Department of Physics, Northern Illinois University, DeKalb, IL, United States

¹⁰⁷ Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia

¹⁰⁸ Department of Physics, New York University, New York, NY, United States

¹⁰⁹ Ohio State University, Columbus, OH, United States

¹¹⁰ Faculty of Science, Okayama University, Okayama, Japan

¹¹¹ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States

¹¹² Department of Physics, Oklahoma State University, Stillwater, OK, United States

¹¹³ Palacký University, RCPTM, Olomouc, Czech Republic

¹¹⁴ Center for High Energy Physics, University of Oregon, Eugene, OR, United States

¹¹⁵ LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France

¹¹⁶ Graduate School of Science, Osaka University, Osaka, Japan

¹¹⁷ Department of Physics, University of Oslo, Oslo, Norway

¹¹⁸ Department of Physics, Oxford University, Oxford, United Kingdom
¹¹⁹ (⁶) INFN Sezione di Pavia; ^(b) Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy

¹²⁰ Department of Physics, University of Pennsylvania, Philadelphia, PA, United States

¹²¹ Petersburg Nuclear Physics Institute, Gatchina, Russia

¹²² ^(a) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

 ¹²³ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
 ¹²⁴ ^(a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas – LIP, Lisboa, Portugal; ^(b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain

- ¹²⁵ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
- ¹²⁶ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
- ¹²⁷ Czech Technical University in Prague, Praha, Czech Republic
- ¹²⁸ State Research Center Institute for High Energy Physics, Protvino, Russia
- 129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
- ¹³⁰ Physics Department, University of Regina, Regina, SK, Canada
- ¹³¹ Ritsumeikan University, Kusatsu, Shiga, Japan
- ¹³² ^(a) INFN Sezione di Roma I; ^(b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
- ¹³³ ^(d) INFN Sezione di Roma Tor Vergata; ^(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
- ¹³⁴ ^(a) INFN Sezione di Roma Tre; ^(b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
- 135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; ^(c) Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Physique, B.P. 2390, Marrakech 40000; ^(d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ^(e) Faculté des Sciences, Université Mohammed V, Rabat, Morocco
- 136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
- ¹³⁷ Santa Cruz, Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
- ¹³⁸ Department of Physics, University of Washington, Seattle, WA, United States
- ¹³⁹ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- ¹⁴⁰ Department of Physics, Shinshu University, Nagano, Japan
- ¹⁴¹ Fachbereich Physik, Universität Siegen, Siegen, Germany
- ¹⁴² Department of Physics, Simon Fraser University, Burnaby, BC, Canada
- ¹⁴³ SLAC National Accelerator Laboratory, Stanford, CA, United States
- 144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
- 145 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
- ¹⁴⁶ ^(a) Department of Physics, Stockholm University; ^(b) The Oskar Klein Centre, Stockholm, Sweden
- ¹⁴⁷ Physics Department, Royal Institute of Technology, Stockholm, Sweden
- ¹⁴⁸ Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, United States
- ¹⁴⁹ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
- ¹⁵⁰ School of Physics, University of Sydney, Sydney, Australia
- ¹⁵¹ Institute of Physics, Academia Sinica, Taipei, Taiwan
- ¹⁵² Department of Physics, Technion Israel Inst. of Technology, Haifa, Israel
- ¹⁵³ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ¹⁵⁴ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- ¹⁵⁵ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
- ¹⁵⁶ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- ¹⁵⁷ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- ¹⁵⁸ Department of Physics, University of Toronto, Toronto, ON, Canada
- 159 (a) TRIUMF, Vancouver, BC; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
- ¹⁶⁰ Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
- ¹⁶¹ Science and Technology Center, Tufts University, Medford, MA, United States
- ¹⁶² Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
- ¹⁶³ Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
- ¹⁶⁴ ^(a) INFN Gruppo Collegato di Udine; ^(b) ICTP, Trieste; ^(c) Dipartimento di Fisica, Università di Udine, Udine, Italy
- ¹⁶⁵ Department of Physics, University of Illinois, Urbana, IL, United States
- ¹⁶⁶ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
- 167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingenierá Electrónica and Instituto de Microelectrónica de
- Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
- ¹⁶⁸ Department of Physics, University of British Columbia, Vancouver, BC, Canada
- ¹⁶⁹ Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- ¹⁷⁰ Waseda University, Tokyo, Japan
- ¹⁷¹ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- ¹⁷² Department of Physics, University of Wisconsin, Madison, WI, United States
- ¹⁷³ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- ¹⁷⁴ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- ¹⁷⁵ Department of Physics, Yale University, New Haven, CT, United States
- ¹⁷⁶ Yerevan Physics Institute, Yerevan, Armenia
- ¹⁷⁷ Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
- ^a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal.
- ^b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
- Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
- ^d Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
- ^e Also at TRIUMF, Vancouver, BC, Canada.
- ^f Also at Department of Physics, California State University, Fresno, CA, United States.
- Also at Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland.
- ^h Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
- ⁱ Also at Università di Napoli Parthenope, Napoli, Italy.
- ^j Also at Institute of Particle Physics (IPP), Canada,
- ^k Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
- Also at Louisiana Tech University, Ruston, LA, United States. Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
- Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
- Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
- ^p Also at Manhattan College, New York, NY, United States.

166

- ^q Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
- Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan. c
- Also at High Energy Physics Group, Shandong University, Shandong, China. t
- Also at Section de Physique, Université de Genève, Geneva, Switzerland.
- Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal. ν
- Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States. w
- Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
- Also at California Institute of Technology, Pasadena, CA, United States. у
- Also at Institute of Physics, Jagiellonian University, Krakow, Poland. z
- Also at Department of Physics, Oxford University, Oxford, United Kingdom.
- ^{aa} Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
- ab Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
- ac Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.
- ad Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
- ae Also at Department of Physics, Nanjing University, Jiangsu, China.
- * Deceased.