Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for first generation scalar leptoquarks in *pp* collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector $\stackrel{\text{\tiny{$\pm$}}}{=}$

ATLAS Collaboration*

ARTICLE INFO

Article history: Received 20 December 2011 Received in revised form 1 February 2012 Accepted 2 February 2012 Available online 7 February 2012 Editor: H. Weerts

ABSTRACT

We report a search for first generation scalar leptoquarks using 1.03 fb⁻¹ of proton–proton collisions data produced by the Large Hadron Collider at $\sqrt{s} = 7$ TeV and recorded by the ATLAS experiment. Leptoquarks are sought via their decay into an electron or neutrino and a quark, producing events with two oppositely charged electrons and at least two jets, or events with an electron, missing transverse momentum and at least two jets. Control data samples are used to validate background predictions from Monte Carlo simulation. In the signal region, the observed event yields are consistent with the background expectations. We exclude at 95% confidence level the production of first generation scalar leptoquark with masses $m_{LQ} < 660 (607)$ GeV when assuming the branching fraction of a leptoquark to a charged lepton is equal to 1.0 (0.5).

© 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

Similarities between leptons and quarks in the Standard Model (SM) suggest that they might be a part of some symmetry at energy scales above the electroweak symmetry breaking scale. In this type of symmetry, transitions between leptons and quarks, mediated by a new type of gauge boson, a leptoquark (LQ), may occur. LQs are putative color-triplet bosons with spin 0 or 1, and fractional electric charge [1]. They are predicted in many extensions of the SM, such as Grand Unification models, and possess both guark and lepton quantum numbers. The Yukawa coupling $\lambda_{LO} = l - q$ of a leptoquark to a lepton and a quark, and the branching ratio (β) to a charged lepton, are model dependent. In *pp* collisions, if λ_{LQ-l-q} is of the order of the electroweak coupling strength. leptoquarks are predominantly produced in pairs via the strong interaction. At the LHC, the pair production cross section is dominated by gluon fusion for LQ masses $m_{L0} \lesssim 1$ TeV, whereas at higher masses it is dominated by quark-antiquark annihilation. Under these assumptions, the production rate for scalar LQs depends only on the known QCD coupling constant and the unknown LQ mass, and has been calculated at up to next-to-leading order. It is usually assumed that leptoquarks only couple to one generation of SM isospin multiplet to accommodate experimental constraints on flavor-changing neutral currents, and lepton and baryon number violation [2]. Consequently, they are classified as first, second, or third generation according to the fermion generation to which they couple [3]. Lower mass limits on the first generation LQs al-

* E-mail address: atlas.publications@cern.ch.

ready exist from searches of LQ produced in pairs at the LHC [4,5], Tevatron [6] and LEP [7]. Limits on single LQ production come from HERA [8] and other experiments [9].

In this Letter we present updated results on a search for the pair production of first generation scalar leptoquarks in pp collisions at $\sqrt{s} = 7$ TeV. The search is performed with a dataset corresponding to an integrated luminosity of 1.030 ± 0.035 fb⁻¹ [10] of data collected by the ATLAS detector at the LHC from March 2011 to July 2011. We search for leptoquarks in two different final states. In the first one both LQs decay into an electron and a quark, while in the second final state one of the LQs decays into an electron and a quark and the other LQ decays into an electron-neutrino and a quark. These result in two different experimental signatures. One such signature is the production of two electrons and two jets and the other one comprises one electron, two jets, and missing transverse momentum (the magnitude of which is denoted as E_{T}^{miss}). The results from the two final states are combined and presented in the m_{L0} versus β plane, where β is the branching ratio for a single LQ to decay into a charged lepton and a quark.

2. The ATLAS detector

The ATLAS detector [11] is a general-purpose particle detector with cylindrical geometry,¹ which consists of several subdetectors

 $[\]stackrel{\scriptscriptstyle \rm tr}{\scriptstyle =} \,$ © CERN for the benefit of the ATLAS Collaboration.

⁰³⁷⁰⁻²⁶⁹³ $\,$ © 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license. doi:10.1016/j.physletb.2012.02.004

¹ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and *z* axis coinciding with the axis of the beam pipe. The *x* axis points from the interaction point to the center of the LHC ring, and the *y* axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

surrounding the interaction point, and providing nearly 4π coverage in solid angle. The location of the interaction point and momenta of charged particles are determined by the multi-layer silicon pixel and strip detectors covering $|\eta| < 2.5$ in pseudorapidity η , and a transition radiation tracker extending to $|\eta| < 2.0$, which are inside a superconducting solenoid producing a field of 2 T. The tracking system is surrounded by a high-granularity liquid-argon (LAr) sampling electromagnetic calorimeter with coverage up to $|\eta| < 3.2$. An iron-scintillator tile hadronic calorimeter provides coverage in the range $|\eta| < 1.7$. In the end-cap and forward regions LAr calorimeters provide both electromagnetic and hadronic measurements and cover the region $1.5 < |\eta| < 4.9$. The muon spectrometer, consisting of precision tracking detectors and superconducting toroids, is located outside the calorimeters.

We perform the search in the data sample selected by a threelevel trigger requiring at least one high transverse energy ($E_{\rm T}$) electron. The trigger is fully efficient for electrons with $E_{\rm T}$ > 30 GeV, as measured in an inclusive $Z \rightarrow ee$ control sample [12].

3. Simulated samples

Samples of Monte Carlo (MC) events are used to devise selection criteria and validate background predictions. Background and signal samples are processed through the full ATLAS detector simulation based on GEANT4 [13], followed by the same reconstruction algorithms as used for collision data. The effects from in-time and out-of-time proton-proton collisions are included in the MC simulation. In the simulated samples, an event weight is applied to the average number of additional proton-proton collisions occurring in the same bunch crossing (event pile-up), to ensure that the number of interactions per bunch crossing, amounting to an average of 6, is well modeled.

The dominant backgrounds to the leptoquark signal include W and Z boson production in association with one or more jets, single and pair production of top quarks, QCD multi-jet (MJ) and diboson processes. The ALPGEN [14] generator is used for the simulation of the W, Z boson production in association with n partons. This program is interfaced to HERWIG [15] and JIMMY [16] to model parton showers and multiple parton interactions, respectively. The MLM [14] jet-parton matching scheme is used to form inclusive W/Z + jets MC samples. MC@NLO [17] is used to estimate single and pair production of top quarks. Diboson events are generated using HERWIG, and scaled to next-to-leading (NLO) cross section predictions [17,18].

Signal LQ samples are produced with PYTHIA [19] and normalized with NLO cross sections determined from Ref. [20] using CTEQ6.6 [21] parton distribution functions.

4. Object identification

This search is based on selecting events with a high $E_{\rm T}$ electron, two high $p_{\rm T}$ jets, and an additional electron or large $E_{\rm T}^{\rm miss}$. Electron candidates are reconstructed as energy deposits in the electromagnetic calorimeter. Electrons are required to have a shower profile consistent with that expected for this particle, and to have a track pointing to the energy deposit in the calorimeter. The pattern of the energy deposits on the first layer of the EM calorimeter is used to reject hadrons, while contamination from photon conversions is reduced by requiring a hit in the first layer of the pixel detector [22]. In addition to these criteria, we require electrons to have a transverse energy $E_{\rm T} > 30$ GeV and fall within a well instrumented region of the detector. Further rejection against hadrons is achieved by requiring the electron candidates to be isolated from additional energy deposits in the calorimeter by requiring that $E_{\rm T}^{0.2}/E_{\rm T} < 0.1$, where $E_{\rm T}^{0.2}$ is the transverse energy in a cone of radius $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ centered on the electron track, excluding the electron contribution, and corrected for the energy from event pile-up and the electron energy leakage inside the cone.

Jets are defined as localized energy deposits in the calorimeter and are reconstructed using the anti- k_t algorithm [23] with a distance parameter of 0.4 and by performing a four-vector sum over calorimeter clusters. Reconstructed jets are corrected for the noncompensating calorimeter response, upstream material and other effects by using p_{T^-} and η -dependent correction factors derived from MC and validated with test-beam and collision data [24]. We further require that jets satisfy $E_T > 30$ GeV, $|\eta| < 2.8$ and are separated from electrons passing the above selection within $\Delta R > 0.4$. Selected jets must also pass quality requirements to reject jets arising from electronic noise bursts, cosmic rays and beam background, originating mainly from beam-gas events and beam-halo events [25].

The presence of neutrinos is inferred from the missing transverse momentum \vec{p}_{T}^{miss} (and its magnitude E_{T}^{miss}) [26]. \vec{p}_{T}^{miss} is defined as the negative vector sum of the transverse momenta of reconstructed electrons, muons and jets, as well as calorimeter clusters not associated to reconstructed objects.

Corrections are made to the simulated samples to ensure a good description of the energy resolution and the trigger and reconstruction efficiencies. These are determined in control data samples and applied to both simulated background and signal samples. These corrections change the total expected yields by less than 2%.

5. Event selection

We define event selections to create samples with high signal and background acceptance. Events are selected to be consistent with the LQ $\overline{LQ} \rightarrow eeq\bar{q}/evq\bar{q}$ decays. In the eejj topology we require two electrons and at least two jets as defined in Section 4 and an invariant mass of the electron pair $m_{ee} > 40$ GeV. In the evjj topology, one electron, at least two jets and $E_T^{miss} > 30$ GeV are required, together with a requirement on the transverse mass of the electron and the \vec{p}_T^{miss} , $m_T = \sqrt{2\vec{p}_T^e \vec{p}_T^{miss}(1 - \cos(\Delta \phi))} >$ 40 GeV, where $\Delta \phi$ is the angle between the electron p_T and \vec{p}_T^{miss} . In addition, we require that $\Delta \phi(\text{jet}, \vec{p}_T^{miss}) > 4.5 \times (1 - E_T^{miss}/45 \text{ GeV})$ in the evjj channel for events with $E_T^{miss} < 45 \text{ GeV}$ to reduce residual contamination from MJ events. Events with additional identified electrons as defined in Section 4 or muons with $p_T > 30$ GeV and $|\eta| < 2.4$ are rejected.

After all the selection criteria are applied the signal acceptance is of 70% for a LQ signal of $m_{LQ} = 600$ GeV for both channels, but the sample is still dominated by background events.

6. Background determination

The MJ background estimate is derived directly from data, whereas MC samples are used to predict the other backgrounds. We verify the shape of the V + jets ($V = W^{\pm}$, Z) and top quark background prediction using control regions, which are defined to enhance either the V + jets or the top quark production contribution, while keeping a negligible LQ signal contamination. These control regions are also used to derive the final normalization of the V + jets and top quark backgrounds.

The V + jets and top quark control regions are defined by applying additional selection criteria on m_{ee} and m_{T} to the selected sample. The remaining signal contamination is reduced by applying an upper threshold to the summed transverse momentum in the event, S_{T} , defined as the scalar sum of the p_{T} of the two

Fig. 1. Data and SM background comparisons of the input *LLR* variables for the *eejj* channel. (a) Invariant mass of the two electrons in the event; (b) Average LQ mass resulting from the best (electron, jet) combinations in each event, and (c) S_T . The stacked distributions show the various background contributions, and data are indicated by the points with error bars. The 600 GeV LQ signal is also shown for $\beta = 1.0$. The solid line (band) in the lower plots shows the Gaussian statistical (statistical + systematic) significance of the difference between data and the prediction.

leading jets and the transverse energy of the two electrons in the ee_{jj} channel. In the S_T definition in the ev_{jj} channel, the second electron E_T is substituted by the E_T^{miss} .

In the *eejj* topology we define two control regions (i) Z + jets: formed by events with at least two jets and in which the two electrons are required to have an invariant mass within a Z mass window $81 < m_{ee} < 101$ GeV, and (ii) $t\bar{t}$: events with at least two jets and exactly one electron and one muon [27], defined as in Section 4. In the evjj topology we define three control regions (iii) W + 2 jets: events with exactly two jets, an electron and E_T^{miss} such that the transverse mass of the electron and the E_T^{miss} is in the region of the W Jacobian peak, $40 < m_T < 120$ GeV, and an $S_T < 225$ GeV requirement to limit the presence of signal events, (iv) W + 3 jets: as in (iii) but with three or more jets, and (v) $t\bar{t}$: events with at least 4 jets, where the thresholds on the first and second jets are raised to 50 GeV and 40 GeV, respectively.

To estimate the MJ background, we perform fits to the m_{ee} distribution in the *eejj* channel, and to the $E_{\rm T}^{\rm miss}$ distribution in the evjj channel. In these fits, the relative fraction of the MJ background is a free parameter. Templates for the MJ background distributions are derived from MJ enhanced samples, which are formed using electron candidates passing relaxed selection requirements

but failing the nominal electron identification criteria described in Section 4. The MJ enhanced samples are corrected to remove the residual contamination from real electrons. In the *eejj* channel, the fits are applied to the sample selected following the criteria of Section 5, as well as to control regions (i) and (ii), and the W + jets background is estimated together with the MJ background. In the *ev jj* channel, the fits are applied to the selected sample as well as to control regions (iii)–(v).

We observe 5615 data events in the *eejj* channel and 76855 data events in the *ev jj* channel, with SM expectations of 5600 \pm 1000 and 74000 \pm 11000, respectively. For $m_{LQ} = 600$ GeV, we expect 7.5 \pm 0.5 signal events in the *eejj* channel and 4.5 \pm 0.2 signal events in the *ev jj* channel. The aforementioned uncertainties fully account for (the dominant) systematic and statistical uncertainties.

7. Likelihood analysis

We use a likelihood ratio method to separate signal and SM background. The likelihoods are constructed separately for background (L_B) and signal (L_S) hypotheses from a set of discriminating variables as follows: $L_B \equiv \prod b_i(x_j)$, $L_S \equiv \prod s_i(x_j)$, where b_i , s_i are the probabilities of the *i*-th input variable from the normalized

Fig. 2. Data and SM background comparisons of the input *LLR* variables for the ev_{ij} channel. (a) Transverse mass of the electron and the E_T^{miss} in the event, (b) S_T , (c) LQ mass, and (d) LQ transverse masses. The stacked distributions show the various background contributions, and data are indicated by the points with error bars. The 600 GeV LQ signal is also shown for $\beta = 0.5$. The solid line (band) in the lower plots shows the Gaussian statistical (statistical + systematic) significance of the difference between data and the prediction.

summed background and signal distributions respectively, and x_j is the value of that variable for the *j*-th event in a given sample. Separate L_S distributions are created for several signal mass points, allowing mass-dependent optimization. Using the aforementioned quantities, a likelihood ratio is defined as $LLR = \log(L_S/L_B)$ and is used as the final variable to determine whether or not there is a LQ signal present in our data.

The following discriminating variables, selected to give the best separation between signal and background, are used. For the *eejj* channel, we use m_{ee} , $S_{\rm T} = E_{\rm T}^{\rm e1} + E_{\rm T}^{\rm e2} + p_{\rm T}^{\rm jet1} + p_{\rm T}^{\rm jet2}$ and the average invariant LQ mass \bar{m}_{LQ} . For the *evjj* topology, we use $m_{\rm T}(e, E_{\rm T}^{\rm miss})$, $S_{\rm T}$, the transverse LQ mass $m_{\rm T}^{LQ}$ (jet, $E_{\rm T}^{\rm miss}$) and the invariant LQ mass m_{LQ} (e, jet). To obtain the LQ masses, we calculate the invariant mass of the electron-jet system and the transverse mass of the $E_{\rm T}^{\rm miss}$ -jet system. Since the LQs are produced in pairs, there are two possible mass combinations for the electronjet and $E_{\rm T}^{\rm miss}$ -jet pairs, and the combination giving the smallest mass difference is used. In the *eejj* channel, two possible electronjet combinations arise from this procedure, and we take their average \bar{m}_{LQ} for the analysis. The discriminating variables are shown in Figs. 1 and 2 for the *eejj* and the *evjj* channels, respectively.

8. Systematic uncertainties

Systematic uncertainties affect both background normalizations and shapes of the input distributions into the *LLR*. We consider systematic uncertainties from a variety of sources. These are described as follows.

The jet energy scale (JES) and resolution (JER) uncertainties are considered independently, and applied by varying the JES (JER) within its uncertainty of 4% to 6.5% (14%) depending on the jet p_T and η [28,29] for all simulated events. These variations are also propagated to the E_T^{miss} in the ev jj channel. The resulting uncertainties for the $m_{LQ} = 600$ GeV signal and background are 5% (8%) and 11% for the *eejj* (ev jj) final state.

Systematic uncertainties on the electron energy scale (1.6%) and resolution (0.6%), and on the electron trigger, reconstruction and identification efficiencies are derived by varying the selection criteria defining the Drell–Yan control sample used for the various measurements [12]. In addition, a 1% uncertainty is included to account for the efficiency of the isolation requirement. They lead to total signal and background yield uncertainties of 8% and 5% (3.5%), respectively, for the *eejj* (ev jj) channel and for a signal of mass $m_{LQ} = 600$ GeV.

Fig. 3. *LLR* distributions for the *eejj* (a) and for the *evjj* (b) final states. The data are indicated with the points and the filled histograms show the SM background. The MJ background is estimated from data, while the other background contributions are obtained from simulated samples as described in the text. The LQ signal corresponding to a LQ mass of 600 GeV is indicated by a solid line, and is normalized assuming $\beta = 1.0$ (0.5) in the *eejj* (*evjj*) channel. The lowest bin corresponds to background events regions of the phase space for which no signal events are expected. The solid line (band) in the lower plots shows the Gaussian statistical (statistical + systematic) significance of the difference between data and the prediction.

The systematic uncertainty for the production model of V + jets is taken to be the largest difference between the nominal datadriven prediction using ALPGEN and that obtained by using SHERPA [30], giving an uncertainty of 1.5% and 3% for the *eejj* and the *ev jj* channels, respectively.

The systematic uncertainty for the $t\bar{t}$ production model is evaluated by comparing the yields between events generated with MC@NLO and those generated with various alternate samples. These include samples generated with POWHEG [31], a different top mass (170 GeV and 175 GeV instead of the nominal value equal to 172.5 GeV), and a different amount of initial and final state-radiation (ISR/FSR). The result is an uncertainty in the $t\bar{t}$ yield of 10% and 15% for the single electron and dielectron analyses, respectively.

Systematic uncertainties are determined for the MJ backgrounds by comparing results from alternative normalizations to those from the methods described earlier. The largest variation is taken, re-

Table 1

The predicted and observed yields in a signal enhanced region defined by requiring LLR > 0 for both channels. Background predictions are scaled as described in Section 6. The *eejj* (*ev jj*) channel signal yields are computed assuming $\beta = 1.0$ (0.5). Statistical and systematic uncertainties added in quadrature are shown.

Source	eejj Channel		ev jj Channel	
	400 GeV	600 GeV	400 GeV	600 GeV
W + jets	_	-	1500 ± 670	670 ± 210
Z + jets	98 ± 53	26 ± 14	45 ± 41	18 ± 19
tī	15 ± 9	4.6 ± 2.2	430 ± 180	150 ± 38
Single t	1.4 ± 0.9	0.7 ± 0.4	53 ± 19	23 ± 4
Dibosons	1.5 ± 0.8	0.7 ± 0.3	25 ± 11	11 ± 2
MJ	9.2 ± 4.5	2.3 ± 1.5	170 ± 35	75 ± 15
Total	120 ± 55	34 ± 14	2200 ± 690	950 ± 220
Data	82	22	2207	900
LQ	120 ± 8	7.5 ± 0.5	69 ± 4	4.5 ± 0.2

Fig. 4. 95% CL upper limit on the pair production cross section times branching ratio of the first generation leptoquarks for the *eejj* channel at $\beta = 1.0$ (a) and for the *ev jj* channel at $\beta = 0.5$ (b). The solid lines indicate the individual observed limits, while the expected limits are indicated by the dashed lines. The theory prediction is indicated by the dotted line, which includes the systematic uncertainties due to the choice of the PDF and due to the renormalization and factorization scales. The dark green (light yellow) solid band contains 68% (95%) of possible outcomes from pseudo-experiments in which the yield is Poisson-fluctuated around the background-only expectation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

sulting in an uncertainty of 20% and 28% in the MJ normalization for the ev jj and the eejj channels, respectively. An uncertainty of 3.7% [10] on the integrated luminosity is applied to both diboson and single top background yields, as well as to expected signal yields.

Finally, further uncertainties on the simulated background contributions originate from finite statistics in the MC samples used.

Fig. 5. 95% CL exclusion region resulting from the combination of the two channels shown in the β versus leptoquark mass plane. The shaded area indicates the D0 exclusion limit [6], while the thick dotted line indicates the CMS exclusion [4]. The dotted and dotted-dashed lines indicate the individual limits for the *eij* and the ev jj, respectively. The combined observed limit is indicated by the solid black line. The combined expected limit is indicated by the dashed line, together with the solid band containing 68% of possible outcomes from pseudo-experiments in which the yield is Poisson-fluctuated around the background-only expectation.

These range from 2%–9%, depending on the LQ mass under consideration. Additional signal uncertainties considered arise from the choice of the PDF, which results in an uncertainty on the signal acceptance of 1%–8% for LQ masses between 300 GeV and 700 GeV, and from ISR/FSR effects, resulting in an uncertainty of 2% for both channels.

9. Results

The LLR distributions for data, backgrounds and a LQ signal assuming $m_{L0} = 600$ GeV are shown in Fig. 3 for both channels. The observed and predicted event yields requiring LLR > 0 for the major background sources, as well as the expected signal, are shown in Table 1. We do not observe any excess of events at high LLR values where signal is expected, indicating no evidence of scalar LQ pair production. Given the absence of signal we determine 95% CL upper limits on the LQ pair production cross sections using a modified frequentist CL_s method based on a Poisson log-likelihood ratio statistical test [32,33]. Systematic and statistical uncertainties are treated as nuisance parameters with a Gaussian probability density function, and the full LLR distribution is considered. The effect of the various systematic uncertainties on the shape of the LLR distribution are included on the calculation by integrating over a Gaussian distribution with standard deviation equal to the fractional change in the yield between the systematically adjusted distribution and the nominal case for each individual uncertainty in each bin. The 95% CL upper bounds on the cross section for LQ pair production as a function of mass are shown in Fig. 4 for both the *eejj* and the evjj channels for $\beta = 1.0$ and $\beta = 0.5$, respectively. The obtained cross section limits are combined, and reinterpreted as limits in the β vs. m_{LQ} plane as shown in Fig. 5.

10. Conclusions

We report on a search for pair production of first generation scalar leptoquarks at ATLAS using a data sample corresponding to an integrated luminosity of 1.03 fb⁻¹. No excess over SM background expectations is observed in the data in the signal enhanced region, and 95% CL upper bounds on the production cross section are thus determined. These are translated into lower observed (expected) limits on leptoquark masses of m > 660 (650) GeV and

m > 607 (587) GeV when assuming its branching fraction to a charged lepton to be equal to 1.0 and 0.5, respectively. These are the most stringent limits to date arising from direct searches for leptoquarks.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark: ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany: GSRT, Greece: ISF, MINERVA, GIF, DIP and Benozivo Center, Israel; INFN, Italy; MEXT and ISPS, Japan: CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

- [1] B. Schrempp, F. Schrempp, Phys. Lett. B 153 (1985) 101;
 - H. Georgi, S. Glashow, Phys. Rev. Lett. 32 (1974) 438;
 - J. Pati, A. Salam, Phys. Rev. D 10 (1974) 275;
 - G. Senjanovic, A. Sokorac, Z. Phys. C 20 (1983) 255;
 - P. Frampton, B.-H. Lee, Phys. Rev. Lett. 64 (1990) 619;
 - P. Frampton, T. Kephart, Phys. Rev. D 42 (1990) 3892;
 - E. Witten, Nucl. Phys. B 258 (1985) 75;
 - K. Lane, Nucl. Phys. (1993). Lectures given at Theoretical Advanced Study Institute (TAS193) in: Elem. Part. Physics, 1233; arXiv:hep-ph/9401324.
- [2] S. Kovalenko, I. Schmidt, Phys. Lett. B 562 (2003) 104.
- [3] W. Buchmüller, R. Rückl, D. Wyler, Phys. Lett. B 191 (1987) 442;
- W. Buchmüller, R. Rückl, D. Wyler, Phys. Lett. B 448 (1999) 320, Erratum. [4] CMS Collaboration, Phys. Lett. B 703 (2011) 246.
- [4] CW3 Collaboration, Flys, Lett. D 703 (2011) 240,
- [5] ATLAS Collaboration, Phys. Rev. D 83 (2011) 112006.
- [6] D0 Collaboration, Phys. Rev. D 84 RC (2011) 071104.
 [7] OPAL Collaboration, Eur. Phys. J. C 31 (2003) 281.
- [8] H1 Collaboration, Phys. Lett. B 704 (2011) 388, doi:10.1016/j.physletb.2011.09. 017
- [9] K. Nakamura, et al., Particle Data Group, J. Phys. G 37 (2010) 075021.
- [10] ATLAS Collaboration, ATLAS-CONF-2011-116, http://cdsweb.cern.ch/record/ 1376384;
- ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630.
- [11] ATLAS Collaboration, JINST 3 (2008) S08003.

- [12] ATLAS Collaboration, arXiv:1110.3174, Eur. Phys. J. C, submitted for publication.[13] S. Agostinelli, et al., Nucl. Instrum. Meth. A 506 (2003) 250;
- G. Aad, Eur. Phys. J. C 70 (2010) 823.
- [14] M. Mangano, et al., JHEP 0307 (2003) 001.
- [15] G. Corcella, et al., JHEP 0101 (2001) 010, arXiv:hep-ph/0011363.
- [16] J. Butterworth, J. Forshaw, M. Seymour, Z. Phys. C 72 (1996) 637.
- [17] S. Frixione, B.R. Webber, JHEP 0206 (2002) 029;
- S. Frixione, P. Nason, B.R. Webber, JHEP 0308 (2003) 007.
- [18] J.M. Campbell, R.K. Ellis, Phys. Rev. D 60 (1999) 113006.
- [19] T. Sjöstrand, S. Mrenna, P. Skands, JHEP 0605 (2006) 026.
- [20] M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Phys. Rev. D 71 (2005) 057503.
- [21] D. Stump, et al., JHEP 0310 (2003) 046.
- [22] ATLAS Collaboration, arXiv:1110.3174.
- [23] M. Cacciari, G.P. Salam, G. Soyez, JHEP 0804 (2008) 063;
- M. Cacciari, G.P. Salam, Phys. Lett. B 641 (2006) 57.
- [24] ATLAS Collaboration, CERN-PH-EP-2011-191, http://cdsweb.cern.ch/record/ 1399505.

- [25] ATLAS Collaboration, ATLAS-CONF-2010-038, http://cdsweb.cern.ch/record/ 1277678;
- ATLAS Collaboration, arXiv:1112.6426, Eur. Phys. J. C, submitted for publication. [26] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1844, doi:10.1140/epjc/ s10052-011-1844-6.
- [27] ATLAS Collaboration, ATLAS-CONF-2011-063, http://cdsweb.cern.ch/record/ 1345743
- [28] ATLAS Collaboration, ATLAS-CONF-2011-032, http://cdsweb.cern.ch/record/ 1337782.
- [29] ATLAS Collaboration, ATLAS-CONF-2010-054, http://cdsweb.cern.ch/record/ 1281311.
- [30] T. Gleisberg, et al., JHEP 0902 (2009) 007;
- S. Schumann, F. Krauss, JHEP 0803 (2008) 038;
- S. Hoeche, F. Krauss, S. Schumann, F. Siegert, JHEP 0905 (2009) 053.
- [31] S. Frixione, P. Nason, C. Oleari, JHEP 0711 (2007) 070.
- [32] W. Fisher, FERMILAB-TM-2386-E. [33] T. Junk, Nucl. Instrum. Meth. A 434 (1999) 435.

ATLAS Collaboration

G. Aad ⁴⁸, B. Abbott ¹¹¹, J. Abdallah ¹¹, A.A. Abdelalim ⁴⁹, A. Abdesselam ¹¹⁸, O. Abdinov ¹⁰, B. Abi ¹¹², M. Abolins ⁸⁸, O.S. AbouZeid ¹⁵⁸, H. Abramowicz ¹⁵³, H. Abreu ¹¹⁵, E. Acerbi ^{89a,89b}, B.S. Acharya ^{164a,164b}, L. Adamczyk³⁷, D.L. Adams²⁴, T.N. Addy⁵⁶, J. Adelman¹⁷⁵, M. Aderholz⁹⁹, S. Adomeit⁹⁸, P. Adragna⁷⁵, L. Adamczyk ³⁷, D.L. Adams ²⁴, T.N. Addy ³⁰, J. Adelman ¹⁷³, M. Aderholz ³⁹, S. Adomeit ³⁸, P. Adragna ⁷³, T. Adye ¹²⁹, S. Aefsky ²², J.A. Aguilar-Saavedra ^{124b,a}, M. Aharrouche ⁸¹, S.P. Ahlen ²¹, F. Ahles ⁴⁸, A. Ahmad ¹⁴⁸, M. Ahsan ⁴⁰, G. Aielli ^{133a,133b}, T. Akdogan ^{18a}, T.P.A. Åkesson ⁷⁹, G. Akimoto ¹⁵⁵, A.V. Akimov ⁹⁴, A. Akiyama ⁶⁷, M.S. Alam ¹, M.A. Alam ⁷⁶, J. Albert ¹⁶⁹, S. Albrand ⁵⁵, M. Aleksa ²⁹, I.N. Aleksandrov ⁶⁵, F. Alessandria ^{89a}, C. Alexa ^{25a}, G. Alexander ¹⁵³, G. Alexandre ⁴⁹, T. Alexopoulos ⁹, M. Alhroob ²⁰, M. Aliev ¹⁵, G. Alimonti ^{89a}, J. Alison ¹²⁰, M. Aliyev ¹⁰, P.P. Allport ⁷³, S.E. Allwood-Spiers ⁵³, J. Almond ⁸², A. Aloisio ^{102a,102b}, R. Alon ¹⁷¹, A. Alonso ⁷⁹, B. Alvarez Gonzalez ⁸⁸, M.G. Alviggi ^{102a,102b}, K. Amako⁶⁶, P. Amaral²⁹, C. Amelung²², V.V. Ammosov¹²⁸, A. Amorim^{124a,b}, G. Amorós¹⁶⁷, N. Amram¹⁵³, C. Anastopoulos²⁹, L.S. Ancu¹⁶, N. Andari¹¹⁵, T. Andeen³⁴, C.F. Anders²⁰, G. Anders^{58a}, K.J. Anderson ³⁰, A. Andreazza ^{89a,89b}, V. Andrei ^{58a}, M.-L. Andrieux ⁵⁵, X.S. Anduaga ⁷⁰, A. Angerami ³⁴, F. Anghinolfi ²⁹, A. Anisenkov ¹⁰⁷, N. Anjos ^{124a}, A. Annovi ⁴⁷, A. Antonaki ⁸, M. Antonelli ⁴⁷, A. Antonov ⁹⁶, J. Antos ^{144b}, F. Anulli ^{132a}, S. Aoun ⁸³, L. Aperio Bella ⁴, R. Apolle ^{118,c}, G. Arabidze ⁸⁸, I. Aracena ¹⁴³, J. Antos ^{144b}, F. Anulli ^{132a}, S. Aoun³⁵, L. Aperio Bella⁴, R. Apolle ^{116,c}, G. Arabidze³⁵, I. Aracena¹⁴⁵, Y. Arai⁶⁶, A.T.H. Arce⁴⁴, J.P. Archambault²⁸, J.-F. Arguin¹⁴, E. Arik^{18a,*}, M. Arik^{18a}, A.J. Armbruster⁸⁷, O. Arnaez⁸¹, A. Artamonov⁹⁵, G. Artoni ^{132a,132b}, D. Arutinov²⁰, S. Asai¹⁵⁵, R. Asfandiyarov¹⁷², S. Ask²⁷, B. Åsman^{146a,146b}, L. Asquith⁵, K. Assamagan²⁴, A. Astbury¹⁶⁹, A. Astvatsatourov⁵², B. Aubert⁴, E. Auge¹¹⁵, K. Augsten¹²⁷, M. Aurousseau^{145a}, G. Avolio¹⁶³, R. Avramidou⁹, D. Axen¹⁶⁸, C. Ay⁵⁴, G. Azuelos^{93,d}, Y. Azuma¹⁵⁵, M.A. Baak²⁹, G. Baccaglioni^{89a}, C. Bacci^{134a,134b}, A.M. Bach¹⁴, H. Bachacou¹³⁶, K. Bachas²⁹, G. Bachy²⁹, M. Backes⁴⁹, M. Backhaus²⁰, E. Badescu^{25a}, P. Bagnaia^{132a,132b}, S. Bahinipati², Y. Bai^{32a}, D.C. Bailey¹⁵⁸, T. Bain¹⁵⁸, J.T. Baines¹²⁹, O.K. Baker¹⁷⁵, M.D. Paker²⁴, S. Baker⁷⁷, F. Bapas³⁸, P. Baperiee⁹³, Sw. Baperiee¹⁷², D. Bapfi²⁹, A. Bapgert¹⁵⁰ M.D. Baker²⁴, S. Baker⁷⁷, E. Banas³⁸, P. Banerjee⁹³, Sw. Banerjee¹⁷², D. Banfi²⁹, A. Bangert¹⁵⁰, V. Bansal¹⁶⁹, H.S. Bansil¹⁷, L. Barak¹⁷¹, S.P. Baranov⁹⁴, A. Barashkou⁶⁵, A. Barbaro Galtieri¹⁴, T. Barber⁴⁸, E.L. Barberio⁸⁶, D. Barberis^{50a,50b}, M. Barbero²⁰, D.Y. Bardin⁶⁵, T. Barillari⁹⁹, M. Barisonzi¹⁷⁴, T. Barklow¹⁴³, N. Barlow²⁷, B.M. Barnett¹²⁹, R.M. Barnett¹⁴, A. Baroncelli^{134a}, G. Barone⁴⁹, A.J. Barr¹¹⁸, F. Barreiro⁸⁰, J. Barreiro Guimarães da Costa⁵⁷, R. Bartoldus¹⁴³, A.E. Barton⁷¹, V. Bartsch¹⁴⁹, R.L. Bates⁵³, L. Batkova^{144a}, J.R. Batley²⁷, A. Battaglia¹⁶, M. Battistin²⁹, F. Bauer¹³⁶, H.S. Bawa^{143,e}, S. Beale⁹⁸, B. Beare¹⁵⁸, T. Beau⁷⁸, P.H. Beauchemin¹⁶¹, R. Beccherle^{50a}, P. Bechtle²⁰, H.P. Beck¹⁶, S. Becker⁹⁸, M. Beckingham¹³⁸, K.H. Becks¹⁷⁴, A.J. Beddall^{18c}, A. Beddall^{18c}, S. Bedikian¹⁷⁵, V.A. Bednyakov ⁶⁵, C.P. Bee⁸³, M. Begel²⁴, S. Behar Harpaz ¹⁵², P.K. Behera ⁶³, M. Beimforde ⁹⁹, C. Belanger-Champagne ⁸⁵, P.J. Bell ⁴⁹, W.H. Bell ⁴⁹, G. Bella ¹⁵³, L. Bellagamba ^{19a}, F. Bellina ²⁹, M. Bellomo ²⁹, A. Belloni ⁵⁷, O. Beloborodova ¹⁰⁷, K. Belotskiy ⁹⁶, O. Beltramello ²⁹, S. Ben Ami ¹⁵², O. Benary ¹⁵³, D. Benchekroun ^{135a}, C. Benchouk ⁸³, M. Bendel ⁸¹, N. Benekos ¹⁶⁵, Y. Benhammou ¹⁵³, E. Benhar Noccioli ⁴⁹, J.A. Benitez Garcia ^{159b}, D.P. Benjamin ⁴⁴, M. Benoit ¹¹⁵, J.R. Bensinger ²², K. Benslama ¹³⁰, S. Bentvelsen ¹⁰⁵, D. Berge ²⁹, E. Bergeaas Kuutmann ⁴¹, N. Berger ⁴, F. Berghaus ¹⁶⁹, E. Berglund ¹⁰⁵, J. Beringer ¹⁴, P. Bernat ⁷⁷, R. Bernhard ⁴⁸, C. Bernius ²⁴, T. Berry ⁷⁶, C. Bertella ⁸³, A. Bertin^{19a,19b}, F. Bertinelli²⁹, F. Bertolucci^{122a,122b}, M.I. Besana^{89a,89b}, N. Besson¹³⁶, S. Bethke⁹⁹, W. Bhimji⁴⁵, R.M. Bianchi²⁹, M. Bianco^{72a,72b}, O. Biebel⁹⁸, S.P. Bieniek⁷⁷, K. Bierwagen⁵⁴, J. Biesiada¹⁴, M. Biglietti^{134a,134b}, H. Bilokon⁴⁷, M. Bindi^{19a,19b}, S. Binet¹¹⁵, A. Bingul^{18c}, C. Bini^{132a,132b},

C. Biscarat ¹⁷⁷, U. Bitenc ⁴⁸, K.M. Black ²¹, R.E. Blair ⁵, J.-B. Blanchard ¹¹⁵, G. Blanchot ²⁹, T. Blazek ^{144a}, C. Blocker ²², J. Blocki ³⁸, A. Blondel ⁴⁹, W. Blum ⁸¹, U. Blumenschein ⁵⁴, G.J. Bobbink ¹⁰⁵, V.B. Bobrovnikov ¹⁰⁷, S.S. Bocchetta ⁷⁹, A. Bocci ⁴⁴, C.R. Boddy ¹¹⁸, M. Boehler ⁴¹, J. Boek ¹⁷⁴, N. Boelaert ³⁵, S. Böser ⁷⁷, J.A. Bogaerts ²⁹, A. Bogdanchikov ¹⁰⁷, A. Bogouch ^{90,*}, C. Bohm ^{146a}, V. Boisvert ⁷⁶, T. Bold ³⁷, V. Boldea ^{25a}, N.M. Bolnet ¹³⁶, M. Bona ⁷⁵, V.G. Bondarenko ⁹⁶, M. Bondioli ¹⁶³, M. Boonekamp ¹³⁶, G. Boorman ⁷⁶, C.N. Booth ¹³⁹, S. Bordoni ⁷⁸, C. Borer ¹⁶, A. Borisov ¹²⁸, G. Borissov ⁷¹, I. Borjanovic ^{12a}, S. Borroni ⁸⁷, K. Bos ¹⁰⁵, D. Boscherini ^{19a}, M. Bosman ¹¹, H. Boterenbrood ¹⁰⁵, D. Botterill ¹²⁹, L. Bouchami ⁹³, L. Bouderanu ¹²³, F.V. Bouboux, Thacker ⁷¹, D. Boumediane ³³, C. Bourdarine ¹¹⁵, S. Borroni ⁸⁷, K. Bos¹⁰⁵, D. Boscherini ^{19a}, M. Bosman¹¹, H. Boterenbrood¹⁰⁵, D. Botterill ¹²⁹, J. Bouchami ⁹³, J. Boudreau ¹²³, E.V. Bouhova-Thacker⁷¹, D. Boumediene ³³, C. Bourdarios ¹¹⁵, N. Bousson ⁸³, A. Boveia ³⁰, J. Boyd ²⁹, I.R. Boyko ⁶⁵, N.I. Bozhko ¹²⁸, I. Bozovic-Jelisavcic ^{12b}, J. Bracinik ¹⁷, A. Braem ²⁹, P. Branchini ^{134a}, G.W. Brandenburg ⁵⁷, A. Brandt ⁷, G. Brandt ¹¹⁸, O. Brandt ⁵⁴, U. Bratzler ¹⁵⁶, B. Brau ⁸⁴, J.E. Brau ¹¹⁴, H.M. Braun ¹⁷⁴, B. Brelier ¹⁵⁸, J. Bremer ²⁹, R. Brenner ¹⁶⁶, S. Bressler ¹⁷¹, D. Breton ¹¹⁵, D. Britton ⁵³, F.M. Brochu ²⁷, I. Brock ²⁰, R. Brock ⁸⁸, T.J. Brodbeck ⁷¹, E. Brodet ¹⁵³, F. Broggi ^{89a}, C. Bromberg ⁸⁸, J. Bronner ⁹⁹, G. Brooijmans ³⁴, W.K. Brooks ^{31b}, G. Brown ⁸², H. Brown ⁷, P.A. Bruckman de Renstrom ³⁸, D. Bruncko ^{144b}, R. Bruneliere ⁴⁸, S. Brunet ⁶¹, A. Bruni ^{19a}, G. Bruni ^{19a}, M. Bruschi ^{19a}, T. Buanes ¹³, Q. Buat ⁵⁵, F. Bucci ⁴⁹, J. Buchanan ¹¹⁸, N.J. Buchanan ², P. Buchholz ¹⁴¹, R.M. Buckingham ¹¹⁸, A.G. Buckley ⁴⁵, S.I. Buda ^{25a}, I.A. Budagov ⁶⁵, B. Budick ¹⁰⁸, V. Büscher ⁸¹, L. Bugge ¹¹⁷, O. Bulekov ⁹⁶, M. Bunse ⁴², T. Buran ¹¹⁷, H. Burckhart ²⁹, S. Burdin ⁷³, T. Burgess ¹³, S. Burke ¹²⁹, E. Busato ³³, P. Bussey ⁵³, C.P. Buszello ¹⁶⁶, F. Butin ²⁹, B. Butler ¹⁴³, J.M. Butler ²¹, C.M. Buttar ⁵³, J.M. Butterworth ⁷⁷, W. Buttinger ²⁷, S. Cabrera Urbán ¹⁶⁷, D. Caforio ^{19a,19b}, O. Cakir ^{3a}, P. Calafiura ¹⁴, G. Calderini ⁷⁸, P. Calfayan ⁹⁸, R. Calkins ¹⁰⁶, L.P. Caloba ^{23a}, R. Caloi ^{132a,132b}, D. Calvet ³³, S. Calvet ³³, R. Camacho Toro ³³, P. Camarri ^{133a,133b}, M. Cambiaghi ^{119a,119b}, D. Cameron ¹¹⁷, L.M. Caminada ¹⁴, S. Campana ²⁹, M. Campanelli ⁷⁷, V. Canale ^{102a,102b}, F. Canelli ^{30,f}, A. Canepa ^{159a}, J. Cantero ⁸⁰, L. Capasso ^{102a,102b}, M.D.M. Capeans Garrido ²⁹, I. Caprini ^{25a}, M. Caprinit ^{25a}, D. Capriotti ⁹⁹, J. Cantero⁸⁰, L. Capasso^{102a,102b}, M.D.M. Capeans Garrido²⁹, I. Caprini^{25a}, M. Caprini^{25a}, D. Capriotti⁹⁹, M. Capua^{36a,36b}, R. Caputo⁸¹, R. Cardarelli^{133a}, T. Carli²⁹, G. Carlino^{102a}, L. Carminati^{89a,89b}, S. Caron ¹⁰⁴, G.D. Carrillo Montoya ¹⁷², A.A. Carter ⁷⁵, J.R. Carter ²⁷, J. Carvalho ^{124a,g}, D. Casadei ¹⁰⁸, M.P. Casado ¹¹, M. Cascella ^{122a,122b}, C. Caso ^{50a,50b,*}, A.M. Castaneda Hernandez ¹⁷², E. Castaneda-Miranda ¹⁷², V. Castillo Gimenez ¹⁶⁷, N.F. Castro ^{124a}, G. Cataldi ^{72a}, F. Cataneo ²⁹, A. Catinaccio ²⁹, J.R. Catmore ⁷¹, A. Cattai ²⁹, G. Cattani ^{133a,133b}, S. Caughron ⁸⁸, D. Cauz ^{164a,164c}, P. Cavalleri ⁷⁸, D. Cavalli ^{89a}, M. Cavalli-Sforza ¹¹, V. Cavasinni ^{122a,122b}, F. Ceradini ^{134a,134b}, A.S. Cerqueira ^{23b}, A. Cerri ²⁹, L. Cerrito ⁷⁵, F. Cerutti ⁴⁷, S.A. Cetin ^{18b}, F. Cevenini ^{102a,102b}, A. Chafaq ^{135a}, D. Chakraborty ¹⁰⁶, K. Chan², B. Chapleau ⁸⁵, J.D. Chapman ²⁷, J.W. Chapman ⁸⁷, E. Chareyre ⁷⁸, D.G. Charlton ¹⁷, V. Chavda ⁸², C.A. Chavez Barajas ²⁹, S. Cheatham ⁸⁵, S. Chekanov ⁵, S.V. Chekulaev ^{159a}, G.A. Chelkov ⁶⁵, M.A. Chelstowska ¹⁰⁴, C. Chen ⁶⁴, H. Chen ²⁴, K. Chen ¹⁴⁸, S. Chen ^{32c}, T. Chen ^{32c}, X. Chen ¹⁷², S. Cheng ^{32a}, A. Cheplakov ⁶⁵, V.F. Chepurnov ⁶⁵, R. Cherkaoui El Moursli ^{135e}, V. Chernyatin²⁴, E. Cheu⁶, S.L. Cheung¹⁵⁸, L. Chevalier¹³⁶, G. Chiefari ^{102a, 102b}, L. Chikovani ^{51a}, V. Chernyatin²⁴, E. Cheu⁶, S.L. Cheung¹⁵⁸, L. Chevalier¹³⁶, G. Chiefari^{102a,102b}, L. Chikovani^{51a}, J.T. Childers^{58a}, A. Chilingarov⁷¹, G. Chiodini^{72a}, M.V. Chizhov⁶⁵, G. Choudalakis³⁰, S. Chouridou¹³⁷, I.A. Christidi⁷⁷, A. Christov⁴⁸, D. Chromek-Burckhart²⁹, M.L. Chu¹⁵¹, J. Chudoba¹²⁵, G. Ciapetti^{132a,132b}, K. Ciba³⁷, A.K. Ciftci^{3a}, R. Ciftci^{3a}, D. Cinca³³, V. Cindro⁷⁴, M.D. Ciobotaru¹⁶³, C. Ciocca^{19a}, A. Ciocio¹⁴, M. Cirilli⁸⁷, M. Ciubancan^{25a}, A. Clark⁴⁹, P.J. Clark⁴⁵, W. Cleland¹²³, J.C. Clemens⁸³, B. Clement⁵⁵, C. Clement^{146a,146b}, R.W. Clifft¹²⁹, Y. Coadou⁸³, M. Cobal^{164a,164c}, A. Coccaro¹⁷², J. Cochran⁶⁴, P. Coe¹¹⁸, J.G. Cogan¹⁴³, J. Coggeshall¹⁶⁵, E. Cogneras¹⁷⁷, J. Colas⁴, A.P. Colijn¹⁰⁵, C. Collard¹¹⁵, N.J. Collins¹⁷, C. Collins-Tooth⁵³, J. Collot⁵⁵, G. Colon⁸⁴, P. Conde Muiño^{124a}, E. Coniavitis¹¹⁸, M.C. Conidi¹¹, M. Consonni¹⁰⁴, V. Consorti⁴⁸, S. Constantinescu^{25a}, C. Conta^{119a,119b}, F. Conventi^{102a,h}, J. Cook²⁹, M. Cooke¹⁴, B.D. Cooper⁷⁷, A.M. Cooper-Sarkar¹¹⁸, K. Copic¹⁴, T. Cornelissen¹⁷⁴, M. Corradi^{19a}, F. Corriveau^{85,i}, A. Cortes-Gonzalez¹⁶⁵, G. Covan⁷⁶, C. Cowden²⁷, B.E. Cox⁸², K. Cranmer¹⁰⁸, F. Crescioli^{122a,122b}, M. Cristinziani²⁰, G. Crosetti^{36a,36b}, R. Crupi^{72a,72b}, S. Crépé-Renaudin⁵⁵, C.-M. Cuciuc^{25a}, C. Cuenca Almenar¹⁷⁵, T. Cuhadar Donszelmann¹³⁹, M. Curatolo⁴⁷, C.J. Curtis¹⁷, C.-M. Cuciuc ^{25a}, C. Cuenca Almenar ¹⁷⁵, T. Cuhadar Donszelmann ¹³⁹, M. Curatolo ⁴⁷, C.J. Curtis ¹⁷, C. Cuthbert ¹⁵⁰, P. Cwetanski ⁶¹, H. Czirr ¹⁴¹, P. Czodrowski ⁴³, Z. Czyczula ¹⁷⁵, S. D'Auria ⁵³, M. D'Onofrio ⁷³, A. D'Orazio ^{132a,132b}, P.V.M. Da Silva ^{23a}, C. Da Via ⁸², W. Dabrowski ³⁷, T. Dai ⁸⁷, C. Dallapiccola ⁸⁴, M. Dam ³⁵, M. Dameri ^{50a,50b}, D.S. Damiani ¹³⁷, H.O. Danielsson ²⁹, D. Dannheim ⁹⁹, V. Dao⁴⁹, G. Darbo^{50a}, G.L. Darlea^{25b}, C. Daum¹⁰⁵, W. Davey²⁰, T. Davidek¹²⁶, N. Davidson⁸⁶,

R. Davidson⁷¹, E. Davies^{118,c}, M. Davies⁹³, A.R. Davison⁷⁷, Y. Davygora^{58a}, E. Dawe¹⁴², I. Dawson¹³⁹, J.W. Dawson^{5,*}, R.K. Daya²², K. De⁷, R. de Asmundis^{102a}, S. De Castro^{19a,19b}, P.E. De Castro Faria Salgado²⁴, S. De Cecco⁷⁸, J. de Graat⁹⁸, N. De Groot¹⁰⁴, P. de Jong¹⁰⁵, C. De La Taille¹¹⁵, H. De la Torre⁸⁰, B. De Lotto^{164a,164c}, L. de Mora⁷¹, L. De Nooij¹⁰⁵, D. De Pedis^{132a}, A. De Salvo^{132a}, U. De Sanctis^{164a,164c}, A. De Santo¹⁴⁹, J.B. De Vivie De Regie¹¹⁵, S. Dean⁷⁷, W.J. Dearnaley⁷¹, R. Debbe²⁴, C. Debenedetti⁴⁵, D.V. Dedovich⁶⁵, J. Degenhardt¹²⁰, M. Dehchar¹¹⁸, C. Del Papa^{164a,164c}, J. Del Peso⁸⁰, T. Del Prete^{122a,122b}, T. Delemontex⁵⁵, M. Deliyergiyev⁷⁴, A. Dell'Acqua²⁹, L. Dell'Asta²¹, J. Del Peso³⁰, T. Del Prete^{122a,122b}, T. Delemontex³³, M. Deliyergiyev⁷⁴, A. Dell'Acqua²⁹, L. Dell'Asta²¹, M. Della Pietra^{102a,h}, D. della Volpe^{102a,102b}, M. Delmastro⁴, N. Delruelle²⁹, P.A. Delsart⁵⁵, C. Deluca¹⁴⁸, S. Demers¹⁷⁵, M. Demichev⁶⁵, B. Demirkoz^{11,j}, J. Deng¹⁶³, S.P. Denisov¹²⁸, D. Derendarz³⁸, J.E. Derkaoui^{135d}, F. Derue⁷⁸, P. Dervan⁷³, K. Desch²⁰, E. Devetak¹⁴⁸, P.O. Deviveiros¹⁰⁵, A. Dewhurst¹²⁹, B. DeWilde¹⁴⁸, S. Dhaliwal¹⁵⁸, R. Dhullipudi^{24,k}, A. Di Ciaccio^{133a,133b}, L. Di Ciaccio⁴, A. Di Girolamo²⁹, B. Di Girolamo²⁹, S. Di Luise^{134a,134b}, A. Di Mattia¹⁷², B. Di Micco²⁹, R. Di Nardo⁴⁷, A. Di Simone^{133a,133b}, R. Di Sipio^{19a,19b}, M.A. Diaz^{31a}, F. Diblen^{18c}, E.B. Diehl⁸⁷, J. Dietrich⁴¹, T.A. Dietzsch^{58a}, S. Diglio⁸⁶, K. Dindar Yagci³⁹, J. Dingfelder²⁰, C. Dionisi^{132a,132b}, P. Dita^{25a}, S. Dita^{25a}, F. Dittus²⁹, F. Diama⁸³, T. Diobaya^{51b}, M.A.B. do Vale^{23c}, A. Do Valle Wemans^{124a}, TKO, Doan⁴ T.A. Dietzsch ³⁶⁴, S. Diglio ⁸⁶, K. Dindar Yagci ³⁹, J. Dingfelder ²⁰, C. Dionisi ^{132a,132b}, P. Dita ^{25a}, S. Dita ^{25a}, F. Dittus ²⁹, F. Djama ⁸³, T. Djobava ^{51b}, M.A.B. do Vale ^{23c}, A. Do Valle Wemans ^{124a}, T.K.O. Doan⁴, M. Dobbs ⁸⁵, R. Dobinson ^{29,*}, D. Dobos ²⁹, E. Dobson ^{29,l}, M. Dobson ¹⁶³, J. Dodd ³⁴, C. Doglioni ⁴⁹, T. Doherty ⁵³, Y. Doi ^{66,*}, J. Dolejsi ¹²⁶, I. Dolenc ⁷⁴, Z. Dolezal ¹²⁶, B.A. Dolgoshein ^{96,*}, T. Dohmae ¹⁵⁵, M. Donadelli ^{23d}, M. Donega ¹²⁰, J. Donini ³³, J. Dopke ²⁹, A. Doria ^{102a}, A. Dos Anjos ¹⁷², M. Dosil ¹¹, A. Dotti ^{122a,122b}, M.T. Dova ⁷⁰, J.D. Dowell ¹⁷, A.D. Doxiadis ¹⁰⁵, A.T. Doyle ⁵³, Z. Drasal ¹²⁶, J. Drees ¹⁷⁴, N. Dressnandt ¹²⁰, H. Drevermann ²⁹, C. Driouichi ³⁵, M. Dris ⁹, J. Dubbert ⁹⁹, S. Dube ¹⁴, E. Duchovni ¹⁷¹, G. Duckeck ⁹⁸, A. Dudarev ²⁹, F. Dudziak ⁶⁴, M. Dührssen ²⁹, I.P. Duerdoth ⁸², L. Duflot ¹¹⁵, M.-A. Dufour ⁸⁵, M. Dunford ²⁹, H. Duran Yildiz ^{3b}, R. Duxfield ¹³⁹, M. Dwuznik ³⁷, F. Dydak ²⁹, M. Düren ⁵², WI. Ebenstein ⁴⁴, J. Ebke ⁹⁸, S. Eckweiler ⁸¹, K. Edmonds ⁸¹, C.A. Edwards ⁷⁶, N.C. Edwards ⁵³ M. Dumord ²⁵, H. Duran Yildi ²⁵, K. Duxneid ¹⁵⁵, M. Dwuznik³⁷, F. Dydak²⁵, M. Düren³²,
W.L. Ebenstein⁴⁴, J. Ebke⁹⁸, S. Eckweiler⁸¹, K. Edmonds⁸¹, C.A. Edwards⁷⁶, N.C. Edwards⁵³,
W. Ehrenfeld⁴¹, T. Ehrich⁹⁹, T. Eifert¹⁴³, G. Eigen¹³, K. Einsweiler¹⁴, E. Eisenhandler⁷⁵, T. Ekelof¹⁶⁶,
M. El Kacimi ^{135c}, M. Ellert¹⁶⁶, S. Elles⁴, F. Ellinghaus⁸¹, K. Ellis⁷⁵, N. Ellis²⁹, J. Elmsheuser⁹⁸,
M. Elsing²⁹, D. Emeliyanov¹²⁹, R. Engelmann¹⁴⁸, A. Engl⁹⁸, B. Epp⁶², A. Eppig⁸⁷, J. Erdmann⁵⁴,
A. Ereditato¹⁶, D. Eriksson^{146a}, J. Ernst¹, M. Ernst²⁴, J. Ernwein¹³⁶, D. Errede¹⁶⁵, S. Errede¹⁶⁵,
E. Ertel⁸¹, M. Escalier¹¹⁵, C. Escobar¹²³, X. Espinal Curull¹¹, B. Esposito⁴⁷, F. Etienne⁸³, A.I. Etienvre¹³⁶, E. Etzion ¹⁵³, D. Evangelakou ⁵⁴, H. Evans ⁶¹, L. Fabbri ^{19a,19b}, C. Fabre ²⁹, R.M. Fakhrutdinov ¹²⁸, S. Falciano ^{132a}, Y. Fang ¹⁷², M. Fanti ^{89a,89b}, A. Farbin ⁷, A. Farilla ^{134a}, J. Farley ¹⁴⁸, T. Farooque ¹⁵⁸, S.M. Farrington ¹¹⁸, P. Farthouat ²⁹, P. Fassnacht ²⁹, D. Fassouliotis ⁸, B. Fatholahzadeh ¹⁵⁸, S.M. Farrington ¹¹⁸, P. Farthouat ²⁹, P. Fassnacht ²⁹, D. Fassouliotis °, B. Fatholahzadeh ¹³⁸, A. Favareto ^{89a,89b}, L. Fayard ¹¹⁵, S. Fazio ^{36a,36b}, R. Febbraro ³³, P. Federic ^{144a}, O.L. Fedin ¹²¹, W. Fedorko ⁸⁸, M. Fehling-Kaschek ⁴⁸, L. Feligioni ⁸³, C. Feng ^{32d}, E.J. Feng ³⁰, A.B. Fenyuk ¹²⁸, J. Ferencei ^{144b}, J. Ferland ⁹³, W. Fernando ¹⁰⁹, S. Ferrag ⁵³, J. Ferrando ⁵³, V. Ferrara ⁴¹, A. Ferrari ¹⁶⁶, P. Ferrari ¹⁰⁵, R. Ferrari ^{119a}, A. Ferrer ¹⁶⁷, M.L. Ferrer ⁴⁷, D. Ferrere ⁴⁹, C. Ferretti ⁸⁷, A. Ferretto Parodi ^{50a,50b}, M. Fiascaris ³⁰, F. Fiedler ⁸¹, A. Filipčič ⁷⁴, A. Filippas ⁹, F. Filthaut ¹⁰⁴, M. Fincke-Keeler ¹⁶⁹, M.C.N. Fiolhais ^{124a,g}, L. Fiorini ¹⁶⁷, A. Firan ³⁹, P. Fischer ²⁰, M.J. Fisher ¹⁰⁹, M. Flechl ⁴⁸, I. Fleck ¹⁴¹, J. Fleckner ⁸¹, P. Fleischmann ¹⁷³, S. Fleischmann ¹⁷⁴, T. Flick ¹⁷⁴, L.R. Flores Castillo ¹⁷², M.J. Flowerdew ⁹⁹, M. Fokitis ⁹, T. Fonseca Martin ¹⁶, D.A. Forbush ¹³⁸, A. Formica ¹³⁶, A. Forti ⁸², D. Fortin ^{159a}, J.M. Foster ⁸², D. Fournier ¹¹⁵, A. Foussat ²⁹, A.J. Fowler ⁴⁴, K. Fowler ¹³⁷, H. Fox ⁷¹, P. Francavilla ^{122a,122b}, S. Franchino ^{119a,119b}, D. Francis ²⁹, T. Frank ¹⁷¹, M. Franklin ⁵⁷, S. Franz ²⁹, M. Fraternali ^{119a,119b}, S. Fratina ¹²⁰, S.T. French ²⁷, F. Friedrich ⁴³, R. Froeschl ²⁹, M. Franklin⁵⁷, S. Franz²⁹, M. Fraternali^{119a,119b}, S. Fratina¹²⁰, S.T. French²⁷, F. Friedrich⁴³, R. Froeschl²⁹, D. Froidevaux²⁹, J.A. Frost²⁷, C. Fukunaga¹⁵⁶, E. Fullana Torregrosa²⁹, J. Fuster¹⁶⁷, C. Gabaldon²⁹, O. Gabizon¹⁷¹, T. Gadfort²⁴, S. Gadomski⁴⁹, G. Gagliardi^{50a,50b}, P. Gagnon⁶¹, C. Galea⁹⁸, E.J. Gallas¹¹⁸, V. Gallo¹⁶, B.J. Gallop¹²⁹, P. Gallus¹²⁵, K.K. Gan¹⁰⁹, Y.S. Gao^{143,e}, V.A. Gapienko¹²⁸, A. Gaponenko¹⁴, F. Garberson¹⁷⁵, M. Garcia-Sciveres¹⁴, C. García¹⁶⁷, J.E. García Navarro¹⁶⁷, R.W. Gardner³⁰, N. Garelli²⁹, H. Garitaonandia¹⁰⁵, V. Garonne²⁹, J. Garvey¹⁷, C. Gatti⁴⁷, G. Gaudio^{119a}, O. Gaumer⁴⁹, B. Gaur¹⁴¹, L. Gauthier¹³⁶, I.L. Gavrilenko⁹⁴, C. Gay¹⁶⁸, G. Gaycken²⁰, J.-C. Gayde²⁹, E.N. Gazis⁹, P. Ge^{32d}, C.N.P. Gee¹²⁹, D.A.A. Geerts¹⁰⁵, Ch. Geich-Gimbel²⁰, K. Gellerstedt^{146a,146b}, C. Gemme^{50a}, A. Gemmell⁵³, M.H. Genest⁵⁵, S. Gentile^{132a,132b}, M. George⁵⁴, S. George⁷⁶, P. Gerlach¹⁷⁴, A. Gershon¹⁵³, C. Geweniger^{58a}, H. Ghazlane^{135b}, N. Ghodbane³³, B. Giacobbe^{19a}, S. Giagu^{132a,132b}, V. Giakoumopoulou⁸, F. Gianotti²⁹, B. Gibbard²⁴, A. Gibson¹⁵⁸, S.M. Gibson²⁹, L.M. Gilbert¹¹⁸,

V. Gilewsky ⁹¹, D. Gillberg ²⁸, A.R. Gillman ¹²⁹, D.M. Gingrich ^{2,d}, J. Ginzburg ¹⁵³, N. Giokaris ⁸, M.P. Giordani ^{164c}, R. Giordano ^{102a,102b}, F.M. Giorgi ¹⁵, P. Giovannini ⁹⁹, P.F. Giraud ¹³⁶, D. Giugni ^{89a}, M. Giunta ⁹³, P. Giusti ^{19a}, B.K. Gjelsten ¹¹⁷, L.K. Gladilin ⁹⁷, C. Glasman ⁸⁰, J. Glatzer ⁴⁸, A. Glazov ⁴¹, G.L. Glonti ⁶⁵, J.R. Goddard ⁷⁵, J. Godfrey ¹⁴², J. Godlewski ²⁹, M. Goebel ⁴¹, T. Göpfert ⁴³, C. Goeringer ⁸¹, C. Gössling ⁴², T. Göttfert ⁹⁹, S. Goldfarb ⁸⁷, T. Golling ¹⁷⁵, S.N. Golovnia ¹²⁸, A. Gomes ^{124a,b}, L.S. Gomez Fajardo ⁴¹, R. Gonçalo ⁷⁶, J. Goncalves Pinto Firmino Da Costa ⁴¹, L. Gonella ²⁰, A. Gonidec ²⁹, S. Gonzalez ¹⁷², S. González de la Hoz ¹⁶⁷, G. Gonzalez Parra ¹¹, M.L. Gonzalez Silva ²⁶, S. Gonzalez-Sevilla ⁴⁹, J.J. Goodson ¹⁴⁸, L. Goossens ²⁹, P.A. Gorbounov ⁹⁵, H.A. Gordon ²⁴, I. Gorelov ¹⁰³, G. Gorfine ¹⁷⁴, B. Gorini ²⁹, E. Gorini ^{72a,72b}, A. Gorišek ⁷⁴, E. Gornicki ³⁸, S.A. Gorokhov ¹²⁸, V.N. Goryachev¹²⁸, B. Gosdzik⁴¹, M. Gosselink¹⁰⁵, M.I. Gostkin⁶⁵, I. Gough Eschrich¹⁶³, M. Gouighri^{135a}, D. Goujdami ^{135c}, M.P. Goulette ⁴⁹, A.G. Goussiou ¹³⁸, C. Goy⁴, S. Gozpinar ²², I. Grabowska-Bold ³⁷, P. Grafström ²⁹, K.-J. Grahn ⁴¹, F. Grancagnolo ^{72a}, S. Grancagnolo ¹⁵, V. Grassi ¹⁴⁸, V. Gratchev ¹²¹, N. Grau ³⁴, H.M. Gray ²⁹, J.A. Gray ¹⁴⁸, E. Graziani ^{134a}, O.G. Grebenyuk ¹²¹, T. Greenshaw ⁷³, Z.D. Greenwood ^{24,k}, K. Gregersen ³⁵, I.M. Gregor ⁴¹, P. Grenier ¹⁴³, J. Griffiths ¹³⁸, N. Grigalashvili ⁶⁵, A.A. Grillo ¹³⁷, S. Grinstein ¹¹, Y.V. Grishkevich ⁹⁷, J.-F. Grivaz ¹¹⁵, M. Groh ⁹⁹, E. Gross ¹⁷¹, J. Grosse-Knetter ⁵⁴, J. Groth-Jensen ¹⁷¹, K. Grybel ¹⁴¹, V.J. Guarino ⁵, D. Guest ¹⁷⁵, C. Guicheney ³³, A. Guida ^{72a,72b}, S. Guindon ⁵⁴, H. Guler ^{85,m}, J. Gunther ¹²⁵, B. Guo ¹⁵⁸, J. Guo ³⁴, A. Gupta ³⁰, Y. Gusakov ⁶⁵, V.N. Gushchin ¹²⁸, A. Gutierrez ⁹³, P. Gutierrez ¹¹¹, N. Guttman ¹⁵³, O. Gutzwiller ¹⁷², C. Guyot ¹³⁶, C. Gwenlan ¹¹⁸, C.B. Gwilliam ⁷³, A. Haas ¹⁴³, S. Haas ²⁹, C. Haber ¹⁴, R. Hackenburg ²⁴, H.K. Hadavand ³⁹, D.R. Hadley ¹⁷, P. Haefner ⁹⁹, F. Hahn ²⁹, S. Haider ²⁹, Z. Hajduk ³⁸, H. Hakobyan ¹⁷⁶, J. Haller ⁵⁴, K. Hamacher ¹⁷⁴, P. Hamal ¹¹³, M. Hamer ⁵⁴, A. Hamilton ^{145b}, S. Hamilton ¹⁶¹, H. Han ^{32a}, L. Han ^{32b}, K. Hanagaki ¹¹⁶, K. Hanawa ¹⁶⁰, M. Hance ¹⁴, C. Handel ⁸¹, P. Hanke ^{58a}, J.R. Hansen ³⁵, J.B. Hansen ³⁵, J.D. Hansen ³⁵, P.H. Hansen ³⁵, P. Hansson ¹⁴³, K. Harrison ¹⁷, J. Hartert ⁴⁸, F. Hartjes ¹⁰⁵, T. Haruyama ⁶⁶, A. Harvey ⁵⁶, S. Hasegawa ¹⁰¹, Y. Hasegawa ¹⁴⁰, S. Hassani ¹³⁶, M. Hatch ²⁹, D. Hauff ⁹⁹, S. Haug ¹⁶, M. Hauschild ²⁹, R. Hauser ⁸⁸, M. Havranek ²⁰, B.M. Hawes ¹¹⁸, C.M. Hawkes ¹⁷, R.J. Hawkings ²⁹, A.D. Hawkins ⁷⁹, D. Hawkins ¹⁶³, T. Hayakawa ⁶⁷, T. Hayashi ¹⁶⁰, D. Hayden ⁷⁶, D. Goujdami^{135c}, M.P. Goulette⁴⁹, A.G. Goussiou¹³⁸, C. Goy⁴, S. Gozpinar²², I. Grabowska-Bold³ R.J. Hawkings²⁹, A.D. Hawkins⁷⁹, D. Hawkins¹⁶³, T. Hayakawa⁶⁷, T. Hayashi¹⁶⁰, D. Hayden⁷⁶, H.S. Hayward⁷³, S.J. Haywood¹²⁹, E. Hazen²¹, M. He^{32d}, S.J. Head¹⁷, V. Hedberg⁷⁹, L. Heelan⁷, S. Heim⁸⁸, B. Heinemann¹⁴, S. Heisterkamp³⁵, L. Helary⁴, C. Heller⁹⁸, M. Heller²⁹, S. Hellman^{146a,146b}, D. Hellmich²⁰, C. Helsens¹¹, R.C.W. Henderson⁷¹, M. Henke^{58a}, A. Henrichs⁵⁴, A.M. Henriques Correia²⁹, S. Henrot-Versille¹¹⁵, F. Henry-Couannier⁸³, C. Hensel⁵⁴, T. Henß¹⁷⁴, A.M. Henriques Correia²⁹, S. Henrot-Versille¹¹⁵, F. Henry-Couannier⁸³, C. Hensel⁵⁴, T. Henß¹⁷⁴, C.M. Hernandez⁷, Y. Hernández Jiménez¹⁶⁷, R. Herrberg¹⁵, A.D. Hershenhorn¹⁵², G. Herten⁴⁸, R. Hertenberger⁹⁸, L. Hervas²⁹, N.P. Hessey¹⁰⁵, E. Higón-Rodriguez¹⁶⁷, D. Hill^{5,*}, J.C. Hill²⁷, N. Hill⁵, K.H. Hiller⁴¹, S. Hillert²⁰, S.J. Hillier¹⁷, I. Hinchliffe¹⁴, E. Hines¹²⁰, M. Hirose¹¹⁶, F. Hirsch⁴², D. Hirschbuehl¹⁷⁴, J. Hobbs¹⁴⁸, N. Hod¹⁵³, M.C. Hodgkinson¹³⁹, P. Hodgson¹³⁹, A. Hoecker²⁹, M.R. Hoeferkamp¹⁰³, J. Hoffman³⁹, D. Hoffmann⁸³, M. Hohlfeld⁸¹, M. Holder¹⁴¹, S.O. Holmgren^{146a}, T. Holy¹²⁷, J.L. Holzbauer⁸⁸, Y. Homma⁶⁷, T.M. Hong¹²⁰, L. Hooft van Huysduynen¹⁰⁸, T. Horazdovsky¹²⁷, C. Horn¹⁴³, S. Horner⁴⁸, J.-Y. Hostachy⁵⁵, S. Hou¹⁵¹, M.A. Houlden⁷³, A. Hoummada^{135a}, J. Howarth⁸², D.F. Howell¹¹⁸, I. Hristova¹⁵, J. Hrivnac¹¹⁵, I. Hruska¹²⁵, T. Hryn'ova⁴, PI. Hsu⁸¹, S. C. Hsu¹⁴, C.S. Huang¹¹¹, Z. Hubacek¹²⁷, F. Hubaut⁸³, F. Huegging²⁰, A. Huettmann⁴¹ P.J. Hsu⁸¹, S.-C. Hsu¹⁴, G.S. Huang¹¹¹, Z. Hubacek¹²⁷, F. Hubaut⁸³, F. Huegging²⁰, A. Huettmann⁴¹, r.J. FISU ⁻⁷, S.-C. FISU ⁻⁷, G.S. FIUAIIG ⁻⁷, Z. HUDACEK ¹²⁷, F. HUDAUL ⁵⁵, F. HUEgging ²⁰, A. HUEttmann ⁴¹,
T.B. Huffman ¹¹⁸, E.W. Hughes ³⁴, G. Hughes ⁷¹, R.E. Hughes-Jones ⁸², M. Huhtinen ²⁹, P. Hurst ⁵⁷,
M. Hurwitz ¹⁴, U. Husemann ⁴¹, N. Huseynov ^{65,n}, J. Huston ⁸⁸, J. Huth ⁵⁷, G. Iacobucci ⁴⁹, G. Iakovidis ⁹,
M. Ibbotson ⁸², I. Ibragimov ¹⁴¹, R. Ichimiya ⁶⁷, L. Iconomidou-Fayard ¹¹⁵, J. Idarraga ¹¹⁵, P. Iengo ^{102a,102b},
O. Igonkina ¹⁰⁵, Y. Ikegami ⁶⁶, M. Ikeno ⁶⁶, Y. Ilchenko ³⁹, D. Iliadis ¹⁵⁴, N. Ilic ¹⁵⁸, D. Imbault ⁷⁸,
M. Imori ¹⁵⁵, T. Ince ²⁰, J. Inigo-Golfin ²⁹, P. Ioannou ⁸, M. Iodice ^{134a}, V. Ippolito ^{132a,132b},
A. Irles Quiles ¹⁶⁷, C. Isaksson ¹⁶⁶, A. Ishikawa ⁶⁷, M. Ishino ⁶⁸, R. Ishmukhametov ³⁹, C. Issever ¹¹⁸, S. Istin ^{18a}, A.V. Ivashin ¹²⁸, W. Iwanski ³⁸, H. Iwasaki ⁶⁶, J.M. Izen ⁴⁰, V. Izzo ^{102a}, B. Jackson ¹²⁰, J.N. Jackson ⁷³, P. Jackson ¹⁴³, M.R. Jaekel ²⁹, V. Jain ⁶¹, K. Jakobs ⁴⁸, S. Jakobsen ³⁵, J. Jakubek ¹²⁷, D.K. Jana ¹¹¹, E. Jankowski ¹⁵⁸, E. Jansen ⁷⁷, H. Jansen ²⁹, A. Jantsch ⁹⁹, M. Janus ²⁰, G. Jarlskog ⁷⁹, L. Jeanty ⁵⁷, K. Jelen ³⁷, I. Jen-La Plante ³⁰, P. Jenni ²⁹, A. Jeremie ⁴, P. Jež ³⁵, S. Jézéquel ⁴, M.K. Jha ^{19a}, ¹¹⁷ H. Ji ¹⁷², W. Ji ⁸¹, J. Jia ¹⁴⁸, Y. Jiang ^{32b}, M. Jimenez Belenguer ⁴¹, G. Jin ^{32b}, S. Jin ^{32a}, O. Jinnouchi ¹⁵⁷, M.D. Joergensen ³⁵, D. Joffe ³⁹, L.G. Johansen ¹³, M. Johansen ^{146a, 146b}, K.E. Johansson ^{146a},

<page-header>

W.S. Lockman ¹³⁷, T. Loddenkoetter ²⁰, F.K. Loebinger ⁸², A. Loginov ¹⁷⁵, C.W. Loh ¹⁶⁸, T. Lohse ¹⁵, K. Lohwasser ⁴⁸, M. Lokajicek ¹²⁵, J. Loken ¹¹⁸, V.P. Lombardo⁴, R.E. Long ⁷¹, L. Lopes ^{124a,b}, D. Lopez Mateos ⁵⁷, J. Lorenz ⁹⁸, M. Losada ¹⁶², P. Loscutoff ¹⁴, F. Lo Sterzo ^{132a,132b}, M.J. Losty ^{159a}, X. Lou ⁴⁰, A. Lounis ¹¹⁵, K.F. Loureiro ¹⁶², J. Love ²¹, P.A. Love ⁷¹, A.J. Lowe ^{143,e}, F. Lu ^{32a}, H.J. Lubatti ¹³⁸, C. Luci ^{132a,132b}, A. Lucotte ⁵⁵, A. Ludwig ⁴³, D. Ludwig ⁴¹, I. Ludwig ⁴⁸, J. Ludwig ⁴⁸, F. Luehring ⁶¹, G. Luijckx ¹⁰⁵, D. Lumb ⁴⁸, L. Luminari ^{132a}, E. Lund ¹¹⁷, B. Lund-Jensen ¹⁴⁷, B. Lundberg ⁷⁹, J. Lundberg ^{146a,146b}, J. Lundquist ³⁵, M. Lungwitz ⁸¹, G. Lutz ⁹⁹, D. Lynn ²⁴, J. Lys ¹⁴, E. Lytken ⁷⁹, H. Ma ²⁴, L.L. Ma ¹⁷², J.A. Macana Goia ⁹³, G. Maccarrone ⁴⁷, A. Macchiolo ⁹⁹, B. Maček ⁷⁴, J. Machado Miguens ^{124a}, R. Mackeprang ³⁵, R.J. Madaras ¹⁴, W.F. Mader ⁴³, R. Maenner ^{58c}, T. Maeno ²⁴, P. Mättig ¹⁷⁴, S. Mättig ⁴¹, L. Magnoni ²⁹, E. Magradze ⁵⁴, Y. Mahlalel ¹⁵³, K. Mahboubi ⁴⁸, G. Mahout ¹⁷, C. Maiani ^{132a,132b}, C. Maidantchik ^{23a}, A. Maio ^{124a,b}, S. Majewski ²⁴, Y. Makida ⁶⁶, N. Makovec ¹¹⁵, P. Mal ¹³⁶, B. Malaescu ²⁹, Pa. Malecki ³⁸, P. Malecki ³⁸, V.P. Maleev ¹²¹, F. Malek ⁵⁵, U. Mallik ⁶³, D. Malon ⁵, C. Malone ¹⁴³, S. Maltezos ⁹, V. Malyshev ¹⁰⁷, S. Malyukov ²⁹, R. Mameghani ⁹⁸, J. Manuzic ^{12b}, A. Manabe ⁶⁶, L. Mandelli ^{89a}, I. Mandić ⁷⁴, R. Mandrysch ¹⁵, J. Maneira ^{124a}, P.S. Mangeard ⁸⁸, L. Manabe ⁶⁵, A. Mann ⁵⁴, P.M. Manning ¹³⁷, D. W.S. Lockman¹³⁷, T. Loddenkoetter²⁰, F.K. Loebinger⁸², A. Loginov¹⁷⁵, C.W. Loh¹⁶⁸, T. Lohse¹⁵, L. Manhaes de Andrade Filho^{23a}, I.D. Manjavidze⁶⁵, A. Mann⁵⁴, P.M. Manning¹³⁷ A. Manousakis-Katsikakis⁸, B. Mansoulie ¹³⁶, A. Manz⁹⁹, A. Mapelli²⁹, L. Mapelli²⁹, L. March⁸⁰, J.F. Marchand²⁸, F. Marchese ^{133a,133b}, G. Marchiori⁷⁸, M. Marcisovsky¹²⁵, A. Marin^{21,*}, C.P. Marino¹⁶⁹, F. Marroquim^{23a}, R. Marshall⁸², Z. Marshall²⁹, F.K. Martens¹⁵⁸, S. Marti-Garcia¹⁶⁷, A.J. Martin¹⁷⁵, F. Marroquim ^{23a}, R. Marshall ⁶², Z. Marshall ²³, F.K. Martens ¹³⁵, S. Marti-Garcia ⁶⁷, A.J. Martin ⁴⁵, B. Martin ²⁹, B. Martin ⁸⁸, F.F. Martin ¹²⁰, J.P. Martin ⁹³, Ph. Martin ⁵⁵, T.A. Martin ¹⁷, V.J. Martin ⁴⁵, B. Martin dit Latour ⁴⁹, S. Martin-Haugh ¹⁴⁹, M. Martinez ¹¹, V. Martinez Outschoorn ⁵⁷, A.C. Martyniuk ¹⁶⁹, M. Marx ⁸², F. Marzano ^{132a}, A. Marzin ¹¹¹, L. Masetti ⁸¹, T. Mashimo ¹⁵⁵, R. Mashinistov ⁹⁴, J. Masik ⁸², A.L. Maslennikov ¹⁰⁷, I. Massa ^{19a,19b}, G. Massaro ¹⁰⁵, N. Massol ⁴, P. Mastrandrea ^{132a,132b}, A. Mastroberardino ^{36a,36b}, T. Masubuchi ¹⁵⁵, M. Mathes ²⁰, H. Matsumoto ¹⁵⁵, H. Matsunaga ¹⁵⁵, T. Matsushita ⁶⁷, C. Mattravers ^{118,c}, J.M. Maugain ²⁹, J. Maurer ⁸³, S.J. Maxfield ⁷³, D.A. Maximov ¹⁰⁷, E.N. May ⁵, A. Mayne ¹³⁹, R. Mazini ¹⁵¹, M. Mazur ²⁰, M. Mazzanti ^{89a}, D.A. Maximov ¹⁰⁷, E.N. May ⁵, A. Mayne ¹³⁹, R. Mazini ¹⁵¹, M. Mazur ²⁰, M. Mazzanti ^{89a}, E. Mazzoni ^{122a,122b}, S.P. Mc Kee ⁸⁷, A. McCarn ¹⁶⁵, R.L. McCarthy ¹⁴⁸, T.G. McCarthy ²⁸, N.A. McCubbin ¹²⁹, K.W. McFarlane ⁵⁶, J.A. Mcfayden ¹³⁹, H. McGlone ⁵³, G. Mchedlidze ^{51b}, R.A. McLaren ²⁹, T. Mclaughlan ¹⁷, S.J. McMahon ¹²⁹, R.A. McPherson ^{169,i}, A. Meade ⁸⁴, J. Mechnich ¹⁰⁵, M. Mechtel ¹⁷⁴, M. Medinnis ⁴¹, R. Meera-Lebbai ¹¹¹, T. Meguro ¹¹⁶, R. Mehdiyev ⁹³, S. Mehlhase ³⁵, A. Mehta ⁷³, K. Meier ^{58a}, B. Meirose ⁷⁹, C. Melachrinos ³⁰, B.R. Mellado Garcia ¹⁷², L. Mendoza Navas ¹⁶², Z. Meng ^{151,t}, A. Mengarelli ^{19a,19b}, S. Menke ⁹⁹, C. Menot ²⁹, E. Meoni ¹¹, K.M. Mercurio ⁵⁷, P. Mermod ⁴⁹, L. Merola ^{102a,102b}, C. Meroni ^{89a}, F.S. Merritt ³⁰, A. Messina ²⁹, J. Metcalfe ¹⁰³, A.S. Mete ⁶⁴, C. Meyer ⁸¹, C. Meyer ³⁰, J.-P. Meyer ¹³⁶, J. Meyer ¹⁷³, J. Meyer ⁵⁴, T.C. Meyer ²⁹, W.T. Meyer ⁶⁴, J. Miao ^{32d}, S. Michal ²⁹, L. Micu ^{25a}, R.P. Middleton ¹²⁹, S. Migas ⁷³, L. Mijović ⁴¹, G. Mikenberg ¹⁷¹, M. Mikestikova ¹²⁵, M. Mikuž ⁷⁴, D.W. Miller ³⁰, R.J. Miller ⁸⁸, W.J. Mills ¹⁶⁸, C. Mills ⁵⁷, A. Milov ¹⁷¹, D.A. Milstead ^{146a,146b}, D. Milstein ¹⁷¹, A.A. Minaenko ¹²⁸, M. Miñano Moya ¹⁶⁷, I.A. Minashvili ⁶⁵, A.I. Mincer ¹⁰⁸, B. Mindur ³⁷, M. Mineev ⁶⁵, Y. Ming ¹⁷², L.M. Mir ¹¹, G. Mirabelli ^{132a}, L. Miralles Verge ¹¹, A. Misiejuk ⁷⁶, I. Mitrevski ¹³⁷, G.Y. Mitrofanov ¹²⁸, V.A. Mitsou ¹⁶⁷, S. Mitsui ⁶⁶, P.S. Miyagawa ¹³⁹, K. Miyazaki ⁶⁷, M. Mineev⁶⁵, Y. Ming¹⁷², L.M. Mir¹¹, G. Mirabelli^{132a}, L. Miralles Verge¹¹, A. Misiejuk⁷⁶, J. Mitrevski¹³⁷, G.Y. Mitrofanov¹²⁸, V.A. Mitsou¹⁶⁷, S. Mitsui⁶⁶, P.S. Miyagawa¹³⁹, K. Miyazaki⁶⁷, J.U. Mjörnmark⁷⁹, T. Moa^{146a,146b}, P. Mockett¹³⁸, S. Moed⁵⁷, V. Moeller²⁷, K. Mönig⁴¹, N. Möser²⁰, S. Mohapatra¹⁴⁸, W. Mohr⁴⁸, S. Mohrdieck-Möck⁹⁹, A.M. Moisseev^{128,*}, R. Moles-Valls¹⁶⁷, J. Molina-Perez²⁹, J. Monk⁷⁷, E. Monnier⁸³, S. Montesano^{89a,89b}, F. Monticelli⁷⁰, S. Monzani^{19a,19b}, R.W. Moore², G.F. Moorhead⁸⁶, C. Mora Herrera⁴⁹, A. Moraes⁵³, N. Morange¹³⁶, J. Morel⁵⁴, G. Morello^{36a,36b}, D. Moreno⁸¹, M. Moreno Llácer¹⁶⁷, P. Morettini^{50a}, M. Morii⁵⁷, J. Morin⁷⁵, A.K. Morley²⁹, G. Mornacchi²⁹, S.V. Morozov⁹⁶, J.D. Morris⁷⁵, L. Morvaj¹⁰¹, H.G. Moser⁹⁹, M. Mosidze^{51b}, J. Moss¹⁰⁹, R. Mount¹⁴³, E. Mountricha⁹, S.V. Mouraviev⁹⁴, E.J.W. Moyse⁸⁴, M. Mosidze ⁵¹⁰, J. Moss ¹⁰⁵, R. Mount ¹⁴³, E. Mountricha⁵, S.V. Mouraviev ⁵⁴, E.J.W. Moyse ⁶⁴, M. Mudrinic ^{12b}, F. Mueller ^{58a}, J. Mueller ¹²³, K. Mueller ²⁰, T.A. Müller ⁹⁸, T. Mueller ⁸¹, D. Muenstermann ²⁹, A. Muir ¹⁶⁸, Y. Munwes ¹⁵³, W.J. Murray ¹²⁹, I. Mussche ¹⁰⁵, E. Musto ^{102a,102b}, A.G. Myagkov ¹²⁸, J. Nadal ¹¹, K. Nagai ¹⁶⁰, K. Nagano ⁶⁶, Y. Nagasaka ⁶⁰, M. Nagel ⁹⁹, A.M. Nairz ²⁹, Y. Nakahama ²⁹, K. Nakamura ¹⁵⁵, T. Nakamura ¹⁵⁵, I. Nakano ¹¹⁰, G. Nanava ²⁰, A. Napier ¹⁶¹, R. Narayan ^{58b}, M. Nash ^{77,c}, N.R. Nation ²¹, T. Nattermann ²⁰, T. Naumann ⁴¹, G. Navarro ¹⁶², H.A. Neal ⁸⁷, E. Nebot ⁸⁰, P.Yu. Nechaeva ⁹⁴, A. Negri ^{119a,119b}, G. Negri ²⁹, S. Nektarijevic ⁴⁹, A. Nelson ¹⁶³, S. Nelson ¹⁴³, T.K. Nelson¹⁴³, S. Nemecek¹²⁵, P. Nemethy¹⁰⁸, A.A. Nepomuceno^{23a}, M. Nessi^{29,u}, M.S. Neubauer¹⁶⁵,

A. Neusiedl⁸¹, R.M. Neves¹⁰⁸, P. Nevski²⁴, P.R. Newman¹⁷, V. Nguyen Thi Hong¹³⁶, R.B. Nickerson¹¹⁸, R. Nicolaidou¹³⁶, L. Nicolas¹³⁹, B. Nicquevert²⁹, F. Niedercorn¹¹⁵, J. Nielsen¹³⁷, T. Niinikoski²⁹, N. Nikiforou³⁴, A. Nikiforov¹⁵, V. Nikolaenko¹²⁸, K. Nikolaev⁶⁵, I. Nikolic-Audit⁷⁸, K. Nikolics⁴⁹, K. Nikolopoulos²⁴, H. Nilsen⁴⁸, P. Nilsson⁷, Y. Ninomiya¹⁵⁵, A. Nisati^{132a}, T. Nishiyama⁶⁷, R. Nisius⁹⁹, L. Nodulman⁵, M. Nomachi¹¹⁶, I. Nomidis¹⁵⁴, M. Nordberg²⁹, B. Nordkvist^{146a,146b}, P.R. Norton¹²⁹, J. Novakova¹²⁶, M. Nozaki⁶⁶, L. Nozka¹¹³, I.M. Nugent^{159a}, A.-E. Nuncio-Quiroz²⁰, G. Nunes Hanninger⁸⁶, T. Nunnemann⁹⁸, E. Nurse⁷⁷, T. Nyman²⁹, B.J. O'Brien⁴⁵, S.W. O'Neale^{17,*}, D.C. O'Neil¹⁴², V. O'Shea⁵³, L.B. Oakes⁹⁸, F.G. Oakham^{28,d}, H. Oberlack⁹⁹, J. Ocariz⁷⁸, A. Ochi⁶⁷, S. Oda¹⁵⁵, S. Odaka⁶⁶, J. Odier⁸³, H. Ogren⁶¹, A. Oh⁸², S.H. Oh⁴⁴, C.C. Ohm^{146a,146b}, T. Ohshima¹⁰¹, H. Ohshita¹⁴⁰, T. Ohsugi⁵⁹, S. Okada⁶⁷, H. Okawa¹⁶³, Y. Okumura¹⁰¹, T. Okuyama¹⁵⁵, A. Olariu^{25a}, M. Olcese^{50a}, A.G. Olchevski⁶⁵, M. Oliveira^{124a,g}, D. Oliveira Damazio²⁴, E. Oliver Garcia¹⁶⁷, D. Olivito¹²⁰, A. Olszewski³⁸, J. Olszowska³⁸, C. Omachi⁶⁷, A. Onofre^{124a,v}, P.U.E. Onyisi³⁰, C.J. Oram^{159a}, M.J. Oreglia³⁰, Y. Oren¹⁵³, D. Orestano^{134a,134b}, C. Oropeza Barrera⁵³, R.S. Orr¹⁵⁸, B. Osculati^{50a,50b}, R. Ospanov¹²⁰, C. Osuna¹¹, G. Otero y Garzon²⁶, J.P. Ottersbach¹⁰⁵, M. Ouchrif^{135d}, E.A. Ouellette¹⁶⁹, F. Ould-Saada¹¹⁷, A. Ouraou¹³⁶, Q. Ouyang^{32a}, A. Ovcharova¹⁴, M. Owen⁸², S. Owen¹³⁹, V.E. Ozcan^{18a}, N. Ozturk⁷, A. Pacheco Pages¹¹, C. Padilla Aranda¹¹, S. Pagan Griso¹⁴, E.A. Ouellette ¹⁶⁹, F. Ould-Saada ¹¹⁷, A. Ouraou ¹³⁶, Q. Ouyang ^{32a}, A. Ovcharova ¹⁴, M. Owen ⁸², S. Owen ¹³⁹, V.E. Ozcan ^{18a}, N. Ozturk ⁷, A. Pacheco Pages ¹¹, C. Padilla Aranda ¹¹, S. Pagan Griso ¹⁴, E. Paganis ¹³⁹, F. Paige ²⁴, P. Pais ⁸⁴, K. Pajchel ¹¹⁷, G. Palacino ^{159b}, C.P. Paleari ⁶, S. Palestini ²⁹, D. Pallin ³³, A. Palma ^{124a}, J.D. Palmer ¹⁷, Y.B. Pan ¹⁷², E. Panagiotopoulou ⁹, B. Panes ^{31a}, N. Panikashvili ⁸⁷, S. Panitkin ²⁴, D. Pantea ^{25a}, M. Panuskova ¹²⁵, V. Paolone ¹²³, A. Papadelis ^{146a}, Th.D. Papadopoulou ⁹, A. Paramonov ⁵, W. Park ²⁴, w, M.A. Parker ²⁷, F. Parodi ^{50a,50b}, J.A. Parsons ³⁴, U. Parzefall ⁴⁸, E. Pasqualucci ^{132a}, S. Passaggio ^{50a}, A. Passeri ^{134a}, F. Pastore ^{134a,134b}, Fr. Pastore ⁷⁶, G. Pásztor ^{49,x}, S. Pataraia ¹⁷⁴, N. Patel ¹⁵⁰, J.R. Pater ⁸², S. Patricelli ^{102a,102b}, T. Pauly ²⁹, M. Pecsy ^{144a}, M.I. Pedraza Morales ¹⁷², S.V. Peleganchuk ¹⁰⁷, H. Peng ^{32b}, R. Pengo ²⁹, A. Penson ³⁴, J. Penwell ⁶¹, M. Perantoni ^{23a}, K. Perez ^{34,y}, T. Perez Cavalcanti ⁴¹, E. Perez Codina ¹¹, M.T. Pérez García-Estañ ¹⁶⁷, V. Perez Reale ³⁴ L. Perini ^{89a,89b} H. Pernegger ²⁹ R. Perino ^{72a} P. Perrodo ⁴ S. Persembe ^{3a} V. Perez Reale ³⁴, L. Perini ^{89a,89b}, H. Pernegger ²⁹, R. Perrino ^{72a}, P. Perrodo ⁴, S. Persembe ^{3a}, V.D. Peshekhonov ⁶⁵, B.A. Petersen ²⁹, J. Petersen ²⁹, T.C. Petersen ³⁵, E. Petit ⁴, A. Petridis ¹⁵⁴, C. Petridou¹⁵⁴, E. Petrolo^{132a}, F. Petrucci^{134a,134b}, D. Petschull⁴¹, M. Petteni¹⁴², R. Pezoa^{31b}, A. Phan⁸⁶, P.W. Phillips¹²⁹, G. Piacquadio²⁹, E. Piccaro⁷⁵, M. Piccinini^{19a,19b}, S.M. Piec⁴¹, R. Piegaia²⁶, D.T. Pignotti¹⁰⁹, J.E. Pilcher³⁰, A.D. Pilkington⁸², J. Pina^{124a,b}, M. Pinamonti^{164a,164c}, A. Pinder¹¹⁸, J.L. Pinfold², J. Ping^{32c}, B. Pinto^{124a,b}, O. Pirotte²⁹, C. Pizio^{89a,89b}, R. Placakyte⁴¹, M. Plamondon¹⁶⁹, M.-A. Pleier²⁴, A.V. Pleskach¹²⁸, A. Poblaguev²⁴, S. Poddar^{58a}, F. Podlyski³³, L. Poggioli¹¹⁵, M.-A. Pleier²⁴, A.V. Pleskach¹²⁵, A. Poblaguev²⁴, S. Poddar³⁶⁴, F. Podlyski³⁵, L. Poggioli¹¹⁹, T. Poghosyan²⁰, M. Pohl⁴⁹, F. Polci⁵⁵, G. Polesello¹¹⁹a, A. Policicchio¹³⁸, A. Polini¹⁹a, J. Poll⁷⁵, V. Polychronakos²⁴, D.M. Pomarede¹³⁶, D. Pomeroy²², K. Pommès²⁹, L. Pontecorvo¹³²a, B.G. Pope⁸⁸, G.A. Popeneciu^{25a}, D.S. Popovic^{12a}, A. Poppleton²⁹, X. Portell Bueso²⁹, C. Posch²¹, G.E. Pospelov⁹⁹, S. Pospisil¹²⁷, I.N. Potrap⁹⁹, C.J. Potter¹⁴⁹, C.T. Potter¹¹⁴, G. Poulard²⁹, J. Poveda¹⁷², R. Prabhu⁷⁷, P. Pralavorio⁸³, A. Pranko¹⁴, S. Prasad⁵⁷, R. Pravahan⁷, S. Prell⁶⁴, K. Pretzl¹⁶, L. Pribyl²⁹, D. Price⁶¹, J. Price⁷³, L.E. Price⁵, M.J. Price²⁹, D. Prieur¹²³, M. Primavera^{72a}, K. Prokofiev¹⁰⁸, F. Prokoshin^{31b}, S. Protopopescu²⁴, J. Proudfoot⁵, X. Prudent⁴³, M. Przybycien³⁷, H. Przysiezniak⁴, S. Psoroulas²⁰, E. Ptacek ¹¹⁴, E. Pueschel ⁸⁴, J. Purdham ⁸⁷, M. Purohit ^{24,w}, P. Puzo ¹¹⁵, Y. Pylypchenko ⁶³, J. Qian ⁸⁷, Z. Qian ⁸³, Z. Qian ⁴¹, A. Quadt ⁵⁴, D.R. Quarrie ¹⁴, W.B. Quayle ¹⁷², F. Quinonez ^{31a}, M. Raas ¹⁰⁴, V. Radescu ^{58b}, B. Radics ²⁰, P. Radloff ¹¹⁴, T. Rador ^{18a}, F. Ragusa ^{89a,89b}, G. Rahal ¹⁷⁷, A.M. Rahimi ¹⁰⁹, D. Rahm ²⁴, S. Rajagopalan ²⁴, M. Rammensee ⁴⁸, M. Rammens ¹⁴¹, A.S. Randle-Conde ³⁹, ¹¹⁰, ¹¹⁰, ¹¹⁰, ¹¹⁰, ¹¹⁰, ¹¹⁰, ¹¹⁰, ¹¹¹, ¹¹⁰, D. Rahm²⁴, S. Rajagopalan²⁴, M. Rammensee⁴⁶, M. Rammes¹⁴¹, A.S. Randle-Conde³⁵, K. Randrianarivony²⁸, P.N. Ratoff⁷¹, F. Rauscher⁹⁸, M. Raymond²⁹, A.L. Read¹¹⁷, D.M. Rebuzzi^{119a,119b}, A. Redelbach¹⁷³, G. Redlinger²⁴, R. Reece¹²⁰, K. Reeves⁴⁰, A. Reichold¹⁰⁵, E. Reinherz-Aronis¹⁵³, A. Reinsch¹¹⁴, I. Reisinger⁴², D. Reljic^{12a}, C. Rembser²⁹, Z.L. Ren¹⁵¹, A. Renaud¹¹⁵, P. Renkel³⁹, M. Rescigno^{132a}, S. Resconi^{89a}, B. Resende¹³⁶, P. Reznicek⁹⁸, R. Rezvani¹⁵⁸, A. Richards⁷⁷, R. Richter⁹⁹, E. Richter-Was^{4,z}, M. Ridel⁷⁸, M. Rijpstra¹⁰⁵, M. Rijssenbeek¹⁴⁸, A. Rimoldi^{119a,119b}, L. Rinaldi^{19a}, R.R. Rios³⁹, I. Riu¹¹, G. Rivoltella^{89a,89b}, F. Rizatdinova¹¹², E. Rizvi⁷⁵, S.H. Robertson^{85,i}, A. Robichaud-Veronneau ¹¹⁸, D. Robinson ²⁷, J.E.M. Robinson ⁷⁷, M. Robinson ¹¹⁴, A. Robson ⁵³, J.G. Rocha de Lima ¹⁰⁶, C. Roda ^{122a,122b}, D. Roda Dos Santos ²⁹, D. Rodriguez ¹⁶², A. Roe ⁵⁴, S. Roe ²⁹, O. Røhne ¹¹⁷, V. Rojo ¹, S. Rolli ¹⁶¹, A. Romaniouk ⁹⁶, M. Romano ^{19a,19b}, V.M. Romanov ⁶⁵, G. Romeo ²⁶, E. Romero Adam ¹⁶⁷, L. Roos ⁷⁸, E. Ros ¹⁶⁷, S. Rosati ^{132a,132b}, K. Rosbach ⁴⁹, A. Rose ¹⁴⁹, M. Rose ⁷⁶,

171

G.A. Rosenbaum¹⁵⁸, E.I. Rosenberg⁶⁴, P.L. Rosendahl¹³, O. Rosenthal¹⁴¹, L. Rosselet⁴⁹, V. Rossetti¹¹, E. Rossi^{132a,132b}, L.P. Rossi^{50a}, M. Rotaru^{25a}, I. Roth¹⁷¹, J. Rothberg¹³⁸, D. Rousseau¹¹⁵, C.R. Royon¹³⁶, A. Rozanov⁸³, Y. Rozen¹⁵², X. Ruan^{115,aa}, I. Rubinskiy⁴¹, B. Ruckert⁹⁸, N. Ruckstuhl¹⁰⁵, V.I. Rud⁹⁷, C. Rudolph⁴³, F. Rühr⁶, F. Ruggieri^{134a,134b}, A. Ruiz-Martinez⁶⁴, V. Rumiantsev^{91,*}, L. Rumyantsev⁶⁵, C. Rudolph ⁴³, F. Rühr ⁶, F. Ruggieri ^{134a, 134b}, A. Ruiz-Martinez ⁶⁴, V. Rumiantsev ^{91,*}, L. Rumyantsev ⁶⁵, K. Runge ⁴⁸, Z. Rurikova ⁴⁸, N.A. Rusakovich ⁶⁵, D.R. Rust ⁶¹, J.P. Rutherfoord ⁶, C. Ruwiedel ¹⁴, P. Ruzicka ¹²⁵, Y.F. Ryabov ¹²¹, V. Ryadovikov ¹²⁸, P. Ryan ⁸⁸, M. Rybar ¹²⁶, G. Rybkin ¹¹⁵, N.C. Ryder ¹¹⁸, S. Rzaeva ¹⁰, A.F. Saavedra ¹⁵⁰, I. Sadeh ¹⁵³, H.F.-W. Sadrozinski ¹³⁷, R. Sadykov ⁶⁵, F. Safai Tehrani ^{132a, 132b}, H. Sakamoto ¹⁵⁵, G. Salamanna ⁷⁵, A. Salamon ^{133a}, M. Saleem ¹¹¹, D. Salihagic ⁹⁹, A. Salnikov ¹⁴³, J. Salt ¹⁶⁷, B.M. Salvachua Ferrando ⁵, D. Salvatore ^{36a, 36b}, F. Salvatore ¹⁴⁹, A. Salvucci ¹⁰⁴, A. Salzburger ²⁹, D. Sampsonidis ¹⁵⁴, B.H. Samset ¹¹⁷, A. Sanchez ^{102a, 102b}, H. Sandaker ¹³, H.G. Sander ⁸¹, M.P. Sanders ⁹⁸, M. Sandhoff ¹⁷⁴, T. Sandoval ²⁷, C. Sandoval ¹⁶², R. Sandstroem ⁹⁹, S. Sandvoss ¹⁷⁴, D.P.C. Sankey ¹²⁹, A. Sansoni ⁴⁷, C. Santamarina Rios ⁸⁵, C. Santoni ³³, R. Santonico ^{133a, 133b}, H. Santos ^{124a}, J.G. Saraiva ^{124a}, T. Sarangi ¹⁷², E. Sarkisyan-Grinbaum ⁷, F. Sarri ^{122a,122b}, G. Sartisohn ¹⁷⁴, O. Sasaki ⁶⁶, T. Sasaki ⁶⁶, N. Sasao ⁶⁸ I. Satsounkevitch ⁹⁰ G. Sauvage ⁴ F. Sauvan ⁴ I.B. Sauvan ¹¹⁵ P. Savard ^{158,d} V. Savinov ¹²³ T. Sarangi ¹⁷², E. Sarkisyan-Grinbaum ⁷, F. Sarri ^{122a,122b}, G. Sartisohn ¹⁷⁴, O. Sasaki ⁶⁶, T. Sasaki ⁶⁶, N. Sasao ⁶⁸, I. Satsounkevitch ⁹⁰, G. Sauvage ⁴, E. Sauvan ⁴, J.B. Sauvan ¹¹⁵, P. Savard ^{158,d}, V. Savinov ¹²³, D.O. Savu ²⁹, L. Sawyer ^{24,k}, D.H. Saxon ⁵³, L.P. Says ³³, C. Sbarra ^{19a}, A. Sbrizzi ^{19a,19b}, O. Scallon ⁹³, D.A. Scannicchio ¹⁶³, M. Scarcella ¹⁵⁰, J. Schaarschmidt ¹¹⁵, P. Schacht ⁹⁹, U. Schäfer ⁸¹, S. Schaepe ²⁰, S. Schaetzel ^{58b}, A.C. Schaffer ¹¹⁵, D. Schaile ⁹⁸, R.D. Schamberger ¹⁴⁸, V. Scharf ^{58a}, V.A. Schegelsky ¹²¹, D. Scheirich ⁸⁷, M. Schernau ¹⁶³, M.I. Scherzer ³⁴, C. Schiavi ^{50a,50b}, J. Schieck ⁹⁸, M. Schioppa ^{36a,36b}, S. Schlenker ²⁹, J.L. Schlereth ⁵, E. Schmidt ⁴⁸, K. Schmieden ²⁰, C. Schmitt ⁸¹, S. Schmitt ^{58b}, M. Schort ²⁹, D. Schouten ^{159a}, J. Schovancova ¹²⁵, M. Schram ⁸⁵, C. Schroeder ⁸¹, N. Schroer ^{58c}, S. Schuh ²⁹, G. Schuler ²⁹, J. Schultes ¹⁷⁴, H.-C. Schultz-Coulon ^{58a}, H. Schulz ¹⁵, J.W. Schumacher ²⁰, M. Schumacher ⁴⁸, B.A. Schum ¹³⁷, Ph. Schune ¹³⁶, C. Schwanenberger ⁸², A. Schwartzman ¹⁴³, Ph. Schwemling ⁷⁸, R. Schwienhorst ⁸⁸, R. Schwierz ⁴³, J. Schwindling ¹³⁶, T. Schwindt ²⁰, M. Schwoerer ⁴, W.G. Scott ¹²⁹, J. Searcy ¹¹⁴, G. Sedov ⁴¹, E. Sedykh ¹²¹, E. Segura ¹¹, S.C. Seidel ¹⁰³, A. Seiden ¹³⁷, F. Seifert ⁴³, I.M. Seixas ^{23a}, G. Sekhniaidze ^{102a}, K.E. Selbach ⁴⁵, S.C. Seidel¹⁰³, A. Seiden¹³⁷, F. Seifert⁴³, J.M. Seixas^{23a}, G. Sekhniaidze^{102a}, K.E. Selbach⁴⁵, D.M. Seliverstov¹²¹, B. Sellden^{146a}, G. Sellers⁷³, M. Seman^{144b}, N. Semprini-Cesari^{19a,19b}, C. Serfon⁹⁸, L. Serin¹¹⁵, R. Seuster⁹⁹, H. Severini¹¹¹, M.E. Sevior⁸⁶, A. Sfyrla²⁹, E. Shabalina⁵⁴, M. Shamim¹¹⁴, L. Serin ¹¹⁵, R. Seuster ⁹⁹, H. Severini ¹¹¹, M.E. Sevior ⁸⁶, A. Sfyrla ²⁹, E. Shabalina ⁵⁴, M. Shamim ¹¹⁴, L.Y. Shan ^{32a}, J.T. Shank ²¹, Q.T. Shao ⁸⁶, M. Shapiro ¹⁴, P.B. Shatalov ⁹⁵, L. Shaver ⁶, K. Shaw ^{164a,164c}, D. Sherman ¹⁷⁵, P. Sherwood ⁷⁷, A. Shibata ¹⁰⁸, H. Shichi ¹⁰¹, S. Shimizu ²⁹, M. Shimojima ¹⁰⁰, T. Shin ⁵⁶, M. Shiyakova ⁶⁵, A. Shmeleva ⁹⁴, M.J. Shochet ³⁰, D. Short ¹¹⁸, S. Shrestha ⁶⁴, M.A. Shupe ⁶, P. Sicho ¹²⁵, A. Sidoti ^{132a,132b}, F. Siegert ⁴⁸, Dj. Sijacki ^{12a}, O. Silbert ¹⁷¹, J. Silva ^{124a,b}, Y. Silver ¹⁵³, D. Silverstein ¹⁴³, S.B. Silverstein ^{146a}, V. Simak ¹²⁷, O. Simard ¹³⁶, Lj. Simic ^{12a}, S. Simion ¹¹⁵, B. Simmons ⁷⁷, M. Simonyan ³⁵, P. Sinervo ¹⁵⁸, N.B. Sinev ¹¹⁴, V. Sipica ¹⁴¹, G. Siragusa ¹⁷³, A. Sircar ²⁴, A.N. Sisakyan ⁶⁵, S.Yu. Sivoklokov ⁹⁷, J. Sjölin ^{146a,146b}, T.B. Sjursen ¹³, L.A. Skinnari ¹⁴, H.P. Skottowe ⁵⁷, K. Skovpen ¹⁰⁷, P. Skubic ¹¹¹, N. Skvorodnev ²², M. Slater ¹⁷, T. Slavicek ¹²⁷, K. Sliwa ¹⁶¹, J. Sloper ²⁹, V. Smakhtin ¹⁷¹, S.Yu. Smirnov ⁹⁶, L.N. Smirnova ⁹⁷, O. Smirnova ⁷⁹, B.C. Smith ⁵⁷, K.M. Smith ⁵³, M. Smizanska ⁷¹, K. Smolek¹²⁷, A.A. Snesarev⁹⁴, S.W. Snow⁸², J. Snow¹¹¹, J. Snuverink¹⁰⁵, S. Snyder²⁴, M. Soares¹²⁴a, R. Sobie^{169,i}, J. Sodomka¹²⁷, A. Soffer¹⁵³, C.A. Solans¹⁶⁷, M. Solar¹²⁷, J. Solc¹²⁷, E. Soldatov⁹⁶, U. Soldevila ¹⁶⁷, E. Solfaroli Camillocci ^{132a,132b}, A.A. Solodkov ¹²⁸, O.V. Solovyanov ¹²⁸, N. Soni², V. Sopko ¹²⁷, B. Sopko ¹²⁷, M. Sosebee ⁷, R. Soualah ^{164a,164c}, A. Soukharev ¹⁰⁷, S. Spagnolo ^{72a,72b}, F. Spanò ⁷⁶, R. Spighi ^{19a}, G. Spigo ²⁹, F. Spila ^{132a,132b}, R. Spiwoks ²⁹, M. Spousta ¹²⁶, T. Spreitzer ¹⁵⁸, B. Spurlock ⁷, R.D. St. Denis ⁵³, T. Stahl ¹⁴¹, J. Stahlman ¹²⁰, R. Stamen ^{58a}, E. Stanecka ³⁸, R.W. Stanek ⁵, C. Stanescu ^{134a}, S. Stapnes ¹¹⁷, E.A. Starchenko ¹²⁸, J. Stark ⁵⁵, P. Staroba ¹²⁵, P. Starovoitov ⁹¹, A. Staude ⁹⁸, D. Starovoitov ¹⁴⁴, G. Staneka ¹⁴, G. Staneka ¹⁴², S. Starovoitov ⁹¹, A. Staude ⁹⁸, S. Starovoitov ¹⁴⁴, S. Starovoitov ¹⁴⁴, G. Starovoitov ¹⁴⁴, S. Starovoitov ¹⁴⁵, S. C. Stanescu ^{134a}, S. Stapnes ¹¹⁷, E.A. Starchenko ¹²⁸, J. Stark ⁵⁵, P. Staroba ¹²⁵, P. Starovoitov ⁹¹, A. Staude ⁹⁸, P. Stavina ^{144a}, G. Stavropoulos ¹⁴, G. Steele ⁵³, P. Steinbach ⁴³, P. Steinberg ²⁴, I. Stekl ¹²⁷, B. Stelzer ¹⁴², H.J. Stelzer ⁸⁸, O. Stelzer-Chilton ^{159a}, H. Stenzel ⁵², S. Stern ⁹⁹, K. Stevenson ⁷⁵, G.A. Stewart ²⁹, J.A. Stillings ²⁰, M.C. Stockton ⁸⁵, K. Stoerig ⁴⁸, G. Stoicea ^{25a}, S. Stonjek ⁹⁹, P. Strachota ¹²⁶, A.R. Stradling ⁷, A. Straessner ⁴³, J. Strandberg ¹⁴⁷, S. Strandberg ^{146a,146b}, A. Strandlie ¹¹⁷, M. Strang ¹⁰⁹, E. Strauss ¹⁴³, M. Strauss ¹¹¹, P. Strizenec ^{144b}, R. Ströhmer ¹⁷³, D.M. Strom ¹¹⁴, J.A. Strong ^{76,*}, R. Stroynowski ³⁹, J. Strube ¹²⁹, B. Stugu ¹³, I. Stumer ^{24,*}, J. Stupak ¹⁴⁸, P. Sturm ¹⁷⁴, N.A. Styles ⁴¹, D.A. Soh ^{151,r}, D. Su ¹⁴³, HS. Subramania ², A. Succurro ¹¹, Y. Sugaya ¹¹⁶, T. Sugimoto ¹⁰¹, C. Suhr ¹⁰⁶, K. Suita ⁶⁷, M. Suk ¹²⁶, V.V. Sulin ⁹⁴, S. Sultansoy ^{3d}, T. Sumida ⁶⁸, X. Sun ⁵⁵, J.E. Sundermann ⁴⁸, K. Suruliz ¹³⁹, S. Sushkov ¹¹, G. Susinno ^{36a,36b} M.R. Sutton ¹⁴⁹ V. Suzuki ⁶⁶ V. Suzuki ⁶⁷ M. Suztos ¹²⁵ Vu M. Sviridov ¹²⁸ G. Susinno^{36a,36b}, M.R. Sutton¹⁴⁹, Y. Suzuki⁶⁶, Y. Suzuki⁶⁷, M. Svatos¹²⁵, Yu.M. Sviridov¹²⁸,

S. Swedish ¹⁶⁸, I. Sykora ^{144a}, T. Sykora ¹²⁶, B. Szeless ²⁹, J. Sánchez ¹⁶⁷, D. Ta ¹⁰⁵, K. Tackmann ⁴¹,
A. Taffard ¹⁶³, R. Tafirout ^{159a}, N. Taiblum ¹⁵³, Y. Takahashi ¹⁰¹, H. Takai ²⁴, R. Takashima ⁶⁹, H. Takeda ⁶⁷,
T. Takeshita ¹⁴⁰, Y. Takubo ⁶⁶, M. Talby ⁸³, A. Talyshev ¹⁰⁷, M.C. Tamsett ²⁴, J. Tanaka ¹⁵⁵, R. Tanaka ¹¹⁵,
S. Tanaka ¹³¹, S. Tanaka ⁶⁶, Y. Tanaka ¹⁰⁰, A.J. Tanasijczuk ¹⁴², K. Tani ⁶⁷, N. Tannoury ⁸³, G.P. Tappern ²⁹,
S. Tapprogge ⁸¹, D. Tardif ¹⁵⁸, S. Tarem ¹⁵², F. Tarrade ²⁸, G.F. Tartarelli ^{89a}, P. Tas ¹²⁶, M. Tasevsky ¹²⁵,
E. Tassi ^{36a,36b}, M. Tatarkhanov ¹⁴, Y. Tayalati ^{135d}, C. Taylor ⁷⁷, F.E. Taylor ⁹², G.N. Taylor ⁸⁶, W. Taylor ^{159b},
M. Teinturier ¹¹⁵, M. Teixeira Dias Castanheira ⁷⁵, P. Teixeira-Dias ⁷⁶, K.K. Temming ⁴⁸, H. Ten Kate ²⁹,
P.K. Teng ¹⁵¹, S. Terada ⁶⁶, K. Terashi ¹⁵⁵, J. Terron ⁸⁰, M. Testa ⁴⁷, R.J. Teuscher ^{158,i}, J. Thadome ¹⁷⁴,
J. Therhaag ²⁰, T. Theveneaux-Pelzer ⁷⁸, M. Thioye ¹⁷⁵, S. Thoma ⁴⁸, J.P. Thomas ¹⁷, E.N. Thompson ³⁴,
P.D. Thompson ¹⁷, P.D. Thompson ¹⁵⁸, A.S. Thompson ⁵³, E. Thomson ¹²⁰, M. Thomson ²⁷, R.P. Thun ⁸⁷,
F. Tian ³⁴, M.J. Tibbetts ¹⁴, T. Tic ¹²⁵, V.O. Tikhomirov ⁹⁴, Y.A. Tikhonov ¹⁰⁷, S. Timoshenko ⁹⁶, P. Tipton ¹⁷⁵,
F.J. Tique Aires Viegas ²⁹, S. Tisserant ⁸³, J. Tobias ⁴⁸, B. Toczek ³⁷, T. Todorov ⁴, S. Todorova-Nova ¹⁶¹,
B. Toggerson ¹⁶³, J. Tojo ⁶⁶, S. Tokár ^{144a}, K. Tokunaga ⁶⁷, K. Tokushuku ⁶⁶, K. Tollefson ⁸⁸, M. Tomoto ¹⁰¹,
L. Tompkins ³⁰, K. Toms ¹⁰³, G. Tong ^{32a}, A. Tonoyan ¹³, C. Topfel ¹⁶, N.D. Topilin ⁶⁵, I. Torchiani ²⁹,
E. Torrence ¹¹⁴, H. Torres ⁷⁸, E. Torró Pastor ¹⁶⁷, J. Toth ^{83,x}, F. Touchard ⁸³, D.R. Tovey ¹³⁹, T. Trefzger ¹⁷³,
L. Tremblet ²⁹, A. Tricoli ²⁹, I.M. Trigger ^{159a}, S. Trincaz L. Tompkins ³⁹, K. Toms ¹⁰⁵, G. Tong ³²⁴, A. Tonoyan ⁵, C. Topfel ¹⁰, N.D. Toplin ⁶⁷, J. Torchiani ²⁹, E. Torrence ¹¹⁴, H. Torres ⁷⁸, E. Torró Pastor ¹⁶⁷, J. Toth ⁸³, x, F. Touchard ⁸³, D.R. Tovey ¹³⁹, T. Trefzger ¹⁷³, L. Tremblet ²⁹, A. Tricoli ²⁹, I.M. Trigger ^{159a}, S. Trincaz-Duvoid ⁷⁸, T.N. Trinh ⁷⁸, M.F. Tripiana ⁷⁰, W. Trischuk ¹⁵⁸, A. Trivedi ²⁴, w, B. Trocmé ⁵⁵, C. Troncon ^{89a}, M. Trottier-McDonald ¹⁴², M. Trzebinski ³⁸, A. Trzupek ³⁸, C. Tsarouchas ²⁹, J.C.-L. Tseng ¹¹⁸, M. Tsiakiris ¹⁰⁵, P.V. Tsiareshka ⁹⁰, D. Tsionou ^{4,ab}, G. Tsipolitis ⁹, V. Tsiskaridze ⁴⁸, E.G. Tskhadadze ^{51a}, I.I. Tsukerman ⁹⁵, V. Tsulaia ¹⁴, J.-W. Tsung ²⁰, S. Tsuno ⁶⁶, D. Tsybychev ¹⁴⁸, A. Tua ¹³⁹, A. Tudorache ^{25a}, V. Tudorache ^{25a}, J.M. Tuggle ³⁰, M. Turala ³⁸, D. Turecek ¹²⁷, I. Turk Cakir ^{3c}, E. Turlay ¹⁰⁵, R. Turra ^{89a}, 89b, P.M. Tuts ³⁴, A. Tykhonov ⁷⁴, M. Tylmad ^{146a, 146b}, M. Tyndel ¹²⁹, G. Tzanakos ⁸, K. Uchida ²⁰, I. Ueda ¹⁵⁵, R. Ueno ²⁸, M. Ugland ¹³, M. Uhlenbrock ²⁰, M. Uhrmacher ⁵⁴, F. Ukegawa ¹⁶⁰, G. Unal ²², D.G. Underwood ⁵, A. Undrus ²⁴, G. Unel ¹⁶³, Y. Unno ⁶⁶, D. Urbaniec ³⁴, G. Usai ⁷, L. Vacavant ⁸³, V. Vacek ¹²⁷, B. Vachon ⁸⁵, S. Vahsen ¹⁴, J. Valenta ¹²⁵, P. Valente ^{132a}, S. Valentinetti ^{19a, 19b}, S. Valkar ¹²⁶, E. Valladolid Gallego ¹⁶⁷, S. Vallecorsa ¹⁵², J.A. Valls Ferrer ¹⁶⁷, H. van der Graaf ¹⁰⁵, E. van der Kraaji ¹⁰⁵, R. Van Der Leeuw ¹⁰⁵, E. van der Poel ¹⁰⁵, M. Vanadia ⁹⁹, W. Vandelli ²⁹, G. Vandoni ²⁹, A. Vaniachine ⁵, P. Vankov ⁴¹, F. Vannucci ⁷⁸, F. Varela Rodriguez ²⁹, R. Vari ^{132a}, D. Varouchas ¹⁴, A. Vartapetian ⁷, K. E. Varvell ¹⁵⁰, V.I. Vassilakopoulos ⁵⁶, F. Vazeille ³³, G. Vegni ^{89a, 89b}, J.J. Veillet ¹¹⁵, C. Vellidis ⁸, F. Veloso ^{124a}, R. Veness ²⁹, S. Veneziano ^{132a}, A. Ventura ^{72a,72b}, D. Ventura ¹³⁸, M. Venturi ¹⁸⁸, M. Venturi ¹⁵⁸, V. Vertesi ¹¹⁹⁴, M. Verducci ¹³⁸, W. Ver J. von Loeben ⁹⁹, H. von Radziewski ⁴⁸, E. von Toerne ²⁰, V. Vorobel ¹²⁶, A.P. Vorobiev ¹²⁸, V. Vorwerk ¹¹, M. Vos ¹⁶⁷, R. Voss ²⁹, T.T. Voss ¹⁷⁴, J.H. Vossebeld ⁷³, N. Vranjes ^{12a}, M. Vranjes Milosavljevic ¹⁰⁵, V. Vrba ¹²⁵, M. Vreeswijk ¹⁰⁵, T. Vu Anh ⁸¹, R. Vuillermet ²⁹, I. Vukotic ¹¹⁵, W. Wagner ¹⁷⁴, P. Wagner ¹²⁰, H. Wahlen ¹⁷⁴, J. Wakabayashi ¹⁰¹, J. Walbersloh ⁴², S. Walch ⁸⁷, J. Walder ⁷¹, R. Walker ⁹⁸, W. Walkowiak ¹⁴¹, R. Wall ¹⁷⁵, P. Waller ⁷³, C. Wang ⁴⁴, H. Wang ¹⁷², H. Wang ^{32b,ad}, J. Wang ¹⁵¹, J. Wang ⁵⁵, J.C. Wang ¹³⁸, R. Wang ¹⁰³, S.M. Wang ¹⁵¹, A. Warburton ⁸⁵, C.P. Ward ²⁷, M. Warsinsky ⁴⁸, P.M. Watkins ¹⁷, A.T. Watson ¹⁷, I.J. Watson ¹⁵⁰, M.F. Watson ¹⁷, G. Watts ¹³⁸, S. Watts ⁸², A.T. Waugh ¹⁵⁰, B.M. Waugh ⁷⁷, M. Weber ¹²⁹, M.S. Weber ¹⁶, P. Weber ⁵⁴, A.R. Weidberg ¹¹⁸, P. Weigell ⁹⁹, J. Weingarten ⁵⁴, C. Weiser ⁴⁸, H. Wellenstein ²², P.S. Wells ²⁹, M. Wenf⁴⁷, T. Wenaus ²⁴, S. Wendler ¹²³, Z. Weng ^{151, r}, T. Wengler ²⁹, S. Wenig ²⁹, N. Wermes ²⁰, M. Werner ⁴⁸, P. Werner ²⁹, M. Werth ¹⁶³, M. Wessels ^{58a}, C. Weydert ⁵⁵, K. Whalen ²⁸, S.J. Wheeler-Ellis ¹⁶³, S.P. Whitaker ²¹, A. White ⁷, M.J. White⁸⁶, S.R. Whitehead ¹¹⁸, D. Whiteson ¹⁶³, D. Whittington ⁶¹, D. Wicke ¹⁷⁴, F.J. Wickens ¹²⁹, W. Wiedenmann ¹⁷², M. Wielers ¹²⁹, P. Wienemann ²⁰, C. Wiglesworth ⁷⁵, L.A.M. Wiik⁴⁸, P.A. Wijeratne ⁷⁷, A. Wildauer ¹⁶⁷, M.A. Wildt ^{41,o}, I. Wilhelm ¹²⁶, H.G. Wilkens ²⁹, J.Z. Will ⁹⁸, E. Williams ³⁴, H.H. Williams ¹²⁰, W. Willis ³⁴, S. Willocq ⁸⁴, J.A. Wilson ¹⁷, M.G. Wilson ¹⁴³, A. Wilson ⁸⁷, I. Wingerter-Seez ⁴, S. Winkelmann ⁴⁸, F. Winklmeier ²⁹, M. Wittgen ¹⁴³, M.W. Wolter ³⁸, H. Wolters ^{124a,g}, W.C. Wong ⁴⁰, G. Wooden ⁸⁷, B.K. Wosiek ³⁸, J. Wotschack ²⁹, M.J. Woudstra ⁸⁴, K.W. Wozniak ³⁸, K. Wraight ⁵³, C. Wright ⁵³, M. Wright ⁵³, B. Wrona ⁷³, S.L. Wu ¹⁷², X. Wu ⁴⁹, Y. Wu ^{32b,ae}, E. Wulf ³⁴, R. Wunstorf ⁴², B.M. Wynne ⁴⁵, S. Xella ³⁵, M. Xiao ¹³⁶, S. Xie ⁴⁸, Y. Xie ^{32a}, C. Xu ^{32b,af}, D. Xu ¹³⁹, G. Xu ^{32a}, B. Yabsley ¹⁵⁰, S. Yacoob ^{145b}, M. Yamada ⁶⁶, H. Yamaguchi ¹⁵⁵, A. Yamamoto ⁶⁶, K. Yamamoto ⁶⁴, S. Yamamoto ¹⁵⁵, T. Yamamura ¹⁵⁵, T. Yamanaka ¹⁵⁵, J. Yamaoka ⁴⁴, T. Yamazaki ¹⁵⁵, Y. Yamazaki ⁶⁷, Z. Yan ²¹, H. Yang ⁸⁷, U.K. Yang ⁸², Y. Yang ⁶¹, Y. Yang ^{32a}, Z. Yang ^{146a,146b}, S. Yanush ⁹¹, Y. Yasu ⁶⁶, G.V. Ybeles Smit ¹³⁰, J. Ye ³⁹, S. Ye ²⁴, M. Yilmaz ^{3c}, R. Yoosoofmiya ¹²³, K. Yorita ¹⁷⁰, R. Yoshida ⁵, C. Young ¹⁴³, S. Youssef ²¹, D. Yu ²⁴, J. Yu ⁷, J. Yu ¹¹², L. Yuan ^{32a,ag}, A. Yurkewicz ¹⁰⁶, B. Zabinski ³⁸, V.G. Zaets ¹²⁸, R. Zaidan ⁶³, A.M. Zaitsev ¹²⁸, Z. Zajacova ²⁹, L. Zanello ^{132a,132b}, P. Zarzhitsky ³⁹, A. Zaytsev ¹⁰⁷, C. Zeitnitz ¹⁷⁴, M. Zeller ¹⁷⁵, M. Zeman ¹²⁵, A. Zemla ³⁸, C. Zendler ²⁰, O. Zenin ¹²⁸, T. Ženiš ^{144a}, Z. Zenonos ^{122a,122b}, S. Zenz ¹⁴, D. Zerwas ¹¹⁵, G. Zevi della Porta ⁵⁷, Z. Zhan ^{32d}, D. Zhang ^{32b,ad}, H. Zhang ⁸⁸, J. Zhang ⁵, X. Zhang ^{32d}, Z. Zhang ¹¹⁵, L. Zhao ¹⁰⁸, T. Zhao ¹³⁸, Z. Zhao ^{32b}, A. Zhemchugov ⁶⁵, S. Zheng ^{32a}, J. Zhong ¹¹⁸, B. Zhou ⁸⁷, N. Zhou ¹⁶³, Y. Zhou ¹⁵¹, C.G. Zhu ^{32d}, H. Zhu ⁴¹, J. Zhu ⁸⁷, Y. Zhu ^{32b}, X. Zhuang ⁹⁸, V. Zhuravlov ⁹⁹, D. Zieminska ⁶¹, R. Zimmermann ²⁰, S. Zimmermann ²⁰, Y. Zolnierowski ⁴, A. Zsenei ²⁹, M.

⁴ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France

⁵ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States

⁶ Department of Physics, University of Arizona, Tucson, AZ, United States

- ⁷ Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
- ⁸ Physics Department, University of Athens, Athens, Greece

⁹ Physics Department, National Technical University of Athens, Zografou, Greece

¹⁰ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

¹¹ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain ¹² ^(a) Institute of Physics, University of Belgrade, Belgrade; ^(b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia

¹³ Department for Physics and Technology, University of Bergen, Bergen, Norway

¹⁴ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States

¹⁵ Department of Physics, Humboldt University, Berlin, Germany

¹⁶ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

¹⁷ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

¹⁸ (a) Department of Physics, Bogazici University, Istanbul; ^(b) Division of Physics, Dogus University, Istanbul; ^(C) Department of Physics Engineering, Gaziantep University, Gaziantep;

^(d) Department of Physics, Istanbul Technical University, Istanbul, Turkey

¹⁹ ^(a) INFN Sezione di Bologna; ^(b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy

²⁰ Physikalisches Institut, University of Bonn, Bonn, Germany

- ²¹ Department of Physics, Boston University, Boston, MA, United States

 ²² Department of Physics, Brandeis University, Waltham, MA, United States
 ²³ ^(a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ^(b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; ^(c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ^(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil

²⁴ Physics Department, Brookhaven National Laboratory, Upton, NY, United States

- 25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
- ²⁶ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- ²⁷ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- ²⁸ Department of Physics, Carleton University, Ottawa ON, Canada

²⁹ CERN, Geneva, Switzerland

³⁰ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States

31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

- 32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; ^(d) High Energy Physics Group, Shandong University, Shandong, China
- ³³ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

³⁴ Nevis Laboratory, Columbia University, Irvington, NY, United States

³⁵ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

³⁶ ^(a) INFN Gruppo Collegato di Cosenza; ^(b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

³⁷ Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland

³⁸ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

³⁹ Physics Department, Southern Methodist University, Dallas, TX, United States

⁴⁰ Physics Department, University of Texas at Dallas, Richardson, TX, United States

⁴¹ DESY, Hamburg and Zeuthen, Germany

⁴² Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

⁴³ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

⁴⁴ Department of Physics, Duke University, Durham, NC, United States

⁴⁵ SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

⁴⁶ Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria

⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy

⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany

⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland

⁵⁰ ^(a) INFN Sezione di Genova; ^(b) Dipartimento di Fisica, Università di Genova, Genova, Italy

¹ University at Albany, Albany, NY, United States

² Department of Physics, University of Alberta, Edmonton AB, Canada

^{3 (}a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupinar University, Kutahya; (c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey

51 (a) E. Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

⁵³ SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

- ⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
- 55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
- ⁵⁶ Department of Physics, Hampton University, Hampton, VA, United States

⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States

58 @Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (^{b)} Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg; (^{b)} ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

⁵⁹ Faculty of Science, Hiroshima University, Hiroshima, Japan

⁶⁰ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

- ⁶¹ Department of Physics, Indiana University, Bloomington, IN, United States
- ⁶² Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
- ⁶³ University of Iowa, Iowa City, IA, United States
- ⁶⁴ Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
- ⁶⁵ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
- ⁶⁶ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
- ⁶⁷ Graduate School of Science, Kobe University, Kobe, Japan
- ⁶⁸ Faculty of Science, Kyoto University, Kyoto, Japan
- ⁶⁹ Kyoto University of Education, Kyoto, Japan
- ⁷⁰ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
- ⁷¹ Physics Department, Lancaster University, Lancaster, United Kingdom
- ⁷² (a) INFN Sezione di Lecce; ^(b) Dipartimento di Fisica, Università del Salento, Lecce, Italy
 ⁷³ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
- ⁷⁴ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
- ⁷⁵ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
- ⁷⁶ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
- ⁷⁷ Department of Physics and Astronomy, University College London, London, United Kingdom
- ⁷⁸ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
- ⁷⁹ Fysiska institutionen, Lunds universitet, Lund, Sweden
- ⁸⁰ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
- ⁸¹ Institut für Physik, Universität Mainz, Mainz, Germany
- ⁸² School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- ⁸³ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
- ⁸⁴ Department of Physics, University of Massachusetts, Amherst, MA, United States
- ⁸⁵ Department of Physics, McGill University, Montreal QC, Canada
- ⁸⁶ School of Physics, University of Melbourne, Victoria, Australia
- ⁸⁷ Department of Physics, The University of Michigan, Ann Arbor, MI, United States
- ⁸⁸ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- ⁸⁹ ^(a) INFN Sezione di Milano; ^(b) Dipartimento di Fisica, Università di Milano, Milano, Italy
- ⁹⁰ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
- ⁹¹ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
- ⁹² Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
- ⁹³ Group of Particle Physics, University of Montreal, Montreal QC, Canada
- ⁹⁴ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
- ⁹⁵ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
- ⁹⁶ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
- ⁹⁷ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- 98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
- 99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
- ¹⁰⁰ Nagasaki Institute of Applied Science, Nagasaki, Japan
- ¹⁰¹ Graduate School of Science, Nagoya University, Nagoya, Japan
- ¹⁰² (a) INFN Sezione di Napoli; ^(b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
- ¹⁰³ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
- ¹⁰⁴ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
- ¹⁰⁵ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
- ¹⁰⁶ Department of Physics, Northern Illinois University, DeKalb, IL, United States
- ¹⁰⁷ Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
- ¹⁰⁸ Department of Physics, New York University, New York, NY, United States
- ¹⁰⁹ Ohio State University, Columbus, OH, United States
- ¹¹⁰ Faculty of Science, Okayama University, Okayama, Japan
- ¹¹¹ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
- ¹¹² Department of Physics, Oklahoma State University, Stillwater, OK, United States
- ¹¹³ Palacký University, RCPTM, Olomouc, Czech Republic
- ¹¹⁴ Center for High Energy Physics, University of Oregon, Eugene, OR, United States
- 115 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
- ¹¹⁶ Graduate School of Science, Osaka University, Osaka, Japan
- ¹¹⁷ Department of Physics, University of Oslo, Oslo, Norway
- ¹¹⁸ Department of Physics, Oxford University, Oxford, United Kingdom
- ¹¹⁹ ^(d) INFN Sezione di Pavia; ^(b) Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
- ¹²⁰ Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
- ¹²¹ Petersburg Nuclear Physics Institute, Gatchina, Russia
- ¹²² ^(a) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
- ¹²³ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
- 124 (a) Laboratorio de Instrumentacao e Física Experimental de Particulas LIP, Lisboa, Portugal; (b) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
- ¹²⁵ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
- ¹²⁶ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
- ¹²⁷ Czech Technical University in Prague, Praha, Czech Republic

¹²⁸ State Research Center Institute for High Energy Physics, Protvino, Russia

¹²⁹ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

- ¹³⁰ Physics Department, University of Regina, Regina SK, Canada
- ¹³¹ Ritsumeikan University, Kusatsu, Shiga, Japan
- ¹³² ^(a) INFN Sezione di Roma I; ^(b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
- ¹³³ ^(a) INFN Sezione di Roma Tor Vergata; ^(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
- ¹³⁴ ^(a) INFN Sezione di Roma Tre; ^(b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy

¹³⁵ ^(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies – Université Hassan II, Casablanca; ^(b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; ^(c) Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B.P. 2390, Marrakech 40000; ^(d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ^(e) Faculté des Sciences, Université Mohammed V, Rabat, Morocco

- 136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
- ¹³⁷ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
- ¹³⁸ Department of Physics, University of Washington, Seattle, WA, United States
- ¹³⁹ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- ¹⁴⁰ Department of Physics, Shinshu University, Nagano, Japan
- ¹⁴¹ Fachbereich Physik, Universität Siegen, Siegen, Germany
- ¹⁴² Department of Physics, Simon Fraser University, Burnaby BC, Canada
- ¹⁴³ SLAC National Accelerator Laboratory, Stanford, CA, United States
- 144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
- 145 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
- ¹⁴⁶ ^(a) Department of Physics, Stockholm University; ^(b) The Oskar Klein Centre, Stockholm, Sweden
- ¹⁴⁷ Physics Department, Royal Institute of Technology, Stockholm, Sweden
- ¹⁴⁸ Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, United States
- ¹⁴⁹ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
- ¹⁵⁰ School of Physics, University of Sydney, Sydney, Australia
- ¹⁵¹ Institute of Physics, Academia Sinica, Taipei, Taiwan
- ¹⁵² Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
- ¹⁵³ Ravmond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ¹⁵⁴ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- ¹⁵⁵ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
- ¹⁵⁶ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- ¹⁵⁷ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- ¹⁵⁸ Department of Physics, University of Toronto, Toronto ON, Canada
- ¹⁵⁹ ^(a) TRIUMF, Vancouver BC; ^(b) Department of Physics and Astronomy, York University, Toronto ON, Canada
- ¹⁶⁰ Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- ¹⁶¹ Science and Technology Center, Tufts University, Medford, MA, United States
- ¹⁶² Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
- ¹⁶³ Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
- 164 (a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
- ¹⁶⁵ Department of Physics, University of Illinois, Urbana, IL, United States
- ¹⁶⁶ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
- ¹⁶⁷ Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingenierá Electrónica and Instituto de Microelectrónica de
- Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
- ¹⁶⁸ Department of Physics, University of British Columbia, Vancouver BC, Canada
- ¹⁶⁹ Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
- ¹⁷⁰ Waseda University, Tokyo, Japan
- ¹⁷¹ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- ¹⁷² Department of Physics, University of Wisconsin, Madison, WI, United States
- ¹⁷³ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- ¹⁷⁴ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- ¹⁷⁵ Department of Physics, Yale University, New Haven, CT, United States
- ¹⁷⁶ Yerevan Physics Institute, Yerevan, Armenia
- ¹⁷⁷ Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
- ^{*a*} Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal.
- ^b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
- ^c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
- ^d Also at TRIUMF, Vancouver BC, Canada,
- ^e Also at Department of Physics, California State University, Fresno, CA, United States.
- ^f Also at Fermilab, Batavia, IL, United States,
- ^g Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
- ^h Also at Università di Napoli Parthenope, Napoli, Italy.
- ⁱ Also at Institute of Particle Physics (IPP), Canada.
- ^j Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
- ^k Also at Louisiana Tech University, Ruston, LA, United States.
- ¹ Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
- ^m Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada,
- n Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
- ^o Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
- ^{*p*} Also at Manhattan College, New York, NY, United States.
- ^q Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
- ^r Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
- ^s Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
- ^t Also at High Energy Physics Group, Shandong University, Shandong, China.
- ^{*u*} Also at Section de Physique, Université de Genève, Geneva, Switzerland.
- ^v Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.

- w Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
- x Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
- ^y Also at California Institute of Technology, Pasadena, CA, United States. z
- Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
- ^{aa} Also at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
- ^{ab} Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
- ^{ac} Also at Department of Physics, Oxford University, Oxford, United Kingdom.
- ^{ad} Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
- ae Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
- ^{df} Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France. ^{ag} Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
- * Deceased.