Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the $W^{\pm}Z$ production cross section and limits on anomalous triple gauge couplings in proton–proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector $\stackrel{\circ}{\approx}$

ATLAS Collaboration*

ARTICLE INFO

Article history: Received 24 November 2011 Received in revised form 20 January 2012 Accepted 16 February 2012 Available online 22 February 2012 Editor: H. Weerts

ABSTRACT

This Letter presents a measurement of $W^{\pm}Z$ production in 1.02 fb⁻¹ of *pp* collision data at $\sqrt{s} =$ 7 TeV collected by the ATLAS experiment in 2011. Doubly leptonic decay events are selected with electrons, muons and missing transverse momentum in the final state. In total 71 candidates are observed, with a background expectation of $12.1 \pm 1.4(\text{stat.})^{+4.1}_{-2.0}(\text{syst.})$ events. The total cross section for $W^{\pm}Z$ production for Z/γ^* masses within the range 66 GeV to 116 GeV is determined to be $\sigma_{WZ}^{\text{tot}} = 20.5^{+3.1}_{-2.8}(\text{stat.})^{+1.4}_{-1.3}(\text{syst.})^{+0.9}_{-0.8}(\text{lumi.})$ pb, which is consistent with the Standard Model expectation of $17.3^{+1.3}_{-0.8}$ pb. Limits on anomalous triple gauge boson couplings are extracted.

© 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license

1. Introduction

The underlying structure of the electroweak interactions in the Standard Model (SM) is the non-abelian $SU(2)_L \times U(1)_Y$ gauge group. Properties of electroweak gauge bosons such as their masses and couplings to fermions have been precisely measured at LEP and the Tevatron [1]. However, triple gauge boson couplings (TGC) predicted by this theory have not yet been determined with comparable precision.

In the SM the triple gauge boson vertex is completely fixed by the electroweak gauge structure. A measurement of this vertex, for example through the analysis of diboson production at the LHC, tests the gauge symmetry and probes for possible new phenomena involving gauge bosons. In general, electroweak boson couplings deviating from gauge constraints yield enhancements of the $W^{\pm}Z$ production cross section at high diboson invariant mass. Furthermore, new particles decaying into $W^{\pm}Z$ pairs are predicted in models with extra vector bosons (e.g. W') as well as in supersymmetric models with an extended Higgs sector (charged Higgs) [2,3].

At the LHC, the dominant $W^{\pm}Z$ production mechanism is from quark-antiquark and quark-gluon interactions at leading order (LO) and at next-to-leading order (NLO), respectively [4]. Only the *s*-channel diagram has a triple electroweak gauge boson interaction vertex and is hence the only channel that may contribute to anomalous TGC (aTGC). This Letter presents a measurement of the $W^{\pm}Z$ production cross section and limits on aTGC with the ATLAS detector in LHC proton–proton collisions at a centre-of-mass energy, \sqrt{s} , of 7 TeV. The analysis uses four channels with leptonic decays $(W^{\pm}Z \rightarrow \ell \nu \ell \ell)$ involving electrons and muons: *evee*, $\mu \nu ee$, $e\nu \mu \mu$ or $\mu \nu \mu \mu$, where the ν is estimated by the missing transverse momentum, $E_{\rm T}^{\rm miss}$. The main sources of background are ZZ, $Z\gamma$, Z + jets, and top-quark events.

A common phase space is defined for combining the four decay channels and measuring a "fiducial" cross section. The phase space is chosen to match closely the detector acceptance and analysis selection. The leptons from the Z and W boson decays are required to have transverse momenta $p_T^{\mu,e}(Z) > 15$ GeV, $p_T^{\mu,e}(W^{\pm}) > 20$ GeV, pseudorapidity¹ $|\eta^{\mu,e}| < 2.5$, $|m_{\ell\ell}(Z) - m_Z| < 10$ GeV, $p_T^{\nu} > 25$ GeV and the transverse mass² of the W boson is required to satisfy $m_T^W > 20$ GeV. Final state electrons and muons whose four-momenta include all photons within $\Delta R < 0.1$ are used in the phase space definition.³ Since the fiducial phase space is defined by the lepton kinematics, the cross section definition includes the branching ratios of the bosons decaying into electrons or muons. The fiducial cross section definition excludes the contribution from W and Z boson decays into τ leptons.

 $^{^{}st}$ © CERN for the benefit of the ATLAS Collaboration.

^{*} E-mail address: atlas.publications@cern.ch,

¹ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the *z*-axis along the beam pipe. The *x*-axis points from the interaction point to the centre of the LHC ring, and the *y*-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

² The transverse mass is defined as $m_{\rm T}^2 = 2 E_{\rm T}^{\ell} E_{\rm T}^{\nu} - 2 {\bf p}_{\rm T}^{\ell} {\bf p}_{\rm T}^{\nu}$.

³ ΔR is defined as $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

In order to measure the total cross section, the experimentally accessible phase space is extrapolated to the full phase space. The region dominated by the contribution of a γ^* propagator in singly resonant diagrams to the theoretical cross section is highly suppressed by requiring the invariant mass of the dilepton system from Z/γ^* to satisfy 66 GeV < $m_{\ell\ell}$ < 116 GeV for the full phase space.

In the SM the only allowed boson combinations for TGC vertices are $WW\gamma$ and WWZ, and the latter is addressed in this Letter. Expressions for the most general effective Lagrangian for a TGC vertex with two charged and one neutral vector boson can be found in Refs. [5] and [6]. If only terms that separately conserve charge conjugation and parity are considered, then the couplings can be represented by three dimensionless parameters g_1^Z , κ_Z and λ_Z . In the SM $g_1^Z = 1$, $\kappa_Z = 1$ and $\lambda_Z = 0$. Anomalous couplings, defined as deviations from these SM values, are then Δg_1^Z , $\Delta \kappa_Z$ and λ_7 .

To avoid tree-level unitarity violation, which occurs in the effective Lagrangian approach at sufficiently large energies, the anomalous couplings must be suppressed at higher energy scales. To achieve this, an arbitrary form factor can be introduced to mitigate the effect of anomalous couplings at higher energy scales. For comparison with previous studies, results are presented using a dipole form factor $f(\hat{s}) = 1/(1 + \hat{s}/\Lambda^2)^2$, where $\Lambda = 2$ TeV is a cut-off energy scale and \sqrt{s} is the partonic centre-of-mass energy. This choice ensures that unitarity is not violated. However, since the choice of the scale is arbitrary and the experimental centreof-mass energy scale is finite, the interpretation of the data in the framework of anomalous couplings is also presented without using a form factor, corresponding to setting $A = \infty$.

2. The ATLAS detector and event samples

The ATLAS detector [7] consists of an inner detector (ID) surrounded by a superconducting solenoid which provides a 2 T magnetic field, electromagnetic and hadronic calorimeters and a muon spectrometer (MS) with a toroidal magnetic field. The ID provides precision charged particle tracking for $|\eta| < 2.5$. It consists of a silicon pixel detector, a silicon strip detector and a straw tube tracker that also provides transition radiation measurements for electron identification. The calorimeter system covers the range $|\eta| < 4.9$ and comprises sampling calorimeters with either liquid argon (LAr) or scintillating tiles as the active media. In the region $|\eta| < 2.5$ the electromagnetic LAr calorimeter is finely segmented and plays an important role in electron identification. The muon spectrometer has separate trigger and high-precision tracking chambers which provide muon identification in $|\eta| < 2.7$. This study uses 1.02 ± 0.04 fb⁻¹ [8,9] of collision data collected

up to the end of June 2011.

Candidate events are selected online with single-lepton triggers requiring $p_{\rm T}$ of at least 18 (20) GeV for muons (electrons). The trigger efficiency for $W^{\pm}Z \rightarrow \ell \nu \ell \ell$ events which pass all selection criteria is in the range of 96-99% depending on the final state.

The $W^{\pm}Z$ production processes and the subsequent purely leptonic decays are modelled by the MC@NLO [10,11] generator, which incorporates the NLO QCD matrix elements into the parton shower by interfacing to the HERWIG [12] program. The generator also provides matrix element information which allows a given sample to be reweighted to a different set of anomalous coupling parameters on an event-by-event basis. The parton density function (PDF) set CTEQ6.6 [13] is used and the underlying event is modelled with JIMMY [14,15]. HERWIG is used to model the hadronization, initial state radiation and QCD final state radiation (FSR). PHOTOS [16] is used for QED FSR, and TAUOLA [17] for the τ lepton decays.

The $W^{\pm}Z$ production cross section at NLO in α_s as previously defined is calculated with the program MCFM [18] to be $17.3^{+1.3}_{-0.8}$ pb. Electroweak corrections are not considered as they are not relevant at the currently available integrated luminosity [19,20].

The background sources for which data-driven methods could not be used were estimated with simulated samples. The diboson processes WW and ZZ are modelled with HERWIG, and $W/Z + \gamma$ with MADGRAPH [21] and PYTHIA [22]. MC@NLO [10] is used to model the $t\bar{t}$ and single top-quark background in the $W^{\pm}Z \rightarrow evee$ decay channel. Whenever LO event generators are used, the cross sections are corrected by using k-factors to NLO or NNLO (if available) matrix element calculations [10,18,23-25].

The response of the ATLAS detector is simulated [26] with GEANT4 [27]. Small response and efficiency corrections, based on studies in data and simulated control samples, are applied to the simulated samples. All event samples are simulated with in-time pile-up (multiple *pp* interactions within a single bunch crossing) and out-of-time pile-up (signals from nearby bunch crossings). The weights of simulated events are defined such that the distribution of multiple collisions per bunch crossing matches the observation in the data period under consideration.

3. Object reconstruction

The main physics objects necessary to select $W^{\pm}Z$ events are electrons, muons, and E_{T}^{miss} . Muons are identified by matching tracks reconstructed in the MS to tracks reconstructed in the ID. Their momenta are calculated by combining information from the two tracks and correcting for energy deposited in the calorimeter. ID tracks that are tagged as muons on the basis of matching with track segments in the MS ('segment-tagged' muons [28]) are also included. Only muons with $p_{\rm T} > 15$ GeV and $|\eta| < 2.5$ are considered. Non-prompt muons from hadronic jets are rejected by selecting only isolated muons, requiring the scalar sum of the $p_{\rm T}$ of tracks within $\Delta R < 0.2$ of the muon to be less than 10% of the muon $p_{\rm T}$ [28].

Electrons are reconstructed by matching clusters found in the electromagnetic calorimeter to tracks in the ID. Electron candidates must have $E_{\rm T} > 15$ GeV, where $E_{\rm T}$ is calculated from the cluster energy and track direction. To avoid the transition regions between the calorimeters, the electron cluster must satisfy $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$. Electrons are required to pass the 'medium' identification criteria described in Ref. [29]. To ensure isolation, the sum of the calorimeter energy in a cone of $\Delta R = 0.3$ around the electron candidate, not including the energy of the cluster associated to the candidate itself, must be less than 4 GeV.

The $E_{\rm T}^{\rm miss}$ is calculated with reconstructed electrons within $|\eta| < 2.47$, muons within $|\eta| < 2.7$, and jets and calorimeter energy clusters outside of other reconstructed objects within $|\eta| < 1$ 4.5. The clusters are calibrated as electromagnetic or hadronic energy according to cluster topology. A small correction avoids double-counting the energy deposited by muons in the calorimeters [30].

4. Event selection

At least one single electron or muon trigger is required for the event selection. A minimum of one reconstructed vertex, with at least three tracks associated with it, is required to remove noncollision backgrounds. The vertex with the largest sum of the p_T^2 computed from the associated tracks is selected as the primary vertex. Events with two leptons of the same flavour and opposite

Table 1	
Fiducial efficiency per channel. The uncertainty due to simulated sample size and parton distribution	oution functions is shown.

Final state	$eee + E_{T}^{miss}$	$ee\mu+E_{ au}^{ m miss}$	$e\mu\mu+E_{ m T}^{ m miss}$	$\mu\mu\mu + E_{T}^{miss}$
Fiducial efficiency (%)	34.3 ± 0.8	50.2 ± 0.9	54.5 ± 1.0	81.6 ± 1.3

charge with an invariant mass within 10 GeV of the Z boson mass are selected. For the *evee* and $\mu\nu\mu\mu$ channels more than one lepton pair combination may satisfy this criterion and the pair closest to the Z boson mass is chosen. This requirement of a lepton pair consistent with originating from a Z boson reduces much of the background from multijet and top-quark production, and a fraction of the diboson background.

Events are then required to have at least three reconstructed leptons originating from the primary vertex; their longitudinal impact parameters with respect to the primary vertex are required to be less than 10 mm.

The lepton not attributed to the *Z* boson decay must pass more stringent identification criteria than the leptons attributed to the *Z* boson, and have $p_T > 20$ GeV. Electrons are additionally required to pass the 'tight' identification criteria [29] with cuts on the matched track quality, the ratio of the energy measured in the calorimeter to the momentum of the matched track, and the detection of transition radiation. Segment-tagged muons may not be used as the third lepton.

Events are required to have $E_T^{\text{miss}} > 25$ GeV and the transverse mass of the W^{\pm} boson candidate, m_T^W , formed from the E_T^{miss} and the third lepton, is required to be greater than 20 GeV. These cuts suppress the remaining backgrounds from Z and ZZ production.

At least one of the leptons is required to have fired the trigger. To ensure that the trigger is well onto the efficiency plateau above the threshold of the primary single-lepton trigger, trigger-matched leptons are required to have $p_T > 20$ GeV for muons and 25 GeV for electrons.

5. Signal efficiency and background estimate

The fiducial efficiency is defined as the ratio of simulated signal events meeting the event selection criteria to the numbers of simulated events⁴ within the defined fiducial phase space region. The values for each channel are shown in Table 1. The fraction of selected simulated signal events which come from outside the fiducial phase space is 13%.

The total systematic uncertainty on the efficiency is 3–7% depending on the decay channel and is dominated by the uncertainties on the electron and muon reconstruction. These include uncertainties associated with the reconstruction and identification efficiencies, energy scale, and isolation. The uncertainties are determined by comparing simulated events with data in control regions and are 2–6% depending on the decay channel. The uncertainties on the objects involved in the E_T^{miss} calculation are used to derive the systematic uncertainties on E_T^{miss} following Ref. [30]. Uncertainties in the description of the pile-up conditions by the simulation are also considered. The total systematic uncertainty on the acceptance of the E_T^{miss} and transverse mass cuts due to the imperfect simulation is 1–2%.

Data-driven methods are used to estimate the backgrounds from Z + jets and top-quark production. Simulation is used for the remaining background sources, including $W/Z + \gamma$ events where the photon converts into an electron-positron pair. The backgrounds from W^+W^- and multijet production are negligible. For simulated events, the uncertainties on the theoretical cross section of the background processes are included in the systematic uncertainty.

In the μvee , $ev\mu\mu$ and $\mu v\mu\mu$ channels, the top-quark background contribution is evaluated from the average density of events in the side-bands around the *Z* mass peak after applying all selection cuts except the *Z* boson mass cut. Since the background from top-quark production does not contain a *Z* boson, this density is used to estimate the background from top-quark production in the signal region within the *Z* mass window. The systematic uncertainty is estimated from various cross checks, including a comparison of the difference between the side-band estimate and the prediction within the *Z* mass window in simulated events. This method is not applicable to the *evee* channel, since the *Z* + jet background dominates the side-bands due to electron misidentification, therefore a simulated event sample is used.

In order to estimate the background from Z + jets events, a sample of events containing a Z boson candidate selected as described above and one "lepton-like" jet is identified. The leptonlike jet is a lepton candidate which does not explicitly have to satisfy lepton quality (e) or isolation (μ) requirements. To ensure that the control sample is as similar to the signal as possible, all other event selection criteria, including the E_{T}^{miss} and m_{T}^{W} requirements, are applied. The background contribution is then estimated by scaling each event in the resulting sample by the probability $f(p_{\rm T})$ that a "lepton-like" jet satisfies the quality or isolation requirements. The scaling factor $f(p_T)$ is determined from a data sample of events containing a Z boson plus an extra lepton-like jet, with a low missing transverse momentum, $E_{\rm T}^{\rm miss}$ < 25 GeV. The validity of extrapolation to high values of $E_{\rm T}^{\rm miss}$ has been verified with dijet events from simulation and data. An estimate of the systematic uncertainty is derived from the E_{T}^{miss} extrapolation in dijet data.

6. Results

The numbers of expected and observed events after the full selection are shown in Table 2. A total of 71 $W^{\pm}Z$ candidates are observed in data, with $12.1 \pm 1.4(\text{stat.})^{+4.1}_{-2.0}(\text{syst.})$ expected background events. The expected signal events shown in the table include the contribution from τ lepton decays into electrons or muons. The discrepancy between channels in the number of observed to expected events is consistent with a statistical fluctuation at the 16% level. The invariant mass and the transverse momentum of the Z boson in $W^{\pm}Z$ candidate events are shown in Figs. 1 and 2, respectively.

The fiducial cross section is calculated from

$$\sigma_{WZ \to \ell \nu \ell \ell}^{\text{fid}} = \frac{N_{\ell \nu \ell \ell}^{\text{obs}} - N_{\ell \nu \ell \ell}^{\text{bkg}}}{\mathcal{L} \times C_{WZ \to \ell \nu \ell \ell}} \times \left(1 - \frac{N_{\tau}^{\text{MC}}}{N_{\text{sig}}^{\text{MC}}}\right) \tag{1}$$

where $N_{\ell\nu\ell\ell}^{\text{obs}}$ and $N_{\ell\nu\ell\ell}^{\text{bkg}}$ are the numbers of observed and background events, \mathcal{L} the integrated luminosity and $C_{WZ \to \ell\nu\ell\ell}$ is the fiducial efficiency defined above. The last term corrects for the τ lepton contribution estimated from the selected simulated signal sample, where N_{τ}^{MC} is the number of $W^{\pm}Z$ events with at least one of the bosons decaying to a τ lepton and $N_{\text{sig}}^{\text{MC}}$ is the number of $W^{\pm}Z$ events with decays into any lepton flavour. For each final state, the simulated signal samples include W and Z bosons

 $^{^4\,}$ Contributions from $\tau\,$ lepton decays are excluded.

Table 2

Summary of observed events and expected signal and background contributions for the four trilepton channels and their combination. Statistical uncertainties are shown for the individual channels, and both statistical and systematic uncertainties are shown for the combined channel. Expected signal ($W^{\pm}Z$) and background events from ZZ and $W/Z + \gamma$ are predicted from MC simulation. Data-driven background estimation methods are used for W/Z + jets for all decay channels. For backgrounds with top-quark decays, data-driven estimates are used for the $\mu\mu\mu$, $e\mu\mu$ and $ee\mu$ channels whereas MC simulation is used for the *eee* channel. $W/Z + \gamma$ does not contribute to the *eeµ* and $\mu\mu\mu$ channels.

Final state	$eee + E_{\mathrm{T}}^{\mathrm{miss}}$	$ee\mu+E_{ m T}^{ m miss}$	$e\mu\mu+E_{ m T}^{ m miss}$	$\mu\mu\mu+E_{ m T}^{ m miss}$	Combined
Observed	11	9	22	29	71
ZZ	0.4 ± 0.0	1.0 ± 0.1	0.8 ± 0.1	1.7 ± 0.1	$3.9 \pm 0.1 \pm 0.2$
W/Z + jets	2.0 ± 0.5	0.7 ± 0.3	1.7 ± 0.5	0.4 ± 0.3	$4.8\pm0.8^{+4.0}_{-1.9}$
Тор	0.2 ± 0.1	0.8 ± 0.6	0.9 ± 0.7	0.4 ± 0.5	$2.3 \pm 1.0 \pm 0.5$
$W/Z + \gamma$	0.5 ± 0.3	-	0.6 ± 0.4	-	$1.1\!\pm\!0.5\!\pm\!0.1$
Total background	3.1 ± 0.6	2.5 ± 0.7	3.9 ± 0.9	2.6 ± 0.6	$12.1 \pm 1.4^{+4.1}_{-2.0}$
Expected signal	7.7 ± 0.2	11.6 ± 0.2	12.24 ± 0.2	18.6 ± 0.3	$50.3 \pm 0.4 \pm 4.3$
Total expected events	10.9 ± 0.6	14.0 ± 0.7	16.4 ± 1.0	21.2 ± 0.7	$62.4 \pm 1.5^{+5.9}_{-4.6}$

Fig. 1. The invariant mass of the lepton pair attributed to the *Z* boson in candidate events after the full selection. The stacked histograms represent the predictions from simulation or, where applicable, data-driven estimates including the statistical and systematic uncertainty shown by shaded bands. The shape of the top-quark background is taken from simulation.

decaying into τ leptons. The contribution from τ lepton decays is 3.7% summing over all channels.

The total cross section is calculated as

$$\sigma_{WZ}^{\text{tot}} = \frac{\sigma_{WZ \to \ell \nu \ell \ell}^{\text{fid}}}{\mathcal{B}(WZ \to \ell \nu \ell \ell) \times A_{WZ \to \ell \nu \ell \ell}}$$
(2)

where $\mathcal{B}(WZ \to \ell \nu \ell \ell)$ is the branching ratio for a W^{\pm} boson to decay to $\ell \nu$ and a Z boson to decay to $\ell \ell$, and $A_{WZ \to \ell \nu \ell \ell}$ is the ratio of the number of events within the fiducial phase space region to the number of events within 66 GeV $< m_{\ell\ell} < 116$ GeV. This ratio $A_{WZ \to \ell \nu \ell \ell}$ is calculated at NLO to be 0.342 ± 0.006 using MCFM [18] with PDF set CTEQ6.6, where the uncertainty arises from the statistical error due to the sample size in the MCFM integration (0.6%) and parton distribution function uncertainty (1.5%).

The cross section is determined by minimizing a negative loglikelihood function to combine the four channels. Systematic uncertainties are included as Gaussian-constrained nuisance parameters. For each systematic uncertainty, correlations between signal and background predictions are taken into account. All uncertainties are allowed to vary simultaneously in the fit.

The measurements of the combined fiducial cross section for the $W^{\pm}Z$ bosons decaying directly into electrons and muons, and the total inclusive cross section, are

$$\sigma_{WZ \to \ell \nu \ell \ell}^{\text{fid}} = 102^{+15}_{-14} (\text{stat.})^{+7}_{-6} (\text{syst.})^{+4}_{-4} (\text{lumi.}) \text{ fb}, \tag{3}$$

$$\sigma_{WZ}^{\text{tot}} = 20.5^{+3.1}_{-2.8}(\text{stat.})^{+1.4}_{-1.3}(\text{syst.})^{+0.9}_{-0.8}(\text{lumi.}) \text{ pb.}$$
(4)

Fig. 2. The transverse momentum of Z bosons in candidate events after full selection. The stacked histograms represent the predictions from simulation or, where applicable, data-driven estimates including the statistical and systematic uncertainty shown by shaded bands. The last bin includes the overflow. The shape of the top-quark background is taken from simulation.

The latter can be compared with the SM expectation, $17.3_{-0.8}^{+1.3}$ pb, calculated with MCFM [18].

In order to set limits on the anomalous coupling parameters, a frequentist approach [31] is used with the profile likelihood ratio used as the test statistic. The limits are set separately on each parameter with the other couplings fixed to their SM values. A reweighting procedure is used to predict the numbers of expected events as functions of the parameter being studied. The uncertainties on the signal acceptance and efficiency and on the background estimates are included as nuisance parameters with Gaussian constraints in the likelihood function. The 95% confidence interval (C.I.) is defined as the range(s) of the coupling parameter(s) for which at least 5% of randomly generated pseudoexperiments result in a smaller value of the profile likelihood ratio than is observed with the data.

The observed and expected 95% C.I. for the anomalous couplings are summarized in Table 3. The observed limits are compared with DØ results from $W^{\pm}Z$ production in Fig. 3. Other results on anomalous couplings from W^+W^- production can be found in Refs. [32–38]. Significant improvements in these limits are expected with more integrated luminosity and refined extraction methods which take advantage of the differential spectra of kinematic quantities. The anomalous couplings influence the kinematic properties of $W^{\pm}Z$ events and thus the fiducial efficiency. The C_{WZ} variation within the measured aTGC limits results maximally in a 3% decrease of the fiducial cross section.

Table 3 Observed and expected 95% C.I. for the anomalous couplings Δg_1^Z , $\Delta \kappa_Z$, and λ_Z . Expected experimental limits assume SM values.

Coupling	Observed $(A = 2 \text{ TeV})$	Observed $(A = \infty)$	Expected $(A = \infty)$
Δg_1^Z	[-0.20, 0.30]	[-0.16, 0.24]	[-0.12, 0.20]
$\Delta \kappa_Z$	[-0.9, 1.1]	[-0.8, 1.0]	[-0.6, 0.8]
λ_Z	[-0.17, 0.17]	[-0.14, 0, 14]	[-0.11, 0.11]

Fig. 3. 95% C.I. for anomalous couplings from ATLAS and D0 experiments. ATLAS limits are extracted from a fit to the cross section while the D0 [39] limits are extracted from a fit to the $p_T(Z)$ spectrum. Luminosities, centre-of-mass energy and cut-off A are shown.

7. Conclusion

A measurement of the $W^{\pm}Z$ production cross section has been performed using final states with electrons and muons, in LHC pp collisions at $\sqrt{s} = 7$ TeV with ATLAS. In data with an integrated luminosity of 1.02 fb⁻¹, a total of 71 candidates is observed with a background expectation of 12.1 ± 1.4 (stat.) $^{+4.1}_{-2.0}$ (syst.) events. The SM expectation for the number of signal events is 50.3 ± 0.4 (stat.) ± 4.3 (syst.). The fiducial and total cross sections determined in the present work are given in Eqs. (3) and (4), respectively. The total cross section is in good agreement with the SM expectation. Limits on the anomalous triple gauge couplings Δg_1^Z , $\Delta \kappa_Z$ and λ_Z are reported and the results are consistent with zero, as expected from the SM.

Acknowledgements

We thank CERN for the very successful operation of the LHC. as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benozivo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STF, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

- [1] ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD Collaborations, LEP Electroweak Working Group, Tevatron Electroweak Working Group, and SLD Electroweak and Heavy Flavour Groups, CERN-PH-EP-2010-095, 2010.
- [2] L. Dixon, Z. Kunzst, A. Signer, Phys. Rev. D 60 (1999) 114037.
- [3] A.A. logansen, N.G. Ural'tsev, V.A. Khoze, Sov. J. Nucl. Phys. 36 (1983) 717.
- [4] K.L. Adamson, D. de Florian, A. Signer, Phys. Rev. D 65 (2002) 094041.
- [5] K. Hagiwara, R.D. Peccei, D. Zeppenfeld, Nucl. Phys. B 282 (1987) 253.
- [6] J. Ellison, J. Wudka, Ann. Rev. Nucl. Part. Sci. 48 (1998) 33.
- [7] ATLAS Collaboration, [INST 3 (2008) S08003.
- [8] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630.
- [9] ATLAS Collaboration, ATLAS-CONF-2011-116, http://cdsweb.cern.ch/record/ 1376384, 2011.
- [10] S. Frixione, B.R. Webber, IHEP 0206 (2002) 029.
- [11] S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber, JHEP 1101 (2011) 053.
- [12] G. Corcella, et al., [HEP 0101 (2001) 010.
- [13] P.M. Nadolsky, et al., Phys. Rev. D 78 (2008) 013004.
- [14] J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Z. Phys. C 72 (1996) 637.
- [15] ATLAS Collaboration, ATL-PHYS-PUB-2010-014, http://cdsweb.cern.ch/record/ 1303025, 2010.
- [16] P. Golonka, Z. Was, Eur. Phys. J. C 45 (2006) 97.
- [17] R. Decker, S. Jadach, J. Kuhn, Z. Was, Comput. Phys. Commun. 76 (1993) 361.
- [18] J.M. Campbell, R. Ellis, C. Williams, JHEP 1107 (2011) 018.
- [19] E. Accomando, A. Denner, S. Pozzorini, Phys. Rev. D 65 (2002) 073003.
- [20] E. Accomando, A. Kaiser, Phys. Rev. D 73 (2006) 093006.
- [21] J. Alwall, et al., JHEP 0709 (2007) 028.
- [22] T. Sjostrand, et al., Comput. Phys. Commun. 135 (2001) 238.
- [23] C. Anastasiou, L.J. Dixon, K. Melnikov, F. Petriello, Phys. Rev. D 69 (2004) 094008
- [24] R. Hamberg, W.L. van Neerven, T. Matsuura, Nucl. Phys. B 644 (2002) 403.
- [25] T. Binoth, M. Ciccolini, N. Kauer, M. Kramer, JHEP 0612 (2006) 046.
- [26] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823.
- [27] S. Agostinelli, et al., Nucl. Instrum. Meth. A 506 (2003) 250.
- [28] ATLAS Collaboration, ATLAS-CONF-2011-063, http://cdsweb.cern.ch/record/ 1345743, 2011.
- [29] ATLAS Collaboration, Eur. Phys. J. C (2011), in press, arXiv:1110.3174.
- [30] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1844.
- [31] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71 (2011) 1554.
- [32] OPAL Collaboration, Eur. Phys. J. C 33 (2004) 463,
- [33] DELPHI Collaboration, Eur. Phys. J. C 66 (2010) 35.
- [34] ALEPH Collaboration, Phys. Lett. B 614 (2005) 7.
- [35] L3 Collaboration, Phys. Lett. B 586 (2004) 151.
- [36] CMS Collaboration, Phys. Lett. B 699 (2011) 25.
- [37] D0 Collaboration, Phys. Rev. Lett. 103 (2009) 191801.
- [38] CDF Collaboration, Phys. Rev. Lett. 104 (2010) 201801.
- [39] D0 Collaboration, Phys. Lett. B 695 (2011) 67.

ATLAS Collaboration

AILAS Collaboration
G. Aad ⁴⁸, B. Abbott ¹¹¹, J. Abdallah ¹¹, A.A. Abdelalim ⁴⁹, A. Abdesselam ¹¹⁸, O. Abdinov ¹⁰, B. Abi ¹¹², M. Abolins ⁸⁸, H. Abramowicz ¹⁵³, H. Abreu ¹¹⁵, E. Acerbi ^{89a,89b}, B.S. Acharya ^{164a,164b}, D.L. Adams ²⁴, T.N. Addy ⁵⁶, J. Adelman ¹⁷⁵, M. Aderholz ⁹⁹, S. Adomeit ⁹⁸, P. Adragna ⁷⁵, T. Adye ¹²⁹, S. Aefsky ²², J.A. Aguilar-Saavedra ^{124b,a}, M. Aharrouche ⁸¹, S.P. Ahlen ²¹, F. Ahles ⁴⁸, A. Ahmad ¹⁴⁸, M. Ahsan ⁴⁰, G. Aielli ^{133a,133b}, T. Akdogan ^{18a}, T.P.A. Åkesson ⁷⁹, G. Akimoto ¹⁵⁵, A.V. Akimov ⁹⁴, A. Akiyama ⁶⁷, M.S. Alam ¹, M.A. Alam ⁷⁶, J. Albert ¹⁶⁹, S. Albrand ⁵⁵, M. Aleksa ²⁵⁰, I.N. Aleksandrov ⁶⁵, F. Alessandria ^{89a}, C. Alexa ^{25a}, G. Alexander ¹⁵³, G. Alexandre ⁴⁹, T. Alexopoulos ⁹, M. Alhroob ²⁰, M. Aliyev ¹⁵, G. Alimonti ^{89a}, J. Alison ¹²⁰, M. Aliyev ¹⁰, P.P. Allpott ⁷³, S.E. Allwood-Spiers ⁵³, J. Almond ⁸², A. Aloisio ^{102a,102b}, R. Alon ¹⁷¹, A. Alonso ⁷⁹, B. Alvarez Gonzalez ⁸⁸, M.G. Alviggi ^{102a,102b}, K. Amako ⁶⁶, P. Amaral ²⁹, C. Amelung ²², V.V. Ammosov ¹²⁸, A. Amorim ^{124a,b}, G. Amorós ¹⁶⁷, N. Amram ¹⁵³, C. Anastopoulos ²⁹, L.S. Ancu ¹⁶, N. Andrari ¹¹⁵, T. Andeen ³⁴, C.F. Anders ²⁰, G. Anders ^{58a}, K.J. Anderson ³⁰, A. Andreazza ^{89a,89b}, V. Andrei ^{58a}, M.-L. Andrieux ⁵⁵, X.S. Anduaga ⁷⁰, A. Angerami ³⁴, F. Anghinolfi ²⁹, A. Anisenkov ¹⁰⁷, N. Anjos ^{124a}, A. Annovi ⁴⁷, A. Antonaki ⁸, M. Antonelli ⁴⁷, A. Antonov ⁶⁵, J. Antos ^{144b}, F. Anulli ^{132a, S. Aoun ⁸³, L. Aperio Bella ⁴, R. Apolle ^{118c}, G. Arabidze ⁸⁸, I. Aracena ¹⁴³, Y. Arai ⁶⁶, A.T.H. Arce ⁴⁴, J.P. Archambault ²⁸, S. Arfaoui ⁸³, J.-F. Arguin ¹⁴, E. Arik ^{18a,*}, M. Arik ^{18a}, A.J. Armbruster ⁸⁷, O. Arnaez ⁸¹, A. Artamonov ⁹⁵, G. Artoni ^{132a,132b}, D. Arutinov ²⁰, S. Asai ¹⁵⁵, R. Asfandiyarov ¹⁷², S. Ask²⁷, B. Asman ^{146a,146b}, L. Asquith ⁵, K. Assamagan ²⁴, A. Astoury ¹⁶⁹, A. Astvatsatourov ⁵², B} H.S. Barsil ¹⁷, L. Barak ¹⁷¹, S.P. Baranov ⁹⁴, A. Barashkou ⁶⁵, A. Barbaro Galtieri ¹⁴, E.L. Barberio ⁸⁶, D. Barberis ^{50a,50b}, M. Barbero ²⁰, D.Y. Bardin ⁶⁵, T. Barillari ⁹⁹, M. Barisonzi ¹⁷⁴, T. Barklow ¹⁴³, N. Barlow ²⁷, B.M. Barnett ¹²⁹, R.M. Barnett ¹⁴, A. Baroncelli ^{134a}, G. Barone ⁴⁹, A.J. Barr¹¹⁸, F. Barreiro ⁸⁰, J. Barreiro Guimarães da Costa ⁵⁷, R. Bartoldus ¹⁴³, A.E. Barton ⁷¹, V. Bartsch ¹⁴⁹, R.L. Bates ⁵³, ¹⁴² L. Batkova^{144a}, J.R. Batley²⁷, A. Battaglia¹⁶, M. Battistin²⁹, G. Battistoni^{89a}, F. Bauer¹³⁶, H.S. Bawa^{143,e}, B. Beare¹⁵⁸, T. Beau⁷⁸, P.H. Beauchemin¹⁶¹, R. Beccherle^{50a}, P. Bechtle²⁰, H.P. Beck¹⁶, S. Becker⁹⁸, B. Beare ¹³⁶, T. Beau ⁷⁶, P.H. Beauchemin ¹⁶¹, R. Beccherle ³⁰⁶, P. Becktife ²⁹, H.P. Becktife ⁵, S. Becker ³⁶, M. Beckingham ¹³⁸, K.H. Becks ¹⁷⁴, A.J. Beddall ^{18c}, A. Beddall ^{18c}, S. Bechikian ¹⁷⁵, V.A. Bednyakov ⁶⁵, C.P. Bee ⁸³, M. Begel ²⁴, S. Behar Harpaz ¹⁵², P.K. Behera ⁶³, M. Beimforde ⁹⁹, C. Belanger-Champagne ⁸⁵, P.J. Bell ⁴⁹, W.H. Bell ⁴⁹, G. Bella ¹⁵³, L. Bellagamba ^{19a}, F. Bellina ²⁹, M. Bellomo ²⁹, A. Belloni ⁵⁷, O. Beloborodova ¹⁰⁷, K. Belotskiy ⁹⁶, O. Beltramello ²⁹, S. Ben Ami ¹⁵², O. Benary ¹⁵³, D. Benchekroun ^{135a}, C. Benchouk ⁸³, M. Bendel ⁸¹, N. Benekos ¹⁶⁵, Y. Benhammou ¹⁵³, J.A. Benitez Garcia ^{159b}, D.P. Benjamin ⁴⁴, M. Benoit ¹¹⁵, J.R. Bensinger ²², K. Benslama ¹³⁰, S. Bentvelsen ¹⁰⁵, D. Berge ²⁹, E. Bergeaas Kuutmann ⁴¹, N. Berger ⁴, F. Berghaus ¹⁶⁹, E. Berglund ¹⁰⁵, J. Beringer ¹⁴, P. Bernat ⁷⁷, R. Bernhard ⁴⁸, C. Bernius ²⁴, T. Bertry ⁷⁶, C. Bertella ⁸³, A. Bertin ^{19a,19b}, F. Bertinelli ²⁹, F. Bertolucci ^{122a,122b}, M.I. Besana ^{89a,89b}, N. Besson ¹³⁶, S. Bethke ⁹⁹, W. Bhimji ⁴⁵, R.M. Bianchi ²⁹, M. Bianco ^{72a,72b}, O. Biebel ⁹⁸, S.P. Bieniek ⁷⁷, K. Bierwagen ⁵⁴, J. Biesiada ¹⁴, M. Biglietti ^{134a,134b}, H. Bilokon ⁴⁷, M. Bindi ^{19a,19b}, S. Binet ¹¹⁵, A. Bingul ^{18c}, C. Bini ^{132a,132b}, C. Biscarat ¹⁷⁷, U. Bitenc ⁴⁸, K.M. Black ²¹, R.E. Blair ⁵, J.-B. Blanchard ¹¹⁵, G. Blanchot ²⁹, T. Blazek ^{144a}, C. Blocker ²², J. Blocki ³⁸, A. Blondel ⁴⁹, W. Blum⁸¹, U. Blumenschein ⁵⁴, J. Bobink ¹⁰⁵, V. B. Bobrovnikov ¹⁰⁷, S.S. Bocchetta ⁷⁹, A. Bogdanchikov ¹⁰⁷, A. Bogouch ^{90,*}, C. Bohm ^{146a}, V. Boisvert ⁷⁶, T. Bold ³⁷, V. Boldea ²⁵ⁿ, D. Boscherini ^{19a}, M. Bona⁷⁵, V.G. Bondarenko ^{96,}, M. Bondioli ¹⁶³, M. Boonekamp ¹³⁶, G. Boorman ⁷⁶, C.N. Booth ¹³⁹, S. Bordoni ⁷⁸, C. Borer ¹⁶, A. Borisov ¹²⁸, G. Borissov ⁷¹, I. Borjanovic ^{12a}, S. Borroni ⁸⁷, K. Bos ¹⁰⁵, D. Boscherini ^{19a}, M. Bosman ¹¹, M. Beckingham ¹³⁸, K.H. Becks ¹⁷⁴, A.J. Beddall ^{18c}, A. Beddall ^{18c}, S. Bedikian ¹⁷⁵, V.A. Bednyakov ⁶⁵,

P.A. Bruckman de Renstrom ³⁸, D. Bruncko ^{144b}, R. Bruneliere ⁴⁸, S. Brunet ⁶¹, A. Bruni ^{19a}, G. Bruni ^{19a}, M. Bruschi ^{19a}, T. Buanes ¹³, Q. Buat ⁵⁵, F. Bucci ⁴⁹, J. Buchanan ¹¹⁸, N.J. Buchanan ², P. Buchholz ¹⁴¹, R.M. Buckingham ¹¹⁸, A.G. Buckley ⁴⁵, S.I. Buda ^{25a}, I.A. Budagov ⁶⁵, B. Budick ¹⁰⁸, V. Büscher ⁸¹, L. Bugge ¹¹⁷, D. Buira-Clark ¹¹⁸, O. Bulekov ⁹⁶, M. Bunse ⁴², T. Buran ¹¹⁷, H. Burchant ²⁹, S. Burdin ⁷³, T. Burgess ¹³, S. Burke ¹²⁹, E. Busato ³³, P. Bussey ⁵³, C.P. Buszello ¹⁶⁶, F. Butin ²⁹, B. Butler ¹⁴³, J.M. Butler ²¹, C.M. Buttar ⁵³, J.M. Butterworth ⁷⁷, W. Buttinger ²⁷, S. Cabrera Urbán ¹⁶⁷, D. Caforio ^{19a,19b}, O. Cakir ^{3a}, P. Calafiura ¹⁴, G. Calderini ⁷⁸, P. Calfayan ⁹⁸, R. Calkins ¹⁰⁶, L.P. Caloba ^{23a}, R. Caloi ^{132a,132b}, D. Calvet ³³, S. Calvet ³³, R. Camacho Toro ³³, P. Camarri ^{133a,133b}, M. Cambiaghi ^{119a,119b}, D. Cameron ¹¹⁷, L.M. Caminada ¹⁴, S. Campana ²⁹, M. Campanelli ⁷⁷, V. Canale ^{102a,102b}, F. Canelli ^{30,f}, A. Canepa ^{159a}, J. Cantero ⁸⁰, L. Capatos ^{102a,102b}, M.D.M. Capeans Garrido ²⁹, I. Caprini ^{25a}, M. Caprini ^{25a}, M. Capriotti ⁹⁹, M. Cagua ^{36a,36b}, R. Caputo ⁸¹, R. Cardarelli ^{133a}, T. Carli ²⁹, G. Carlino ^{102a,} L. Carminati ^{89a,89b}, S. Caron ⁴⁸, G.D. Cartillo Montoya ¹⁷², A.A. Carter ⁷⁵, J.R. Castaneda Hernandez ¹⁷², E. Castaneda-Miranda ¹⁷², V. Castillo Gimenez ¹⁶⁷, N.F. Castro ^{124a}, G. Catatoli ^{124a,122b}, F. Ceradini ^{134a,134b}, A.S. Cerqueira ^{23b}, A. Cerri ²⁹, L. Cerrito ⁷⁵, F. Cerutti ⁴⁷, S.A. Cetin ^{18b}, F. Cevenini ^{102a,102b}, F. Ceradini ^{134a,134b}, A.S. Cerqueira ^{23b}, A. Cerri ²⁹, L. Cerrito ⁷⁵, F. Cerutti ⁴⁷, S.A. Cetin ^{18b}, F. Cevenini ^{102a,102b}, A. Chafaq ^{135a}, D. Chakraborty ¹⁰⁶, K. Chan ², L. Cerrito ⁷⁵, F. Cerutti ⁴⁷, S.A. Cetin ^{18b}, F. Cevenini ^{102a,102b}, A. Chafaq ^{135a}, D. Chakraborty ¹⁰⁶, K. Chan ², B. Chapleau ⁸⁵, J.D. Chapman ²⁷, J.W. Chapman ⁸⁷, E. Chareyre B. Chapleau ⁶⁵, J.D. Chapman ²⁷, J.W. Chapman ⁶⁷, E. Chareyre ⁷⁶, D.G. Charlton ¹⁷, V. Chavda ⁶², C.A. Chavez Barajas ²⁹, S. Cheatham ⁸⁵, S. Chekanov ⁵, S.V. Chekulaev ^{159a}, G.A. Chelkov ⁶⁵, M.A. Chelstowska ¹⁰⁴, C. Chen ⁶⁴, H. Chen ²⁴, S. Chen ^{32c}, T. Chen ^{32c}, X. Chen ¹⁷², S. Cheng ^{32a}, A. Cheplakov ⁶⁵, V.F. Chepurnov ⁶⁵, R. Cherkaoui El Moursli ^{135e}, V. Chernyatin ²⁴, E. Cheu ⁶, S.L. Cheung ¹⁵⁸, L. Chevalier ¹³⁶, G. Chiefari ^{102a,102b}, L. Chikovani ^{51a}, J.T. Childers ^{58a}, A. Chilingarov ⁷¹, G. Chiodini ^{72a}, M.V. Chizhov ⁶⁵, G. Choudalakis ³⁰, S. Chouridou ¹³⁷, I.A. Christidi ⁷⁷, A. Christov ⁴⁸, D. Chromek-Burckhart ²⁹, M.L. Chu ¹⁵¹, J. Chudoba ¹²⁵, G. Ciapetti ^{132a,132b}, K. Ciba ³⁷, A.K. Ciftci ^{3a}, R. Ciftci ^{3a}, D. Cinca ³³, V. Cindro ⁷⁴, M.D. Ciobotaru ¹⁶³, C. Ciocca ^{19a}, A. Ciocio ¹⁴, M. Cirilli ⁸⁷, M. Ciubancan ^{25a}, A. Clark ⁴⁹, PL. Clark ⁴⁵, W. Claland ¹²³, L.C. Clamene ⁸³, P. Clament ⁵⁵ M. Ciubancan^{25a}, A. Clark⁴⁹, P.J. Clark⁴⁵, W. Cleland¹²³, J.C. Clemens⁸³, B. Clement⁵⁵, C. Clement^{146a,146b}, R.W. Clifft¹²⁹, Y. Coadou⁸³, M. Cobal^{164a,164c}, A. Coccaro^{50a,50b}, J. Cochran⁶⁴, P. Coe¹¹⁸, J.G. Cogan¹⁴³, J. Coggeshall¹⁶⁵, E. Cogneras¹⁷⁷, C.D. Cojocaru²⁸, J. Colas⁴, A.P. Colijn¹⁰⁵, C. Collard ¹¹⁵, N.J. Collins ¹⁷, C. Collins-Tooth ⁵³, J. Collot ⁵⁵, G. Colon ⁸⁴, P. Conde Muiño ^{124a}, E. Coniavitis ¹¹⁸, M.C. Conidi ¹¹, M. Consonni ¹⁰⁴, V. Consorti ⁴⁸, S. Constantinescu ^{25a}, C. Conta ^{119a,119b}, F. Conventi ^{102a,h}, J. Cook ²⁹, M. Cooke ¹⁴, B.D. Cooper ⁷⁷, A.M. Cooper-Sarkar ¹¹⁸, K. Copic ¹⁴, T. Cornelissen ¹⁷⁴, M. Corradi ^{19a}, F. Corriveau ^{85,i}, A. Cortes-Gonzalez ¹⁶⁵, G. Cortiana ⁹⁹, G. Costa ^{89a}, M.J. Costa¹⁶⁷, D. Costanzo¹³⁹, T. Costin³⁰, D. Côté²⁹, L. Courneyea¹⁶⁹, G. Cowan⁷⁶, C. Cowden²⁷, B.E. Cox ⁸², K. Cranmer ¹⁰⁸, F. Crescioli ^{122a,122b}, M. Cristinziani ²⁰, G. Crosetti ^{36a,36b}, R. Crupi ^{72a,72b}, B.E. Cox ⁸², K. Cranmer ¹⁰⁸, F. Crescioli ^{122a,122b}, M. Cristinziani ²⁰, G. Crosetti ^{36a,36b}, R. Crupi ^{72a,72b}, S. Crépé-Renaudin ⁵⁵, C.-M. Cuciuc ^{25a}, C. Cuenca Almenar ¹⁷⁵, T. Cuhadar Donszelmann ¹³⁹, M. Curatolo ⁴⁷, C.J. Curtis ¹⁷, C. Cuthbert ¹⁵⁰, P. Cwetanski ⁶¹, H. Czirr ¹⁴¹, Z. Czyczula ¹⁷⁵, S. D'Auria ⁵³, M. D'Onofrio ⁷³, A. D'Orazio ^{132a,132b}, P.V.M. Da Silva ^{23a}, C. Da Via ⁸², W. Dabrowski ³⁷, T. Dai ⁸⁷, C. Dallapiccola ⁸⁴, M. Dam ³⁵, M. Dameri ^{50a,50b}, D.S. Damiani ¹³⁷, H.O. Danielsson ²⁹, D. Dannheim ⁹⁹, V. Dao ⁴⁹, G. Darbo ^{50a}, G.L. Darlea ^{25b}, C. Daum ¹⁰⁵, W. Davey ²⁰, T. Davidek ¹²⁶, N. Davidson ⁸⁶, R. Davidson ⁷¹, E. Davies ^{118,c}, M. Davies ⁹³, A.R. Davison ⁷⁷, Y. Davygora ^{58a}, E. Dawe ¹⁴², I. Dawson ¹³⁹, J.W. Dawson ^{5,*}, R.K. Daya ³⁹, K. De ⁷, R. de Asmundis ^{102a}, S. De Castro ^{19a,19b}, P.E. De Castro Faria Salgado ²⁴, S. De Cecco ⁷⁸, J. de Graat ⁹⁸, N. De Groot ¹⁰⁴, P. de Jong ¹⁰⁵, C. De La Taille ¹¹⁵, H. De la Torre ⁸⁰, B. De Lotto ^{164a,164c}, L. de Mora ⁷¹, L. De Nooij ¹⁰⁵, D. De Pedis ^{132a}, A. De Salvo ^{132a}, U. De Sanctis ^{164a,164c}, A. De Santo ¹⁴⁹, J.B. De Vivie De Regie ¹¹⁵, S. Dean ⁷⁷, WL Dearnaley ⁷¹ R. Debbe ²⁴ C. Debenedetti ⁴⁵, D.V. Dedovich ⁶⁵, L. Degenhardt ¹²⁰, M. Dehchar ¹¹⁸. W.J. Dearnaley ⁷¹, R. Debbe²⁴, C. Debenedetti⁴⁵, D.V. Dedovich⁶⁵, J. Degenhardt¹²⁰, M. Dehchar¹¹⁸, C. Del Papa ^{164a, 164c}, J. Del Peso⁸⁰, T. Del Prete ^{122a, 122b}, T. Delemontex ⁵⁵, M. Deliyergiyev ⁷⁴, A. Dell'Acqua²⁹, L. Dell'Asta²¹, M. Della Pietra^{102a,h}, D. della Volpe^{102a,102b}, M. Delmastro⁴, N. Delruelle²⁹, P.A. Delsart⁵⁵, C. Deluca¹⁴⁸, S. Demers¹⁷⁵, M. Demichev⁶⁵, B. Demirkoz^{11,j}, J. Deng¹⁶³, S.P. Denisov¹²⁸, D. Derendarz³⁸, J.E. Derkaoui^{135d}, F. Derue⁷⁸, P. Dervan⁷³, K. Desch²⁰, E. Devetak¹⁴⁸, P.O. Deviveiros¹⁰⁵, A. Dewhurst¹²⁹, B. DeWilde¹⁴⁸, S. Dhaliwal¹⁵⁸, R. Dhullipudi^{24,k}, A. Di Ciaccio^{133a,133b}, L. Di Ciaccio⁴, A. Di Girolamo²⁹, B. Di Girolamo²⁹, S. Di Luise^{134a,134b}, A. Di Mattia¹⁷², B. Di Micco²⁹, R. Di Nardo⁴⁷, A. Di Simone^{133a,133b}, R. Di Sipio^{19a,19b}, M.A. Diaz^{31a},

F. Diblen ^{18c}, E.B. Diehl⁸⁷, J. Dietrich⁴¹, T.A. Dietzsch^{58a}, S. Diglio⁸⁶, K. Dindar Yagci³⁹, J. Dingfelder²⁰, C. Dionisi ^{132a,132b}, P. Dita^{25a}, S. Dita^{25a}, F. Dittus²⁹, F. Djama⁸³, T. Djobava^{51b}, M.A.B. do Vale^{23a}, A. Do Valle Wemans^{124a}, T.K.O. Doan⁴, M. Dobbs⁸⁵, R. Dobinson^{29,*}, D. Dobos²⁹, E. Dobson²⁹, M. Dobson¹⁶³, J. Dodd³⁴, C. Doglioni¹¹⁸, T. Doherty⁵³, Y. Doi^{66,*}, J. Dolejsi¹²⁶, I. Dolenc⁷⁴, Z. Dolezal¹²⁶, B.A. Dolgoshein^{96,*}, T. Dohmae¹⁵⁵, M. Donadelli^{23d}, M. Donega¹²⁰, J. Donini³³, J. Dopke²⁹, A. Doria^{102a}, A. Dos Anjos¹⁷², M. Dosil¹¹, A. Dotti^{122a,122b}, M.T. Dova⁷⁰, J.D. Dowell¹⁷, A.D. Doxiadis¹⁰⁵, A.T. Doyle⁵³, Z. Drasal¹²⁶, J. Drees¹⁷⁴, N. Dressnandt¹²⁰, H. Drevermann²⁹,
C. Driouichi³⁵, M. Dris⁹, J. Dubbert⁹⁹, S. Dube¹⁴, E. Duchovni¹⁷¹, G. Duckeck⁹⁸, A. Dudarev²⁹,
F. Dudziak⁶⁴, M. Dührssen²⁹, I.P. Duerdoth⁸², L. Duflot¹¹⁵, M.-A. Dufour⁸⁵, M. Dunford²⁹,
H. Duran Yildiz^{3b}, R. Duxfield¹³⁹, M. Dwuznik³⁷, F. Dydak²⁹, M. Düren⁵², W.L. Ebenstein⁴⁴, J. Ebke⁹⁸,
S. Eckweiler⁸¹, K. Edmonds⁸¹, C.A. Edwards⁷⁶, N.C. Edwards⁵³, W. Ehrenfeld⁴¹, T. Ehrich⁹⁹, T. Eifert²⁹,
G. Eigen¹³, K. Einsweiler¹⁴, E. Eisenhandler⁷⁵, T. Ekelof¹⁶⁶, M. El Kacimi^{135c}, M. Ellert¹⁶⁶, S. Elles⁴,
F. Ellinghaus⁸¹, K. Ellis⁷⁵, N. Ellis²⁹, J. Elmsheuser⁹⁸, M. Elsing²⁹, D. Emeliyanov¹²⁹, R. Engelmann¹⁴⁸,
A. Engl⁹⁸, B. Epp⁶², A. Eppig⁸⁷, J. Erdmann⁵⁴, A. Ereditato¹⁶, D. Eriksson^{146a}, J. Ernst¹, M. Ernst²⁴,
J. Ernwein¹³⁶, D. Errede¹⁶⁵, S. Errede¹⁶⁵, E. Ertel⁸¹, M. Escalier¹¹⁵, C. Escobar¹²³, X. Espinal Curull¹¹,
B. Esposito⁴⁷, F. Etienne⁸³, A.I. Etienvre¹³⁶, E. Etzion¹⁵³, D. Evangelakou⁵⁴, H. Evans⁶¹, L. Fabbri^{19a,19b},
C. Fabre²⁹, R.M. Fakhrutdinov¹²⁸, S. Falciano^{132a}, Y. Fang¹⁷², M. Fanti^{89a,89b}, A. Farbin⁷, A. Farilla^{134a},
J. Farley¹⁴⁸, T. Farooque¹⁵⁸, S.M. Farrington¹¹⁸, P. Farthouat²⁹, P. Fassnacht²⁹, D. Fassouliotis⁸,
B. Fatholahzadeh¹⁵⁸, A. Favareto^{89a,89b}, L. Fayard¹¹⁵, S. Fazio^{36a,36b}, R. Febbraro³³, P. Federic^{144a},
O.L. Fedin¹²¹, W. Fedorko⁸⁸, M. Fehling-Kaschek⁴⁸, L. Feligioni⁸³, C. Feng^{32d}, E.J. Feng³⁰, A.D. Doxiadis¹⁰⁵, A.T. Doyle⁵³, Z. Drasal¹²⁶, J. Drees¹⁷⁴, N. Dressnandt¹²⁰, H. Drevermann²⁹, O.L. Fedin¹²¹, W. Fedorko⁸⁸, M. Fehling-Kaschek⁴⁸, L. Feligioni⁸³, C. Feng^{32d}, E.J. Feng³⁰, A.B. Fenyuk¹²⁸, J. Ferencei^{144b}, J. Ferland⁹³, W. Fernando¹⁰⁹, S. Ferrag⁵³, J. Ferrando⁵³, V. Ferrara⁴¹, A. Ferrari¹⁶⁶, P. Ferrari¹⁰⁵, R. Ferrari^{119a}, A. Ferrer¹⁶⁷, M.L. Ferrer⁴⁷, D. Ferrere⁴⁹, C. Ferretti⁸⁷, A. Ferretto Parodi^{50a,50b}, M. Fiascaris³⁰, F. Fiedler⁸¹, A. Filipčič⁷⁴, A. Filippas⁹, F. Filthaut¹⁰⁴, M. Fincke-Keeler¹⁶⁹, M.C.N. Fiolhais^{124a,g}, L. Fiorini¹⁶⁷, A. Firan³⁹, P. Fischer²⁰, M.J. Fisher¹⁰⁹, A. Ferletto Patoli Constr., M. Hascalis ¹, F. Fiedel ¹, A. Finplet ², A. Finplet ², A. Finplas¹, F. Finhalt ¹, M. Fisher ¹⁰⁹,
M. Fincke-Keeler ¹⁶⁹, M.C.N. Fiolhais ^{124a,g}, L. Fiorini ¹⁶⁷, A. Firan ³⁹, P. Fischer ²⁰, M.J. Fisher ¹⁰⁹,
M. Flechl ⁴⁸, I. Fleck ¹⁴¹, J. Fleckner ⁸¹, P. Fleischmann ¹⁷³, S. Fleischmann ¹⁷⁴, T. Flick ¹⁷⁴,
L.R. Flores Castillo ¹⁷², M.J. Flowerdew ⁹⁹, M. Fokitis ⁹, T. Fonseca Martin ¹⁶, D.A. Forbush ¹³⁸,
A. Formica ¹³⁶, A. Forti ⁸², D. Fortin ^{159a}, J.M. Foster ⁸², D. Fournier ¹¹⁵, A. Foussat ²⁹, A.J. Fowler ⁴⁴,
K. Fowler ¹³⁷, H. Fox ⁷¹, P. Francavilla ^{122a,122b}, S. Franchino ^{119a,119b}, D. Francis ²⁹, T. Frank ¹⁷¹,
M. Franklin ⁵⁷, S. Franz ²⁹, M. Fraternali ^{119a,119b}, S. Fratina ¹²⁰, S.T. French ²⁷, F. Friedrich ⁴³, R. Froeschl ²⁹,
D. Froidevaux ²⁹, J.A. Frost ²⁷, C. Fukunaga ¹⁵⁶, E. Fullana Torregrosa ²⁹, J. Fuster ¹⁶⁷, C. Gabaldon ²⁹,
O. Gabizon ¹⁷¹, T. Gadfort ²⁴, S. Gadomski ⁴⁹, G. Gagliardi ^{50a,50b}, P. Gagnon ⁶¹, C. Galea ⁹⁸, E.J. Gallas ¹¹⁸,
V. Gallo ¹⁶, B.J. Gallop ¹²⁹, P. Gallus ¹²⁵, K.K. Gan ¹⁰⁹, Y.S. Gao ^{143,e}, V.A. Gapienko ¹²⁸, A. Gaponenko ¹⁴,
F. Garberson ¹⁷⁵, M. Garcia-Sciveres ¹⁴, C. García ¹⁶⁷, J.E. García Navarro ¹⁶⁷, R.W. Gardner ³⁰, N. Garelli ²⁹,
H. Garitaonandia ¹⁰⁵, V. Garonne ²⁹, J. Garvey ¹⁷, C. Gatti ⁴⁷, G. Gaudio ^{119a}, O. Gaumer ⁴⁹, B. Gaur ¹⁴¹,
L. Gauthier ¹³⁶, I.L. Gavrilenko ⁹⁴, C. Gay ¹⁶⁸, G. Gaycken ²⁰, J.-C. Gayde ²⁹, E.N. Gazis ⁹, P. Ge ^{32d},
C.N.P. Gee ¹²⁹, D.A. Geerts ¹⁰⁵, Ch. Geich-Gimbel ²⁰, K. Gellerstedt ^{146a,146b}, C. Gemme ^{50a},
A. Gershon ¹⁵⁵, C. Geweniger ^{58a}, H. Ghazlane ^{132b}, P. Ghez ⁴, N. Ghodbane ³³, B. Giacobbe ^{19a},
S. Giagu ^{132a,132b}, V. Giakoumopoulou ⁸, V. Giangiobbe ^{122a,122b}, F. Gianotti ²⁹, B. Gibbard ² J. Glatzer⁴⁸, A. Glazov⁴¹, G.L. Glonti⁶⁵, J. Godfrey¹⁴², J. Godlewski²⁹, M. Goebel⁴¹, T. Göpfert⁴³, C. Goeringer⁸¹, C. Gössling⁴², T. Göttfert⁹⁹, S. Goldfarb⁸⁷, T. Golling¹⁷⁵, S.N. Golovnia¹²⁸, A. Gomes ^{124a,b}, L.S. Gomez Fajardo⁴¹, R. Gonçalo ⁷⁶, J. Goncalves Pinto Firmino Da Costa⁴¹, L. Gonella ²⁰, A. Gonidec ²⁹, S. Gonzalez ¹⁷², S. González de la Hoz ¹⁶⁷, G. Gonzalez Parra ¹¹, M.L. Gonzalez Silva ²⁶, A. Gonidec²⁹, S. Gonzalez¹⁷², S. Gonzalez de la Hoz¹⁶⁷, G. Gonzalez Parra¹¹, M.L. Gonzalez Silva²⁶, S. Gonzalez-Sevilla⁴⁹, J.J. Goodson¹⁴⁸, L. Goossens²⁹, P.A. Gorbounov⁹⁵, H.A. Gordon²⁴, I. Gorelov¹⁰³, G. Gorfine¹⁷⁴, B. Gorini²⁹, E. Gorini^{72a,72b}, A. Gorišek⁷⁴, E. Gornicki³⁸, S.A. Gorokhov¹²⁸, V.N. Goryachev¹²⁸, B. Gosdzik⁴¹, M. Gosselink¹⁰⁵, M.I. Gostkin⁶⁵, I. Gough Eschrich¹⁶³, M. Gouighri^{135a}, D. Goujdami^{135c}, M.P. Goulette⁴⁹, A.G. Goussiou¹³⁸, C. Goy⁴, S. Gozpinar²², I. Grabowska-Bold³⁷, P. Grafström²⁹, K.-J. Grahn⁴¹, F. Grancagnolo^{72a}, S. Grancagnolo¹⁵, V. Grassi¹⁴⁸, V. Gratchev¹²¹, N. Grau³⁴, H.M. Gray²⁹, J.A. Gray¹⁴⁸, E. Graziani^{134a}, O.G. Grebenyuk¹²¹, T. Greenshaw⁷³,

349

Z.D. Greenwood ^{24,k}, K. Gregersen ³⁵, I.M. Gregor ⁴¹, P. Grenier ¹⁴³, J. Griffiths ¹³⁸, N. Grigalashvili ⁶⁵, A.A. Grillo ¹³⁷, S. Grinstein ¹¹, Y.V. Grishkevich ⁹⁷, J.-F. Grivaz ¹¹⁵, M. Groh ⁹⁹, E. Gross ¹⁷¹, A.A. Grillo ¹³⁷, S. Grinstein ¹¹, Y.V. Grishkevich ⁹⁷, J.-F. Grivaz ¹¹⁵, M. Groh ⁹⁹, E. Gross ¹⁷¹,
J. Grosse-Knetter ⁵⁴, J. Groth-Jensen ¹⁷¹, K. Grybel ¹⁴¹, V.J. Guarino ⁵, D. Guest ¹⁷⁵, C. Guicheney ³³,
A. Guida ^{72a,72b}, S. Guindon ⁵⁴, H. Guler ^{85,1}, J. Gunther ¹²⁵, B. Guo ¹⁵⁸, J. Guo ³⁴, A. Gupta ³⁰, Y. Gusakov ⁶⁵,
V.N. Gushchin ¹²⁸, A. Gutierrez ⁹³, P. Gutierrez ¹¹¹, N. Guttman ¹⁵³, O. Gutzwiller ¹⁷², C. Guyot ¹³⁶,
C. Gwenlan ¹¹⁸, C.B. Gwilliam ⁷³, A. Haas ¹⁴³, S. Haas ²⁹, C. Haber ¹⁴, R. Hackenburg ²⁴, H.K. Hadavand ³⁹,
D.R. Hadley ¹⁷, P. Haefner ⁹⁹, F. Hahn ²⁹, S. Haider ²⁹, Z. Hajduk ³⁸, H. Hakobyan ¹⁷⁶, J. Haller ⁵⁴,
K. Hamacher ¹⁷⁴, P. Hamal ¹¹³, M. Hamer ⁵⁴, A. Hamilton ^{145b}, S. Hamilton ¹⁶¹, H. Han ^{32a}, L. Han ^{32b},
K. Hanagaki ¹¹⁶, K. Hanawa ¹⁶⁰, M. Hance ¹⁴, C. Handel ⁸¹, P. Hanke ^{58a}, J.R. Hansen ³⁵, J.B. Hansen ³⁵,
J.D. Hansen ³⁵, P.H. Hansen ³⁵, P. Hansson ¹⁴³, K. Hara ¹⁶⁰, G.A. Hare ¹³⁷, T. Harenberg ¹⁷⁴, S. Harkusha ⁹⁰,
D. Harper ⁸⁷, R.D. Harrington ⁴⁵, O.M. Harris ¹³⁸, K. Harrison ¹⁷, J. Hartert ⁴⁸, F. Hartjes ¹⁰⁵, T. Haruyama ⁶⁶,
A. Harvey ⁵⁶, S. Hasegawa ¹⁰¹, Y. Hasegawa ¹⁴⁰, S. Hassani ¹³⁶, M. Hatch ²⁹, D. Hauff ⁹⁹, S. Haug ¹⁶,
M. Hauschild ²⁹, R. Hauser ⁸⁸, M. Havranek ²⁰, B.M. Hawes ¹¹⁸, C.M. Hawkes ¹⁷, R.J. Hawkings ²⁹,
D. Hawkins ¹⁶³, T. Hayakawa ⁶⁷, T. Hayashi ¹⁶⁰, D. Hayden ⁷⁶, H.S. Hayward ⁷³, S.J. Haywood ¹²⁹,
E. Hazen ²¹, M. He ^{32d}, S.J. Head ¹⁷, V. Hedberg ⁷⁹, L. Heelan ⁷, S. Heilman ^{146a, 146b}, D. Hellmich ²⁰, C. Helsens ¹¹, D. Hawkins¹⁰⁵, T. Hayakawa⁰⁷, T. Hayashi ¹⁰⁵, D. Hayden¹⁰⁵, H. Hayward¹⁷⁵, S. J. Haywood¹²⁵, E. Hazen²¹, M. He^{32d}, S.J. Head¹⁷, V. Hedberg⁷⁹, L. Heelan⁷, S. Heim⁸⁸, B. Heinemann¹⁴, S. Heisterkamp³⁵, L. Helary⁴, C. Heller⁹⁸, M. Heller²⁹, S. Hellman^{146a,146b}, D. Hellmich²⁰, C. Helsens¹¹, R.C.W. Henderson⁷¹, M. Henke^{58a}, A. Henrichs⁵⁴, A.M. Henriques Correia²⁹, S. Henrot-Versille¹¹⁵, F. Henry-Couannier⁸³, C. Hensel⁵⁴, T. Henß¹⁷⁴, C.M. Hernandez⁷, Y. Hernández Jiménez¹⁶⁷, R. Herrberg¹⁵, A.D. Hershenhorn¹⁵², G. Herten⁴⁸, R. Hertenberger⁹⁸, L. Hervas²⁹, N.P. Hessey¹⁰⁵, E. Higón-Rodriguez¹⁶⁷, D. Hill^{5,*}, J.C. Hill²⁷, N. Hill⁵, K.H. Hiller⁴¹, S. Hillert²⁰, S.J. Hiller¹⁷, I. Hinchliffe¹⁴, E. Hines¹²⁰, M. Hirose¹¹⁶, F. Hirsch⁴², D. Hirschbuehl¹⁷⁴, J. Hobbs¹⁴⁸, N. Hod¹⁵³, M.C. Hodgkinson¹³⁹, P. Hodgson¹³⁹, A. Hoecker²⁹, M.R. Hoeferkamp¹⁰³, J. Hoffman³⁹, D. Hoffmann⁸³, M. Hohlfeld⁸¹, M. Holder¹⁴¹, S.O. Holmgren^{146a}, T. Holy¹²⁷, J.L. Holzbauer⁸⁸, Y. Homma⁶⁷, T.M. Hong¹²⁰, L. Hooft van Huysduynen¹⁰⁸, T. Horazdovsky¹²⁷, C. Horn¹⁴³, S. Horner⁴⁸, J.-Y. Hostachy⁵⁵, S. Hou¹⁵¹, M.A. Houlden⁷³, A. Hoummada^{135a}, J. Howarth⁸², D.F. Howell¹¹⁸, I. Hristova¹⁵, J. Hrivnac¹¹⁵, I. Hruska¹²⁵, T. Hryn'ova⁴, P.J. Hsu⁸¹, S.-C. Hsu¹⁴, G. S. Huang¹¹¹, Z. Hubacek¹²⁷, F. Hubaut⁸³, F. Huegging²⁰, T.B. Huffman¹¹⁸, E.W. Hughes³⁴, G. Hughes⁷¹, R.E. Hughes-Jones⁸², M. Huhtnien²⁹, P. Hurst⁵⁷, M. Hurwitz¹⁴, U. Husemann⁴¹, N. Huesynov^{65,m}, J. Huston⁸⁸, J. Huth⁵⁷, G. Iacobucci⁴⁹, G. Iakovidis⁹, M. Ibotson⁸², I. Ibragimov¹⁴¹, R. Ichimiya⁶⁷, L. Iconomidou-Fayard¹¹⁵, J. Idarraga¹¹⁵, P. lengo^{102a,102b}, O. Igonkina¹⁰⁵, Y. Ikegami⁶⁶, M. Ikeno⁶⁶, Y. Ilchenko³⁹, D. Iliadis¹⁵⁴, N. Ilic¹⁵⁸, D. Imbault⁷⁸, M. Imori¹⁵⁵, T. Ince²⁰, J. Inigo-Golfin²⁹, P. Ioannou⁸, M. Iodice^{134a}, A. Irles Quiles¹⁶⁷, C. Isaksson¹⁶⁶, A. Ishikawa⁶⁷, M. Y. Jiang C., M. Jinhenez Belenguer V., G. Jin C., S. Jin C., O. Jinhouchi V., M.D. Joergensen C., D. Jone C., L.G. Johansen ¹³, M. Johansen ^{146a,146b}, K.E. Johansson ^{146a}, P. Johansson ¹³⁹, S. Johnert ⁴¹, K.A. Johns ⁶, K. Jon-And ^{146a,146b}, G. Jones ⁸², R.W.L. Jones ⁷¹, T.W. Jones ⁷⁷, T.J. Jones ⁷³, O. Jonsson ²⁹, C. Joram ²⁹, P.M. Jorge ^{124a,b}, J. Joseph ¹⁴, T. Jovin ^{12b}, X. Ju ¹⁷², C.A. Jung ⁴², V. Juranek ¹²⁵, P. Jussel ⁶², A. Juste Rozas ¹¹, V.V. Kabachenko ¹²⁸, S. Kabana ¹⁶, M. Kaci ¹⁶⁷, A. Kaczmarska ³⁸, P. Kadlecik ³⁵, M. Kado ¹¹⁵, H. Kagan ¹⁰⁹, M. Kagan ⁵⁷, S. Kaiser ⁹⁹, E. Kajomovitz ¹⁵², S. Kalinin ¹⁷⁴, L.V. Kalinovskaya ⁶⁵, S. Kama ³⁹, N. Kanaya ¹⁵⁵, M. Kado ¹¹⁵, H. Kagan ¹⁵⁷, M. Kado ¹¹⁵, H. Kagan ¹⁵⁵, M. Kado ¹⁵⁷, S. Kaiser ⁹⁹, E. Kajomovitz ¹⁵², S. Kalinin ¹⁷⁴, L.V. Kalinovskaya ⁶⁵, S. Kama ³⁹, N. Kanaya ¹⁵⁵, M. Kado ¹⁵⁵, M. Kado ¹⁵⁵, M. Kado ¹⁵⁵, M. Kado ¹⁵⁵, M. Kanaya ¹⁵⁵, M. Kado ¹⁵⁶, K. Kanaya ¹⁵⁵, M. Kado ¹⁵⁶, K. Kanaya ¹⁵⁵, M. Kado ¹⁵⁷, S. Kaiser ⁹⁹, K. Kanaya ¹⁵⁵, M. Kado ¹⁵⁷, S. Kaiser ¹⁵⁷, K. Kaiser ¹⁵⁷, K. Kaiser ¹⁵⁷, S. Kaiser ¹⁵⁷, S. Kaiser ¹⁵⁷, S. Kaiser ¹⁵⁷, S. Kaiser ¹⁵⁸, S. Kaiser ¹⁵⁹, S. Kaiser ¹⁵⁹, S. Kaiser ¹⁵⁰, K. Kaiser ¹⁵⁰, K. Kaiser ¹⁵⁰, K. Kaiser ¹⁵⁰, K. Kaiser ¹⁵⁰, S. Kaiser ¹⁵⁰, K. Kaiser ¹⁵⁰, S. Kaiser ¹⁵⁰, S. Kaiser ¹⁵⁰, K. Ka M. Kagan ⁵⁷, S. Kaiser ⁹⁹, E. Kajomovitz ¹⁵², S. Kalinin ¹⁷⁴, L.V. Kalinovskaya ⁶⁵, S. Kama ³⁹, N. Kanaya ¹⁵⁵, M. Kaneda ²⁹, T. Kanno ¹⁵⁷, V.A. Kantserov ⁹⁶, J. Kanzaki ⁶⁶, B. Kaplan ¹⁷⁵, A. Kapliy ³⁰, J. Kaplon ²⁹, D. Kar ⁴³, M. Karagoz ¹¹⁸, M. Karnevskiy ⁴¹, K. Karr ⁵, V. Kartvelishvili ⁷¹, A.N. Karyukhin ¹²⁸, L. Kashif ¹⁷², G. Kasieczka ^{58b}, A. Kasmi ³⁹, R.D. Kass ¹⁰⁹, A. Kastanas ¹³, M. Kataoka ⁴, Y. Kataoka ¹⁵⁵, E. Katsoufis ⁹, J. Katzy ⁴¹, V. Kaushik ⁶, K. Kawagoe ⁶⁷, T. Kawamoto ¹⁵⁵, G. Kawamura ⁸¹, M.S. Kayl ¹⁰⁵, V.A. Kazanin ¹⁰⁷, M.Y. Kazarinov ⁶⁵, J.R. Keates ⁸², R. Keeler ¹⁶⁹, R. Kehoe ³⁹, M. Keil ⁵⁴, G.D. Kekelidze ⁶⁵, J. Kennedy ⁹⁸, C.J. Kenney ¹⁴³, M. Kenyon ⁵³, O. Kepka ¹²⁵, N. Kerschen ²⁹, B.P. Kerševan ⁷⁴, S. Kersten ¹⁷⁴, K. Kessoku ¹⁵⁵, J. Keung ¹⁵⁸, M. Khakzad ²⁸, F. Khalil-zada ¹⁰, H. Khandanyan ¹⁶⁵, A. Khanov ¹¹², D. Kharchenko ⁶⁵, A. Khodinov ⁹⁶, A.G. Kholodenko ¹²⁸, A. Khomich ^{58a}, T.J. Khoo ²⁷, G. Khoriauli ²⁰, A. Khoroshilov ¹⁷⁴, N. Khovanskiy ⁶⁵, V. Khovanskiy ⁹⁵, E. Khramov ⁶⁵, J. Khubua ^{51b}, H. Kim ^{146a,146b}, M.S. Kim ², P.C. Kim ¹⁴³, S.H. Kim ¹⁶⁰, N. Kimura ¹⁷⁰, O. Kind ¹⁵, B.T. King ⁷³, M. King ⁶⁷, R.S.B. King ¹¹⁸, J. Kirk ¹²⁹, L.E. Kirsch ²²,

A.E. Kiryunin ⁹⁹, T. Kishimoto ⁶⁷, D. Kisielewska ³⁷, T. Kittelmann ¹²³, A.M. Kiver ¹²⁸, E. Kladiva ^{144b}, J. Klaiber-Lodewigs ⁴², M. Klein ⁷³, U. Klein ⁷³, K. Kleinknecht ⁸¹, M. Klemetti ⁸⁵, A. Klier ¹⁷¹, A. Klimentov ²⁴, R. Klingenberg ⁴², E.B. Klinkby ³⁵, T. Klioutchnikova ²⁹, P.F. Klok ¹⁰⁴, S. Klous ¹⁰⁵, E.-E. Kluge ^{58a}, T. Kluge ⁷³, P. Kluit ¹⁰⁵, S. Kluth ⁹⁹, N.S. Knecht ¹⁵⁸, E. Kneringer ⁶², J. Knobloch ²⁹, E.B.F.G. Knoops ⁸³, A. Knue ⁵⁴, B.R. Ko ⁴⁴, T. Kobayashi ¹⁵⁵, M. Kobel ⁴³, M. Kocian ¹⁴³, P. Kodys ¹²⁶, K. Köneke ²⁹, A.C. König ¹⁰⁴, S. Koenig ⁸¹, L. Köpke ⁸¹, F. Koetsveld ¹⁰⁴, P. Koevesarki ²⁰, T. Koffas ²⁸, E. Koffeman ¹⁰⁵, F. Kohn ⁵⁴, Z. Kohout ¹²⁷, T. Kohriki ⁶⁶, T. Koi ¹⁴³, T. Kokott ²⁰, G.M. Kolachev ¹⁰⁷, H. Kolanoski ¹⁵, V. Kolesnikov ⁶⁵, I. Koletsou ^{89a}, J. Koll ⁸⁸, D. Kollar ²⁹, M. Kollefrath ⁴⁸, S.D. Kolya ⁸², A.A. Komar ⁹⁴, Y. Komori ¹⁵⁵, T. Kondo ⁶⁶, T. Kono ^{41,n}, A.I. Kononov ⁴⁸, R. Konoplich ^{108,o}, N. Konstantinidis ⁷⁷, A. Kootz ¹⁷⁴, S. Koperny ³⁷, S.V. Kopikov ¹²⁸, K. Korcyl ³⁸, K. Kordas ¹⁵⁴, V. Koreshev ¹²⁸, A. Korn ¹¹⁸, A. Korol ¹⁰⁷, I. Korolkov ¹¹, E.V. Korolkova ¹³⁹, V.A. Korotkov ¹²⁸, O. Kortner ⁹⁹, S. Kortner ⁹⁹, V.V. Kostyukhin ²⁰, M.J. Kotamäki ²⁹, S. Kotov ⁹⁹, V.M. Kotov ⁶⁵, A. Kotwal ⁴⁴, C. Kourkoumelis ⁸, V. Kouskoura ¹⁵⁴, V. Kral ¹²⁷, V.A. Kramarenko ⁹⁷, G. Kramberger ⁷⁴, M.W. Krasny ⁷⁸, W. Kozanecki ¹³⁶, A.S. Kozhin ¹²⁸, V. Kral ¹²⁷, V.A. Kramarenko ⁹⁷, G. Kramberger ⁷⁴, M.W. Krasny ⁷⁸,
A. Krasznahorkay ¹⁰⁸, J. Kraus ⁸⁸, J.K. Kraus ²⁰, A. Kreisel ¹⁵³, F. Krejci ¹²⁷, J. Kretzschmar ⁷³, N. Krieger ⁵⁴,
P. Krieger ¹⁵⁸, K. Kroeninger ⁵⁴, H. Kroha ⁹⁹, J. Kroll ¹²⁰, J. Kroseberg ²⁰, J. Krstic ^{12a}, U. Kruchonak ⁶⁵,
H. Krüger ²⁰, T. Kruker ¹⁶, N. Krumnack ⁶⁴, Z.V. Krumshteyn ⁶⁵, A. Kruth ²⁰, T. Kubota ⁸⁶, S. Kuehn ⁴⁸, A. Kabzlandov, T. J. Kados, Y. J. Kulls, Y. J. Kulls, Y. A. Kulls, Y. P. Krigel, T. J. Krut, P. K. Kuley, J. Krutk, J. Krutk, K. Kuley, J. Krutk, K. Kuley, J. Krutk, K. Kuley, K. Kuley, J. Krutk, K. Kuley, K. Kuley, K. Kuley, K. Kuley, K. Kuley, J. Krutk, K. Kuley, K. Kule

351

L. March⁸⁰, J.F. Marchand²⁸, F. Marchese^{133a,133b}, G. Marchiori⁷⁸, M. Marcisovsky¹²⁵, A. Marin^{21,*}, C.P. Marino¹⁶⁹, F. Marroquim^{23a}, R. Marshall⁸², Z. Marshall²⁹, F.K. Martens¹⁵⁸, S. Marti-Garcia¹⁶⁷, A.J. Martin¹⁷⁵, B. Martin²⁹, B. Martin⁸⁸, F.F. Martin¹²⁰, J.P. Martin⁹³, Ph. Martin⁵⁵, T.A. Martin¹⁷, V.J. Martin⁴⁵, B. Martin dit Latour⁴⁹, S. Martin-Haugh¹⁴⁹, M. Martinez¹¹, V. Martinez Outschoorn⁵⁷, V.J. Martin ⁴⁵, B. Martin dit Latour ⁴⁹, S. Martin-Haugh ¹⁴⁹, M. Martinez ¹¹, V. Martinez Outschoorn ⁵⁷, A.C. Martyniuk ¹⁶⁹, M. Marx ⁸², F. Marzano ^{132a}, A. Marzin ¹¹¹, L. Masetti ⁸¹, T. Mashimo ¹⁵⁵, R. Mashinistov ⁹⁴, J. Masik ⁸², A.L. Maslennikov ¹⁰⁷, I. Massa ^{19a,19b}, G. Massaro ¹⁰⁵, N. Massol ⁴, P. Mastrandrea ^{132a,132b}, A. Mastroberardino ^{36a,36b}, T. Masubuchi ¹⁵⁵, M. Mathes ²⁰, H. Matsumoto ¹⁵⁵, H. Matsunaga ¹⁵⁵, T. Matsushita ⁶⁷, C. Mattravers ^{118,c}, J.M. Maugain ²⁹, J. Maurer ⁸³, S.J. Maxfield ⁷³, D.A. Maximov ¹⁰⁷, E.N. May ⁵, A. Mayne ¹³⁹, R. Mazini ¹⁵¹, M. Mazur ²⁰, M. Mazzanti ^{89a}, E. Mazzoni ^{122a,122b}, S.P. Mc Kee ⁸⁷, A. McCarn ¹⁶⁵, R.L. McCarthy ¹⁴⁸, T.G. McCarthy ²⁸, N.A. McCubbin ¹²⁹, K.W. McFarlane ⁵⁶, J.A. Mcfayden ¹³⁹, H. McGlone ⁵³, G. Mchedlidze ^{51b}, R.A. McLaren ²⁹, T. Mclaughlan ¹⁷, S.J. McMahon ¹²⁹, R.A. McPherson ^{169,i}, A. Meade ⁸⁴, J. Mechnich ¹⁰⁵, M. Mechtel ¹⁷⁴, M. Medinnis ⁴¹, R. Meera-Lebbai ¹¹¹, T. Meguro ¹¹⁶, R. Mehdiyev ⁹³, S. Mehlhase ³⁵, A. Mehta ⁷³, K. Meier ^{58a}, B. Meirose ⁷⁹ C. Melachrinos ³⁰ B.R. Mellado Carcia ¹⁷² L. Mendoza Navas ¹⁶² Z. Meng ^{151,s} R. Meera-Lebbai¹¹¹, T. Meguro¹¹⁰, R. Mehdiyev⁹⁵, S. Mehlhase⁵⁵, A. Mehta⁷⁵, K. Meier^{58a},
B. Meirose⁷⁹, C. Melachrinos³⁰, B.R. Mellado Garcia¹⁷², L. Mendoza Navas¹⁶², Z. Meng^{151,s},
A. Mengarelli^{19a,19b}, S. Menke⁹⁹, C. Menot²⁹, E. Meoni¹¹, K.M. Mercurio⁵⁷, P. Mermod⁴⁹,
L. Merola^{102a,102b}, C. Meroni^{89a}, F.S. Merritt³⁰, A. Messina²⁹, J. Metcalfe¹⁰³, A.S. Mete⁶⁴, C. Meyer⁸¹,
C. Meyer³⁰, J.-P. Meyer¹³⁶, J. Meyer¹⁷³, J. Meyer⁵⁴, T.C. Meyer²⁹, W.T. Meyer⁶⁴, J. Miao^{32d}, S. Michal²⁹,
L. Micu^{25a}, R.P. Middleton¹²⁹, P. Miele²⁹, S. Migas⁷³, L. Mijović⁴¹, G. Mikenberg¹⁷¹, M. Mikestikova¹²⁵,
M. Mikuž⁷⁴, D.W. Miller³⁰, R.J. Miller⁸⁸, W.J. Mills¹⁶⁸, C. Mills⁵⁷, A. Milov¹⁷¹, D.A. Milstead^{146a,146b},
D. Milstein¹⁷¹, A.A. Minaenko¹²⁸, M. Miñano Moya¹⁶⁷, I.A. Minashvili⁶⁵, A.I. Mincer¹⁰⁸, B. Mindur³⁷, D. Milstein ¹⁷¹, A.A. Minaenko ¹²⁸, M. Miñano Moya ¹⁶⁷, I.A. Minashvili ⁶⁵, A.I. Mincer ¹⁰⁸, B. Mindur ³ M. Mineev ⁶⁵, Y. Ming ¹⁷², L.M. Mir ¹¹, G. Mirabelli ^{132a}, L. Miralles Verge ¹¹, A. Misiejuk ⁷⁶, J. Mitrevski ¹³⁷, G.Y. Mitrofanov ¹²⁸, V.A. Mitsou ¹⁶⁷, S. Mitsui ⁶⁶, P.S. Miyagawa ¹³⁹, K. Miyazaki ⁶⁷, J.U. Mjörnmark ⁷⁹, T. Moa ^{146a, 146b}, P. Mockett ¹³⁸, S. Moed ⁵⁷, V. Moeller ²⁷, K. Mönig ⁴¹, N. Möser ²⁰, S. Mohapatra ¹⁴⁸, W. Mohr ⁴⁸, S. Mohrdieck-Möck ⁹⁹, A.M. Moisseev ^{128,*}, R. Moles-Valls ¹⁶⁷, J. Molina-Perez ²⁹, J. Monk ⁷⁷, E. Monnier ⁸³, S. Montesano ^{89a,89b}, F. Monticelli ⁷⁰, S. Monzani ^{19a,19b}, R.W. Moore ², G.F. Moorhead ⁸⁶, C. Mora Herrera ⁴⁹, A. Moraes ⁵³, N. Morange ¹³⁶, J. Morel ⁵⁴, G. Morello ^{36a,36b}, D. Moreno ⁸¹, M. Moreno Llácer ¹⁶⁷, P. Morettini ^{50a}, M. Morii ⁵⁷, J. Morin ⁷⁵, A.K. Morley²⁹, G. Mornacchi²⁹, S.V. Morozov⁹⁶, J.D. Morris⁷⁵, L. Morvaj¹⁰¹, H.G. Moser⁹⁹, M. Mosidze ^{51b}, J. Moss ¹⁰⁹, R. Mount ¹⁴³, E. Mountricha ¹³⁶, S.V. Mouraviev ⁹⁴, E.J.W. Moyse ⁸⁴, M. Mudrinic ^{12b}, F. Mueller ^{58a}, J. Mueller ¹²³, K. Mueller ²⁰, T.A. Müller ⁹⁸, T. Mueller ⁸¹, D. Muenstermann ²⁹, A. Muir ¹⁶⁸, Y. Munwes ¹⁵³, W.J. Murray ¹²⁹, I. Mussche ¹⁰⁵, E. Musto ^{102a,102b}, A.G. Myagkov¹²⁸, J. Nadal¹¹, K. Nagai¹⁶⁰, K. Nagano⁶⁶, A. Nagarkar¹⁰⁹, Y. Nagasaka⁶⁰, M. Nagel⁹⁹, A.M. Nairz²⁹, Y. Nakahama²⁹, K. Nakamura¹⁵⁵, T. Nakamura¹⁵⁵, I. Nakano¹¹⁰, G. Nanava²⁰, A. Mairz ²⁵, Y. Nakanama ²⁵, K. Nakamura ¹⁵⁵, I. Nakamura ¹⁵⁵, I. Nakano ¹¹⁶, G. Nanava ²⁶, A. Napier ¹⁶¹, M. Nash ^{77,c}, N.R. Nation ²¹, T. Nattermann ²⁰, T. Naumann ⁴¹, G. Navarro ¹⁶², H.A. Neal ⁸⁷, E. Nebot ⁸⁰, P.Yu. Nechaeva ⁹⁴, A. Negri ^{119a,119b}, G. Negri ²⁹, S. Nektarijevic ⁴⁹, A. Nelson ¹⁶³, S. Nelson ¹⁴³, T.K. Nelson ¹⁴³, S. Nemecek ¹²⁵, P. Nemethy ¹⁰⁸, A.A. Nepomuceno ^{23a}, M. Nessi ^{29,t}, M.S. Neubauer ¹⁶⁵, A. Neusiedl ⁸¹, R.M. Neves ¹⁰⁸, P. Nevski ²⁴, P.R. Newman ¹⁷, V. Nguyen Thi Hong ¹³⁶, R.B. Nickerson ¹¹⁸, R. Nicolaidou ¹³⁶, L. Nicolas ¹³⁹, B. Nicquevert ²⁹, F. Niedercorn ¹¹⁵, J. Nielsen ¹³⁷, T. Niinikoski ²⁹, N. Nikiforou ³⁴, A. Nikiforov ¹⁵, V. Nikolaenko ¹²⁸, K. Nikolaev ⁶⁵, I. Nikolic-Audit ⁷⁸, K. Nikolics ⁴⁹, N. Nikiforou ³⁴, A. Nikiforov ¹³, V. Nikolaenko ¹²⁸, K. Nikolaev ⁰³, I. Nikolic-Audit ⁷⁸, K. Nikolics ⁴⁹, K. Nikolopoulos ²⁴, H. Nilsen ⁴⁸, P. Nilsson ⁷, Y. Ninomiya ¹⁵⁵, A. Nisati ^{132a}, T. Nishiyama ⁶⁷, R. Nisius ⁹⁹, L. Nodulman ⁵, M. Nomachi ¹¹⁶, I. Nomidis ¹⁵⁴, M. Nordberg ²⁹, B. Nordkvist ^{146a, 146b}, P.R. Norton ¹²⁹, J. Novakova ¹²⁶, M. Nozaki ⁶⁶, L. Nozka ¹¹³, I.M. Nugent ^{159a}, A.-E. Nuncio-Quiroz ²⁰, G. Nunes Hanninger ⁸⁶, T. Nunnemann ⁹⁸, E. Nurse ⁷⁷, T. Nyman ²⁹, B.J. O'Brien ⁴⁵, S.W. O'Neale ^{17,*}, D.C. O'Neil ¹⁴², V. O'Shea ⁵³, F.G. Oakham ^{28,d}, H. Oberlack ⁹⁹, J. Ocariz ⁷⁸, A. Ochi ⁶⁷, S. Oda ¹⁵⁵, S. Odaka ⁶⁶, J. Odier ⁸³, H. Ogren ⁶¹, A. Oh ⁸², S.H. Oh ⁴⁴, C.C. Ohm ^{146a, 146b}, T. Ohshima ¹⁰¹, H. Ohshita ¹⁴⁰, T. Ohsugi ⁵⁹, S. Okada ⁶⁷, H. Okawa ¹⁶³, Y. Okumura ¹⁰¹, T. Okuyama ¹⁵⁵, A. Olariu ^{25a}, M. Olcese ^{50a}, A.G. Olchevski ⁶⁵, M. Oliveira ^{124a,g}, D. Oliveira Damazio ²⁴, E. Oliver Garcia ¹⁶⁷, D. Olivito ¹²⁰, A. Olszewski ³⁸, J. Olszowska ³⁸, C. Omachi ⁶⁷, A. Onofre ^{124a,u}, P.U.E. Onyisi ³⁰, C.J. Oram ^{159a}, M.J. Oreglia ³⁰, Y. Oren ¹⁵³, D. Orestano ^{134a,134b}, C. Oropeza Barrera ⁵³, R.S. Orr ¹⁵⁸, B. Osculati ^{50a,50b}, R. Ospanov ¹²⁰, C. Osuna ¹¹, G. Otero y Garzon ²⁶, J.P. Ottersbach ¹⁰⁵, M. Ouchrif ^{135d}, F. Ould-Saada ¹¹⁷, A. Ouraou ¹³⁶, Q. Ouyang ^{32a}, A. Ovcharova ¹⁴, M. Owen ⁸², S. Owen ¹³⁹, V.E. Ozcan ^{18a}, N. Ozturk ⁷, A. Pacheco Pages¹¹, C. Padilla Aranda¹¹, S. Pagan Griso¹⁴, E. Paganis¹³⁹, F. Paige²⁴, P. Pais⁸⁴,

K. Pajchel¹¹⁷, G. Palacino^{159b}, C.P. Paleari⁶, S. Palestini²⁹, D. Pallin³³, A. Palma^{124a,b}, J.D. Palmer¹⁷, Y.B. Pan¹⁷², E. Panagiotopoulou⁹, B. Panes^{31a}, N. Panikashvili⁸⁷, S. Panitkin²⁴, D. Pantea^{25a}, Y.B. Pan¹⁷², E. Panagiotopoulou⁹, B. Panes^{31a}, N. Panikashvili⁸⁷, S. Panitkin²⁴, D. Pantea^{25a},
M. Panuskova¹²⁵, V. Paolone¹²³, A. Papadelis^{146a}, Th.D. Papadopoulou⁹, A. Paramonov⁵, W. Park^{24,v},
M.A. Parker²⁷, F. Parodi^{50a,50b}, J.A. Parsons³⁴, U. Parzefall⁴⁸, E. Pasqualucci^{132a}, S.P. Passaggio^{50a},
A. Passeri^{134a}, F. Pastore^{134a,134b}, Fr. Pastore⁷⁶, G. Pásztor^{49,w}, S. Pataraia¹⁷⁴, N. Patel¹⁵⁰, J.R. Pater⁸²,
S. Patricelli^{102a,102b}, T. Pauly²⁹, M. Pecsy^{144a}, M.I. Pedraza Morales¹⁷², S.V. Peleganchuk¹⁰⁷, H. Peng^{32b},
R. Pengo²⁹, A. Penson³⁴, J. Penwell⁶¹, M. Perantoni^{23a}, K. Perez^{34,x}, T. Perez Cavalcanti⁴¹,
E. Perez Codina¹¹, M.T. Pérez García-Estañ¹⁶⁷, V. Perez Reale³⁴, L. Perini^{89a,89b}, H. Pernegger²⁹,
R. Perrino^{72a}, P. Perrodo⁴, S. Persembe^{3a}, V.D. Peshekhonov⁶⁵, B.A. Petersen²⁹, J. Petersen²⁹,
T.C. Petersen³⁵, E. Petit⁴, A. Petridis¹⁵⁴, C. Petridou¹⁵⁴, E. Petrolo^{132a}, F. Petrucci^{134a,134b}, D. Petschull⁴¹,
M. Petteni¹⁴², R. Pezoa^{31b}, A. Phan⁸⁶, P.W. Phillips¹²⁹, G. Piacquadio²⁹, E. Piccaro⁷⁵, M. Piccinni^{19a,19b},
S.M. Piec⁴¹, R. Piegaia²⁶, D.T. Pignotti¹⁰⁹, J.E. Pilcher³⁰, A.D. Pilkington⁸², J. Pina^{124a,b},
M. Pinamonti^{164a,164c}, A. Pinder¹¹⁸, J.L. Pinfold², J. Ping^{32c}, B. Pinto^{124a,b}, O. Pirotte²⁹, C. Pizio^{89a,89b},
R. Placakyte⁴¹, M. Plamondon¹⁶⁹, M.-A. Pleier²⁴, A.V. Pleskach¹²⁸, A. Poblaguev²⁴, S. Poddar^{58a},
F. Podlyski³³, L. Poggioli¹¹⁵, T. Poghosyan²⁰, M. Pohl⁴⁹, F. Polci⁵⁵, G. Polesello^{119a}, A. Policicchio¹³⁸,
A. Polini^{19a}, J. Poll⁷⁵, V. Polychronakos²⁴, D.M. Pomarede¹³⁶, D. Pomeroy²², K. Pommès²⁹, A. Polini ^{19a}, J. Poll ⁷⁵, V. Polychronakos ²⁴, D.M. Pomarede ¹³⁶, D. Pomeroy ²², K. Pommès ²⁹, L. Pontecorvo ^{132a}, B.G. Pope ⁸⁸, G.A. Popeneciu ^{25a}, D.S. Popovic ^{12a}, A. Poppleton ²⁹, X. Portell Bueso ²⁹, C. Posch ²¹, G.E. Pospelov ⁹⁹, S. Pospisil ¹²⁷, I.N. Potrap ⁹⁹, C.J. Potter ¹⁴⁹, C.T. Potter ¹¹⁴, G. Poulard ²⁹, J. Poveda ¹⁷², R. Prabhu ⁷⁷, P. Pralavorio ⁸³, A. Pranko ¹⁴, S. Prasad ⁵⁷, R. Pravahan ⁷, S. Prell ⁶⁴, K. Pretzl ¹⁶, L. Pribyl ²⁹, D. Price ⁶¹, J. Price ⁷³, L.E. Price ⁵, M.J. Price ²⁹, D. Prieur ¹²³, M. Primavera ^{72a}, K. Prokofiev ¹⁰⁸, E. Pridyl²⁵, D. Price³⁷, J. Price³⁷, L.E. Price⁵, M.J. Price²⁴, D. Pried¹⁷², M. Prinavera⁴², K. Prokonev⁴⁵, F. Prokoshin^{31b}, S. Protopopescu²⁴, J. Proudfoot⁵, X. Prudent⁴³, M. Przybycien³⁷, H. Przysiezniak⁴, S. Psoroulas²⁰, E. Ptacek¹¹⁴, E. Pueschel⁸⁴, J. Purdham⁸⁷, M. Purohit^{24,v}, P. Puzo¹¹⁵, Y. Pylypchenko⁶³, J. Qian⁸⁷, Z. Qian⁸³, Z. Qin⁴¹, A. Quadt⁵⁴, D.R. Quarrie¹⁴, W.B. Quayle¹⁷², F. Quinonez^{31a}, M. Raas¹⁰⁴, V. Radescu^{58b}, B. Radics²⁰, T. Rador^{18a}, F. Ragusa^{89a,89b}, G. Rahal¹⁷⁷, A.M. Rahimi¹⁰⁹, D. Rahm²⁴, S. Rajagopalan²⁴, M. Rammensee⁴⁸, M. Rammes¹⁴¹, M. Ramstedt^{146a,146b}, A.S. Randle-Conde³⁹, K. Randrianarivony²⁸, P.N. Ratoff⁷¹, F. Rauscher⁹⁸, M. Raymond²⁹, A.L. Read¹¹⁷, D.M. Rebuzzi^{119a,119b}, A. Redelbach¹⁷³, G. Redlinger²⁴, R. Reece¹²⁰, K. Reeves⁴⁰, A. Reichold¹⁰⁵, E. Reinherz-Aronis¹⁵³, A. Reinsch¹¹⁴, I. Reisinger⁴², D. Reljic^{12a}, C. Rembser²⁹, Z.L. Ren¹⁵¹, A. Renaud¹¹⁵, P. Renkel³⁹, M. Rescigno^{132a}, S. Resconi^{89a}, B. Resende¹³⁶, P. Reznicek⁹⁸, R. Rezvani¹⁵⁸, A. Richards⁷⁷, R. Richter⁹⁹, E. Richter-Was^{4,y}, M. Ridel⁷⁸, M. Rijpstra¹⁰⁵, M. Rijssenbeek¹⁴⁸, A. Rimoldi^{119a,119b}, L. Rinaldi^{19a}, R.R. Rios³⁹, I. Riu¹¹, G. Rivoltella^{89a,89b}, F. Rizatdinova¹¹², E. Rizvi⁷⁵, S.H. Robertson^{85,i}, L. Richtler-Was ¹⁵, M. Kiljstra¹⁰⁵, M. Kijssenbeek ¹⁵, A. Kimold ¹¹⁵, H. Kuhald ¹⁵⁴, R. Rios ³⁹, I. Riu ¹¹, G. Rivoltella ^{89a,89b}, F. Rizatdinova ¹¹², E. Rizvi ⁷⁵, S.H. Robertson ^{85,1}, A. Robichaud-Veronneau ¹¹⁸, D. Robinson ²⁷, J.E.M. Robinson ⁷⁷, M. Robinson ¹¹⁴, A. Robson ⁵³, J.G. Rocha de Lima ¹⁰⁶, C. Roda ^{122a,122b}, D. Roda Dos Santos ²⁹, S. Rodier ⁸⁰, D. Rodriguez ¹⁶², A. Roe ⁵⁴, S. Roe ²⁹, O. Røhne ¹¹⁷, V. Rojo ¹, S. Rolli ¹⁶¹, A. Romaniouk ⁹⁶, M. Romano ^{19a,19b}, V.M. Romanov ⁶⁵, G. Romeo ²⁶, L. Roos ⁷⁸, E. Ros ¹⁶⁷, S. Rosati ^{132a,132b}, K. Rosbach ⁴⁹, A. Rose ¹⁴⁹, M. Rose ⁷⁶, G.A. Rosenbaum ¹⁵⁸, E.I. Rosenberg ⁶⁴, P.L. Rosendahl ¹³, O. Rosenthal ¹⁴¹, L. Rosselt ⁴⁹, V. Rossetti ¹¹, E. Rossi ^{132a,132b}, L.P. Rossi ^{50a}, M. Rotaru ^{25a}, I. Roth ¹⁷¹, J. Rothberg ¹³⁸, D. Rousseau ¹¹⁵, C.R. Royon ¹³⁶, A. Rozanov ⁸³, Y. Rozen ¹⁵², X. Ruan ¹¹⁵, I. Rubinskiy ⁴¹, B. Ruckert ⁹⁸, N. Ruckstuhl ¹⁰⁵, V.I. Rud ⁹⁷, C. Rudolph ⁴³, F. Rühr ⁶, F. Ruggieri ^{134a,134b}, A. Ruiz-Martinez ⁶⁴, V. Rumiantsev ^{91,*}, L. Rumyantsev ⁶⁵, K. Runge ⁴⁸, O. Runolfsson ²⁰, Z. Rurikova ⁴⁸, N.A. Rusakovich ⁶⁵, D.R. Rust ⁶¹, J.P. Rutherfoord ⁶, C. Ruwiedel ¹⁴, P. Ruzicka ¹²⁵, Y.F. Ryabov ¹²¹, V. Ryadovikov ¹²⁸, P. Ryan ⁸⁸, M. Rybar ¹²⁶, G. Rybkin ¹¹⁵, N.C. Ryder ¹¹⁸, S. Rzaeva ¹⁰, A.F. Saavedra ¹⁵⁰, I. Sadeh ¹⁵³, H.F.-W. Sadrozinski ¹³⁷, R. Sadykov ⁶⁵, F. Safai Tehrani ^{132a,132b}, H. Sakamoto ¹⁵⁵, G. Salamana ⁷⁵, A. Salamon ^{133a}, M. Saleem ¹¹¹, D. Salihagic ⁹⁹, A. Salzburger ²⁹, D. Sampsonidis ¹⁵⁴, B.H. Samset ¹¹⁷, A. Sanchez ^{102a,102b}, H. Sandoker ¹³, H.G. Sander ⁸¹, M.P. Sanders ⁹⁸, M. Sandohff ¹⁷⁴, T. Sandoval ²⁷, C. Santoni ³³, R. Santonico ^{133a,133b}, H. Santos ^{124a}, J. G. Saratig ¹⁷², E. Sarkisyan-Grinbaum ⁷, F. Sarri ^{122a,122b}, G. Sartisohn ¹⁷⁴, O. Sasaki ⁶⁶, S. Sanatonic^{133a,132b}, H. Santosi ¹⁵⁴, B.H. Samset ¹¹⁷, D. San

353

V.A. Schegelsky¹²¹, D. Scheirich⁸⁷, M. Schernau¹⁶³, M.I. Scherzer³⁴, C. Schiavi^{50a,50b}, J. Schieck⁹⁸, M. Schioppa^{36a,36b}, S. Schlenker²⁹, J.L. Schlereth⁵, E. Schmidt⁴⁸, K. Schmieden²⁰, C. Schmitt⁸¹, S. Schmitt ^{58b}, M. Schmitz ²⁰, A. Schöning ^{58b}, M. Schutt ²⁹, D. Schouten ^{159a}, J. Schovancova ¹²⁵, M. Schram ⁸⁵, C. Schroeder ⁸¹, N. Schroer ^{58c}, S. Schuh ²⁹, G. Schuler ²⁹, J. Schultes ¹⁷⁴, H.-C. Schultz-Coulon ^{58a}, H. Schulz ¹⁵, J.W. Schumacher ²⁰, M. Schumacher ⁴⁸, B.A. Schumm ¹³⁷, Ph. Schune ¹³⁶, C. Schwanenberger ⁸², A. Schwartzman ¹⁴³, Ph. Schwemling ⁷⁸, R. Schwienhorst ⁸⁸, R. Schwierz⁴³, J. Schwindling¹³⁶, T. Schwindt²⁰, M. Schwoerer⁴, W.G. Scott¹²⁹, J. Searcy¹¹⁴, G. Sedov⁴¹, E. Sedykh¹²¹, E. Segura¹¹, S.C. Seidel¹⁰³, A. Seiden¹³⁷, F. Seifert⁴³, J.M. Seixas^{23a}, G. Sekhniaidze^{102a}, D.M. Seliverstov¹²¹, B. Sellden^{146a}, G. Sellers⁷³, M. Seman^{144b}, N. Semprini-Cesari^{19a,19b}, C. Serfon⁹⁸, L. Serin¹¹⁵, R. Seuster⁹⁹, H. Severini¹¹¹, M.E. Sevior⁸⁶, A. Sfyrla²⁹, E. Shabalina⁵⁴, M. Shamim¹¹⁴, L.Y. Shan^{32a}, J.T. Shank²¹, Q.T. Shao⁸⁶, M. Shapiro¹⁴, P.B. Shatalov⁹⁵, L. Shaver⁶, K. Shaw^{164a,164c}, D. Sherman¹⁷⁵, P. Sherwood⁷⁷, A. Shibata¹⁰⁸, H. Shichi¹⁰¹, S. Shimizu²⁹, M. Shimojima¹⁰⁰, T. Shin⁵⁶, M. Shiyakova⁶⁵, A. Shmeleva⁹⁴, M.J. Shochet³⁰, D. Short¹¹⁸, S. Shrestha⁶⁴, M.A. Shupe⁶, P. Sicho¹²⁵, A. Sidoti^{132a,132b}, A. Siebel¹⁷⁴, F. Siegert⁴⁸, Dj. Sijacki^{12a}, O. Silbert¹⁷¹, J. Silva^{124a,b}, Y. Silver¹⁵³, D. Silverstein¹⁴³, S.B. Silverstein^{146a}, V. Simak¹²⁷, O. Simard¹³⁶, Lj. Simic^{12a}, S. Simion¹¹⁵, P. Sicho¹²⁵, A. Simion¹¹⁵, P. Sicho¹²⁵, D. Silverstein¹⁴⁴, S.B. Silverstein^{146a}, V. Simak¹²⁷, O. Simard¹³⁶, Lj. Simic^{12a}, S. Simion¹¹⁵, P. Sicho¹²⁵, A. Sidoti^{132a,132b}, S.B. Silverstein^{146a}, V. Simak¹²⁷, O. Simard¹³⁶, Lj. Simic^{12a}, S. Simion¹¹⁵, P. Sicho¹²⁵, S. Simion¹¹⁵, S. Shimata¹²⁶, S. Simion¹¹⁶, S. Shimata¹²⁷, S. Simion¹¹⁷, S. Shimata¹²⁷, S. Simion¹¹⁷, S. Shimata¹²⁸, S. Simion¹¹⁸, S. Shimata¹²⁹, S. Simion¹¹⁴, S. Shimata¹²⁹, S. Simion¹¹⁵, S. Simion¹¹⁵, S. Shimata¹²⁸, S. Simion¹¹⁶, S. Shimata¹²⁹, S. Simion¹¹⁷, S. Simion¹¹⁶, S. Shimata¹²⁹, S. Simion¹¹⁶, S. Simion¹¹⁷, S. Simion¹¹⁷, S. Simion¹¹⁸, S. Shimata¹²⁹, S. Simion¹¹⁹, S. Shimata¹²⁹, S. Simi B. Simmons⁷⁷, M. Simonyan³⁵, P. Sinervo¹⁵⁸, N.B. Sinev¹¹⁴, V. Sipica¹⁴¹, G. Siragusa¹⁷³, A. Sircar²⁴, A.N. Sisakyan⁶⁵, S.Yu. Sivoklokov⁹⁷, J. Sjölin^{146a,146b}, T.B. Sjursen¹³, L.A. Skinnari¹⁴, H.P. Skottowe⁵⁷, K. Skovpen¹⁰⁷, P. Skubic¹¹¹, N. Skvorodnev²², M. Slater¹⁷, T. Slavicek¹²⁷, K. Sliwa¹⁶¹, J. Sloper²⁹, K. Skovpen ¹⁰⁷, P. Skubic ¹¹¹, N. Skvorodnev ²², M. Slater ¹⁷, T. Slavicek ¹²⁷, K. Sliwa ¹⁶¹, J. Sloper ²⁹, V. Smakhtin ¹⁷¹, S.Yu. Smirnov ⁹⁶, L.N. Smirnova ⁹⁷, O. Smirnova ⁷⁹, B.C. Smith ⁵⁷, K.M. Smith ⁵³, M. Smizanska ⁷¹, K. Smolek ¹²⁷, A.A. Snesarev ⁹⁴, S.W. Snow ⁸², J. Snow ¹¹¹, J. Snuverink ¹⁰⁵, S. Snyder ²⁴, M. Soares ^{124a}, R. Sobie ^{169,i}, J. Sodomka ¹²⁷, A. Soffer ¹⁵³, C.A. Solans ¹⁶⁷, M. Solar ¹²⁷, J. Solc ¹²⁷, E. Soldatov ⁹⁶, U. Soldevila ¹⁶⁷, E. Solfaroli Camillocci ^{132a,132b}, A.A. Solodkov ¹²⁸, O.V. Solovyanov ¹²⁸, J. Sondericker ²⁴, N. Soni², V. Sopko ¹²⁷, B. Sopko ¹²⁷, M. Sosebee ⁷, R. Soualah ^{164a,164c}, A. Soukharev ¹⁰⁷, S. Spagnolo ^{72a,72b}, F. Spanò ⁷⁶, R. Spighi ^{19a}, G. Spigo ²⁹, F. Spila ^{132a,132b}, R. Spiwoks ²⁹, M. Spousta ¹²⁶, T. Spreitzer ¹⁵⁸, B. Spurlock ⁷, R.D.St. Denis ⁵³, T. Stahl ¹⁴¹, J. Stahlman ¹²⁰, R. Stamen ^{58a}, E. Stanecka ³⁸, R.W. Stanek ⁵, C. Stanescu ^{134a}, S. Stapnes ¹¹⁷, E.A. Starchenko ¹²⁸, J. Stark ⁵⁵, P. Staroba ¹²⁵, P. Starovoitov ⁹¹, A. Staude ⁹⁸, P. Stavina ^{144a}, G. Stavropoulos ¹⁴, G. Steele ⁵³, P. Steinbach ⁴³, P. Steinberg ²⁴, I. Stekl ¹²⁷, B. Stelzer ¹⁴², H.J. Stelzer ⁸⁸, O. Stelzer-Chilton ^{159a}, H. Stenzel ⁵², S. Stern ⁹⁹, K. Stevenson ⁷⁵, G.A. Stewart ²⁹, I.A. Stillings ²⁰, M.C. Stockton ²⁹, K. Stoerig ⁴⁸, G. Stoicea ^{25a}, S. Stoniek ⁹⁹. K. Stevenson ⁷⁵, G.A. Stewart ²⁹, J.A. Stillings ²⁰, M.C. Stockton ²⁹, K. Stoerig ⁴⁸, G. Stoicea ^{25a}, S. Stonjek ⁹⁹, P. Strachota ¹²⁶, A.R. Stradling ⁷, A. Straessner ⁴³, J. Strandberg ¹⁴⁷, S. Strandberg ^{146a, 146b}, A. Strandlie ¹¹⁷, M. Strang ¹⁰⁹, E. Strauss ¹⁴³, M. Strauss ¹¹¹, P. Strizenec ^{144b}, R. Ströhmer ¹⁷³, D.M. Strom ¹¹⁴, J.A. Strong ^{76,*}, R. Stroynowski ³⁹, J. Strube ¹²⁹, B. Stugu ¹³, I. Stumer ^{24,*}, J. Stupak ¹⁴⁸, P. Sturm ¹⁷⁴, D.A. Soh ^{151,q}, D. Su ¹⁴³, HS. Subramania ², A. Succurro ¹¹, Y. Sugaya ¹¹⁶, T. Sugimoto ¹⁰¹, C. Suhr ¹⁰⁶, K. Suita ⁶⁷, M. Suita ⁶⁷, M. Sulta ⁹⁴, G. Sulta and S. Succurro ¹¹, Y. Sugaya ¹¹⁶, T. Sugimoto ¹⁰¹, C. Suhr ¹⁰⁶, K. Suita ⁶⁷, M. Sulta ¹²⁶, M. Sulta ⁹⁴, G. Sulta and S. Sulta ⁹⁴, S. Sul D.A. Soholg , R. Sitoyhowski , J. Stuber P. Stugu , P. Stugu , Stupak , P. Stupak , P. Stum D.A. Soh 1^{51,q}, D. Su 1⁴³, HS. Subramania², A. Succuro ¹¹, Y. Sugaya ¹¹⁶, T. Sugimoto ¹⁰¹, C. Suhr ¹⁰⁶, K. Suita ⁶⁷, M. Suk ¹²⁶, V.V. Sulin ⁹⁴, S. Sultansoy ^{3d}, T. Sumida ⁶⁸, X. Sun ⁵⁵, J.E. Sundermann ⁴⁸, K. Suruliz ¹³⁹, S. Sushkov ¹¹, G. Susinno ^{36a,36b}, M.R. Sutton ¹⁴⁹, Y. Suzuki ⁶⁶, Y. Suzuki ⁶⁷, M. Svatos ¹²⁵, Yu.M. Sviridov ¹²⁸, S. Swedish ¹⁶⁸, I. Sykora ^{144a}, T. Sykora ¹²⁶, B. Szeless ²⁹, J. Sánchez ¹⁶⁷, D. Ta ¹⁰⁵, K. Tackmann ⁴¹, A. Taffard ¹⁶³, R. Tafirout ^{159a}, N. Taiblum ¹⁵³, Y. Takahashi ¹⁰¹, H. Takai ²⁴, R. Takashima ⁶⁹, H. Takeda ⁶⁷, T. Takeshita ¹⁴⁰, M. Talby ⁸³, A. Talyshev ¹⁰⁷, M.C. Tamsett ²⁴, J. Tanaka ¹⁵⁵, R. Tanaka ¹¹⁵, S. Tanaka ¹³¹, S. Tanaka ⁶⁶, Y. Tanaka ¹⁰⁰, K. Tani ⁶⁷, N. Tannoury ⁸³, G.P. Tappern ²⁹, S. Tapprogge ⁸¹, D. Tardif ¹⁵⁸, S. Tarem ¹⁵², F. Tarrade ²⁸, G.F. Tartarelli ^{89a}, P. Tas ¹²⁶, M. Tasevsky ¹²⁵, E. Tassi ^{36a,36b}, M. Tatarkhanov ¹⁴, Y. Tayalati ^{135d}, C. Taylor ⁷⁷, F.E. Taylor ⁹², G.N. Taylor ⁸⁶, W. Taylor ^{159b}, M. Teinturier ¹¹⁵, M. Teixeira Dias Castanheira ⁷⁵, P. Teixeira-Dias ⁷⁶, K.K. Temming ⁴⁸, H. Ten Kate ²⁹, P.K. Teng ¹⁵¹, S. Terada ⁶⁶, K. Terashi ¹⁵⁵, J. Terron ⁸⁰, M. Testa ⁴⁷, R.J. Teuscher ^{158, J}, J. Thadome ¹⁷⁴, J. Therhaag ²⁰, T. Theveneaux-Pelzer ⁷⁸, M. Thioye ¹⁷⁵, S. Thoma ⁴⁸, J.P. Thomson ²⁷, R.P. Thun ⁸⁷, F. Tian ³⁴, M.J. Tibbetts ¹⁴, T. Tic ¹²⁵, V.O. Tikhomirov ⁹⁴, Y.A. Tikhonov ¹⁰⁷, S. Timoshenko ⁹⁶, P. Tipton ¹⁷⁵, F.J. Tique Aires Viegas ²⁹, S. Tisserant ⁸³, J. Tobias ⁴⁸, B. Toczek ³⁷, T. Todorov ⁴, S. Todorova-Nova ¹⁶¹, B. Toggerson ¹⁶³, J. Tojo ⁶⁶, S. Tokár ^{144a}, K. Tokunaga ⁶⁷, K. Tokushuku ⁶⁶, K. Tollefson ⁸⁸, M. Tomoto ¹⁰¹, L. Tompkins ³⁰, K. Toms ¹⁰³, G. Tong ^{32a}, A. Tonoyan ¹³, C. Topfel ¹⁶, N.D. Topilin ⁶⁵, I. Torchiani ²⁹, E. Torrence ¹¹⁴, H W. Trischuk¹⁵⁸, A. Trivedi^{24, v}, B. Trocmé⁵⁵, C. Troncon^{89a}, M. Trottier-McDonald¹⁴², M. Trzebinski³⁸,

<page-header> L. Zwalinski²⁹

¹ University at Albany, Albany, NY, United States

² Department of Physics, University of Alberta, Edmonton, AB, Canada

³ (a) Department of Physics, Ankara University, Ankara: (b) Department of Physics, Dumlupinar University, Kutahva: (c) Department of Physics, Gazi University, Ankara: (d) Division of Physics, TOBB University of Economics and Technology, Ankara; ^(e) Turkish Atomic Energy Authority, Ankara, Turkey

⁴ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France

⁵ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States

⁶ Department of Physics, University of Arizona, Tucson, AZ, United States

⁷ Department of Physics, The University of Texas at Arlington, Arlington, TX, United States

⁸ Physics Department, University of Athens, Athens, Greece

⁹ Physics Department, National Technical University of Athens, Zografou, Greece

¹⁰ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

¹¹ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain

¹² ^(a)Institute of Physics, University of Belgrade, Belgrade; ^(b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia

¹³ Department for Physics and Technology, University of Bergen, Bergen, Norway

¹⁴ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States

¹⁵ Department of Physics, Humboldt University, Berlin, Germany

¹⁶ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

¹⁷ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

18 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep;

(d) Department of Physics, Istanbul Technical University, Istanbul, Turkey

¹⁹ ^(a)INFN Sezione di Bologna; ^(b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy

²⁰ Physikalisches Institut, University of Bonn, Bonn, Germany

²¹ Department of Physics, Boston University, Boston, MA, United States

²² Department of Physics, Brandeis University, Waltham, MA, United States

²³ (a) Universidade Federal da Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ^(b) Federal University of Juiz de Fora; ^(c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ^(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil

²⁴ Physics Department, Brookhaven National Laboratory, Upton, NY, United States

25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania

²⁶ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

²⁷ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

²⁸ Department of Physics, Carleton University, Ottawa, ON, Canada

²⁹ CERN, Geneva, Switzerland

³⁰ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States

 ³¹ (a) Departamento de Física, Pontago, Entago, Chilago, Indeagrato, Chile
 ³¹ (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ^(b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
 ³² (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ^(b) Departament of Modern Physics, University of Science and Technology of China, Anhui; ^(c) Department of Physics, Nanjing University, Jiangsu; ^(d) High Energy Physics Group, Shandong University, Shandong, China ³³ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

³⁴ Nevis Laboratory, Columbia University, Irvington, NY, United States

³⁵ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

³⁶ ^(a) INFN Gruppo Collegato di Cosenza; ^(b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

³⁷ Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland

³⁸ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

³⁹ Physics Department, Southern Methodist University, Dallas, TX, United States

⁴⁰ Physics Department, University of Texas at Dallas, Richardson, TX, United States

⁴¹ DESY, Hamburg and Zeuthen, Germany

⁴² Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

⁴³ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

⁴⁴ Department of Physics, Duke University, Durham, NC, United States

⁴⁵ SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

⁴⁶ Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria

⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy

⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany

⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland

⁵⁰ ^(a) INFN Sezione di Genova; ^(b) Dipartimento di Fisica, Università di Genova, Genova, Italy

⁵¹ (a) E. Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi; ^(b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

⁵³ SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

⁵⁵ Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

⁵⁶ Department of Physics, Hampton University, Hampton, VA, United States

⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States

58 (@Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (^{b)} Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg; (^{c)}ZITI Institut für

technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

⁵⁹ Faculty of Science, Hiroshima University, Hiroshima, Japan

⁶⁰ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

⁶¹ Department of Physics, Indiana University, Bloomington, IN, United States

⁶² Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

⁶³ University of Iowa, Iowa City, IA, United States

⁶⁴ Department of Physics and Astronomy, Iowa State University, Ames, IA, United States

⁶⁵ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

⁶⁶ KEK. High Energy Accelerator Research Organization, Tsukuba, Japan

⁶⁷ Graduate School of Science, Kobe University, Kobe, Japan

⁶⁸ Faculty of Science, Kyoto University, Kyoto, Japan

⁶⁹ Kyoto University of Education, Kyoto, Japan

⁷⁰ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

⁷¹ Physics Department, Lancaster University, Lancaster, United Kingdom

72 (a) INFN Sezione di Lecce; (b) Dipartimento di Fisica, Università del Salento, Lecce, Italy

73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

⁷⁴ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

- ⁷⁵ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
- ⁷⁶ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
- ⁷⁷ Department of Physics and Astronomy, University College London, London, United Kingdom
- ⁷⁸ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
- ⁷⁹ Fysiska institutionen, Lunds universitet, Lund, Sweden
- ⁸⁰ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
- ⁸¹ Institut für Physik, Universität Mainz, Mainz, Germany
- ⁸² School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- ⁸³ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
- ⁸⁴ Department of Physics, University of Massachusetts, Amherst, MA, United States
- ⁸⁵ Department of Physics, McGill University, Montreal, QC, Canada
- ⁸⁶ School of Physics, University of Melbourne, Victoria, Australia
- ⁸⁷ Department of Physics, The University of Michigan, Ann Arbor, MI, United States
- ⁸⁸ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- ⁸⁹ ^(a) INFN Sezione di Milano; ^(b) Dipartimento di Fisica, Università di Milano, Milano, Italy
- ⁹⁰ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
- ⁹¹ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
- ⁹² Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
- ⁹³ Group of Particle Physics, University of Montreal, Montreal, QC, Canada
- ⁹⁴ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
- ⁹⁵ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
- ⁹⁶ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
- ⁹⁷ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- 98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
- ⁹⁹ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
- ¹⁰⁰ Nagasaki Institute of Applied Science, Nagasaki, Japan
- ¹⁰¹ Graduate School of Science, Nagoya University, Nagoya, Japan
- ¹⁰² ^(a) INFN Sezione di Napoli: ^(b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
- ¹⁰³ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
- ¹⁰⁴ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
- ¹⁰⁵ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
- ¹⁰⁶ Department of Physics, Northern Illinois University, DeKalb, IL, United States
- ¹⁰⁷ Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
- ¹⁰⁸ Department of Physics, New York University, New York, NY, United States
- ¹⁰⁹ Ohio State University, Columbus, OH, United States
- ¹¹⁰ Faculty of Science, Okayama University, Okayama, Japan
- ¹¹¹ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
- ¹¹² Department of Physics, Oklahoma State University, Stillwater, OK, United States
- ¹¹³ Palacký University, RCPTM, Olomouc, Czech Republic
- ¹¹⁴ Center for High Energy Physics, University of Oregon, Eugene, OR, United States
- ¹¹⁵ LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
- ¹¹⁶ Graduate School of Science, Osaka University, Osaka, Japan
- ¹¹⁷ Department of Physics, University of Oslo, Oslo, Norway
- ¹¹⁸ Department of Physics, Oxford University, Oxford, United Kingdom
- ¹¹⁹ ^(a) INFN Sezione di Pavia; ^(b) Dipartimento di Fisica Nucleare e Teorica. Università di Pavia. Pavia. Italy
- ¹²⁰ Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
- ¹²¹ Petersburg Nuclear Physics Institute, Gatchina, Russia
- ¹²² ^(a) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
- ¹²³ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
- 124 (a) Laboratorio de Instrumentacao e Física Experimental de Particulas LIP, Lisboa, Portugal; (b) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
- ¹²⁵ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
- ¹²⁶ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
- ¹²⁷ Czech Technical University in Prague, Praha, Czech Republic
- ¹²⁸ State Research Center Institute for High Energy Physics, Protvino, Russia
- ¹²⁹ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
- ¹³⁰ Physics Department, University of Regina, Regina, SK, Canada
- ¹³¹ Ritsumeikan University, Kusatsu, Shiga, Japan
- ¹³² ^(a) INFN Sezione di Roma I; ^(b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
- 133 (d) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
- ¹³⁴ ^(a) INFN Sezione di Roma Tre; ^(b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
- 135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies, Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (^(C) Université Cadi Ayyad, Faculté des sciences, SemIalia Département de Physique, B.P. 2390, Marrakech 40000; ^(d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ^(e) Faculté des Sciences, Université Mohammed V, Rabat, Morocco
- 136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
- ¹³⁷ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
- ¹³⁸ Department of Physics, University of Washington, Seattle, WA, United States
- ¹³⁹ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- ¹⁴⁰ Department of Physics, Shinshu University, Nagano, Japan
- ¹⁴¹ Fachbereich Physik, Universität Siegen, Siegen, Germany
- ¹⁴² Department of Physics, Simon Fraser University, Burnaby, BC, Canada
- ¹⁴³ SLAC National Accelerator Laboratory, Stanford, CA, United States
- 144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
- ⁽⁴⁾ (^(a) Department of Physics, University of Johannesburg, Johannesburg; ^(b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa (^(a) Department of Physics, Stockholm University; ^(b) The Oskar Klein Centre, Stockholm, Sweden
- ¹⁴⁷ Physics Department, Royal Institute of Technology, Stockholm, Sweden
- ¹⁴⁸ Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, United States
- ¹⁴⁹ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

- ¹⁵⁰ School of Physics, University of Sydney, Sydney, Australia
- ¹⁵¹ Institute of Physics, Academia Sinica, Taipei, Taiwan
- ¹⁵² Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
- ¹⁵³ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ¹⁵⁴ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- ¹⁵⁵ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
- ¹⁵⁶ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- ¹⁵⁷ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- ¹⁵⁸ Department of Physics, University of Toronto, Toronto, ON, Canada
 ¹⁵⁹ ^(a) TRIUMF, Vancouver, BC; ^(b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
- 160 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 JA, Japan
- ¹⁶¹ Science and Technology Center, Tufts University, Medford, MA, United States
- ¹⁶² Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
- ¹⁶³ Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
- ¹⁶⁴ ⁽ⁱⁱⁱ⁾ INFN Gruppo Collegato di Udine; ⁽ⁱⁱⁱ⁾ ICTP, Trieste; ⁽ⁱⁱⁱ⁾ Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
 ¹⁶⁵ Department of Physics, University of Illinois, Urbana, IL, United States
- ¹⁶⁶ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
- 167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
- ¹⁶⁸ Department of Physics, University of British Columbia, Vancouver, BC, Canada
- ¹⁶⁹ Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- ¹⁷⁰ Waseda University, Tokyo, Japan
- ¹⁷¹ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- ¹⁷² Department of Physics, University of Wisconsin, Madison, WI, United States
- ¹⁷³ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- ¹⁷⁴ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- ¹⁷⁵ Department of Physics, Yale University, New Haven, CT, United States
- ¹⁷⁶ Yerevan Physics Institute, Yerevan, Armenia
- ¹⁷⁷ Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
- ^a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal.
- Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal,
- Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
- đ Also at TRIUME Vancouver. BC. Canada.
- Also at Department of Physics, California State University, Fresno, CA, United States.
- Also at Fermilab. Batavia, IL, United States.
- Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
- ^h Also at Università di Napoli Parthenope, Napoli, Italy.
- Also at Institute of Particle Physics (IPP), Canada.
- i Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
- Also at Louisiana Tech University, Ruston, LA, United States.
- Also at Group of Particle Physics, University of Montreal, Montreal, OC, Canada,
- Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
- Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
- Also at Manhattan College, New York, NY, United States.
- Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France,
- Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
- Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
- Also at High Energy Physics Group, Shandong University, Shandong, China.
- Also at Section de Physique, Université de Genève, Geneva, Switzerland,
- Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
- Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
- Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
- Also at California Institute of Technology, Pasadena, CA, United States,
- Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
- Also at Department of Physics, Oxford University, Oxford, United Kingdom,
- aa Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
- Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States. ab
- ac Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France,
- Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
- Deceased.