Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

PHYSICS LETTERS &

Search for FCNC single top-quark production at $\sqrt{s} = 7$ TeV with the ATLAS detector $\stackrel{\diamond}{\sim}$

ATLAS Collaboration*

ARTICLE INFO

Article history: Received 2 March 2012 Received in revised form 9 May 2012 Accepted 10 May 2012 Available online 14 May 2012 Editor: H. Weerts

Keywords: Top physics Heavy-quark production FCNC Single top quark

1. Introduction

The top quark is the heaviest elementary particle known, with a mass of $m_{\mathrm{top}} = 173.2 \pm 0.9$ GeV [1] that is close to the electroweak symmetry breaking scale. For this reason it is an excellent object to test the Standard Model (SM) of particle physics. The properties of the top quark can be studied from proton-proton (pp) collisions at $\sqrt{s} = 7$ TeV with the Large Hadron Collider (LHC). Top-quark pair-production via the strong interaction has been measured at the LHC [2,3], and its cross-section is in good agreement with the prediction of the SM. Additionally, top quarks can be singly produced through three different processes: t-channel, Wt associated production, and s-channel. Only t-channel single top-quark production has been observed so far [4–6]. According to the SM of particle physics, flavour-changing neutral-current (FCNC) processes are forbidden at tree level and suppressed at higher orders due to the Glashow-Iliopoulos-Maiani mechanism [7]. Extensions of the SM with new sources of flavour predict higher rates for FCNCs involving the top quark; these extensions include new exotic quarks [8], new scalars [9,10], supersymmetry [11-14], or technicolour [15] (for a review see Ref. [16]). If the new particles are heavy, which is consistent with the nonobservation of low-mass new particles at the Tevatron and LHC, their effects on top-quark FCNCs can be parameterised in terms of a set of dimension-six gauge-invariant operators [17]. The predicted branching fractions for top quarks decaying to a quark and

0370-2693 © 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license. http://dx.doi.org/10.1016/j.physletb.2012.05.022

ABSTRACT

A search for the production of single top-quarks via flavour-changing neutral-currents is presented. Data collected with the ATLAS detector at a centre-of-mass energy of $\sqrt{s} = 7$ TeV, corresponding to an integrated luminosity of 2.05 fb⁻¹, are used. Candidate events with a semileptonic top-quark decay signature are classified as signal- or background-like events by using several kinematic variables as input to a neural network. No signal is observed in the neural network output distribution and a Bayesian upper limit is placed on the production cross-section. The observed upper limit at 95% confidence level on the cross-section multiplied by the $t \rightarrow Wb$ branching fraction is measured to be $\sigma_{qg \rightarrow t} \times \mathcal{B}(t \rightarrow Wb) < 3.9$ pb. This upper limit is converted using a model-independent approach into upper limits on the coupling strengths $\kappa_{ugt}/A < 6.9 \cdot 10^{-3}$ TeV⁻¹ and $\kappa_{cgt}/A < 1.6 \cdot 10^{-2}$ TeV⁻¹, where A is the new physics scale, and on the branching fractions $\mathcal{B}(t \rightarrow ug) < 5.7 \cdot 10^{-5}$ and $\mathcal{B}(t \rightarrow cg) < 2.7 \cdot 10^{-4}$.

a photon, Z boson, or gluon can be as large as 10^{-5} to 10^{-3} for certain regions of the parameter space in the models mentioned. For heavy new particles these branching fractions can be large, if the new particles couple strongly to the SM particles.

According to the corresponding values of the unitary Cabibbo-Kobayashi-Maskawa matrix, the top quark decays almost exclusively to a *W* boson and a *b* quark. FCNC top-quark decays can be studied directly by searching for final states with the corresponding decay particles [18,19]. However, the $t \rightarrow qg$ mode, where *q* denotes either an up quark *u* or a charm quark *c*, is almost impossible to separate from generic multijet-production via quantum chromodynamic (QCD) processes, and a much better sensitivity can be achieved in the search for anomalous single top-quark production. In the process studied here, a *u* or *c* quark and a gluon *g* coming from the colliding protons interact to produce a single top-quark. The most general effective Lagrangian \mathcal{L}_{eff} for this process resulting from dimension-six operators contains only tensor couplings [20] and it can be written as [21,22]:

$$\mathcal{L}_{\text{eff}} = g_s \sum_{q=u,c} \frac{\kappa_{qgt}}{A} \bar{t} \sigma^{\mu\nu} T^a (f_q^L P_L + f_q^R P_R) q G_{\mu\nu}^a + \text{h.c.}, \tag{1}$$

where the κ_{ugt} , κ_{cgt} are dimensionless parameters that relate the strength of the new coupling to the strong coupling constant g_s . Λ is the new physics scale, related to the mass cutoff scale above which the effective theory breaks down. T^a are the Gell-Mann matrices [23] and $\sigma^{\mu\nu} = \frac{i}{2}[\gamma^{\mu}, \gamma^{\nu}]$ transforms as a tensor under the Lorentz group. The $f_q^{L,R}$ are chiral parameters normalised such that: $|f_q^L|^2 + |f_q^R|^2 = 1$. The operator $P_L = \frac{1}{2}(1 - \gamma^5)$ performs a left-handed projection, while $P_R = \frac{1}{2}(1 + \gamma^5)$ performs

^{*} E-mail address: atlas.publications@cern.ch,

a right-handed projection, where γ^5 represents the chirality operator. $G^a_{\mu\nu}$ is the gauge-field tensor of the gluon and t and q are the fermion fields of the top and light quark, respectively.

The existence of FCNC operators allows not only the production of top quarks via $qg \rightarrow t$, but also the decays $t \rightarrow qg$. In the allowed region of parameter space for κ_{qgt}/Λ an experimentally favourable situation occurs when the FCNC production cross-section for single top-quarks is several picobarns, while the branching fraction for FCNC decays is very small, and top quarks can thus be reconstructed in the SM decay mode $t \rightarrow Wb$. The W boson can decay into quark-antiquark pairs ($W \rightarrow q_1 \bar{q}_2$) or a lepton-neutrino pair ($W \rightarrow \ell \nu$). In this analysis only the decay into a lepton-neutrino pair, the leptonic decay, is considered. Thus the complete process searched for is $qg \rightarrow t \rightarrow W(\rightarrow \ell \nu)b$. Selected events are characterised by an isolated high-energy lepton (electron or muon), missing transverse momentum from the neutrino and exactly one jet, produced by the hadronisation of the *b* quark. Events with a *W* boson decaying into a τ lepton, where the τ decays into an electron or a muon are also selected. The process studied here can be differentiated from SM single top-quark production because the latter is usually accompanied by additional iets.

This analysis is the first search for FCNCs involving quarks and gluons at the LHC. A search for the 2 \rightarrow 1 process $qg \rightarrow t$ was performed by CDF [24], while D0 set limits on κ_{ugt}/Λ and κ_{cgt}/Λ by analysing the 2 \rightarrow 2 processes $q\bar{q} \rightarrow t\bar{u}$, $ug \rightarrow tg$, and $gg \rightarrow t\bar{u}$ and their *c* quark analogues [25].

2. Data sample and simulation

The ATLAS detector [26] is built from a set of cylindrical subdetectors, which cover almost the full solid angle¹ around the interaction point.

ATLAS is composed of an inner tracking system close to the interaction point, surrounded by a superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer. The electromagnetic calorimeter is a high-granularity liquid-argon (LAr) sampling calorimeter with lead absorber. An iron-scintillator tile calorimeter provides hadronic energy measurements in the central pseudorapidity range. The endcap and forward regions are instrumented with LAr calorimeters for both electromagnetic and hadronic energy measurements. The muon spectrometer consists of three large superconducting toroids, a system of trigger chambers, and precision tracking chambers.

This analysis is performed using $\sqrt{s} = 7$ TeV *pp*-collision data recorded by ATLAS between March 22 and August 22, 2011. Only the periods in which all the subdetectors were operational are considered, resulting in a data sample with a total integrated luminosity of 2.05 ± 0.08 fb⁻¹ [27,28].

Detector and trigger simulations are performed with the standard simulation of ATLAS within the GEANT4 [29,30] framework. The same offline reconstruction methods used with data events are applied to the simulated samples. Minimum bias events generated by PYTHIA [31] are used to simulate multiple *pp* interactions, corresponding to the LHC operation with 50 ns bunch separation and an average of six additional *pp* interactions per bunch crossing. For the simulation of FCNC production of single top-quarks, PROTOS [32] is used. The top quarks decay as expected in the SM, and only the leptonic decay of the *W* boson is considered. *W* bosons decaying into a τ lepton, where the τ decays into an electron or a muon are included in both the signal and all background samples. The CTEQ6 [33] leading-order (LO) parton distribution functions (PDFs) are used and the hadronisation of signal events is simulated with PYTHIA using the AMBT1 tunes [34] to the ATLAS collision data. It has been verified that the kinematics of the signal process are independent of the a priori unknown FCNC coupling.

Several SM processes are expected to have the same finalstate topology as the signal. Samples of simulated events for the *t*-channel and *Wt* single top-quark processes are generated by the ACERMC program [35] with the CTEQ6 LO PDFs and hadronised with PYTHIA; for the *s*-channel process, the MC@NLO [36] generator with the CTEQ6.6 [37] PDFs interfaced to HERWIG [38] and JIMMY [39].

The ALPGEN [40] program with the CTEQ6 LO PDFs is interfaced to HERWIG and JIMMY to generate W + jets, $Wb\bar{b}$, $Wc\bar{c}$, Wc and Z + jets events with up to five additional partons. To remove overlaps between the n and n + 1 parton samples the MLM matching scheme [40] is used. The double counting between the inclusive W + n parton samples and samples with associated heavy-quark pair-production is removed utilising an overlap-removal method based on ΔR matching. The parameters of HERWIG, with the MRST LO** [41] PDFs, and JIMMY are tuned to ATLAS collision data with the corresponding AUET1 tunes [42]. Diboson backgrounds from WW, WZ and ZZ events are simulated using HERWIG. For the generation of SM $t\bar{t}$ events the MC@NLO generator with the CTEQ6.6 PDFs is used. The parton shower and the underlying event are added using HERWIG and JIMMY.

3. Event selection

Events are considered only if they were accepted by a singlelepton trigger [43]. The single-muon trigger threshold was p_T = 18 GeV, and the single-electron trigger threshold was raised from an E_T of 20 GeV to 22 GeV for higher LHC luminosities.

Electron candidates are defined as clusters of cells in the electromagnetic calorimeter associated with a well-measured track fulfilling several quality requirements [44]. Electron candidates are required to satisfy $p_{\rm T}$ > 25 GeV and $|\eta_{\rm clus}|$ < 2.47, where $\eta_{\rm clus}$ is the pseudorapidity of the cluster of energy deposits in the calorimeter. A veto is placed on candidates in the calorimeter barrel-endcap transition region, $1.37 < |\eta_{clus}| < 1.52$, where there is limited calorimeter instrumentation. High- p_T electrons associated with the W-boson decay can be mimicked by hadronic jets reconstructed as electrons, electrons from decays of heavy quarks, and photon conversions. Since signal electrons from the W-boson decay are typically isolated from hadronic jet activity, these backgrounds can be suppressed via isolation criteria which require minimal calorimeter activity and only low track $p_{\rm T}$ in an η - ϕ cone around the electron candidate. Calorimeter isolation requires the sum of the $E_{\rm T}$ in cells within a cone of $\Delta R = 0.3$ around each electron with $p_{\rm T} > 25~{\rm GeV}$ to satisfy $\sum E_{\rm T}(\Delta R < 0.3)/p_{\rm T} < 0.15$. Similarly, the scalar sum of the $p_{\rm T}$ of tracks around the electron must satisfy $\sum p_T(\Delta R < 0.3)/p_T < 0.15$. The electron track p_T and the $E_{\rm T}$ in associated cells are excluded from $\sum p_{\rm T}(\Delta R < 0.3)$ and $\sum E_{\rm T}(\Delta R < 0.3)$, respectively. Muon candidates are reconstructed by matching track segments or complete tracks in the muon spectrometer with the inner detector tracks. The final candidates are required to have a transverse momentum $p_{\rm T} > 25 \text{ GeV}$ and to be in the pseudorapidity region of $|\eta| < 2.5$. Isolation criteria are applied to reduce background events in which a high- $p_{\rm T}$

¹ In the right-handed ATLAS coordinate system, the pseudorapidity η is defined as $\eta = -\ln[\tan(\theta/2)]$, where the polar angle θ is measured with respect to the LHC beamline. The azimuthal angle ϕ is measured with respect to the *x*-axis, which points towards the centre of the LHC ring. The *z*-axis is parallel to the anti-clockwise beam viewed from above. Transverse momentum and energy are defined as $p_{\rm T} = p\sin\theta$ and $E_{\rm T} = E\sin\theta$, respectively. The ΔR distance is defined as $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

muon is produced in the decay of a heavy quark. For the transverse energy within a cone of $\Delta R = 0.3$ about the muon direction, $\sum E_{\rm T}(\Delta R < 0.3)/p_{\rm T} < 0.15$ is required, while the scalar sum of transverse momenta of additional tracks inside a $\Delta R = 0.3$ cone around the muon must satisfy $\sum p_{\rm T}(\Delta R < 0.3)/p_{\rm T} < 0.10$. Candidate events are required to have exactly one isolated lepton (ℓ).

Jets are reconstructed using the anti- k_t algorithm [45] with the distance parameter R set to 0.4. The jets are then corrected from the raw calorimeter response to the energies of the reconstructed particles using p_{T^-} and η -dependent factors, derived from simulated events and validated with data [46]. Since the signal process gives rise to only one high- p_T jet, exactly one reconstructed jet with $p_T > 25$ GeV is required.

The magnitude of the missing transverse momentum $E_{\rm T}^{\rm miss}$ is defined as $E_{\rm T}^{\rm miss} = |\vec{E}_{\rm T}^{\rm miss}|$, where $\vec{E}_{\rm T}^{\rm miss}$ is calculated using the calibrated three-dimensional calorimeter energy clusters associated with the jet together with either the calibrated calorimeter energy cluster associated with an electron or the $p_{\rm T}$ of a muon track [47]. Transverse energy deposited in calorimeter cells but not associated with any high- $p_{\rm T}$ object is also included in the $E_{\rm T}^{\rm miss}$ calculation. Due to the presence of a neutrino in the final state of the signal process, $E_{\rm T}^{\rm miss} > 25$ GeV is required. To further reduce the number of multijet background events, which are characterised by low $E_{\rm T}^{\rm miss}$ and low values of reconstructed *W*-boson transverse mass $m_{\rm T}^W = \sqrt{2[p_{\rm T}^{\rm lep}E_{\rm T}^{\rm miss} - \vec{p}_{\rm T}^{\rm lep} \cdot \vec{E}_{\rm T}^{\rm miss}]}$, the event selection requires $m_{\rm T}^W + E_{\rm T}^{\rm miss} > 60$ GeV.

Finally, the selected jet has to be identified (*b*-tagged) as a *b*-quark jet. The tagging algorithm exploits the properties of a *b*-quark decay in a jet using neural-network techniques and the reconstruction of a secondary vertex, and has an identification efficiency measured to be about 57% in $t\bar{t}$ events [48]. Only 0.2% of light-quark jets and 10% of *c*-quark jets are mis-tagged as *b*-quark jets. The following samples are defined for this analysis: a "*b*-tagged sample" with exactly one *b*-tagged jet, and a "pre-tagged sample" without any *b*-tagging requirement.

Assuming a cross-section of 1 pb for FCNC single top-quark production, about 113 signal events in 2.05 fb⁻¹ of collision data are expected in the *b*-tagged sample.

The normalisations for the various background processes are estimated either by using the experimental data or by using Monte Carlo simulation scaled to the theoretical cross-section predictions. For the W + jets and Z + jets backgrounds the kinematic distributions are modelled using simulated events, while the inclusive cross-sections are calculated to next-to-next-to-leading order (NNLO) with FEWZ [49]. The dominant W + jets background process is Wc production, whose k-factor is obtained by comparing the NLO and LO cross-sections calculated using MCFM [50]. The W + (1 jet) and Z + (1 jet) background normalisation uncertainties are estimated from the uncertainty in the cross-section of the W/Z + (0 jet) process and the uncertainty in the cross-section ratio of W/Z + (1 jet) to W/Z + (0 jet). A cross-section uncertainty of 4% is assigned for the W/Z + (0 jet) process. Variations consistent with experimental data are made in ALPGEN to the factorisation and normalisation scale and to the matching parameters, and yield a 24% uncertainty on the cross-section ratio. Background contributions from the heavy-quark processes Wbb. $Wc\bar{c}$ and Wchave relative uncertainties of 50%, estimated using a tag-counting method in control regions. The $t\bar{t}$ cross-section is normalised to the approximate NNLO-predicted value obtained using HATHOR [51]. The SM single top-quark production cross-section is also calculated to approximate NNLO [52-54]. A theoretical uncertainty of 10% is assigned for SM top-quark production. The normalisation of the cross-section for production of diboson events is obtained using NLO cross-section predictions and has an uncertainty of 5%.

Table 1

Number of observed data events and expected number of background events for the *b*-tagged sample. The uncertainties include the statistical uncertainty from the size of the simulated sample and the uncertainties on the cross-section and the multijet normalisation.

Process	Expected events
SM single top	1460 ± 150
tī	660 ± 70
W + light jets	4700 ± 1100
$Wb\bar{b}/Wc\bar{c}$ + jets	2700 ± 1500
Wc + jets	12100 ± 6700
Z + jets/diboson	700 ± 170
Multijet	1600 ± 800
Total background	24000 ± 7000
Observed	26 223

Multijet events may be selected if a jet is misidentified as an isolated lepton or if the event has a non-prompt lepton that appears isolated. A binned maximum-likelihood fit to the E_{T}^{miss} distribution is used to estimate the multijet background normalisation. A template of the multijet background is modelled using electronlike jets selected from jet-triggered collision data and is referred to as a jet-electron model. Each jet has to fulfil the same $p_{\rm T}$ and η requirements as a signal lepton, contain at least four tracks to reduce the contribution from converted photons, and deposit 80-95% of its energy in the electromagnetic calorimeter. The uncertainty in the multijet background normalisation is estimated to be 50% by fitting the distribution of m_T^W instead of E_T^{miss} , and using jet-electron models built from jet-triggered data samples with different average numbers of inelastic pp interactions per event. The shape of the jet-electron data sample is used to model the multijet background shape in the electron and muon channels. The validity of the model in both channels is verified by comparing distributions of multijet-sensitive variables to observed data.

In the *b*-tagged sample 26223 events are observed in data compared to a prediction of 24000 ± 7000 events from our estimates of SM backgrounds. Table 1 summarises the event yield for each of the background processes considered. Each event yield uncertainty in Table 1 combines the statistical uncertainty, originating from the limited size of the used samples, with the uncertainty in the cross-section or normalisation.

4. Data analysis

Given the large uncertainty in the expected background and the small number of expected signal events estimated in Section 3, multivariate analysis techniques are used to separate signal events from background events. We use a neural-network classifier [55] that combines a three-layer feed-forward neural network with a complex robust preprocessing. In order to improve the performance and to avoid overtraining, Bayesian regularisation [56] is implemented during the training process. The network infrastructure consists of one input node for each of the 11 input variables plus one bias node, 13 nodes in the hidden layer, and one output node which gives a continuous output in the interval [-1, 1]. The training is done with a mixture of 50% signal and 50% background events using about 650 000 events, where the different background processes are weighted according to their expected numbers of events.

The $qg \rightarrow t \rightarrow b\ell v$ process is characterised by three main differences from SM processes that pass the event selection cuts. Firstly, in single top-quark production via FCNCs, the top quark is produced almost without transverse momentum. Therefore the p_T distribution of the top quark is much softer than the p_T distribution of top quarks produced through SM top-quark production, and the W boson and b quark from the top-quark decay are almost back-to-back with an opening angle near π . Secondly, unlike in the W/Z + jet and diboson backgrounds, the W boson from the top-quark decay has a very high momentum and its highly-boosted decay products have small opening angles. Lastly, the top-quark charge asymmetry differs between FCNC processes and SM processes. The FCNC processes are predicted to produce four times more single top quarks than anti-top quarks, whereas in SM single top-quark production and all other SM backgrounds this ratio is at most two. All possible discriminating variables such as momenta, relative angles, pseudorapidity, reconstructed particles masses, and lepton electric charge were explored, including variables obtained from the reconstructed W boson and the top quark. To reconstruct the four-momentum of the W boson, the neutrino four-momentum is derived from the measured $\vec{E}_{\tau}^{\text{miss}}$ since it cannot be measured directly. The neutrino longitudinal momentum, p_{z}^{ν} , is calculated by imposing a kinematic constraint on the m_W invariant mass. The twofold ambiguity is resolved by choosing the smallest $|p_{\tau}^{\nu}|$ solution, since the W boson is expected to be produced with small pseudorapidity. The top-quark candidate is reconstructed by adding the four-momentum of the *b*-tagged jet to the four-momentum of the reconstructed W boson.

Eleven variables were selected as input to the neural network after testing for each variable the agreement between the background model and observed events in both the large sample of pretagged events and the *b*-tagged sample. The first ten variables are the charge and the p_T of the lepton, the p_T , η and mass of the *b*-tagged jet, the ΔR between the *b*-tagged jet and the charged lepton, the ΔR between the *b*-tagged jet and the reconstructed *W* boson, the opening angle $\Delta \phi$ between the directions of the *b*-tagged jet and the reconstructed *W* boson, the p_T of the *W* boson and the reconstructed top-quark mass. The last variable considered in the neural network is the *W*-boson helicity. This

Table 2							
Variables	used	as	input	to	the	neural	network
ordered by their importance.							

Variable	Significance (σ)
p_{T}^{W}	57
$\Delta R(b-\text{jet}, \text{lep})$	28
Lepton charge	22
m _{top}	20
m _{b-jet}	15
η_{b-jet}	12
$\Delta \phi(W, b-\text{jet})$	11
$p_{\mathrm{T}}^{\mathrm{lep}}$	12
$p_{\mathrm{T}}^{b-\mathrm{jet}}$	6.5
$\cos \theta^*$	5.7
$\Delta R(W, b$ -jet)	5.0

is calculated as $\cos\theta^*$, the cosine of the angle between the momentum of the charged lepton in the W-boson rest-frame and the momentum of the W boson as seen in the top-quark rest-frame. Table 2 shows a summary of the used variables ordered by their importance. The importance of the variables is estimated using an iterative procedure, removing one variable at a time and recalculating the separation power. The ordering is done in terms of relevance defined as standard deviations of the additional separation power given by each variable. Distributions of the three most important variables in the pretagged sample and the *b*-tagged sample, normalised to the number of observed events, are shown in Fig. 1. Since the neural network benefits from the correlation between variables and is trained to separate the signal process from all background processes, the naively expected variables are not the most important ones, but variables, which are highly correlated to them.

The resulting neural network output distributions for the various processes, scaled to the number of observed events in the

Fig. 1. Kinematic distributions of the three most significant variables normalised to the number of observed events for the pretagged selection (top) and in the *b*-tagged selection (bottom), for the electron and muon channel combined: (a), (d) transverse momentum of the *W* boson, (b), (e) ΔR between the jet and the lepton and (c), (f) charge of the lepton. In these distributions the signal contribution is shown stacked on top of the backgrounds, with a normalisation corresponding to a cross-section of 100 pb. The hatched band indicates the statistical uncertainty from the sizes of the simulated samples and the uncertainty in the background normalisation.

Fig. 2. (a) Neural network output distribution scaled to the number of observed events in the pretagged sample. (b) Neural network output distribution scaled to the number of observed events in the *b*-tagged sample. In these distributions the signal contribution is shown stacked on top of the backgrounds. The hatched band indicates the statistical uncertainty from the sizes of the simulated samples and the uncertainty in the background normalisation.

pretagged sample are shown in Fig. 2(a). Fig. 2(b) shows these distributions in the *b*-tagged sample. Signal-like events have output values close to 1, whereas background-like events are accumulated near -1. We find good agreement between the neural network output distributions for data and simulated events in both the pretagged and *b*-tagged samples.

5. Systematic uncertainties

Systematic uncertainties affect the signal acceptance, the normalisation of the individual backgrounds, and the shape of the neural network output distributions. All uncertainties described below lead to uncertainties in the rate estimation as well as distortions of the neural network output distribution and are implemented as such in the statistical analysis.

The momentum scale and resolution, as well as the trigger and identification efficiency for single leptons is measured in collision data using $Z \rightarrow ee$, $Z \rightarrow \mu\mu$, and $W \rightarrow e\nu$ decays and corrective scale factors are applied to the simulation. Uncertainties on these factors as functions of the lepton kinematics are around 5%. To evaluate the effect of momentum scale uncertainties, the event selection is repeated with the lepton momentum varied up and down by the uncertainty. For the momentum resolution uncertainties, the event selection is repeated with the lepton momentum smeared. The uncertainty in the jet energy scale, derived using information from test-beam data, collision data, and simulation varies between 2.5% and 8% (3.5% and 14%) in the central (forward) region, depending on jet $p_{\rm T}$ and η [46]. This includes uncertainties due to different compositions of jets initiated by gluons or light quarks in the samples and mis-measurements due to close-by jets. Additional uncertainties due to multiple pp interactions are as large as 5% (7%) in the central (forward) region. Here, the central region is defined as $|\eta| < 0.8$. An additional jet energy scale uncertainty of up to 2.5%, depending on the $p_{\rm T}$ of the jet, is applied for *b*-quark jets due to differences between jets initiated by gluons or light quarks as opposed to jets containing b-hadrons. To evaluate the effect of these uncertainties the energy of each jet is scaled up or down by the uncertainty and the change is also propagated to the missing transverse momentum calculation. An uncertainty of 2% is assigned for the jet reconstruction efficiency based on the agreement between efficiencies measured in minimum bias and QCD dijet events and simulated events [57]. For the *b*-tagging efficiencies and mis-tag rates, jet $p_{\rm T}$ - and η -dependent scale factors are applied to match simulated distributions with observed distributions and have uncertainties from 8–16% and 23–45%, respectively [48].

Systematic effects from mis-modelling in event generators are estimated by comparing different generators and varying parameters for the event generation. The effect of parton shower and hadronisation modelling uncertainties is evaluated by comparing two ACERMC samples interfaced to HERWIG and PYTHIA, respectively. The amount of initial and final state radiation is varied by modifying parameters in PYTHIA. The parameters are varied in a range comparable to those used in the Perugia Soft/Hard tune variations [58]. These uncertainties, the parton shower modelling and variations of initial and final state radiation are evaluated for all processes involving top quarks including the signal. The impact of the choice of PDFs in the simulation is studied by re-weighting the events according to PDF uncertainty eigenvector sets (CTEO6.6, MSTW2008 [59]) and estimated following the procedure described in [60]. The uncertainties for the two PDF sets are added in quadrature. To account for uncertainties connected with the simulation of the W + jets sample several parameters in the generation of these samples are varied and event kinematics are compared. The uncertainty in the measured integrated luminosity is estimated to be 3.7%.

The dominant uncertainties are the uncertainties in the jet energy scale, the initial and final state radiation variations, and uncertainties in the *b*-tagging efficiencies and mis-tag rates.

6. Results

A Bayesian statistical analysis [61,62] using a binned likelihood method applied to the neural network output distributions for the electron and muon channel combined is performed to measure or set an upper limit on the FCNC single top-quark production crosssection.

Systematic uncertainties and their correlations among processes are included with a direct sampling approach where the same Gaussian shift is applied to each source, process, and bin for a given uncertainty. The posterior density function (pdf) is obtained by creating a large number of samples of systematic shifts. A separate likelihood distribution is obtained for each sample, and the final pdf is then the average over all of the individual likelihoods. This pdf gives the probability of the signal hypothesis as a function of the signal cross-section. Since no significant rate of FCNC single top-quark production is observed, an upper limit is set by integrating the pdf. To estimate the a priori sensitivity, we

Fig. 3. Distribution of the posterior probability function including all systematic uncertainties for (a) the expected upper limit and (b) the observed upper limit at 95% C.L.

use a pseudo-dataset corresponding to the prediction from simulations (Asimov dataset) [63] and treated in the same way as the observed dataset. The resulting expected upper limit at 95% confidence level (C.L.) on the anomalous FCNC single top-quark production cross-section including all systematic uncertainties is 2.4 pb, while the corresponding observed upper limit is 3.9 pb, as shown in Figs. 3(a) and 3(b), respectively. To visualise the observed upper limit in the neural network output distribution Fig. 4 shows the FCNC single top-quark process scaled to observed upper limit on top of the SM background processes. As a cross-check we performed the full statistical analysis only for events with NN output > 0, which yields an observed upper limit at 95% C.L. of 5.9 pb. Using the NLO predictions for the FCNC single topquark production cross-section [64,65], the measured upper limit on the production cross-section is converted into limits on the coupling constants κ_{ugt}/Λ and κ_{cgt}/Λ . Assuming $\kappa_{cgt}/\Lambda = 0$ one finds $\kappa_{ugt}/\Lambda < 6.9 \cdot 10^{-3} \text{ TeV}^{-1}$ and assuming $\kappa_{ugt}/\Lambda = 0$ one finds $\kappa_{cgt}/\Lambda < 1.6 \cdot 10^{-2}$ TeV⁻¹. Fig. 5(a) shows the distribution of the upper limit for all possible combinations. Using the NLO calculation [66], upper limits on the branching fractions $\mathcal{B}(t \to ug) < 5.7 \cdot 10^{-5}$ assuming $\mathcal{B}(t \to cg) = 0$, and $\mathcal{B}(t \to cg) < 2.7 \cdot 10^{-4}$ assuming $\mathcal{B}(t \rightarrow ug) = 0$ are derived, as shown in Fig. 5(b).

7. Conclusion

In summary, a data sample selected to consist of events with an isolated electron or muon, missing transverse momentum and

Fig. 4. Distributions of the neural network output: Observed signal and simulated background output distribution normalised to the mean value of the marginalised nuisance parameters, zoomed into the signal region. The FCNC single top-quark process is normalised to the observed limit of 3.9 pb. The hatched band indicates the statistical uncertainty from the sizes of the simulated samples and the uncertainty in the background normalisation.

Fig. 5. Upper limit (a) on the coupling constants κ_{ugt}/Λ and κ_{cgt}/Λ and (b) on the branching fractions $t \rightarrow ug$ and $t \rightarrow cg$.

a *b*-quark jet has been used to search for FCNC production of single top-quarks at the LHC. No evidence for such processes is found and the upper limit at 95% C.L. on the production cross-section is 3.9 pb. The limits set on the coupling constants κ_{ugt}/Λ

and κ_{cgt}/Λ and the branching fractions $\mathcal{B}(t \to ug) < 5.7 \cdot 10^{-5}$ assuming $\mathcal{B}(t \to cg) = 0$, and $\mathcal{B}(t \to cg) < 2.7 \cdot 10^{-4}$ assuming $\mathcal{B}(t \rightarrow ug) = 0$ are the most stringent to date on FCNC single top-quark production processes for $qg \rightarrow t$ and improve on the previous best limits [25] by factors of 4 and 15, respectively.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCvT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPg and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

ATLAS Collaboration

- [1] Tevatron Electroweak Working Group, arXiv:1107.5255 [hep-ex], 2011.
- [2] ATLAS Collaboration, Phys. Lett. B 707 (2012) 459.
- [3] CMS Collaboration, Phys. Rev. D 84 (2011) 092004.
- [4] T. Aaltonen, et al., Phys. Rev. Lett. 103 (2009) 092002.
- [5] D0 Collaboration, Phys. Lett. B 705 (2011) 313.
- [6] CMS Collaboration, Phys. Rev. Lett. 107 (2011) 091802.
- [7] S.L. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev. D 2 (1970) 1285.
- [8] J.A. Aguilar-Saavedra, Phys. Rev. D 67 (2003) 035003;
- J.A. Aguilar-Saavedra, Phys. Rev. D 69 (2004) 099901 (Erratum). [9] M.E. Luke, M.J. Savage, Phys. Lett. B 307 (1993) 387.
- [10] S. Bejar, J. Guasch, J. Sola, Nucl. Phys. B 600 (2001) 21.
- [11] D. Delepine, S. Khalil, Phys. Lett. B 599 (2004) 62.

- [12] J.J. Liu, et al., Phys. Lett. B 599 (2004) 92.
- [13] J.J. Cao, et al., Phys. Rev. D 75 (2007) 075021.
- [14] J.M. Yang, B.-L. Young, X. Zhang, Phys. Rev. D 58 (1998) 055001.
- [15] G. Lu, et al., Phys. Rev. D 68 (2003) 015002.
- [16] J.A. Aguilar-Saavedra, Acta Phys. Pol. B 35 (2004) 2695.
- [17] R. Coimbra, P. Ferreira, R. Guedes, O. Oliveira, A. Onofre, et al., Phys. Rev. D 79 (2009) 014006.
- [18] CDF Collaboration, Phys. Rev. Lett. 101 (2008) 192002.
- [19] D0 Collaboration, Phys. Lett. B 701 (2011) 313.
- [20] J.A. Aguilar-Saavedra, Nucl. Phys. B 812 (2009) 181.
- [21] M. Hosch, K. Whisnant, B. Young, Phys. Rev. D 56 (1997) 5725.
- [22] E. Malkawi, T.M. Tait, Phys. Rev. D 54 (1996) 5758.
- [23] F. Halzen, A.D. Martin, Quarks and leptons: An introductory course in modern particle physics, 1984.
- [24] T. Aaltonen, et al., Phys. Rev. Lett. 102 (2009) 151801.
- [25] V.M. Abazov, et al., Phys. Lett. B 693 (2010) 81.
- [26] ATLAS Collaboration, [INST 3 (2008) S08003,
- [27] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630.
- [28] ATLAS Collaboration, ATLAS-CONF-2011-116, http://cdsweb.cern.ch/record/ 1376384, 2011.
- [29] S. Agostinelli, et al., Nucl. Instrum, Methods A 506 (2003) 250.
- [30] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823.
- [31] T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 0605 (2006) 026.
- [32] J.A. Aguilar-Saavedra, Nucl. Phys. B 837 (2010) 122.
- [33] J. Pumplin, et al., [HEP 0207 (2002) 012.
- [34] ATLAS Collaboration, ATLAS-CONF-2010-031, http://cdsweb.cern.ch/record/ 1277665, 2010.
- [35] B.P. Kersevan, E. Richter-Was, arXiv:hep-ph/0405247, 2004.
- [36] S. Frixione, B.R. Webber, JHEP 0206 (2002) 029.
- [37] P.M. Nadolsky, et al., Phys. Rev. D 78 (2008) 013004.
- [38] G. Corcella, et al., [HEP 0101 (2001) 010.
- [39] J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Z. Phys. C 72 (1996) 637.
- [40] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, JHEP 0307 (2003) 001
- [41] A. Sherstnev, R. Thorne, Eur. Phys. J. C 55 (2008) 553.
- [42] ATLAS Collaboration, ATL-PHYS-PUB-2010-014, https://cdsweb.cern.ch/record/ 1303025, 2010,
- [43] ATLAS Collaboration, Eur, Phys. J. C 72 (2012) 1849.
- [44] ATLAS Collaboration, arXiv:1110.3174 [hep-ex], 2011.
- [45] G.P. Salam, G. Soyez, JHEP 0705 (2007) 086.
- [46] ATLAS Collaboration, arXiv:1112.6426 [hep-ex], 2011.
- [47] ATLAS Collaboration, Eur. Phys. J. C 72 (2012) 1844.
- [48] ATLAS Collaboration, ATLAS-CONF-2011-102, http://cdsweb.cern.ch/record/ 1369219, 2011.
- [49] C. Anastasiou, L.J. Dixon, K. Melnikov, F. Petriello, Phys. Rev. D 69 (2004) 094008
- [50] J. Campbell, R. Ellis, Phys. Rev. D 60 (1999) 113006.
- [51] M. Aliev, et al., arXiv:1007.1327 [hep-ph], 2010.
- [52] N. Kidonakis, Phys. Rev. D 83 (2011) 091503.
- [53] N. Kidonakis, Phys. Rev. D 82 (2010) 054018.
- [54] N. Kidonakis, Phys. Rev. D 81 (2010) 054028.
- [55] M. Feindt, U. Kerzel, Nucl. Instrum. Methods A 559 (2006) 190.
- [56] D. MacKay, Neural Comput. 4 (1992) 448.
- [57] ATLAS Collaboration, ATLAS-CONF-2010-054, http://cdsweb.cern.ch/record/ 1281311, 2010.
- [58] P.Z. Skands, Phys. Rev. D 82 (2010) 074018.
- [59] A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63 (2009) 189.
- [60] J.M. Campbell, J. Huston, W. Stirling, Rep. Prog. Phys. 70 (2007) 89.
- [61] I. Bertram, et al., A recipe for the construction of confidence limits, Technical Report FERMILAB-TM-2104, 2000.
- [62] E.T. Jaynes, Probability Theory: The Logic of Science, Cambridge University Press, 2003.
- [63] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71 (2011) 1554.
- [64] J. Gao, C.S. Li, L.L. Yang, H. Zhang, Phys. Rev. Lett. 107 (2011) 092002.
- [65] J.J. Liu, C.S. Li, L.L. Yang, L.G. Jin, Phys. Rev. D 72 (2005) 074018.
- [66] J.J. Zhang, C.S. Li, J. Gao, H. Zhang, Z. Li, et al., Phys. Rev. Lett. 102 (2009) 072001

G. Aad ⁴⁸, B. Abbott ¹¹⁰, J. Abdallah ¹¹, A.A. Abdelalim ⁴⁹, A. Abdesselam ¹¹⁷, O. Abdinov ¹⁰, B. Abi ¹¹¹, M. Abolins ⁸⁷, O.S. AbouZeid ¹⁵⁷, H. Abramowicz ¹⁵², H. Abreu ¹¹⁴, E. Acerbi ^{88a,88b}, B.S. Acharya ^{163a,163b}, L. Adamczyk ³⁷, D.L. Adams ²⁴, T.N. Addy ⁵⁶, J. Adelman ¹⁷⁴, M. Aderholz ⁹⁸, S. Adomeit ⁹⁷, P. Adragna ⁷⁴, T. Adye ¹²⁸, S. Aefsky ²², J.A. Aguilar-Saavedra ^{123b,a}, M. Aharrouche ⁸⁰, S.P. Ahlen ²¹, F. Ahles ⁴⁸, A. Ahmad ¹⁴⁷, M. Ahsan ⁴⁰, G. Aielli ^{132a,132b}, T. Akdogan ^{18a}, T.P.A. Åkesson ⁷⁸, G. Akimoto ¹⁵⁴,

 Matheman Market Market (1997)
 Market Market Market (1997)
 Market Market Market Market (1997)
 Market Mark O. Beltramello²⁹, S. Ben Ami¹⁵¹, O. Benary¹⁵², D. Benchekroun^{134a}, C. Benchouk⁸², M. Bendel⁸⁰ N. Benekos¹⁶⁴, Y. Benhammou¹⁵², E. Benhar Noccioli⁴⁹, J.A. Benitez Garcia^{158b}, D.P. Benjami⁴⁴, M. Benoit¹¹⁴, J.R. Bensinger²², K. Benslama¹²⁹, S. Bentvelsen¹⁰⁴, D. Berge²⁹, E. Bergeaas Kuutmann⁴¹, N. Berger⁴, F. Berghaus¹⁶⁸, E. Berglund¹⁰⁴, J. Beringer¹⁴, P. Bernat⁷⁶, R. Bernhard⁴⁸, C. Bernius²⁴, T. Berry⁷⁵, C. Bertella⁸², A. Bertin^{19a,19b}, F. Bertinelli²⁹, F. Bertolucci^{121a,121b}, M.I. Besana^{88a,88b}, N. Besson¹³⁵, S. Bethke⁹⁸, W. Bhimji⁴⁵, R.M. Bianchi²⁹, M. Bianco^{71a,71b}, O. Biebel⁹⁷, S.P. Bieniek⁷⁶, K. Bierwagen⁵⁴, J. Biesiada¹⁴, M. Biglietti^{133a}, H. Bilokon⁴⁷, M. Bindi^{19a,19b}, S. Binet¹¹⁴, A. Bingul^{18c}, C. Bini^{131a,131b}, C. Biscarat¹⁷⁶, U. Bitenc⁴⁸, K.M. Black²¹, R.E. Blair⁵, J.-B. Blanchard¹³⁵, G. Blanchot²⁹, T. Blazek^{143a}, C. Blocker²², J. Blocki³⁸, A. Blondel⁴⁹, W. Blum⁸⁰, U. Blumenschein⁵⁴, G.J. Bobbink¹⁰⁴, V.B. Bobrovnikov¹⁰⁶, S.S. Bocchetta⁷⁸, A. Bocci⁴⁴, C.R. Boddy¹¹⁷, M. Boehler⁴¹, J. Boek¹⁷³, N. Boelaert³⁵, J.A. Bogaerts²⁹, A. Bogdanchikov¹⁰⁶, A. Bogouch^{89,*}, C. Bohm^{145a}, V. Boisvert⁷⁵, T. Bold³⁷, V. Boldea^{25a}, N.M. Bolnet¹³⁵, M. Bona⁷⁴, V.G. Bondarenko⁹⁵, M. Bondioli¹⁶², M. Boonekamp¹³⁵, C.N. Booth¹³⁸, S. Bordoni⁷⁷, C. Borer¹⁶, A. Borisov¹²⁷, G. Borissov⁷⁰, I. Borjanovic^{12a}, M. Borri⁸¹, S. Borroni⁸⁶, V. Bortolotto^{133a,133b}, K. Bos¹⁰⁴, D. Boscherini^{19a}, M. Bosman¹¹, H. Boterenbrood¹⁰⁴, D. Botterill¹²⁸, J. Bouchami⁹², J. Boudreau¹²², E.V. Bouhova-Thacker⁷⁰, D. Boumediene³³, C. Bourdarios¹¹⁴, N. Bousson⁸², A. Boveia³⁰, J. Boyd²⁹, I.R. Boyko⁶⁴, N.I. Bozhko¹²⁷, I. Bozovic-Jelisavcic^{12b}, I. Bracinik¹⁷. N. Benekos¹⁶⁴, Y. Benhammou¹⁵², E. Benhar Noccioli⁴⁹, J.A. Benitez Garcia^{158b}, D.P. Benjamin⁴⁴, J. Bouchami ⁹², J. Boudreau ¹²², E.V. Bouhova-Thacker ⁷⁰, D. Boumediene ³³, C. Bourdarios ¹¹⁴, N. Bousson ⁸², A. Boveia ³⁰, J. Boyd ²⁹, I.R. Boyko ⁶⁴, N.I. Bozhko ¹²⁷, I. Bozovic-Jelisavcic ^{12b}, J. Bracinik ¹⁷, A. Braem ²⁹, P. Branchini ^{133a}, G.W. Brandenburg ⁵⁷, A. Brandt ⁷, G. Brandt ¹¹⁷, O. Brandt ⁵⁴, U. Bratzler ¹⁵⁵, B. Brau ⁸³, J.E. Brau ¹¹³, H.M. Braun ¹⁷³, B. Brelier ¹⁵⁷, J. Bremer ²⁹, R. Brenner ¹⁶⁵, S. Bressler ¹⁷⁰, D. Britton ⁵³, F.M. Brochu ²⁷, I. Brock ²⁰, R. Brock ⁸⁷, T.J. Brodbeck ⁷⁰, E. Brodet ¹⁵², F. Broggi ^{88a}, C. Bromberg ⁸⁷, J. Bronner ⁹⁸, G. Brooijmans ³⁴, W.K. Brooks ^{31b}, G. Brown ⁸¹, H. Brown ⁷, P.A. Bruckman de Renstrom ³⁸, D. Bruncko ^{143b}, R. Bruneliere ⁴⁸, S. Brunet ⁶⁰, A. Bruni ^{19a}, G. Bruni ^{19a}, M. Bruschi ^{19a}, T. Buanes ¹³, Q. Buat ⁵⁵, F. Bucci ⁴⁹, J. Buchanan ¹¹⁷, N.J. Buchanan ², P. Buchholz ¹⁴⁰, R.M. Buckingham ¹¹⁷, A.G. Buckley ⁴⁵, S.I. Buda ^{25a}, I.A. Budagov ⁶⁴, B. Budick ¹⁰⁷, V. Büscher ⁸⁰, L. Bugge ¹¹⁶, O. Bulekov ⁹⁵, M. Bunse ⁴², T. Buran ¹¹⁶, H. Burckhart ²⁹, S. Burdin ⁷², T. Burgess ¹³, S. Burke ¹²⁸, E. Busato ³³, P. Bussey ⁵³, C.P. Buszello ¹⁶⁵, F. Butin ²⁹, B. Butler ¹⁴², J.M. Butler ²¹,

359

C.M. Buttar⁵³, J.M. Butterworth⁷⁶, W. Buttinger²⁷, S. Cabrera Urbán¹⁶⁶, D. Caforio^{19a,19b}, O. Cakir^{3a}, P. Calafiura¹⁴, G. Calderini⁷⁷, P. Calfayan⁹⁷, R. Calkins¹⁰⁵, L.P. Caloba^{23a}, R. Caloi^{131a,131b}, D. Calvet³³, S. Calvet ³³, R. Camacho Toro ³³, P. Camarri ^{132a,132b}, M. Cambiaghi ^{118a,118b}, D. Cameron ¹¹⁶, L.M. Caminada ¹⁴, S. Campana ²⁹, M. Campanelli ⁷⁶, V. Canale ^{101a,101b}, F. Canelli ^{30,g}, A. Canepa ^{158a}, J. Cantero⁷⁹, L. Capasso^{101a,101b}, M.D.M. Capeans Garrido²⁹, I. Caprini^{25a}, M. Caprini^{25a}, D. Capriotti⁹⁸, M. Capua^{36a,36b}, R. Caputo⁸⁰, C. Caramarcu²⁴, R. Cardarelli^{132a}, T. Carli²⁹, G. Carlino^{101a}, L. Carminati ^{88a,88b}, B. Caron ⁸⁴, S. Caron ¹⁰³, G.D. Carrillo Montoya ¹⁷¹, A.A. Carter ⁷⁴, J.R. Carter ²⁷, J. Carvalho ^{123a,h}, D. Casadei ¹⁰⁷, M.P. Casado ¹¹, M. Cascella ^{121a,121b}, C. Caso ^{50a,50b,*}, A.M. Castaneda Hernandez¹⁷¹, E. Castaneda-Miranda¹⁷¹, V. Castillo Gimenez¹⁶⁶, N.F. Castro^{123a}, G. Cataldi^{71a}, F. Cataneo²⁹, A. Catinaccio²⁹, J.R. Catmore²⁹, A. Cattai²⁹, G. Cattani^{132a,132b}, S. Caughron⁸⁷, D. Cauz^{163a,163c}, P. Cavalleri⁷⁷, D. Cavalli^{88a}, M. Cavalli-Sforza¹¹, V. Cavasinni^{121a,121b}, F. Ceradini ^{133a,133b}, A.S. Cerqueira ^{23b}, A. Cerri ²⁹, L. Cerrito ⁷⁴, F. Cerutti ⁴⁷, S.A. Cetin ^{18b}, F. Cevenini ^{101a,101b}, A. Chafaq ^{134a}, D. Chakraborty ¹⁰⁵, K. Chan², B. Chapleau ⁸⁴, J.D. Chapman ²⁷, J.W. Chapman ⁸⁶, E. Chareyre ⁷⁷, D.G. Charlton ¹⁷, V. Chavda ⁸¹, C.A. Chavez Barajas ²⁹, S. Cheatham ⁸⁴, S. Chekanov ⁵, S.V. Chekulaev ^{158a}, G.A. Chelkov ⁶⁴, M.A. Chelstowska ¹⁰³, C. Chen ⁶³, H. Chen ²⁴, S. Chekanov⁵, S.V. Chekulaev¹⁵⁰³, G.A. Chelkov⁵¹, M.A. Chelstowska¹⁶⁵, C. Chen⁵⁵, H. Chel¹⁷¹, S. Chen^{32c}, T. Chen^{32c}, X. Chen¹⁷¹, S. Cheng^{32a}, A. Cheplakov⁶⁴, V.F. Chepurnov⁶⁴, R. Cherkaoui El Moursli^{134e}, V. Chernyatin²⁴, E. Cheu⁶, S.L. Cheung¹⁵⁷, L. Chevalier¹³⁵, G. Chiefari^{101a,101b}, L. Chikovani^{51a}, J.T. Childers²⁹, A. Chilingarov⁷⁰, G. Chiodini^{71a}, A.S. Chisholm¹⁷, M.V. Chizhov⁶⁴, G. Choudalakis³⁰, S. Chouridou¹³⁶, I.A. Christidi⁷⁶, A. Christov⁴⁸, D. Chromek-Burckhart²⁹, M.L. Chu¹⁵⁰, J. Chudoba¹²⁴, G. Ciapetti^{131a,131b}, K. Ciba³⁷, A.K. Ciftci^{3a}, R. Ciftci^{3a}, D. Cinca³³, V. Cindro⁷³, M.D. Ciobotaru¹⁶², C. Ciocca^{19a}, A. Ciocio¹⁴, M. Cirilli⁸⁶, M. Citterio ^{88a}, M. Ciubancan ^{25a}, A. Clark ⁴⁹, P.J. Clark ⁴⁵, W. Cleland ¹²², J.C. Clemens ⁸², B. Clement ⁵⁵, C. Clement ^{145a,145b}, R.W. Clifft ¹²⁸, Y. Coadou ⁸², M. Cobal ^{163a,163c}, A. Coccaro ¹⁷¹, J. Cochran ⁶³, P. Coe ¹¹⁷, J.G. Cogan ¹⁴², J. Coggeshall ¹⁶⁴, E. Cogneras ¹⁷⁶, J. Colas ⁴, A.P. Colijn ¹⁰⁴, N.J. Collins ¹⁷, C. Collins-Tooth ⁵³, J. Collot ⁵⁵, G. Colon ⁸³, P. Conde Muiño ^{123a}, E. Coniavitis ¹¹⁷, M.C. Conidi ¹¹, M. Consonni ¹⁰³, V. Consorti ⁴⁸, S. Constantinescu ^{25a}, C. Conta ^{118a,118b}, F. Conventi ^{101a,i}, J. Cook ²⁹, M. Cooke ¹⁴, B.D. Cooper ⁷⁶, A.M. Cooper-Sarkar ¹¹⁷, K. Copic ¹⁴, T. Cornelissen ¹⁷³, M. Corradi ^{19a}, F. Corriveau ^{84,j}, A. Cortes-Gonzalez ¹⁶⁴, G. Cortiana ⁹⁸, G. Costa ^{88a}, M.J. Costa ¹⁶⁶, D. Costanzo ¹³⁸, T. Costin ³⁰, D. Côté ²⁹, R. Coura Torres ^{23a}, L. Courneyea ¹⁶⁸, G. Cowan ⁷⁵, C. Cowden ²⁷, B.E. Cox ⁸¹, K. Cranmer ¹⁰⁷, F. Crescioli ^{121a,121b}, M. Cristinziani ²⁰, G. Crosetti ^{36a,36b}, R. Crupi ^{71a,71b}, S. Crépé-Renaudin ⁵⁵, C.-M. Cuciuc ^{25a}, C. Cuenca Almenar ¹⁷⁴, T. Cuhadar Donszelmann ¹³⁸, M. Curatolo ⁴⁷, C.J. Curtis ¹⁷, C. Cuthbert ¹⁴⁹, P. Cwetanski ⁶⁰, H. Czirr ¹⁴⁰, P. Czodrowski ⁴³, Z. Czyczula ¹⁷⁴, S. D'Auria ⁵³, M. D'Onofrio ⁷², A. D'Orazio ^{131a,131b}, P.V.M. Da Silva ^{23a}, C. Da Via ⁸¹, W. Dabrowski ³⁷, T. Dai ⁸⁶, C. Dallapiccola⁸³, M. Dam³⁵, M. Dameri ^{50a,50b}, D.S. Damiani ¹³⁶, H.O. Danielsson ²⁹, D. Dannheim ⁹⁸, V. Dao⁴⁹, G. Darbo ^{50a}, G.L. Darlea ^{25b}, W. Davey ²⁰, T. Davidek ¹²⁵, N. Davidson ⁸⁵, R. Davidson ⁷⁰, E. Davies ^{117,c}, M. Davies ⁹², A.R. Davison ⁷⁶, Y. Davygora ^{58a}, E. Dawe ¹⁴¹, I. Dawson ¹³⁸, J.W. Dawson ^{5,*}, R.K. Daya-Ishmukhametova ²², K. De⁷, R. de Asmundis ^{101a}, S. De Castro ^{19a,19b}, R.K. Daya-Ishmukhametova²², K. De⁷, R. de Asmundis ^{101a}, S. De Castro ^{19a, 19b}, P.E. De Castro Faria Salgado²⁴, S. De Cecco⁷⁷, J. de Graat⁹⁷, N. De Groot¹⁰³, P. de Jong¹⁰⁴, C. De La Taille¹¹⁴, H. De la Torre⁷⁹, B. De Lotto^{163a, 163c}, L. de Mora⁷⁰, L. De Nooij¹⁰⁴, D. De Pedis^{131a}, A. De Salvo^{131a}, U. De Sanctis^{163a, 163c}, A. De Santo¹⁴⁸, J.B. De Vivie De Regie¹¹⁴, S. Dean⁷⁶, W.J. Dearnaley⁷⁰, R. Debbe²⁴, C. Debenedetti⁴⁵, D.V. Dedovich⁶⁴, J. Degenhardt¹¹⁹, M. Dehchar¹¹⁷, C. Del Papa^{163a, 163c}, J. Del Peso⁷⁹, T. Del Prete^{121a, 121b}, T. Delemontex⁵⁵, M. Deliyergiyev⁷³, A. Dell'Acqua²⁹, L. Dell'Asta²¹, M. Della Pietra^{101a, i}, D. della Volpe^{101a, 101b}, M. Delmastro⁴, N. Delruelle²⁹, P.A. Delsart⁵⁵, C. Deluca¹⁴⁷, S. Demers¹⁷⁴, M. Demichev⁶⁴, B. Demirkoz^{11,k}, J. Deng¹⁶², S.P. Denisov¹²⁷, D. Derendarz³⁸, J.E. Derkaoui^{134d}, F. Derue⁷⁷, P. Dervan⁷², K. Desch²⁰, E. Devetak¹⁴⁷, P.O. Deviveiros¹⁰⁴, A. Dewhurst¹²⁸, B. DeWilde¹⁴⁷, S. Dhaliwal¹⁵⁷, R. Dhullipudi^{24, l}, A. Di Ciaccio^{132a, 132b}, L. Di Ciaccio⁴, A. Di Cirolamo²⁹, B. Di Cirolamo²⁹, S. Di Luise^{133a, 133b} A. Di Ciaccio ^{132a,132b}, L. Di Ciaccio⁴, A. Di Girolamo²⁹, B. Di Girolamo²⁹, S. Di Luise ^{133a,133b}, A. Di Mattia ¹⁷¹, B. Di Micco²⁹, R. Di Nardo⁴⁷, A. Di Simone ^{132a,132b}, R. Di Sipio ^{19a,19b}, M.A. Diaz ^{31a}, F. Diblen ^{18c}, E.B. Diehl ⁸⁶, J. Dietrich ⁴¹, T.A. Dietzsch ^{58a}, S. Diglio ⁸⁵, K. Dindar Yagci ³⁹, J. Dingfelder ²⁰, C. Dionisi ^{131a,131b}, P. Dita ^{25a}, S. Dita ^{25a}, F. Dittus ²⁹, F. Djama ⁸², T. Djobava ^{51b}, M.A.B. do Vale ^{23c}, A. Do Valle Wemans ^{123a}, T.K.O. Doan ⁴, M. Dobbs ⁸⁴, R. Dobinson ^{29,*}, D. Dobos ²⁹, E. Dobson ^{29,m}, J. Dodd ³⁴, C. Doglioni ⁴⁹, T. Doherty ⁵³, Y. Doi ^{65,*}, J. Dolejsi ¹²⁵, I. Dolenc ⁷³, Z. Dolezal ¹²⁵,

B.A. Dolgoshein ^{95,*}, T. Dohmae ¹⁵⁴, M. Donadelli ^{23d}, M. Donega ¹¹⁹, J. Donini ³³, J. Dopke ²⁹, A. Doria ^{101a}, A. Dos Anjos ¹⁷¹, M. Dosil ¹¹, A. Dotti ^{121a,121b}, M.T. Dova ⁶⁹, J.D. Dowell ¹⁷, A.D. Doxiadis ¹⁰⁴, A.T. Doyle ⁵³, B.A. Dolgoshein ^{95, s}, T. Dohmae ¹⁵⁴, M. Donadelli ^{23d}, M. Donega ¹¹⁹, J. Donini ³³, J. Dopke ²⁹, A. Doria ^{101a}, A. Dos Anjos ¹⁷¹, M. Dosil ¹¹, A. Dotti ^{121a,121b}, M.T. Dova⁶⁹, J.D. Dowell ¹⁷, A.D. Doxiadis ¹⁰⁴, A.T. Doyle ⁵³, C. Dras ¹²⁵, J. Dressnandt ¹¹⁹, H. Drevermann ²⁹, C. Driouichi ³⁵, M. Dris ⁹, J. Dubber ¹⁹⁸, S. Dube ¹⁴, E. Duchovni ¹⁷⁰, G. Duckeck ⁹⁷, A. Dudarev ²⁹, F. Dudziak ⁶³, M. Dührssen ²⁹, I.P. Duerdoth ⁸¹, L. Duflot ¹¹⁴, M.-A. Dufour ⁸⁴, M. Dunford ²⁹, H. Duran Yildiz ^{3a}, R. Duxfield ¹³⁸, M. Dwuznik ³⁷, F. Dydak ²⁹, M. Düren ⁵², W.L. Ebenstein ⁴⁴, J. Ebke ⁹⁷, S. Eckweiler ⁸⁰, K. Edmonds ⁸⁰, C.A. Edwards ⁷⁵, N.C. Edwards ⁵³, W. Ehrenfeld ⁴¹, T. Ehrich ⁹⁸, T. Eifert ¹⁴², G. Eigen ¹³, K. Einsweiler ¹⁴, E. Eisenhandler ⁷⁴, T. Ekelof ¹⁶⁵, M. El Kacimi ^{134c}, M. Ellert ¹⁶⁵, S. Elles ⁴, F. Ellinghaus ⁸⁰, K. Ellis ⁷⁴, N. Ellis ²⁹, J. Erndei ¹⁵⁴, A. Ereditato ¹⁶, D. Eriksson ^{145a}, J. Ernst ¹, M. Ernst ²⁴, J. Ernwein ¹³⁵, D. Errede ¹⁶⁴, S. Errede ¹⁶⁴, A. Eretel ¹⁶⁰, M. Escalier ¹¹⁴, C. Escobar¹²², X. Espinal Curull ¹¹, B. Esposito ⁴⁷, F. Etienne ⁸², A.I. Etienvre ¹³⁵, E. Etzion ¹⁵², D. Evangelakou ⁵⁴, H. Evans ⁶⁰, L. Fabbri ^{19a,19b}, C. Fabre ²⁹, R.M. Fakhrutdinov ¹²⁷, S. Falciano ¹³¹⁴, Y. Fang ¹⁷¹, M. Fanti ^{88a,88b}, A. Farbin ⁷, A. Farilla ^{133a}, J. Farley ¹⁴⁷, T. Faroque ¹⁵⁷, S.M. Farrington ¹¹⁷, P. Farthouat ²⁹, P. Fassnacht ²⁹, D. Fassouliotis ⁸, B. Etholahzadeh ¹⁵⁷, A. Favareto ^{88a,88b}, L. Fayard ¹¹⁴, S. Fazio ^{36a,36b}, R. Febbraro ³³, P. Federic ^{143a}, O.L. Fedin ¹²⁰, W. Fedorko ⁸⁷, M. Fehling-Kaschek ⁴⁸, L. Feligioni ⁸², D. Fellmann ⁵, C. Feng ^{32d}, E.J. Feng ³⁰, A. Ferrarat ¹⁰⁴, R. Ferrari ¹⁰⁸, D.E. Ferreria de Lima ⁵³, A. Ferrer ⁶⁶, M.L. Ferrer⁴⁷, D. Ferreret ⁴⁹, C. Ferrerti ⁴⁰, A. Frentari ¹⁸⁵, P. Ferrari ¹⁰⁴, R. Ferrari ¹⁸⁵, D.E. Ferreria de Lima ⁵³, A. Ferrer ⁶⁶, M.L. Fe C. Galea⁹⁷, E.J. Gallas¹¹⁷, V. Gallo¹⁶, B.J. Gallop¹²⁸, P. Gallus¹²⁴, K.K. Gan¹⁰⁸, Y.S. Gao^{142,e}, V.A. Gapienko¹²⁷, A. Gaponenko¹⁴, F. Garberson¹⁷⁴, M. Garcia-Sciveres¹⁴, C. García¹⁶⁶, J.E. García Navarro¹⁶⁶, R.W. Gardner³⁰, N. Garelli²⁹, H. Garitaonandia¹⁰⁴, V. Garonne²⁹, J. Garvey¹⁷, C. Gatti⁴⁷, G. Gaudio^{118a}, B. Gaur¹⁴⁰, L. Gauthier¹³⁵, I.L. Gavrilenko⁹³, C. Gay¹⁶⁷, G. Gaycken²⁰, J-C. Gayde²⁹, E.N. Gazis⁹, P. Ge^{32d}, C.N.P. Gee¹²⁸, D.A.A. Geerts¹⁰⁴, Ch. Geich-Gimbel²⁰, K. Gellerstedt^{145a,145b}, C. Gemme^{50a}, A. Gemmell⁵³, M.H. Genest⁵⁵, S. Gentile^{131a,131b}, M. George⁵⁴, S. George⁷⁵, P. Gerlach¹⁷³, A. Gershon¹⁵², C. Geweniger^{58a}, H. Ghazlane^{134b}, N. Ghodbane³³, B. Giacobbe^{19a}, S. Giagu^{131a,131b}, V. Giakoumopoulou⁸, V. Giangiobbe¹¹, F. Gianotti²⁹, B. Gibbard²⁴, A. Gibson¹⁵⁷, S.M. Gibson²⁹, L.M. Gilbert¹¹⁷, V. Gilewsky⁹⁰, D. Gillberg²⁸, A.R. Gillman¹²⁸, D.M. Gingrich^{2,d}, J. Ginzburg¹⁵², N. Giokaris⁸, M.P. Giordani^{163c}, R. Giordano^{101a,101b}, F.M. Giorgi¹⁵, P. Giovannini⁹⁸, P.F. Giraud¹³⁵, D. Giugni^{88a}, M. Giunta⁹², P. Giusti^{19a}, B.K. Gjelsten¹¹⁶, L.K. Gladilin⁹⁶, C. Glasman⁷⁹, J. Glatzer⁴⁸, A. Glazov⁴¹, K.W. Glitza¹⁷³, G.L. Glonti⁶⁴, J.R. Goddard⁷⁴, J. Godfrey¹⁴¹, J. Godlewski²⁹, M. Goebel⁴¹, T. Göpfert⁴³, C. Goeringer⁸⁰, C. Gössling⁴², T. Göttfert⁹⁸, S. Goldfarb⁸⁶, T. Golling¹⁷⁴, A. Gomes^{123a,b}, L.S. Gomez Fajardo⁴¹, R. Goncalo⁷⁵, T. Golling¹⁷⁴, A. Gomes^{123a,b}, L.S. Gomez Fajardo⁴¹, R. Gonçalo⁷⁵, J. Gonnager, A. Gonnesser, L.S. Gonnez rajardo ¹⁴, K. Gonçalo ¹⁴, J. Goncalves Pinto Firmino Da Costa ⁴¹, L. Gonella ²⁰, A. Gonidec ²⁹, S. Gonzalez ¹⁷¹, S. González de la Hoz ¹⁶⁶, G. Gonzalez Parra ¹¹, M.L. Gonzalez Silva ²⁶, S. Gonzalez-Sevilla ⁴⁹, J.J. Goodson ¹⁴⁷, L. Goossens ²⁹, P.A. Gorbounov ⁹⁴, H.A. Gordon ²⁴, I. Gorelov ¹⁰², G. Gorfine ¹⁷³, B. Gorini ²⁹, E. Gorini ^{71a,71b}, A. Gorišek ⁷³, E. Gornicki ³⁸, S.A. Gorokhov ¹²⁷, V.N. Goryachev ¹²⁷, B. Gosdzik ⁴¹, M. Gosselink ¹⁰⁴, M.I. Gostkin ⁶⁴, I. Gough Eschrich ¹⁶², M. Gouighri ^{134a}, D. Goujdami ^{134c}, M.P. Coulette ⁴⁹, A.C. Coussiou ¹³⁷, C. Cou⁴, S. Corpinar²², L. Crahawaka Bald ³⁷, D. Caufter ²⁹ B. Gosdzik ¹¹, M. Gosselink ¹⁰¹, M.I. Gostkin ⁰¹, I. Gough Eschrich ¹⁰², M. Gouighri ^{151a}, D. Goujdami ^{151a}, M. Goujdami ^{151a}, S. Grancagnolo ¹³⁷, C. Goy⁴, S. Gozpinar²², I. Grabowska-Bold ³⁷, P. Grafström ²⁹, K-J. Grahn ⁴¹, F. Grancagnolo ^{71a}, S. Grancagnolo ¹⁵, V. Grassi ¹⁴⁷, V. Gratchev ¹²⁰, N. Grau ³⁴, H.M. Gray ²⁹, J.A. Gray ¹⁴⁷, E. Graziani ^{133a}, O.G. Grebenyuk ¹²⁰, T. Greenshaw ⁷², Z.D. Greenwood ^{24,1}, K. Gregersen ³⁵, I.M. Gregor ⁴¹, P. Grenier ¹⁴², J. Griffiths ¹³⁷, N. Grigalashvili ⁶⁴, A.A. Grillo ¹³⁶, S. Grinstein ¹¹, Y.V. Grishkevich ⁹⁶, J.-F. Grivaz ¹¹⁴, M. Groh ⁹⁸, E. Gross ¹⁷⁰, J. Grosse-Knetter ⁵⁴, J. Groth-Jensen ¹⁷⁰, K. Grybel ¹⁴⁰, V.J. Guarino ⁵, D. Guest ¹⁷⁴, C. Guicheney ³³, A. Guida ^{71a,71b}, S. Guindon ⁵⁴, H. Guler ^{84,n},

361

J. Gunther ¹²⁴, B. Guo ¹⁵⁷, J. Guo ³⁴, A. Gupta ³⁰, Y. Gusakov ⁶⁴, V.N. Gushchin ¹²⁷, P. Gutierrez ¹¹⁰, N. Guttman ¹⁵², O. Gutzwiller ¹⁷¹, C. Guyot ¹³⁵, C. Gwenlan ¹¹⁷, C.B. Gwilliam ⁷², A. Haas ¹⁴², S. Haas ²⁹, N. Guttman¹³², O. Gutzwiller¹⁷¹, C. Guyot¹³³, C. Gwenlan¹¹⁷, C.B. Gwilliam⁷², A. Haas¹⁴², S. Haas²⁹, C. Haber¹⁴, H.K. Hadavand³⁹, D.R. Hadley¹⁷, P. Haefner⁹⁸, F. Hahn²⁹, S. Haider²⁹, Z. Hajduk³⁸, H. Hakobyan¹⁷⁵, D. Hall¹¹⁷, J. Haller⁵⁴, K. Hamacher¹⁷³, P. Hamal¹¹², M. Hamer⁵⁴, A. Hamilton^{144b,o}, S. Hamilton¹⁶⁰, H. Han^{32a}, L. Han^{32b}, K. Hanagaki¹¹⁵, K. Hanawa¹⁵⁹, M. Hance¹⁴, C. Handel⁸⁰, P. Hanke^{58a}, J.R. Hansen³⁵, J.B. Hansen³⁵, J.D. Hansen³⁵, P.H. Hansen³⁵, P. Hansson¹⁴², K. Hara¹⁵⁹, G.A. Hare¹³⁶, T. Harenberg¹⁷³, S. Harkusha⁸⁹, D. Harper⁸⁶, R.D. Harrington⁴⁵, O.M. Harris¹³⁷, K. Harrison¹⁷, J. Hartert⁴⁸, F. Hartjes¹⁰⁴, T. Haruyama⁶⁵, A. Harvey⁵⁶, S. Hasegawa¹⁰⁰, Y. Hasegawa¹³⁹, S. Hassani¹³⁵, M. Hatch²⁹, D. Hauff⁹⁸, S. Haug¹⁶, M. Hauschild²⁹, R. Hauser⁸⁷, M. Havranek²⁰, B.M. Hawes¹¹⁷, C.M. Hawkes¹⁷, R.J. Hawkings²⁹, A.D. Hawkins⁷⁸, D. Hawkins¹⁶², T. Hayakawa⁶⁶, T. Hawashi¹⁵⁹, D. Havden⁷⁵, H.S. Hawward⁷², S.I. Hawwood¹²⁸, F. Hazen²¹, M. He^{32d}, S.I. Head¹⁷ T. Hayashi ¹⁵⁹, D. Hayden ⁷⁵, H.S. Hayward ⁷², S.J. Haywood ¹²⁸, E. Hazen ²¹, M. He ^{32d}, S.J. Head ¹⁷, V. Hedberg ⁷⁸, L. Heelan ⁷, S. Heim ⁸⁷, B. Heinemann ¹⁴, S. Heisterkamp ³⁵, L. Helary ⁴, C. Heller ⁹⁷, M. Heller ²⁹, S. Hellman ^{145a, 145b}, D. Hellmich ²⁰, C. Helsens ¹¹, R.C.W. Henderson ⁷⁰, M. Henke ^{58a}, A. Henrichs⁵⁴, A.M. Henriques Correia²⁹, S. Henrot-Versille¹¹⁴, F. Henry-Couannier⁸², C. Hensel⁵⁴, A. Henrichs⁵⁴, A.M. Henriques Correia²⁹, S. Henrot-Versille¹¹⁴, F. Henry-Couannier⁸², C. Hensel⁵⁴, T. Henß¹⁷³, C.M. Hernandez⁷, Y. Hernández Jiménez¹⁶⁶, R. Herrberg¹⁵, A.D. Hershenhorn¹⁵¹, G. Herten⁴⁸, R. Hertenberger⁹⁷, L. Hervas²⁹, G.G. Hesketh⁷⁶, N.P. Hessey¹⁰⁴, E. Higón-Rodriguez¹⁶⁶, D. Hill^{5,*}, J.C. Hill²⁷, N. Hill⁵, K.H. Hiller⁴¹, S. Hillert²⁰, S.J. Hillier¹⁷, I. Hinchliffe¹⁴, E. Hines¹¹⁹, M. Hirose¹¹⁵, F. Hirsch⁴², D. Hirschbuehl¹⁷³, J. Hobbs¹⁴⁷, N. Hod¹⁵², M.C. Hodgkinson¹³⁸, P. Hodgson¹³⁸, A. Hoecker²⁹, M.R. Hoeferkamp¹⁰², J. Hoffman³⁹, D. Hoffmann⁸², M. Hohlfeld⁸⁰, M. Holder¹⁴⁰, S.O. Holmgren^{145a}, T. Holy¹²⁶, J.L. Holzbauer⁸⁷, Y. Homma⁶⁶, T.M. Hong¹¹⁹, L. Hooft van Huysduynen¹⁰⁷, T. Horazdovsky¹²⁶, C. Horn¹⁴², S. Horner⁴⁸, J-Y. Hostachy⁵⁵, S. Hou¹⁵⁰, M.A. Houlden⁷², A. Hoummada^{134a}, J. Howarth⁸¹, D.F. Howell¹¹⁷, I. Hristova¹⁵, J. Hrivnac¹¹⁴, I. Hruska¹²⁴, T. Hryn'ova⁴, P.J. Hsu⁸⁰, S.-C. Hsu¹⁴, G.S. Huang¹¹⁰, Z. Hubacek¹²⁶, F. Hubaut⁸², F. Huegging²⁰, A. Huettmann⁴¹, T.B. Huffman¹¹⁷, E.W. Hughes³⁴, G. Hughes⁷⁰, R.E. Hughes-Jones⁸¹, M. Huhtinen²⁹, P. Hurst⁵⁷, M. Hurwitz¹⁴, U. Husemann⁴¹, N. Huseynov^{64,p}, J. Huston⁸⁷, J. Huth⁵⁷, G. Iacobucci⁴⁹, G. Iakovidis⁹, M. Ibbotson⁸¹, I. Ibragimov¹⁴⁰, R. Ichimiya⁶⁶, L. Iconomidou-Fayard¹¹⁴, J. Idarraga¹¹⁴, P. lengo^{101a}, O. Igonkina¹⁰⁴, Y. Ikegami⁶⁵, M. Ikeno⁶⁵, Y. Ilchenko³⁹, D. Iliadis¹⁵³, J. Idarraga¹¹⁴, P. lengo^{101a}, O. Igonkina¹⁰⁴, Y. Ikegami⁶⁵, M. Ikeno⁵⁵, Y. Ilchenko³⁹, D. Iliadis¹⁵³,
N. Ilic¹⁵⁷, M. Imori¹⁵⁴, T. Ince²⁰, J. Inigo-Golfin²⁹, P. Ioannou⁸, M. Iodice^{133a}, V. Ippolito^{131a,131b},
A. Irles Quiles¹⁶⁶, C. Isaksson¹⁶⁵, A. Ishikawa⁶⁶, M. Ishino⁶⁷, R. Ishmukhametov³⁹, C. Issever¹¹⁷,
S. Istin^{18a}, A.V. Ivashin¹²⁷, W. Iwanski³⁸, H. Iwasaki⁶⁵, J.M. Izen⁴⁰, V. Izzo^{101a}, B. Jackson¹¹⁹,
J.N. Jackson⁷², P. Jackson¹⁴², M.R. Jaekel²⁹, V. Jain⁶⁰, K. Jakobs⁴⁸, S. Jakobsen³⁵, J. Jakubek¹²⁶,
D.K. Jana¹¹⁰, E. Jankowski¹⁵⁷, E. Jansen⁷⁶, H. Jansen²⁹, A. Jantsch⁹⁸, M. Janus²⁰, G. Jarlskog⁷⁸,
L. Jeanty⁵⁷, K. Jelen³⁷, I. Jen-La Plante³⁰, P. Jenni²⁹, A. Jeremie⁴, P. Jež³⁵, S. Jźcźcquel⁴, M.K. Jha^{19a},
H. ji¹⁷¹, W. Ji⁸, J. Jia¹⁴⁷, Y. Jiang^{32b}, M. Jimenez Belenguer⁴¹, G. Jin^{32b}, S. Jin^{32a}, O. Jinnouchi¹⁵⁶,
M.D. Joergensen³⁵, D. Joffe³⁹, L.G. Johansen¹³, M. Johansen^{145a,145b}, K.E. Johansson^{145a},
P. Johansson¹³⁸, S. Johnert⁴¹, K.A. Johns⁶, K. Jon-And^{145a,145b}, G. Jones¹¹⁷, R.W.L Jones⁷⁰, T.W. Jones⁷⁶,
T.J. Jones⁷², O. Jonsson²⁹, C. Joram²⁹, P.M. Jorge^{123a}, J. Joseph¹⁴, J. Jovicevic¹⁴⁶, T. Jovin^{12b}, X. Ju¹⁷¹,
C.A. Jung⁴², R.M. Jungst²⁹, V. Juranek¹²⁴, P. Jussel⁶¹, A. Juste Rozas¹¹, V.V. Kabachenko¹²⁷, S. Kabana¹⁶,
M. Kaci¹⁶⁶, A. Kaczmarska³⁸, P. Kadlecik³⁵, M. Kado¹¹⁴, H. Kagan¹⁰⁸, M. Kagan⁵⁷, S. Kaiser⁹⁸,
E. Kajomovitz¹⁵¹, S. Kalinin¹⁷³, L.V. Kalinovskay⁶⁴, S. Kama³⁹, N. Kanaya¹⁵⁴, M. Kaneda²⁹, S. Kaneti²⁷,
T. Kanno¹⁵⁶, V.A. Kantserov⁹⁵, J. Kanzaki⁶⁵, B. Kaplan¹⁷⁴, A. Kapliy³⁰, J. Kaplon²⁹, D. Kar⁴³,
M. Karagounis²⁰, M. Karagoz¹¹⁷, M. Karnevskiy⁴¹, K. Karr⁵, V. Katrolishvili⁷⁰, A.N. Karyukhin¹²⁷,
L. Kashif¹⁷¹, G. Kasieczka^{58b}, R.D. Kas¹⁰⁸, A J. Idarraga¹¹⁴, P. Iengo^{101a}, O. Igonkina¹⁰⁴, Y. Ikegami⁶⁵, M. Ikeno⁶⁵, Y. Ilchenko³⁹, D. Iliadis¹⁵³, M. Kenyon³⁵, O. Kepka¹²⁴, N. Kerschen²⁵, B.P. Kersevan⁷⁵, S. Kersten¹⁷⁵, K. Kessoku¹⁵⁷, J. Keung¹⁵⁷, F. Khalil-zada¹⁰, H. Khandanyan¹⁶⁴, A. Khanov¹¹¹, D. Kharchenko⁶⁴, A. Khodinov⁹⁵, A.G. Kholodenko¹²⁷, A. Khomich^{58a}, T.J. Khoo²⁷, G. Khoriauli²⁰, A. Khoroshilov¹⁷³, N. Khovanskiy⁶⁴, V. Khovanskiy⁹⁴, E. Khramov⁶⁴, J. Khubua^{51b}, H. Kim^{145a,145b}, M.S. Kim², S.H. Kim¹⁵⁹, N. Kimura¹⁶⁹, O. Kind¹⁵, B.T. King⁷², M. King⁶⁶, R.S.B. King¹¹⁷, J. Kirk¹²⁸, L.E. Kirsch²², A.E. Kiryunin⁹⁸, T. Kishimoto⁶⁶, D. Kisielewska³⁷, T. Kittelmann¹²², A.M. Kiver¹²⁷, E. Kladiva^{143b}, J. Klaiber-Lodewigs⁴², M. Klein⁷², U. Klein⁷², K. Kleinknecht⁸⁰, M. Klemetti⁸⁴, A. Klier¹⁷⁰, P. Klimek^{145a,145b}, A. Klimentov²⁴,

R. Klingenberg⁴², J.A. Klinger⁸¹, E.B. Klinkby³⁵, T. Klioutchnikova²⁹, P.F. Klok¹⁰³, S. Klous¹⁰⁴, E.-E. Kluge^{58a}, T. Kluge⁷², P. Kluit¹⁰⁴, S. Kluth⁹⁸, N.S. Knecht¹⁵⁷, E. Kneringer⁶¹, J. Knobloch²⁹, E.B.F.G. Knoops⁸², A. Knue⁵⁴, B.R. Ko⁴⁴, T. Kobayashi¹⁵⁴, M. Kobel⁴³, M. Kocian¹⁴², P. Kodys¹²⁵, K. Köneke²⁹, A.C. König¹⁰³, S. Koenig⁸⁰, L. Köpke⁸⁰, F. Koetsveld¹⁰³, P. Koevesarki²⁰, T. Koffas²⁸, E. Koffeman¹⁰⁴, L.A. Kogan¹¹⁷, F. Kohn⁵⁴, Z. Kohout¹²⁶, T. Kohriki⁶⁵, T. Koi¹⁴², T. Kokott²⁰, G.M. Kolachev¹⁰⁶, H. Kolanoski¹⁵, V. Kolesnikov⁶⁴, I. Koletsou^{88a}, J. Koll⁸⁷, M. Kollefrath⁴⁸, S.D. Kolya⁸¹, G.M. Kolachev ¹⁰⁶, H. Kolanoski ¹⁵, V. Kolesnikov ⁶⁴, I. Kolesou ^{88a}, J. Koll ⁸⁷, M. Kollefrath ⁴⁸, S.D. Kolya ⁸¹, A.A. Komar ⁹³, Y. Komori ¹⁵⁴, T. Kondo ⁶⁵, T. Kono ^{41,q}, A.I. Kononov ⁴⁸, R. Konoplich ^{107,r}, N. Konstantinidis ⁷⁶, A. Kootz ¹⁷³, S. Koperny ³⁷, K. Korcyl ³⁸, K. Kordas ¹⁵³, V. Koreshev ¹²⁷, A. Korn ¹¹⁷, A. Korol ¹⁰⁶, I. Korolkov ¹¹, E.V. Korolkova ¹³⁸, V.A. Korotkov ¹²⁷, O. Kortner ⁹⁸, S. Kortner ⁹⁸, V.V. Kostyukhin ²⁰, M.J. Kotamäki ²⁹, S. Kotov ⁹⁸, V.M. Kotov ⁶⁴, A. Kotwal ⁴⁴, C. Kourkoumelis ⁸, V. Kouskoura ¹⁵³, A. Koutsman ^{158a}, R. Kowalewski ¹⁶⁸, T.Z. Kowalski ³⁷, W. Kozanecki ¹³⁵, A.S. Kozhin ¹²⁷, V. Kral ¹²⁶, V.A. Kramarenko ⁹⁶, G. Kramberger ⁷³, M.W. Krasny ⁷⁷, A. Krasznahorkay ¹⁰⁷, J. Kraus ⁸⁷, J.K. Kraus ²⁰, A. Kreisel ¹⁵², F. Krejci ¹²⁶, J. Kretzschmar ⁷², N. Krieger ⁵⁴, P. Krieger ¹⁵⁷, K. Kroeninger ⁵⁴, H. Kroha ⁹⁸, J. Kroll ¹¹⁹, J. Kroseberg ²⁰, J. Krstic ^{12a}, U. Kruchonak ⁶⁴, H. Krüger ²⁰, T. Kruker ¹⁶, N. Krummack ⁶³, Z.V. Krumshteyn ⁶⁴, A. Kruth ²⁰, T. Kubota ⁸⁵, S. Kuday ^{3a}, S. Kuehn ⁴⁸, A. Kugel ^{58c}, T. Kuhl ⁴¹, D. Kuhh ⁶¹, V. Kukhtin ⁶⁴, Y. Kulchitsky ⁸⁹, S. Kuleshov ^{31b}, C. Kummer ⁹⁷, M. Kuna ⁷⁷, N. Kundu ¹¹⁷, J. Kunke ¹¹⁶, J. Kruse ¹⁵⁶, J. Kvita ¹⁴¹, R. Kwee ¹⁵, A. La Rosa ⁴⁹, L. La Rotonda ^{36a,36b}, L. Labarga ⁷⁹, J. Labbe ⁴, S. Lablak ^{134a}, C. Lacasta ¹⁶⁶, F. Lacava ^{131a,131b}, H. Lacker ¹⁵, D. Lacour ⁷⁷, V.R. Lacuesta ¹⁶⁶, W. Lampl ⁶, R. Lafaye ⁴, B. Laforge ⁷⁷, T. Lagouri ⁷⁹, S. Lai ⁴⁸, C. Lange ⁴¹, A.J. Lankford ¹⁶², F. Lanni ²⁴, K. Lantzsch ¹⁷³, S. Laplace ⁷⁷, C. Lapoire ²⁰, J.F. Laporte ¹³⁵, T. Lari ^{88a}, A.V. Larionov ¹²⁷, A. Larner ¹¹⁷, C. Lasseur ²⁹, M. Lassnig ²⁹, P. Laurelli ⁴⁷, V. Lavorini ^{36a,36b}, W. Lavrijsen ¹⁴, P. Laycock ⁷², A.B. Lazarev ⁶⁴, O. Le Dortz ⁷⁷, E. Le Guirrice ⁸², C. Le Maner ¹⁵⁷, E. Le Menedeu ⁹, C. Lebel ⁹², T. LeCompte ⁵, T. LeCompte⁵, F. Ledroit-Guillon⁵⁵, H. Lee¹⁰⁴, J.S.H. Lee¹¹⁵, S.C. Lee¹⁵⁰, L. Lee¹⁷⁴, M. Lefebvre¹⁶⁸, M. Legendre¹³⁵, A. Leger⁴⁹, B.C. LeGeyt¹¹⁹, F. Legger⁹⁷, C. Leggett¹⁴, M. Lehmacher²⁰, G. Lehmann Miotto²⁹, X. Lei⁶, M.A.L. Leite^{23d}, R. Leitner¹²⁵, D. Lellouch¹⁷⁰, M. Leltchouk³⁴, G. Lehmann Miotto²⁹, X. Lei⁶, M.A.L. Leite^{23d}, R. Leiggel¹⁰, C. Leggel¹⁰, M. Lellouch¹⁷⁰, M. Leltchouk³⁴, B. Lemmer⁵⁴, V. Lendermann^{58a}, K.J.C. Leney^{144b}, T. Lenz¹⁰⁴, G. Lenzen¹⁷³, B. Lenzi²⁹, K. Leonhardt⁴³, S. Leontsinis⁹, C. Leroy⁹², J-R. Lessard¹⁶⁸, J. Lesser^{145a}, C.G. Lester²⁷, A. Leung Fook Cheong¹⁷¹, J. Levêque⁴, D. Levin⁸⁶, L.J. Levinson¹⁷⁰, M.S. Levitski¹²⁷, A. Lewis¹¹⁷, G.H. Lewis¹⁰⁷, A.M. Leyko²⁰, M. Leyton¹⁵, B. Li⁸², H. Li^{171,s}, S. Li^{32b,t}, X. Li⁸⁶, Z. Liang^{117,u}, H. Liao³³, B. Liberti^{132a}, P. Lichard²⁹, M. Lichtnecker⁹⁷, K. Lie¹⁶⁴, W. Liebig¹³, R. Lifshitz¹⁵¹, C. Limbach²⁰, A. Limosani⁸⁵, M. Limper⁶², S.C. Lin^{150,v}, F. Linde¹⁰⁴, J.T. Linnemann⁸⁷, E. Lipeles¹¹⁹, L. Lipinsky¹²⁴, A. Lipniacka¹³, T.M. Liss¹⁶⁴, D. Lissauer²⁴, A. Lister⁴⁹, A.M. Litke¹³⁶, C. Liu²⁸, D. Liu¹⁵⁰, H. Liu⁸⁶, J.B. Liu⁸⁶, M. Liu^{32b}, Y. Liu^{32b}, M. Livan^{118a,118b}, S.S.A. Livermore¹¹⁷, A. Lleres⁵⁵, J. Llorente Merino⁷⁹, S.L. Lloyd⁷⁴, E. Lobodzinska⁴¹, P. Loch⁶, W.S. Lockman ¹³⁶, T. Loddenkoette²⁰, F.K. Loebinger⁸¹, A. Loginov¹⁷⁴, C.W. Loh¹⁶⁷, T. Lohse¹⁵, K. Lohwasser⁴⁸, M. Lokajicek¹²⁴, J. Loken¹¹⁷, V.P. Lombardo⁴, R.E. Long⁷⁰, L. Lopes^{123a}, D. Lopez Mateos⁵⁷, J. Lorenz⁹⁷, N. Lorenzo Martinez¹¹⁴, M. Losada¹⁶¹, P. Loscutoff¹⁴, F. Lo Sterzo^{131a,131b}, M.J. Losty^{158a}, X. Lou⁴⁰, A. Lucutis⁵⁵, A. Ludwig⁴³, D. Ludwig⁴¹, I. Ludwig⁴⁸, J. Ludwig⁴⁸, F. Luehring⁶⁰, G. Luijickx¹⁰⁴, D. Lumb⁴⁸, L. Luminari^{131a}, E. Lund¹¹⁶, B. Lund-Jensen¹⁴⁶, B. Lundberg⁷⁸, J. Lundberg^{145a,145b}, J. Lundquist³⁵, M. Lungwitz⁸⁰, G. Lutz⁹⁸, D. Lynn²⁴, J. Lys¹⁴, E. Lytken⁷⁸, H. Ma²⁴, L.L Ma¹⁷¹, J.A. Macana Goia⁹², G. Maccarrone⁴⁷, A. Macchiolo⁹⁸, B. Maček⁷³, J. Machado Miguens^{123a}, R. Mackeprang³⁵, R.J. Madaras¹⁴, W.F. Mader⁴³, R. Maenner^{58c}, T. Maeno²⁴, P. Mättig¹⁷³, S. Mättig⁴¹, L. Magnoni²⁹, E. Magradze⁵⁴, Y. Mahalalel¹⁵², K. K. Manboubl ¹⁰, G. Manout ¹⁷, C. Malani ^{1514,1515}, C. Maldantchik ²⁵⁴, A. Malo ^{1254,9}, S. Majewski ²⁷, Y. Makida ⁶⁵, N. Makovec ¹¹⁴, P. Mal ¹³⁵, B. Malaescu ²⁹, Pa. Malecki ³⁸, P. Malecki ³⁸, V.P. Maleev ¹²⁰, F. Malek ⁵⁵, U. Mallik ⁶², D. Malon ⁵, C. Malone ¹⁴², S. Maltezos ⁹, V. Malyshev ¹⁰⁶, S. Malyukov ²⁹, R. Mameghani ⁹⁷, J. Mamuzic ^{12b}, A. Manabe ⁶⁵, L. Mandelli ^{88a}, I. Mandić ⁷³, R. Mandrysch ¹⁵, J. Maneira ^{123a}, P.S. Mangeard ⁸⁷, L. Manhaes de Andrade Filho ^{23a}, I.D. Manjavidze ⁶⁴, A. Mann ⁵⁴, P.M. Manning ¹³⁶, A. Manousakis-Katsikakis ⁸, B. Mansoulie ¹³⁵, A. Manz ⁹⁸, A. Mapelli ²⁹, L. Mapelli ²⁹, L. March ⁷⁹, J.F. Marchand ²⁸, F. Marchese ^{132a,132b}, G. Marchiori ⁷⁷, M. Marcisovsky ¹²⁴, C.P. Marino ¹⁶⁸,

F. Marroquim^{23a}, R. Marshall⁸¹, Z. Marshall²⁹, F.K. Martens¹⁵⁷, S. Marti-Garcia¹⁶⁶, A.J. Martin¹⁷⁴,

F. Marroquim ^{23a}, R. Marshall ⁸¹, Z. Marshall ²⁹, F.K. Martens ¹⁵⁷, S. Marti-Garcia ¹⁶⁶, A.J. Martin ¹⁷⁴,
B. Martin ²⁹, B. Martin ⁸⁷, F.F. Martin ¹¹⁹, J.P. Martin ⁹², Ph. Martin ⁵⁵, T.A. Martin ¹⁷, V.J. Martin ⁴⁵,
B. Martin dit Latour ⁴⁹, S. Martin-Haugh ¹⁴⁸, M. Martinez ¹¹, V. Martinez Outschoorn ⁵⁷,
A.C. Martyniuk ¹⁶⁸, M. Marx ⁸¹, F. Marzano ^{131a}, A. Marzin ¹¹⁰, L. Masetti ⁸⁰, T. Mashimo ¹⁵⁴,
R. Mashinistov ⁹³, J. Masik ⁸¹, A.L. Maslennikov ¹⁰⁶, I. Massa ^{19a,19b}, G. Massaro ¹⁰⁴, N. Massol ⁴,
P. Mastrandrea ^{131a,131b}, A. Mastroberardino ^{36a,36b}, T. Masubuchi ¹⁵⁴, P. Matricon ¹¹⁴, H. Matsumoto ¹⁵⁴,
H. Matsunaga ¹⁵⁴, T. Matsushita ⁶⁶, C. Mattravers ^{117,c}, J.M. Maugain ²⁹, J. Maurer ⁸², S.J. Maxfield ⁷²,
D.A. Maximov ^{106,f}, E.N. May ⁵, A. Mayne ¹³⁸, R. Mazini ¹⁵⁰, M. Mazur ²⁰, M. Mazzanti ^{88a}, S.P. Mc Kee ⁸⁶,
A. McCarn ¹⁶⁴, R.L. McCarthy ¹⁴⁷, T.G. McCarthy ²⁸, N.A. McCubbin ¹²⁸, K.W. McFarlane ⁵⁶,
J.A. Mcfayden ¹³⁸, H. McGlone ⁵³, G. Mchedlidze ^{51b}, R.A. McLaren ²⁹, T. Mclaughlan ¹⁷, S.J. McMahon ¹²⁸,
R.A. McPherson ^{168,j}, A. Meade ⁸³, J. Mechnich ¹⁰⁴, M. Mechtel ¹⁷³, M. Medinnis ⁴¹, R. Meera-Lebbai ¹¹⁰,
T. Meguro ¹¹⁵, R. Mehdivev ⁹², S. Mehlhase ³⁵, A. Mehta ⁷², K. Meier ^{58a}, B. Meirose ⁷⁸, C. Melachrinos ³⁰, T. Meguro¹¹⁵, R. Mehdiyev⁹², S. Mehlhase³⁵, A. Mehta⁷², K. Meier^{58a}, B. Meirose⁷⁸, C. Melachrinos³⁰, B.R. Mellado Garcia¹⁷¹, L. Mendoza Navas¹⁶¹, Z. Meng^{150,s}, A. Mengarelli^{19a,19b}, S. Menke⁹⁸, C. Menot²⁹, E. Meoni¹¹, K.M. Mercurio⁵⁷, P. Mermod⁴⁹, L. Merola^{101a,101b}, C. Meroni^{88a}, F.S. Merritt³⁰, H. Merritt¹⁰⁸, A. Messina²⁹, J. Metcalfe¹⁰², A.S. Mete⁶³, C. Meyer⁸⁰, C. Meyer³⁰, J-P. Meyer¹³⁵, J. Meyer¹⁷², J. Meyer⁵⁴, T.C. Meyer²⁹, W.T. Meyer⁶³, J. Miao^{32d}, S. Michal²⁹, L. Micu^{25a}, R.P. Middleton ¹²⁸, S. Migas ⁷², L. Mijović ⁴¹, G. Mikenberg ¹⁷⁰, M. Mikestikova ¹²⁴, M. Mikuž ⁷³, D.W. Miller ³⁰, R.J. Miller ⁸⁷, W.J. Mills ¹⁶⁷, C. Mills ⁵⁷, A. Milov ¹⁷⁰, D.A. Milstead ^{145a, 145b}, D. Milstein ¹⁷⁰, A.A. Minaenko ¹²⁷, M. Miñano Moya ¹⁶⁶, I.A. Minashvili ⁶⁴, A.I. Mincer ¹⁰⁷, B. Mindur ³⁷, M. Mineev ⁶⁴, Y. Ming¹⁷¹, L.M. Mir¹¹, G. Mirabelli^{131a}, L. Miralles Verge¹¹, A. Misiejuk⁷⁵, J. Mitrevski¹³⁶, G.Y. Mitrofanov ¹²⁷, V.A. Mitsou ¹⁶⁶, S. Mitsui ⁶⁵, P.S. Miyagawa ¹³⁸, K. Miyazaki ⁶⁶, J.U. Mjörnmark ⁷⁸, T. Moa ^{145a, 145b}, P. Mockett ¹³⁷, S. Moed ⁵⁷, V. Moeller ²⁷, K. Mönig ⁴¹, N. Möser ²⁰, S. Mohapatra ¹⁴⁷, W. Mohr⁴⁸, S. Mohrdieck-Möck⁹⁸, A.M. Moisseev^{127,*}, R. Moles-Valls¹⁶⁶, J. Molina-Perez²⁹, J. Monk⁷⁶, E. Monnier⁸², S. Montesano^{88a,88b}, F. Monticelli⁶⁹, S. Monzani^{19a,19b}, R.W. Moore², G.F. Moorhead⁸⁵, C. Mora Herrera⁴⁹, A. Moraes⁵³, N. Morange¹³⁵, J. Morel⁵⁴, G. Morello^{36a,36b}, D. Moreno⁸⁰, M. Moreno Llácer¹⁶⁶, P. Morettini^{50a}, M. Morgenstern⁴³, M. Morii⁵⁷, J. Morin⁷⁴, A.K. Morley²⁹, G. Mornacchi²⁹, S.V. Morozov⁹⁵, J.D. Morris⁷⁴, L. Morvaj¹⁰⁰, H.G. Moser⁹⁸, M. Mosidze^{51b}, J. Moss¹⁰⁸, G. Mornacchi²⁹, S.V. Morozov⁹⁵, J.D. Morris⁷⁴, L. Morvaj¹⁰⁰, H.G. Moser⁹⁸, M. Mosidze^{51b}, J. Moss¹⁰⁸, R. Mount¹⁴², E. Mountricha^{9,w}, S.V. Mouraviev⁹³, E.J.W. Moyse⁸³, M. Mudrinic^{12b}, F. Mueller^{58a}, J. Mueller¹²², K. Mueller²⁰, T.A. Müller⁹⁷, T. Mueller⁸⁰, D. Muenstermann²⁹, A. Muir¹⁶⁷, Y. Munwes¹⁵², W.J. Murray¹²⁸, I. Mussche¹⁰⁴, E. Musto^{101a,101b}, A.G. Myagkov¹²⁷, M. Myska¹²⁴, J. Nadal¹¹, K. Nagai¹⁵⁹, K. Nagano⁶⁵, A. Nagarkar¹⁰⁸, Y. Nagasaka⁵⁹, M. Nagel⁹⁸, A.M. Nairz²⁹, Y. Nakahama²⁹, K. Nakamura¹⁵⁴, T. Nakamura¹⁵⁴, I. Nakano¹⁰⁹, G. Nanava²⁰, A. Napier¹⁶⁰, R. Narayan^{58b}, M. Nash^{76,c}, N.R. Nation²¹, T. Nattermann²⁰, T. Naumann⁴¹, G. Navarro¹⁶¹, H.A. Neal⁸⁶, E. Nebot⁷⁹, P.Yu. Nechaeva⁹³, T.J. Neep⁸¹, A. Negri^{118a,118b}, G. Negri²⁹, S. Nektarijevic⁴⁹, A. Nelson¹⁶², S. Nelson¹⁴², T.K. Nelson¹⁴², S. Nemecek¹²⁴, P. Nemethy¹⁰⁷, A.A. Nepomuceno^{23a}, M. Nessi^{29,x}, M.S. Neubauer¹⁶⁴, A. Neusiedl⁸⁰, R.M. Neves¹⁰⁷, P. Nevski²⁴, P.R. Newman¹⁷, V. Nguyen Thi Hong¹³⁵, R.B. Nickerson¹¹⁷, R. Nicolaidou¹³⁵, L. Nicolas¹³⁸, B. Nicquevert²⁹, F. Niedercorn¹¹⁴, J. Nielsen¹³⁶, T. Niinikoski²⁹, N. Nikiforou³⁴, A. Nikiforov¹⁵, V. Nikolaenko¹²⁷, K. Nikolaev⁶⁴, I. Nikolic-Audit⁷⁷, K. Nikolics⁴⁹, K. Nikolopoulos²⁴, H. Nilsen⁴⁸, P. Nilsson⁷, Y. Ninomiya¹⁵⁴, A. Nisati^{131a}, T. Nishiyama⁶⁶, R. Nisius⁹⁸, N. Nikiforou ³⁴, A. Nikiforov ¹⁵, V. Nikolaenko ¹²⁷, K. Nikolaev ⁶⁴, I. Nikolic-Audit ⁷⁷, K. Nikolics ⁴⁹, K. Nikolopoulos ²⁴, H. Nilsen ⁴⁸, P. Nilsson ⁷, Y. Ninomiya ¹⁵⁴, A. Nisati ^{131a}, T. Nishiyama ⁶⁶, R. Nisius ⁹⁸, L. Nodulman ⁵, M. Nomachi ¹¹⁵, I. Nomidis ¹⁵³, M. Nordberg ²⁹, B. Nordkvist ^{145a,145b}, P.R. Norton ¹²⁸, J. Novakova ¹²⁵, M. Nozaki ⁶⁵, L. Nozka ¹¹², I.M. Nugent ^{158a}, A.-E. Nuncio-Quiroz ²⁰, G. Nunes Hanninger ⁸⁵, T. Nunnemann ⁹⁷, E. Nurse ⁷⁶, B.J. O'Brien ⁴⁵, S.W. O'Neale ^{17,*}, D.C. O'Neil ¹⁴¹, V. O'Shea ⁵³, L.B. Oakes ⁹⁷, F.G. Oakham ^{28,d}, H. Oberlack ⁹⁸, J. Ocariz ⁷⁷, A. Ochi ⁶⁶, S. Oda ¹⁵⁴, S. Odaka ⁶⁵, J. Odier ⁸², H. Ogren ⁶⁰, A. Oh ⁸¹, S.H. Oh ⁴⁴, C.C. Ohm ^{145a,145b}, T. Ohshima ¹⁰⁰, H. Ohshita ¹³⁹, T. Ohsugi ¹⁷⁷, S. Okada ⁶⁶, H. Okawa ¹⁶², Y. Okumura ¹⁰⁰, T. Okuyama ¹⁵⁴, A. Olariu ^{25a}, M. Olcese ^{50a}, A.G. Olchevski ⁶⁴, S.A. Olivares Pino ^{31a}, M. Oliveira ^{123a,h}, D. Oliveira Damazio ²⁴, E. Oliver Garcia ¹⁶⁶, D. Olivito ¹¹⁹, A. Olszewski ³⁸, J. Olszowska ³⁸, C. Omachi ⁶⁶, A. Onofre ^{123a,y}, P.U.E. Onyisi ³⁰, C.J. Oram ^{158a}, M.J. Oreglia ³⁰, Y. Oren ¹⁵², D. Orestano ^{133a,133b}, I. Orlov ¹⁰⁶, C. Oropeza Barrera ⁵³, R.S. Orr ¹⁵⁷, B. Osculati ^{50a,50b}, R. Ospanov ¹¹⁹, C. Osuna ¹¹, G. Otero y Garzon ²⁶, J.P. Ottersbach ¹⁰⁴, M. Ouchrif^{134d}, E.A. Ouellette¹⁶⁸, F. Ould-Saada¹¹⁶, A. Ouraou¹³⁵, Q. Ouyang^{32a}, A. Ovcharova¹⁴, M. Owen⁸¹, S. Owen¹³⁸, V.E. Ozcan^{18a}, N. Ozturk⁷, A. Pacheco Pages¹¹, C. Padilla Aranda¹¹, S. Pagan Griso¹⁴, E. Paganis¹³⁸, F. Paige²⁴, P. Pais⁸³, K. Pajchel¹¹⁶, G. Palacino^{158b}, C.P. Paleari⁶,

 364 ATLAS Collaboration / Physics Letters B /12 (2012) 351-369
 S. Palestini ²⁹, D. Pallin ³³, A. Palma ^{123a}, J.D. Palmer ¹⁷, Y.B. Pan ¹⁷¹, E. Panagiotopoulou ⁹, B. Panes ^{31a}, N. Panikashvili ⁸⁶, S. Panitkin ²⁴, D. Pantea ^{25a}, M. Panuskova ¹²⁴, V. Paolone ¹²², A. Papadelis ^{145a}, Th.D. Papadopoulou ⁹, A. Paramonov ⁵, D. Paredes Hernandez ³³, W. Park ^{24,z}, M.A. Parker ²⁷, F. Parodi ^{50a,50b}, J.A. Parsons ³⁴, U. Parzefall ⁴⁸, E. Pasqualucci ^{131a}, S. Passaggio ^{50a}, A. Passeri ^{133a}, F. Pastore ^{133a,133b}, Fr. Pastore ⁷⁵, G. Pásztor ^{49,aa}, S. Pataraia ¹⁷³, N. Patel ¹⁴⁹, J.R. Pater ⁸¹, S. Patricelli ^{101a,101b}, T. Pauly ²⁹, M. Pecsy ^{143a}, M.I. Pedraza Morales ¹⁷¹, S.V. Peleganchuk ¹⁰⁶, H. Peng ^{32b}, R. Pengo ²⁹, B. Penning ³⁰, A. Penson ³⁴, J. Penwell ⁶⁰, M. Perantoni ^{23a}, K. Perez ^{34,ab}, T. Perez Cavalcanti ⁴¹, E. Perez Codina ¹¹, M.T. Pérez García-Estañ ¹⁶⁶, V. Perez Reale ³⁴, L. Perini ^{88a,88b}, H. Pernegger ²⁹, R. Perrino ^{71a}, P. Perrodo⁴, S. Persembe ^{3a}, A. Perus ¹¹⁴, V.D. Peshekhonov ⁶⁴, K. Peterse ²⁹, B.A. Petersen ²⁹, J. Petersen ²⁹, T.C. Petersen ³⁵, E. Petit ⁴, A. Petrilis ¹⁵³, C. Petridou ¹⁵³, E. Petrolo ^{131a}, F. Petrucci ^{133a,133b}, D. Petschull ⁴¹, M. Petteni ¹⁴¹, R. Pezoa ^{31b}, A. Phan ⁸⁵, P.W. Phillips ¹²⁸, G. Piacquadio ²⁹, E. Piccaro ⁷⁴, M. Piccinni ^{19a,19b}, S.M. Piec ⁴¹, R. Piegaia ²⁶, D.T. Pignotti ¹⁰⁸, J.E. Pilcher ³⁰, A.D. Pilkington ⁸¹, J. Pina ^{123a,b}, M. Plamondon ¹⁶⁸, M.-A. Pleier ²⁴, A.V. Pleskach ¹²⁷, A. Pols, ⁵⁵, G. Polesello ^{118a}, A. Policicchio ^{36a,36b}, A. Polini ^{19a}, J. Poll ⁷⁴, V. Polychronakos ²⁴, D.M. Pomarede ¹³⁵, D. Pomeroy ²², K. Pommès ²⁹, L. Pontecorvo ^{131a}, B.G. Pope ⁸⁷, G.A. Popeneciu ^{25a}, D.S. Popovic ^{12a}, A. Popleton ²⁹, X. Portell Bueso ²⁹, C. Pisch ²¹, G.E. Pospelov ⁹⁸, S. Pospisil ¹²⁶, I.N. Potrap ⁹⁸, C.J. Potter ¹⁴⁸, C.T. Potter ¹¹³, G. Poulad ²⁹, J. Poveda C.J. Potter ¹⁴⁸, C.T. Potter ¹¹³, G. Poulard ²⁹, J. Poveda ¹⁷¹, V. Pozdnyakov ⁶⁴, R. Prabhu ⁷⁶, P. Pralavorio ⁸², A. Pranko ¹⁴, S. Prasad ⁵⁷, R. Pravahan ⁷, S. Prell ⁶³, K. Pretzl ¹⁶, L. Pribyl ²⁹, D. Price ⁶⁰, J. Price ⁷², L.E. Price⁵, M.J. Price²⁹, D. Prieur¹²², M. Primavera^{71a}, K. Prokofiev¹⁰⁷, F. Prokoshin^{31b}, S. Protopopescu²⁴, J. Proudfoot⁵, X. Prudent⁴³, M. Przybycien³⁷, H. Przysiezniak⁴, S. Psoroulas²⁰, S. Protopopescu^{2,1}, J. Proudroot³, X. Prudent¹³, M. Przybycien³⁷, H. Przysleżniak⁴, S. Psoroulas²³, E. Ptacek¹¹³, E. Pueschel⁸³, J. Purdham⁸⁶, M. Purohit^{24,z}, P. Puzo¹¹⁴, Y. Pylypchenko⁶², J. Qian⁸⁶, Z. Qian⁸², Z. Qin⁴¹, A. Quadt⁵⁴, D.R. Quarrie¹⁴, W.B. Quayle¹⁷¹, F. Quinonez^{31a}, M. Raas¹⁰³, V. Radescu^{58b}, B. Radics²⁰, P. Radloff¹¹³, T. Rador^{18a}, F. Ragusa^{88a,88b}, G. Rahal¹⁷⁶, A.M. Rahimi¹⁰⁸, D. Rahm²⁴, S. Rajagopalan²⁴, M. Rammensee⁴⁸, M. Rammes¹⁴⁰, A.S. Randle-Conde³⁹, K. Randrianarivony²⁸, P.N. Ratoff⁷⁰, F. Rauscher⁹⁷, T.C. Rave⁴⁸, M. Raymond²⁹, A.L. Read¹¹⁶, D.M. Rebuzzi^{118a,118b}, A. Redelbach¹⁷², G. Redlinger²⁴, R. Reece¹¹⁹, K. Reeves⁴⁰, A. Reichold¹⁰⁴, K. Randrianarivony²⁵, P.N. Ratoff ⁷⁰, F. Rauscher³⁹, T.C. Rave⁴⁸, M. Raymond⁴⁹, A.L. Read¹¹⁶, D.M. Rebuzzi ¹¹⁸a, ¹¹⁸b, A. Redelbach ¹⁷², G. Redlinger²⁴, R. Reece¹¹⁹, K. Reeves⁴⁰, A. Reichold¹⁰⁴, E. Reinherz-Aronis ¹⁵², A. Reinsch¹¹³, I. Reisinger⁴², C. Rembser²⁹, Z.L. Ren¹⁵⁰, A. Renaud¹¹⁴, P. Renkel³⁹, M. Rescigno ¹³¹a, S. Resconi ⁸⁸a, B. Resende ¹³⁵, P. Reznicek⁹⁷, R. Rezvani ¹⁵⁷, A. Richards⁷⁶, R. Richter⁹⁸, E. Richter-Was^{4,ac}, M. Ridel⁷⁷, M. Rijpstra¹⁰⁴, M. Rijssenbeek ¹⁴⁷, A. Rimoldi ¹¹⁸a, ¹¹⁸b, L. Rinaldi ¹⁹a, R.R. Rios³⁹, I. Riu¹¹, G. Rivoltella ⁸⁸a,⁸⁸b, F. Rizatdinova¹¹¹, E. Rizvi⁷⁴, S.H. Robertson ⁸⁴*i*, A. Robichaud-Veronneau ¹¹⁷, D. Robinson²⁷, J.E.M. Robinson⁷⁶, M. Robinson¹¹³, A. Robson⁵³, J.G. Rocha de Lima¹⁰⁵, C. Roda ^{121a,121b}, D. Roda Dos Santos²⁹, D. Rodriguez ¹⁶¹, A. Roe⁵⁴, S. Roe²⁹, O. Røhne¹¹⁶, V. Rojo¹, S. Rolli¹⁶⁰, A. Romaniouk⁹⁵, M. Romano^{19a,19b}, V.M. Romanov⁶⁴, G. Romeo²⁶, E. Romero Adam ¹⁶⁶, L. Roos⁷⁷, E. Ros¹⁶⁶, S. Rosati ^{131a}, K. Rosbach⁴⁹, A. Rose¹⁴⁸, M. Rose⁷⁵, G.A. Rosenbaum¹⁵⁷, E.L. Rosenberg⁶³, P.L. Rosendahl¹³, O. Rosenthal ¹⁴⁰, L. Rosslet⁴⁹, V. Rossetti ¹¹, E. Rossi¹⁵¹, J.L. Rossi^{50a}, M. Rotaru^{25a}, I. Roth¹⁷⁰, J. Rothberg¹³⁷, D. Rousseau ¹¹⁴, C.R. Royon ¹³⁵, A. Rozanov⁸², Y. Rozen¹⁵¹, X. Ruan^{32a,ad}, I. Rubinskiy⁴¹, B. Ruckert⁹⁷, N. Ruckstuhl¹⁰⁴, V.I. Rud⁹⁶, C. Rudolph⁴¹, G. Rudolph⁶¹, F. Rühr⁶, F. Ruggieri ^{133a,133b}, A. Ruiz-Martinez⁶³, V. Rumiantsev^{90,*}, L. Rumyantsev⁶⁴, K. Runge⁴⁸, Z. Rurikova⁴⁶, N.A. Rusakovich⁶⁴, J.P. Rutherfoord⁶, C. Ruwiedel¹⁴, P. Ruzicka¹²⁴, Y.F. Ryabov¹²⁰, V. Ryadovikov¹²⁷, P. Ryan⁸⁷, M. Rybar¹²⁵, G. Rybkin¹¹⁴, N.C. Ryder¹¹⁷, S. Rzaeva¹⁰, A.F. Saavedra¹⁴⁹, I. Sadeh¹⁵², H.F-W. Sadrozinski¹³⁶, R. Sadykov⁶⁴, F. Safai Tehrani^{131a}, H. Sakamoto¹⁵⁴, G. Salamanna⁷⁴, A. Salamon^{132a}, M. Saleem¹¹⁰, D. Salikatore¹⁶⁸, A. Salnikov¹⁴²,

365

P. Schacht ⁹⁸, U. Schäfer ⁸⁰, S. Schaepe ²⁰, S. Schaetzel ^{58b}, A.C. Schaffer ¹¹⁴, D. Schaile ⁹⁷, R.D. Schamberger¹⁴⁷, A.G. Schamov¹⁰⁶, V. Scharf^{58a}, V.A. Schegelsky¹²⁰, D. Scheirich⁸⁶, M. Schernau¹⁶², M.I. Scherzer³⁴, C. Schiavi ^{50a,50b}, J. Schieck⁹⁷, M. Schioppa ^{36a,36b}, S. Schlenker²⁹, J.L. Schlereth⁵, E. Schmidt⁴⁸, K. Schmieden²⁰, C. Schmitt⁸⁰, S. Schmitt^{58b}, M. Schmitz²⁰, A. Schöning^{58b}, M. Schott²⁹, Mi. Scherzer^{5,} C. Schlavi Schlav, J. Schleck^{5,7}, M. Schloppa Schlav, S. Schlenker^{2,9}, J.L. Schlereth^{5,7},
E. Schmidt⁴⁸, K. Schmieden²⁰, C. Schmitt⁸⁰, S. Schmitt^{58b}, M. Schnort²⁹, A. Schöning^{58b}, M. Scholt²⁹,
D. Schulten^{158a}, J. Schvancova¹²⁴, M. Schram⁸⁴, C. Schroet⁸⁰, N. Schroer^{58c}, G. Schuler²⁹,
M.J. Schultes⁷⁷, J. Schultes¹⁷³, H.-C. Schultz-Coulon^{58a}, H. Schulz¹⁵, J.W. Schumacher²⁰,
M. Schumacher⁴⁸, B.A. Schumm¹³⁶, Ph. Schune¹³⁵, C. Schwanenberger⁸¹, A. Schwartzman¹⁴²,
Ph. Schwemling⁷⁷, R. Schwienhorst⁸⁷, R. Schwierz⁴³, J. Schwindling¹³⁵, T. Schwindt²⁰, M. Schwoerer⁴,
W.G. Scott¹²⁸, J. Searcy¹¹³, G. Sedov⁴¹, E. Sedykh¹²⁰, E. Segura¹¹, S.C. Seidel¹⁰², A. Seiden¹³⁶,
F. Seifert⁴³, J.M. Seixas^{23a}, G. Sekhniaidze^{101a}, K.E. Selbach⁴⁵, D.M. Seliverstov¹²⁰, B. Sellden^{145a},
G. Sellers⁷², M. Seman^{143b}, N. Semprini-Cesari ^{19a,19b}, C. Serfon⁹⁷, L. Serin¹¹⁴, L. Serkin⁵⁴, R. Seuster⁹⁸,
H. Severini¹¹⁰, M.E. Sevior⁸⁵, A. Sfyrla²⁹, E. Shabalina⁵⁴, M. Shami¹¹³, L.Y. Shan^{32a}, J.T. Shank²¹,
Q.T. Shao⁸⁵, M. Shapiro¹⁴, P.B. Shatalov⁹⁴, L. Shave⁶, K. Shaw^{163a,163c}, D. Sherman¹⁷⁴, P. Sherwood⁷⁶,
A. Shibata¹⁰⁷, H. Shichi¹⁰⁰, S. Shimizu²⁹, M. Shimojima⁹⁹, T. Shin⁵⁶, M. Shiyakova⁶⁴, A. Shmeleva⁹³,
M.J. Shochet³⁰, D. Short¹¹⁷, S. Shrestha⁶³, E. Shulga⁹⁵, M.A. Shupe⁶, P. Sicho¹²⁴, A. Sidoti^{131a},
F. Siegert⁴⁸, Dj. Sijacki^{12a}, O. Silbert¹⁷⁰, J. Silva^{123a,b}, Y. Silver¹⁵², D. Silverstein¹⁴², S.B. Silverstein^{145a},
V. Simka¹²⁶, O. Simard¹³⁵, Lj. Simic¹²⁴, S. Simion¹¹⁴, B. Simmons⁷⁶, M. Simonyan³⁵, P. Sinervo¹⁵⁷,
N.B. Sinev¹¹³, V. Sipica¹⁴⁰, G. Siragusa¹⁷², A. Sicar²⁴, A.N. Sisakyan⁶⁴, S.Yu. Sivoklokov⁹⁶,
J. Sjölin^{145a,145b}, T.B. Sjursen¹³, L.A. Skinnari¹⁴, H.P. Skottowe⁵⁷, K. Skovpen¹⁰⁶ J. SOLCE, E. SOLUATOV ⁵⁶, U. SOLDEVILA ¹⁰⁰, E. Solfaroli Camillocci ^{131a,131b}, A.A. Solodkov ¹²⁷, O.V. Solovyanov ¹²⁷, N. Soni ², V. Sopko ¹²⁶, B. Sopko ¹²⁶, M. Sosebee ⁷, R. Soualah ^{163a,163c}, A. Soukharev ¹⁰⁶, S. Spagnolo ^{71a,71b}, F. Spanò ⁷⁵, R. Spighi ^{19a}, G. Spigo ²⁹, F. Spila ^{131a,131b}, R. Spiwoks ²⁹, M. Spousta ¹²⁵, T. Spreitzer ¹⁵⁷, B. Spurlock ⁷, R.D. St. Denis ⁵³, J. Stahlman ¹¹⁹, R. Stamen ^{58a}, E. Stanecka ³⁸, R.W. Stanek ⁵, C. Stanescu ^{133a}, S. Stapnes ¹¹⁶, E.A. Starchenko ¹²⁷, J. Stark ⁵⁵, P. Staroba ¹²⁴, P. Starovoitov ⁹⁰, A. Staude ⁹⁷, P. Stavina ^{143a}, G. Steele ⁵³, P. Steinbach ⁴³, P. Steinberg ²⁴, I. Stekl ¹²⁶, B. Stelzer ¹⁴¹, H.J. Stelzer ⁸⁷, O. Stelzer-Chilton ^{158a}, H. Stapzel ⁵², S. Sterp ⁹⁸, K. Starova ⁷⁴ P. Statobolto¹⁷, A. Statute¹⁷, P. Stavina^{17,7}, G. Stelle¹⁷, P. Stellibach¹⁷, A. Stadessner⁴³, J. Strandberg¹⁴⁶, S. Strandberg¹⁴⁵, G. Stoicea^{25a}, S. Stonjek⁹⁸, P. Strachota¹²⁵, A.R. Stradling¹⁷, A. Straessner⁴³, J. Strandberg¹⁴⁶, S. Strandberg¹⁴⁵, A. Strandlie¹¹⁶, M. Strang¹⁰⁸, E. Strauss¹⁴², M. Strauss¹¹⁰, P. Strizenec^{143b}, R. Ströhmer¹⁷², D.M. Strom¹¹³, J.A. Strong^{75,*}, R. Stroynowski³⁹, J. Strube¹²⁸, B. Stugu¹³, I. Stumer^{24,*}, J. Stupak¹⁴⁷, P. Sturm¹⁷³, N.A. Styles⁴¹, D.A. Soh^{150,u}, D. Su¹⁴², H.S. Subramania², A. Succurro¹¹, Y. Sugaya¹¹⁵, T. Sugimoto¹⁰⁰, C. Suhr¹⁰⁵, K. Suita⁶⁶, M. Suk¹²⁵, V.V. Sulin⁹³, S. Sultansoy^{3d}, T. Sumida⁶⁷, X. Sun⁵⁵, J.E. Sundermann⁴⁸, K. Suruliz¹³⁸, S. Sushkov¹¹, G. Susinno^{36a,36b}, M.R. Sutton¹⁴⁸, Y. Suzuki⁶⁵, Y. Suzuki⁶⁶, M. Svatos¹²⁴, Yu.M. Sviridov¹²⁷, S. Swedish¹⁶⁷, I. Sykora^{143a}, T. Sykora¹²⁵, B. Szeless²⁹, J. Sánchez¹⁶⁶, D. Ta¹⁰⁴, K. Tackmann⁴¹, A. Taffard¹⁶², R. Tafirout^{158a}, N. Taiblum¹⁵², Y. Takahashi¹⁰⁰, H. Takai²⁴, R. Takashima⁶⁸, H. Taked⁶⁶, T. Takeshita¹³⁹, Y. Takubo⁶⁵, M. Talby⁸², A. Talyshev^{106,f}, M.C. Tamsett²⁴, J. Tanaka¹⁵⁴, R. Tanaka¹¹⁴, S. Tanaka¹³⁰, S. Tanaka⁶⁵, Y. Tanaka⁹⁹, A.J. Tanasijczuk¹⁴¹, K. Tani⁶⁶, N. Tannoury⁸², G.P. Tappern²⁹, S. Tapprogge⁸⁰, D. Tardif¹⁵⁷, S. Tarem¹⁵¹, F. Tarrade²⁸, G.F. Tartarelli^{88a}, P. Tas¹²⁵, M. Tasevsky¹²⁴, E. Tassi^{36a,36b}, M. Tatarkhanov¹⁴, Y. Tayalati^{134d}, C. Taylor⁷⁶, F.E. Taylor⁹¹, G.N. Taylor⁸⁵, W. Taylor^{158b}, M. Teinturier¹¹⁴, M. Teixeira Dias Castanheira⁷⁴, P. Teixera-Dias⁷⁵, K.K. Temming⁴⁸ B. Stelzer¹⁴¹, H.J. Stelzer⁸⁷, O. Stelzer-Chilton^{158a}, H. Stenzel⁵², S. Stern⁹⁸, K. Stevenson⁷⁴, S. Tisserant ⁸², B. Toczek ³⁷, T. Todorov ⁴, S. Todorova-Nova ¹⁶⁰, B. Toggerson ¹⁶², J. Tojo ⁶⁵, S. Tokár ^{143a}, K. Tokunaga⁶⁶, K. Tokushuku⁶⁵, K. Tollefson⁸⁷, M. Tomoto¹⁰⁰, L. Tompkins³⁰, K. Toms¹⁰², G. Tong^{32a}, A. Tonoyan¹³, C. Topfel¹⁶, N.D. Topilin⁶⁴, I. Torchiani²⁹, E. Torrence¹¹³, H. Torres⁷⁷, E. Torró Pastor¹⁶⁶,

J. Toth ^{82,aa}, F. Touchard ⁸², D.R. Tovey ¹³⁸, T. Trefzger ¹⁷², L. Tremblet ²⁹, A. Tricoli ²⁹, I.M. Trigger ^{158a}, S. Trincaz-Duvoid ⁷⁷, T.N. Trinh ⁷⁷, M.F. Tripiana ⁶⁹, W. Trischuk ¹⁵⁷, A. Trivedi ^{24,z}, B. Trocmé ⁵⁵, C. Troncon ^{88a}, M. Trottier-McDonald ¹⁴¹, M. Trzebinski ³⁸, A. Trzupek ³⁸, C. Tsarouchas ²⁹, J.C-L. Tseng ¹¹⁷, M. Tsiakiris ¹⁰⁴, P.V. Tsiareshka ⁸⁹, D. Tsionou ^{4,ae}, G. Tsipolitis ⁹, V. Tsiskaridze ⁴⁸, E.G. Tskhadadze ^{51a}, I.I. Tsukerman ⁹⁴, V. Tsulaia ¹⁴, J.-W. Tsung ²⁰, S. Tsuno ⁶⁵, D. Tsybychev ¹⁴⁷, A. Tua ¹³⁸, A. Tudorache ^{25a}, V. Tudorache ^{25a}, J.M. Tuggle ³⁰, M. Turala ³⁸, D. Turecek ¹²⁶, I. Turk Cakir ^{3e}, E. Turlay ¹⁰⁴, R. Turra ^{88a,88b}, P.M. Tuts ³⁴, A. Tykhonov ⁷³, M. Tylmad ^{145a,145b}, M. Tyndel ¹²⁸, G. Tzanakos ⁸, K. Uchida ²⁰, I. Ueda ¹⁵⁴, R. Ueno ²⁸, M. Ugland ¹³, M. Uhlenbrock ²⁰, M. Uhrmacher ⁵⁴, F. Ukegawa ¹⁵⁹, G. Unal ²⁹, D.G. Underwood ⁵, A. Undrus ²⁴, G. Unel ¹⁶², Y. Unno ⁶⁵, D. Urbaniec ³⁴, G. Usai ⁷, M. Uslenghi ^{118a,118b}, L. Vacavant ⁸², V. Vacek ¹²⁶, B. Vachon ⁸⁴, S. Vahsen ¹⁴, J. Valenta ¹²⁴, P. Valente ^{131a}, S. Valentinetti ^{19a,19b}, S. Valkar ¹²⁵, E. Valladolid Gallego ¹⁶⁶, S. Vallecorsa ¹⁵¹, J.A. Valls Ferrer ¹⁶⁶, H. van der Graaf ¹⁰⁴, E. van der Kraaij ¹⁰⁴, R. Van Der Leeuw ¹⁰⁴, E. van der Poel ¹⁰⁴, D. van der Ster ²⁹, N. van Eldik ⁸³, D.G. Underwood³ A. Undrus ²⁴, G. Unel¹⁰⁴, Y. Unno¹⁵⁵, D. Urbaniec¹⁴, G. Usai⁷, M. Uslenghi^{1184,1185}, S. Valkar¹²⁵, E. Valka¹²⁶, B. Vachon ⁸⁴, S. Valka¹¹⁴⁴, I. Valente¹³¹⁴, S. Valentinetti^{186,1186}, S. Valka¹²⁵, E. Valka¹²⁶, P. Vanke¹⁰⁴, R. Van Der Leeuw¹⁰⁴, E. van der Kraaj¹⁰⁴, H. van der Graaf¹⁰⁴, E. van der Kraaj¹⁰⁴, R. Van Kestere¹¹⁶⁴, I. van Vulpen¹⁰⁴, M. Vandelli²³, G. Vandoni²³, A. Vaniachine⁵, P. Vanke¹⁰⁴, L. Van Kestere¹¹⁶⁴, I. Vanvalia³⁸, W. Vandelli²³, G. Vandoni²⁵, A. Vaniachine⁵, P. Vanko¹¹⁶⁴, L. Varne¹¹⁶⁴, J. V. Ivassilakopoulos⁵⁶, F. Vazeille³³, T. Vazquez Schroder⁵⁴, G. Vergil^{88,389}, J.J. Veiller¹¹⁴, C. Vellidis⁸, F. Veloso¹²³⁴, R. Veness²⁹, S. Veneziano¹³¹⁰, A. Ventura¹⁶⁷, M. Venturi¹⁶⁷, W. Verketle¹⁰⁴, J. C. Vermeulen¹⁰⁴, A. Vest⁴³, M.C. Verteri^{1141,41}, J. Vichou¹⁶⁴, T. Vickey ^{164b,-67}, O.E. Vickey Boeriu^{144b}, G. H.A. Viehhause¹¹⁷, S. Viel¹⁶⁷, M. Villa^{183,189}, M. Virchaux^{135,44}, J. Virzil⁴⁴, O. Vittells¹⁷⁰, M. Viti⁴¹, T. Vivarelli⁶³, F. Vives Vaque², S. Vlachos⁹, D. Vladoiu⁶⁷, M. Vlasak¹²⁶, N. Volopil⁴⁵, G. Volpin¹⁶⁸⁴, H. von der Schmitt⁸⁶, J. Vorwerk¹¹, M. Vos¹⁶⁶, R. Voors²⁹, T. Voos¹⁷⁴, M. Varaje¹⁵⁵, G. Volpin¹⁶⁸⁴, H. von der Schmitt⁸⁶, J. voo 1¹⁶⁶, R. Voos²⁹, T. T. Voss¹⁷³, J. H. Vosseheld⁷², N. Vranje⁵¹², M. Varajes Milosavljevic¹⁰⁴, V. Vrba¹²⁴, M. Vreewiyil¹⁰⁴, T. Vu And⁴⁸, R. Vualle¹⁷³, C. Wang¹⁷³, J. Wang¹⁵⁰, J. Valkovi¹¹⁵, M. Vala¹¹⁵, H. Wang¹⁷¹, J. Wakabayashi¹⁰⁹, J. Walsersloh⁴², S. Walch⁸⁵, J. Walder⁷⁰, R. Walke⁹⁷, W. Walkowi¹¹⁶, R. Voas²⁹, T. Voss¹⁷⁴, J. Walsen¹⁷⁵, C. Wang¹⁷⁵, J. Wang¹⁵⁰, J. Wang¹⁵⁰, J. Vorse¹⁷⁴, M. Vreaviyil¹¹⁹, P. Walger¹⁷³, J. Wang¹⁵⁰, J. Vorse¹⁷⁴, M. Vreaviyil¹⁹⁴, V. Walka¹⁷⁴, P. Wagne¹⁷¹, J. Walto¹¹⁶⁴, W. Veree¹⁷⁵, W. Walka¹⁷⁵, C. Wang¹⁷⁷, P. Wagne¹⁷⁵, J. Wang¹⁵⁰, J. Wang¹⁵⁰, J. Wang¹⁵⁰, J. Wang¹⁵⁰, J. Wang¹⁵⁰, J. Wan

S. Zimmermann⁴⁸, M. Ziolkowski¹⁴⁰, R. Zitoun⁴, L. Živkovič³⁴, V.V. Zmouchko^{127,*}, G. Zobernig¹⁷¹, A. Zoccoli^{19a,19b}, Y. Zolnierowski⁴, A. Zsenei²⁹, M. zur Nedden¹⁵, V. Zutshi¹⁰⁵, L. Zwalinski²⁹

- ² Department of Physics, University of Alberta, Edmonton, AB, Canada
 ³ ^(a) Department of Physics, Ankara University, Ankara; ^(b) Department of Physics, Dumlupinar University, Kutahya; ^(c) Department of Physics, Gazi University, Ankara; ^(d) Division of Physics, TOBB University of Economics and Technology, Ankara; ^(e) Turkish Atomic Energy Authority, Ankara, Turkey
- ⁴ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
- ⁵ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
- ⁶ Department of Physics, University of Arizona, Tucson, AZ, United States
- ⁷ Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
- ⁸ Physics Department, University of Athens, Athens, Greece
- ⁹ Physics Department, National Technical University of Athens, Zografou, Greece
- ¹⁰ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ¹¹ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
- ¹² ^(a) Institute of Physics, University of Belgrade, Belgrade; ^(b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
- ¹³ Department for Physics and Technology, University of Bergen, Bergen, Norway
- ¹⁴ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
- ¹⁵ Department of Physics, Humboldt University, Berlin, Germany
- ¹⁶ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
- ¹⁷ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
 ¹⁸ (^a) Department of Physics, Bogazici University, Istanbul; ^(b) Division of Physics, Dogus University, Istanbul; ^(c) Department of Physics Engineering, Gaziantep University, Gaziantep;
- ^(d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
- ¹⁹ ^(a) INFN Sezione di Bologna; ^(b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
 ²⁰ Physikalisches Institut, University of Bonn, Bonn, Germany
- ²¹ Department of Physics, Boston University, Boston, MA, United States
- ²² Department of Physics, Brandeis University, Waltham, MA, United States
- 23 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of fuiz de Fora (UFIF), fuiz de Fora; (C) Federal University of Sao Joao del Rei (UFSI), Sao Joao del Rei; ^(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
- ²⁴ Physics Department, Brookhaven National Laboratory, Upton, NY, United States
- ²⁵ (a) National Institute of Physics and Nuclear Engineering, Bucharest; ^(b) University Politehnica Bucharest, Bucharest; ^(C) West University in Timisoara, Timisoara, Romania
- ²⁶ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- ²⁷ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- ²⁸ Department of Physics, Carleton University, Ottawa, ON, Canada
- ²⁹ CERN, Geneva, Switzerland
- ³⁰ Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
- ³¹ (a) Departamento de Física, Pontíficia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
 ³² (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Departament of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of
- Physics, Nanjing University, Jiangsu; ^(d) School of Physics, Shandong University, Shandong, China
- Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
- ³⁴ Nevis Laboratory, Columbia University, Irvington, NY, United States
- ³⁵ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
 ³⁶ ^(a) INFN Gruppo Collegato di Cosenza; ^(b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
- ³⁷ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
- ³⁸ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
- ³⁹ Physics Department, Southern Methodist University, Dallas, TX, United States
- ⁴⁰ Physics Department, University of Texas at Dallas, Richardson, TX, United States
- ⁴¹ DESY, Hamburg and Zeuthen, Germany
- ⁴² Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
- ⁴³ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
- ⁴⁴ Department of Physics, Duke University, Durham, NC, United States
- ⁴⁵ SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- ⁴⁶ Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
- ⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy
- ⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
- ⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland
- ⁵⁰ ^(a) INFN Sezione di Genova; ^(b) Dipartimento di Fisica, Università di Genova, Genova, Italy
- 51 (a) E.Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
- ⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
- ⁵³ SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
- ⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
- 55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
- ⁵⁶ Department of Physics, Hampton University, Hampton, VA, United States
- ⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
- 58 (@Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (^{b)} Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg; (^{c)}ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
- ⁵⁹ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
- ⁶⁰ Department of Physics, Indiana University, Bloomington, IN, United States
- ⁶¹ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
- ⁶² University of Iowa, Iowa City, IA, United States
- ⁶³ Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
- ⁶⁴ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
- ⁶⁵ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
- ⁶⁶ Graduate School of Science, Kobe University, Kobe, Japan
- ⁶⁷ Faculty of Science, Kyoto University, Kyoto, Japan
- ⁶⁸ Kyoto University of Education, Kyoto, Japan
- ⁶⁹ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
- ⁷⁰ Physics Department, Lancaster University, Lancaster, United Kingdom

¹ University at Albany, Albany, NY, United States

- ⁷¹ ^(a) INFN Sezione di Lecce; ^(b) Dipartimento di Fisica, Università del Salento, Lecce, Italy
- ⁷² Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
- ⁷³ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
- ⁷⁴ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
- ⁷⁵ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
- ⁷⁶ Department of Physics and Astronomy, University College London, London, United Kingdom
- ⁷⁷ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
- ⁷⁸ Fysiska institutionen, Lunds universitet, Lund, Sweden
- ⁷⁹ Departamento de Fisica Teorica, C-15, Universidad Autonoma de Madrid, Madrid, Spain
- ⁸⁰ Institut für Physik, Universität Mainz, Mainz, Germany
- ⁸¹ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- ⁸² CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
- ⁸³ Department of Physics, University of Massachusetts, Amherst, MA, United States
- ⁸⁴ Department of Physics, McGill University, Montreal, QC, Canada
- 85 School of Physics, University of Melbourne, Victoria, Australia
- ⁸⁶ Department of Physics, The University of Michigan, Ann Arbor, MI, United States
- ⁸⁷ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- ⁸⁸ ^(a) INFN Sezione di Milano; ^(b) Dipartimento di Fisica, Università di Milano, Milano, Italy
- ⁸⁹ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
- ⁹⁰ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
- ⁹¹ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
- ⁹² Group of Particle Physics, University of Montreal, Montreal, QC, Canada
- 93 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
- ⁹⁴ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
- ⁹⁵ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
- ⁹⁶ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- ⁹⁷ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
- 98 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
- ⁹⁹ Nagasaki Institute of Applied Science, Nagasaki, Japan
- ¹⁰⁰ Graduate School of Science, Nagoya University, Nagoya, Japan
- ¹⁰¹ ^(a) INFN Sezione di Napoli; ^(b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
- ¹⁰² Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
- ¹⁰³ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
- ¹⁰⁴ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
- ¹⁰⁵ Department of Physics, Northern Illinois University, DeKalb, IL, United States
- ¹⁰⁶ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
- ¹⁰⁷ Department of Physics, New York University, New York, NY, United States
- ¹⁰⁸ Ohio State University, Columbus, OH, United States
- ¹⁰⁹ Faculty of Science, Okayama University, Okayama, Japan
- ¹¹⁰ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
- ¹¹¹ Department of Physics, Oklahoma State University, Stillwater, OK, United States
- 112 Palacký University, RCPTM, Olomouc, Czech Republic
- ¹¹³ Center for High Energy Physics, University of Oregon, Eugene, OR, United States
- ¹¹⁴ LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
- ¹¹⁵ Graduate School of Science, Osaka University, Osaka, Japan
- ¹¹⁶ Department of Physics, University of Oslo, Oslo, Norway
- ¹¹⁷ Department of Physics, Oxford University, Oxford, United Kingdom
- ¹¹⁸ ^(a) INFN Sezione di Pavia; ^(b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
- ¹¹⁹ Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
- ¹²⁰ Petersburg Nuclear Physics Institute, Gatchina, Russia
- ¹²¹ ^(d) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
- ¹²² Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
- 123 (a) Laboratorio de Instrumentacao e Física Experimental de Particulas LIP, Lisboa, Portugal; (b) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
- ¹²⁴ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
- ¹²⁵ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
- ¹²⁶ Czech Technical University in Prague, Praha, Czech Republic
- ¹²⁷ State Research Center Institute for High Energy Physics, Protvino, Russia
- ¹²⁸ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
- 129 Physics Department, University of Regina, Regina, SK, Canada
- ¹³⁰ Ritsumeikan University, Kusatsu, Shiga, Japan
- ^(a) INFN Sezione di Roma I; ^(b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
 ^(a) INFN Sezione di Roma Tor Vergata; ^(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
- ¹³³ ^(a) INFN Sezione di Roma Tre; ^(b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
- 134 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des Sciences, Université Mohammed V – Agdal, Rabat, Morocco
- 135 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France

- ¹³⁸ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- ¹³⁹ Department of Physics, Shinshu University, Nagano, Japan
- ¹⁴⁰ Fachbereich Physik, Universität Siegen, Siegen, Germany
- ¹⁴¹ Department of Physics, Simon Fraser University, Burnaby, BC, Canada
- 142 SLAC National Accelerator Laboratory, Stanford, CA, United States
- 143 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
- 144 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
- ¹⁴⁵ ^(a) Department of Physics, Stockholm University; ^(b) The Oskar Klein Centre, Stockholm, Sweden

¹³⁶ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States ¹³⁷ Department of Physics, University of Washington, Seattle, WA, United States

- ¹⁴⁶ Physics Department, Royal Institute of Technology, Stockholm, Sweden
- ¹⁴⁷ Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
- ¹⁴⁸ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
- ¹⁴⁹ School of Physics, University of Sydney, Sydney, Australia
- ¹⁵⁰ Institute of Physics, Academia Sinica, Taipei, Taiwan
- ¹⁵¹ Department of Physics, Technion Israel Inst. of Technology, Haifa, Israel
- ¹⁵² Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ¹⁵³ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- ¹⁵⁴ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
- ¹⁵⁵ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
- ¹⁵⁶ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- ¹⁵⁷ Department of Physics, University of Toronto, Toronto, ON, Canada
- ¹⁵⁸ ^(a) TRIUMF, Vancouver, BC; ^(b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
- ¹⁵⁹ Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- ¹⁶⁰ Science and Technology Center, Tufts University, Medford, MA, United States
- ¹⁶¹ Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
- ¹⁶² Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
 ¹⁶³ ^(a) INFN Gruppo Collegato di Udine; ^(b) ICTP, Trieste; ^(c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
- ¹⁶⁴ Department of Physics, University of Illinois, Urbana, IL, United States
- ¹⁶⁵ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
- 166 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
- ¹⁶⁷ Department of Physics, University of British Columbia, Vancouver, BC, Canada
- ¹⁶⁸ Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- ¹⁶⁹ Waseda University, Tokyo, Japan
- ¹⁷⁰ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
- ¹⁷¹ Department of Physics, University of Wisconsin, Madison, WI, United States
- ¹⁷² Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
- ¹⁷³ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
- ¹⁷⁴ Department of Physics, Yale University, New Haven, CT, United States
- ¹⁷⁵ Yerevan Physics Institute, Yerevan, Armenia
- ¹⁷⁶ Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
- ¹⁷⁷ Faculty of Science, Hiroshima University, Hiroshima, Japan
- ^a Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP, Lisboa, Portugal.
- h Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
- Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
- Also at TRIUME Vancouver. BC. Canada.
- Also at Department of Physics, California State University, Fresno, CA, United States.
- Also at Novosibirsk State University, Novosibirsk, Russia,
- Also at Fermilab, Batavia, IL, United States.
- Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
- Also at Università di Napoli Parthenope, Napoli, Italy.
- Also at Institute of Particle Physics (IPP), Canada.
- Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
- Also at Louisiana Tech University, Ruston, LA, United States.
- Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
- Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
- Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
- Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
- Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
- Also at Manhattan College, New York, NY, United States.
- Also at School of Physics, Shandong University, Shandong, China.
- Also at CPPM. Aix-Marseille Université and CNRS/IN2P3. Marseille, France,
- Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
- Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
- Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.
- Also at Section de Physique, Université de Genève, Geneva, Switzerland,
- Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
- Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
- aa Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
- ^{ab} Also at California Institute of Technology, Pasadena, CA, United States.
- ас Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
- ad Also at LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France.
- ae Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
- ^{af} Also at Department of Physics, Oxford University, Oxford, United Kingdom.
- ag Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
- ah Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
- Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France,
- Deceased.