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This Letter presents the results of a direct search with the ATLAS detector at the LHC for a Standard 
Model Higgs boson of mass 110 ^ mH ^ 130 GeV produced in association with a W or Z boson and 
decaying to bb¯. Three decay channels are considered: ZH→ ^+^-bb¯, WH→ ^νbb¯ and ZH→ νν¯bb¯, 
where ^ corresponds to an electron or a muon. No evidence for Higgs boson production is observed in 
a dataset of 7 TeV pp collisions corresponding to 4.7 fb-1 of integrated luminosity collected by ATLAS 
in 2011. Exclusion limits on Higgs boson production, at the 95% confidence level, of 2.5to5.5timesthe
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range between 2.5and4.9 for the same mass interval.
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1. Introduction

The search for the Standard Model (SM) Higgs boson [1–3] is 
one of the most important endeavours of the Large Hadron Collider 
(LHC). The H → bb¯ decay corresponds to the highest branching ra
tio for a low-mass Higgs boson in the SM. Observing this decay 
would provide direct sensitivity to the Higgs boson coupling to 
fermions. The results of searches in various channels using data 
corresponding to an integrated luminosity of up to 4.9 fb-1 have 
been reported recently by both the ATLAS and CMS collabora
tions [4,5]. The Higgs boson has been excluded at the 95% con
fidence level (CL) below 114.4 GeV by the LEP experiments [6], in 
the regions 100–106 GeV and 147–179 GeV at the Tevatron p p¯ 
collider [7], and in the regions 112.9–115.5 GeV and 127–600 GeV 
by the LHC experiments [4,5]. This Letter reports on a search for 
the SM Higgs boson performed for the H → bb¯ decay mode, over 
the mass range 110–130 GeV where this decay mode dominates.

Due to the large backgrounds present in the dominant pro
duction process gg → H → bb¯ , the analysis reported here is re
stricted to Higgs boson production in association with a vector 
boson, WH and ZH [8–12], where the vector boson provides an 
additional final state signature, allowing for significant background 
suppression. An additional handle against the backgrounds is pro
vided by exploiting the better signal-over-background level of the 
kinematic regions where the weak bosons have high transverse 
momenta [13]. These channels are also important contributors to 
Higgs boson searches at CMS [14] and the Tevatron [7].
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This Letter presents searches in the ZH→ ^+^-bb¯ , WH → 
^νbb¯ and ZH→ νν¯ bb¯ channels, where ^ is either an electron or a 
muon, including electrons and muons from tau lepton decays. The 
data used were recorded by the ATLAS experiment during the 2011 
LHC run at a centre-of-mass energy of s = 7 TeV and correspond 
to integrated luminosities of 4.6 to 4.7 fb-1 [15,16], depending on 
the analysis channel. The leptonic decay modes of the weak bosons 
are selected to suppress backgrounds containing only jets in the fi
nal state. In the ZH→ νν¯ bb¯ channel, the multijet background is 
suppressed by requiring a large missing transverse energy.

2. The ATLAS detector

The ATLAS detector [17] consists of four main subsystems. An 
inner tracking detector is immersed in the 2 T magnetic field 
produced by a superconducting solenoid. Charged particle posi
tion and momentum measurements are made by silicon detec
tors in the pseudorapidity1 range |η| < 2.5 and by a straw tube 
tracker in the range |η| < 2.0. Calorimeters cover |η| < 4.9 with 
a variety of detector technologies. The liquid-argon electromag
netic calorimeter is divided into barrel (|η| < 1.475) and end
cap (1.375 < |η| < 3.2) sections. The hadronic calorimeters (using 

1 ATLAS uses a right-handed coordinate system with its origin at the nominal in
teraction point (IP) in the centre of the detector and the z -axis coinciding with the 
axis of the beam pipe. The x-axis points from the IP to the centre of the LHC ring, 
and the y -axis points upward. Cylindrical coordinates (r,φ) are used in the trans
verse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity 
is defined in terms of the polar angle θ as η =-ln tan(θ/2). For the purpose of the 
fiducial selection, this is calculated relative to the geometric centre of the detector; 
otherwise, it is relative to the reconstructed primary vertex of each event.
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liquid argon or scintillating tiles as active materials) surround the 
electromagnetic calorimeter and cover |η| < 4.9. The muon spec
trometer measures the deflection of muon tracks in the field of 
three large air-core toroidal magnets, each containing eight super
conducting coils. It is instrumented with separate trigger chambers 
(covering |η| < 2.4) and high-precision tracking chambers (cover
ing |η| < 2.7).

3. Data and Monte Carlo samples

The collision data used in this analysis are selected such that all 
elements of the ATLAS detector were delivering high-quality data. 
In the ZH→ ^+ ^-bb¯ and the WH → ^ν bb¯ analyses, events were 
primarily collected using single-lepton triggers with a transverse 
momentum (pT ) threshold of 20 GeV for electrons, which was 
raised to 22 GeV as the instantaneous luminosity increased, and 
18 GeV for muons. In the ZH→ ^+ ^-bb¯ analysis, these triggers 
were supplemented with a di-electron trigger with a threshold of 
12 GeV. The lepton trigger efficiency is measured using a sample of 
Z → ^+ ^- events. The resulting efficiencies, relative to the offline 
selection, are close to 100% for ZH→ e+e-bb¯ and WH → eνbb¯ . 
The efficiencies are around 95% for the ZH → μ+ μ- bb¯ chan
nel and 90% for the WH → μνbb¯ channel, due to the lower 
angular coverage of the muon trigger chambers with respect to 
the precision tracking chambers. The missing transverse energy 
(ETmiss) trigger used for the ZH→ νν¯ bb¯ channel has a threshold 
of 70 GeV and an efficiency above 50% for E Tmiss above 120 GeV. 
This efficiency exceeds 99% for E Tmiss above 170 GeV. The effi
ciency curve is measured in a sample of W → μν + jet events 
collected using muon triggers, which do not rely on the presence 
of E Tmiss. The Monte Carlo (MC) simulation predicts the trigger ef
ficiency to be 5% higher than that observed in collision data for 
120 GeV ^ ETmiss < 160 GeV and agrees for E Tmiss ^ 160 GeV. A cor
rection factor of 0.95 ± 0.01 is therefore applied to the MC in the 
lower E Tmiss region, and no trigger efficiency correction is applied 
elsewhere.

Due to practical constraints, several MC generators were used 
to simulate signal and background processes. The WH and ZH 
signal processes are modelled using MC events produced by the 
Pythia [18] event generator, interfaced with the MRST modified 
leading-order (LO*) [19] parton distribution functions (PDFs), us
ing the AUET2B tune [20] for the parton shower, hadronization 
and multiple parton interactions. The total cross sections for these 
channels, as well as their corresponding uncertainties, are taken 
from the LHC Higgs Cross Section Working Group report [21]. Dif
ferential next-to-leading order (NLO) electroweak corrections as a 
function of the W or Z transverse momentum have also been 
applied [22,12]. The Higgs boson decay branching ratios are cal
culated with Hdecay [23].

The background processes are modelled with several different 
event generators. The Powheg [24–26] generator, in combination 
with MSTW 2008 NLO PDFs [27] and interfaced with the Pythia 
program for the parton shower and hadronization, is used to sim
ulate W + ^ 1b jet events. The Sherpa generator [28] is used to 
simulate Z + ^ 1b jet and Z + ^ 1c jet events. The Alpgen gen
erator [29] interfaced with the Herwig program [30] is used to 
simulate W + ^ 1c jet, W + ^ 1 light jet (i.e. not a c or b jet) 
and Z + ^ 1 light jet events. The above background simulations 
include γ ∗ production and Z/γ ∗ interference where appropriate. 
The MC@NLO generator [31], using CT10 NLO PDFs [32] and inter
faced to Herwig, is used for the production of top-quarks (single
top and top-quark pair production). The Herwig generator, is used 
to simulate the diboson (ZZ, WZ and WW) samples. The Her
wig generator uses the AUET2 tune [33] for the parton shower 

and hadronization model, relies on MRST LO* PDFs (except for top 
production) and is in all cases interfaced to Jimmy [34] for the 
modelling of multiple parton interactions. The diboson cross sec
tions normalized to NLO QCD computations [35,36]. MC samples 
are passed through the full ATLAS detector simulation [37] based 
on the Geant4 [38] program.

4. Reconstruction and identification of physics objects

Events are required to have at least one reconstructed primary 
vertex with three or more associated tracks with p T > 0.4 GeV in 
the inner detector. If more than one vertex is reconstructed, the 
primary vertex is chosen as the one with the highest sum of the 
squares of the transverse momenta of all its associated tracks.

Electron candidates are reconstructed from energy clusters in 
the electromagnetic calorimeter and are required to pass identifi
cation criteria based on the shower shape. Central electrons must 
have a matching track in the inner detector that is consistent with 
originating from the primary vertex and requirements are placed 
on track quality and track-cluster matching [39]. Further track and 
cluster related identification criteria are applied to electron candi
dates in order to reduce background from jets being misidentified 
as electrons. The criteria are tighter for W decays, where the back
ground is larger. Muons are found offline by searching for tracks 
reconstructed in the muon spectrometer with |η| < 2.7.

The charged leptons that are used to reconstruct the vector bo
son candidate are required to satisfy p T > 20 GeV in the ZH→ 
^+ ^- bb¯ channel, while this cut is increased to p T > 25 GeV in the 
WH→ ^νbb¯ channel in order to be above the trigger threshold, 
and maintain a high trigger efficiency. In both cases, the leptons 
must be central (|η| < 2.47 for electrons and |η| < 2.5 for muons) 
and have a matching track in the inner detector (with a coverage 
up to |η| < 2.5) that is consistent with originating from the pri
mary vertex.

In order to suppress background from semileptonic heavy
flavour hadron decays, the leptons are required to be isolated. 
In the ZH→ ^+ ^- bb¯ and WH → ^ν bb¯ channels the sum of the 
transverse momenta of all charged tracks (other than those of the 
charged leptons) reconstructed in the inner detector within a cone 
of ^R = (^η)2 + (^φ)2 < 0.2 from each charged lepton is re
quired to be less than 10% of the transverse momentum of the 
lepton itself. In the WH → ^ν bb¯ channel, the isolation require
ment is strengthened by requiring in addition that the sum of 
all transverse energy deposits in the calorimeter within a cone of 
^R < 0. 3 from the charged lepton be less than 14% of the trans
verse energy of the lepton itself.

In order to suppress the top-quark background in the ZH→ 
νν¯ bb¯ channel, events containing electrons with |η| < 2.47 and 
p T > 10 GeV, or muons with |η| < 2.7 and pT > 10 GeV are re
moved. Similar requirements are applied on any additional lepton 
reconstructed in the WH → ^ν bb¯ channel, but the minimum lep
ton pT is increased to 20 GeV if the additional lepton has the same 
charge as, or a different flavour than the signal lepton. Events with 
forward electrons [39] (2.47 < |η| < 4.5) with p T > 20 GeV are also 
removed in the WH → ^ν bb¯ channel.

Jets are reconstructed from energy clusters in the calorime
ter using the anti-kt algorithm [40] with a radius parameter of 
0.4. Jet energies are calibrated using pT - and η-dependent correc
tion factors based on MC simulation and validated with data [41]. 
A further correction is applied when calculating the di-jet invari
ant mass, as described in Section 5 below. The contribution from 
jets originating from other collisions in the same bunch crossing 
is reduced by requiring that at least 75% of the summed trans
verse momentum of inner detector tracks (with p T > 0.4 GeV) 
associated with the jet are compatible with originating from the 
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primary vertex. Furthermore, a jet is required to have no identi
fied electron within ^ R ^ 0.4. Only jets with pT > 25 GeV and 
within the acceptance of the inner detector (|η| < 2.5) are used to 
reconstruct Higgs boson candidates. Events containing additional 
jets are rejected in the WH → ^ bb¯ analysis, to suppress back
grounds characterized by additional hadronic activity. To do this, 
jets are counted using the following criteria: pT > 20 GeV and 
|η| <4.5.

Jets which originate from b quarks can be distinguished from 
other jets by the relatively long lifetime of hadrons containing b 
quarks. Such jets are primarily identified (“b-tagged”) by recon
structing one or more secondary decay vertices from tracks within 
the jet, using either an inclusive vertex reconstruction algorithm or 
acascadeb → c -hadron decay chain vertex fit, or by combining the 
distances of closest approach to the primary event vertex (impact 
parameters) of tracks in the jet [42–45]. The information from the 
vertex and impact parameter based algorithms is combined into a 
single discriminant w by using an artificial neural network, which 
is trained based on a set of samples of simulated events, such that 
a jet with higher w is more likely to be a b jet. A selection cut 
on w is applied, resulting in an efficiency of about 70% for identi
fying true b jets, of about 20% for c jets and about 0.8% for light 
jets, as evaluated in simulated tt¯ events. The b -tagging efficiency 
and rejection factors in the simulation are corrected to the respec
tive measurements in data by the use of appropriate scale factors. 
These correspond to corrections of around 5 to 15% for b jets, 20% 
for c jets, and around 50% for light jets.

The E Tmiss magnitude and direction are measured from the vec
tor sum of the transverse momentum vectors associated with 
clusters of energy reconstructed in the calorimeters with |η| < 
4.9 [46]. A correction is applied to the energy of those clusters that 
are associated with a reconstructed physical object (jet, electron, 
τ -lepton, photon). Reconstructed muons are also included in the 
sum, and any calorimeter energy deposits associated with them 
are excluded. To supplement the calorimeter-based definition of 
ETmiss in the ZH→ ¯ bb¯ channel, the track-based missing trans
verse momentum, pTmiss , is calculated from the vector sum of the 
transverse momenta of inner detector tracks associated with the 
primary vertex [47].

5. Event selection

Events in the ZH→ ^+ ^-bb¯ channel are required to contain 
exactly two same-flavour leptons. The two leptons must be op
positely charged in the case of muons. This is not required for 
electrons since energy losses from showering in material in the 
inner detector lead to a higher charge misidentification probabil
ity. The invariant mass of the lepton pair must be in the range 
83 GeV < m^^ < 99 GeV. A requirement of E Tmiss < 50 GeV reduces 
the background from top-quark production.

Events in the WH → ^ bb¯ channel are required to contain a 
single charged lepton and E Tmiss > 25 GeV. A requirement on the 
transverse mass2 of mT > 40 GeV is imposed to suppress the mul
tijet background.

The ZH→ ¯ bb¯ selection requires ETmiss > 120 GeV. Require
ments of pTmiss > 30 GeV and on the difference in azimuthal angle 
between the directions of ETmiss and pTmiss, ^φ(ETmiss, pTmiss)<π /2, 
are imposed to suppress events with poorly measured E Tmiss. These 
help to suppress the multijet background, which is dominated by 

2 The transverse mass (mT ) is defined from the transverse momenta and the 
azimuthal angles of the charged lepton (pT̂ and φ^ ) and neutrino (p T and φ ): 

mT= 2pT̂pT (1 - cos(φ^ - φ )), where pT = ETmiss.

one or more jets being mismeasured by the calorimeter. A cut on 
the difference in azimuthal angle between E Tmiss and the nearest 
jet min(^φ(ETmiss, jet)) > 1.8 is applied to further reduce the mul
tijet background.

The transverse momentum of the vector boson, p TV , is recon
structed from the two leptons in the ZH→ ^+^-bb¯ channel, from 
the lepton and E Tmiss in the WH → ^ bb¯ channel and from E Tmiss 
in the ZH→ ¯bb¯ channel.

Events in all channels are required to contain exactly two b - 
tagged jets, of which one must have pT > 45 GeV and the other 
pT > 25 GeV. If p TV is less than 200 GeV the two b-tagged jets 
are required to have a separation of  ̂R > 0.7, to reduce W + jet 
and Z + jet backgrounds. Additionally, in the ZH→ ¯ bb¯ chan
nel a cut on the separation between the two jets of ^ R < 2.0 
(^ R < 1.7) for pTV < 160 GeV (pTV > 160 GeV) is applied to reduce 
the multijet background. Events in the ZH→^+^-bb¯ channel may 
contain additional non-b-tagged jets, while in the WH → ^ bb¯ 
and ZH→ ¯bb¯ channels, events with additional jets are rejected 
to further suppress top-quark background. In the WH → ^ bb¯ 
analysis, where the top-quark background is dominant, events con
taining additional jets with |η| < 4.5 and pT > 20 GeV are rejected, 
while in the ZH→ ¯bb¯ channel the selection is restricted to jets 
with |η| < 2.5 and p T > 25 GeV.

In the ZH→ ¯ bb¯ analysis, further cuts are applied on the 
azimuthal angle between E Tmiss and the reconstructed transverse 
momentum of the bb¯ system, ^φ(bb¯ , E Tmiss ), to further reject mul
tijet background. The ZH→ ¯ bb¯ signal, where the Higgs and Z 
bosons recoil against each other, is characterized by large values of 
this angle. The cuts of ^φ (bb¯, ETmiss) > 2.7 for 120< pTV < 160 GeV 
and ^φ(bb¯, ETmiss) > 2.9 for pTV ^160 GeV were established from 
MC-based optimization studies.

Asearchfor H → bb¯ decays is performed by looking for an 
excess of events above the background expectation in the invari
ant mass distribution of the b-jet pair (mbb¯ ). The value of the 
reconstructed mbb¯ is scaled by a factor of 1.05, obtained from 
MC-based studies, to account on average for e.g. losses due to 
soft muons and neutrinos from b and c hadron decays. To in
crease the sensitivity of the search, this distribution is examined 
in bins of p TV . As the expected signal is characterized by a rela
tively hard pTV spectrum, the signal to background ratio increases 
with pTV.TheZH→^+^-bb¯ and WH→^ bb¯ channels are exam
ined in four bins of the transverse momentum of the reconstructed 
W or Z boson, given by: pTV < 50 GeV, 50 ^ p TV < 100 GeV, 
100 ^ pTV < 200 GeV and pTV ^ 200 GeV. In the ZH→ ¯ bb¯ search 
three bins are defined: 120 < p TV < 160 GeV, 160 ^ pTV < 200 GeV 
and p TV ^ 200 GeV. The expected signal to background ratios for 
a Higgs boson signal with m H = 120 GeV vary from about 1% in 
the lowest p TV bins to about 10–15% in the highest p TV bins. For 
this Higgs boson mass, 5.0% and 2.4% of the ZH→ ^+ ^- bb¯ and 
WH→ ^ bb¯ events are expected to pass the respective analysis 
selections, with negligible contributions from other final states. On 
the other hand, the ZH→ ¯ bb¯ analysis has a non-negligible con
tribution from WH → ^ bb¯:2.1%ofthe ZH→ ¯ bb¯ signal and 
0.2% of the WH → ^ bb¯ signal are expected to pass the analysis 
selection.

6. Background estimation

Backgrounds are estimated using a combination of data-driven 
and MC-based techniques. Significant sources of background in
clude top, W + jet, Z + jet, diboson and multijet production. The 
dominant background in the ZH→ ^+ ^-bb¯ channel is Z + jet 
production. In the WH → ^ bb¯ channel both the top-quark and
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Fig. 1. (a) The dilepton invariant mass distribution in the ZH → ^+ ^-bb¯ channel, (b) the missing transverse energy without the mT requirement in the WH → ^ν bb¯ 
channel, (c) the azimuthal angle separation between ETmiss and pTmiss and (d) the minimum azimuthal separation between ETmiss and any jet in the ZH→ νν¯ bb¯ channel. All 
distributions are shown for events containing two b -tagged jets. The various Monte Carlo background distributions are normalized to data sidebands and control distributions 
and the multijet background is entirely estimated from data as described in the text. The vertical dashed lines correspond to the values of the cuts applied in each analysis, 
and the horizontal arrows indicate the events selected by each cut.

W + jet production are important. In the ZH → ν ν ̄  bb¯ channel, 
there is a significant contribution from top, W +jet, Z +jet and di
boson production. Multijet production is a negligible background, 
except for the WH → ^ν bb¯ channel.

The flavour composition of the W + jet and Z +jet backgrounds 
is determined partially from data.

The shapes of the mbb¯ distribution of the top, W + jet and Z + 
jet backgrounds are taken from MC simulation, with the respective 
normalizations being determined from data. The ratio of single-top 
to top-pair production is taken from NLO QCD computations [48].

The flavour composition of the W + jet and Z + jet samples 
is determined using templates produced from three exclusive MC 
samples containing at least one true b jet, at least one true c jet, 
or only light jets. The relative normalizations of the three com
ponents are adjusted by fitting the distribution of the b-tagging 
discriminating variable w found in MC simulation to the distri
bution found in control data samples dominated by W + jet and 
Z + jet events. For the Z + jet sample this is a Z reconstructed 
from 2 electrons or muons and 2 jets. The W + jet sample is a W 
and 2 jets with an additional cut on the invariant mass of the 2 
jets of less than 80 GeV to reduce top background. Once the rela
tive normalizations of the flavour components have been fixed, the 
overall normalizations are determined from data in a separate step.

Sidebands in the mbb¯ distribution, defined by selecting events 
with mbb¯ < 80 GeV or 150 GeV < mbb¯ < 250 GeV along with the 
standard event selection, are used to normalize the Z +jet, W + jet 
and top backgrounds.

In addition, two control regions which are dominated by top
quark production are used to further constrain the normaliza
tion of the top background. The ZH top control region selects 
events from the sidebands of the Z boson mass peak: m^^ ∈ 
[60 GeV,76 GeV]∪[106 GeV,150 GeV] with ETmiss > 50 GeV, while 
the WH top control region selects W + 3 jet events with two b - 
tagged jets.

The normalizations of the Z + jet, W + jet and top-quark back
grounds are determined in the ZH→ ^+ ^-bb¯ or WH → ^ν bb¯ 
channels, by simultaneous fits to the sidebands of the mbb¯ distri
butions, and either the ZH or WH top control regions defined 
above. In the WH sideband fit, the normalizations of the top
quark, the W + 2 jet and the W + 3 jet distributions are varied. 
In the ZH sideband fit, the normalizations of the top-quark and 
Z + jet backgrounds are left floating. The normalizations of the re
maining sub-leading backgrounds are left fixed in the fit at their 
expectation values from Monte Carlo predictions, except for mul
tijet production which is estimated from data. The relative data 
to MC normalization factors for top-quark background agree with 
unity to within 20% in both the ZH→ ^+ ^- bb¯ or WH → ^ν bb¯ 
sideband fits. The normalization of the top-quark background in 
the ZH→ ^+ ^-bb¯ signal region is based on the ZH sideband 
and control region fit result. The normalization of the top-quark 
background in the WH→ ^νbb¯ and ZH→ νν¯ bb¯ signal regions is 
based on the WH sideband and control region fit result. Monte 
Carlo simulation is used to estimate the shape of the Z + jet 
(W + jet) background, while its normalization is determined in the
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Fig. 2. The invariant mass mbb¯ for ZH→ ^+^-bb¯ shown for the different pTZ bins: (a) 0< pTZ <50 GeV, (b) 50^ pTZ < 100 GeV, (c) 100^ pTZ <200 GeV, (d) pTZ ^200 GeV 
and (e) for the combination of all pTZ bins. The signal distributions are shown for m H = 120 GeV and are enhanced by a factor of five for visibility. The shaded area indicates 
the total uncertainty on the background prediction. For better visibility, the signal histogram is stacked onto the total background, unlike the various background components 
which are simply overlaid in the distribution.

ZH→ ^+^-bb¯ (WH→ ^νbb¯) sidebands to the signal regions of all 
three channels. The MC to data normalization factors for W + jet 
and Z + jet range from 0.8 to 2.4 depending on jet flavour and mul
tiplicity. The normalization factors are applied to the MC in several 
additional control samples with selections to enhance the Z , W or 
top-quark contributions. After these corrections are applied, good 
agreement is found with the data in both shape and normalization 
within the statistical and systematic uncertainties.

The backgrounds from multijet events are estimated entirely 
from collision data. For the ZH→ ^+ ^- bb¯ channel, the multijet 
background normalization is determined from the sidebands of the 
m^^ distribution in events containing at least two jets, and is found 

to contribute less than 1% and is therefore neglected. Multijet E Tmiss 
templates for the WH → ^ν bb¯ channel are obtained by selecting 
events with lepton candidates failing the charged lepton analysis 
selection, but satisfying looser lepton selections. The normalization 
is determined by fitting these templates to the E Tmiss distribution. 
A 30% uncertainty is determined from a comparison between the 
normalized templates and the data in a multijet-dominated control 
region, defined by requiring E Tmiss < 25 GeV and mT < 40 GeV.

In the ZH→ νν¯ bb¯ channel, the multijet background is esti
mated using three control regions defined using two variables, 
^φ(ETmiss, pTmiss) and min(^φ(ETmiss, jets)), which showed no ap
preciable correlation. The ratio of events with ^φ(ETmiss, jet) > 1.8
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Fig. 3. The invariant mass mbb¯ for WH → ^νbb¯ shown for the different p TW bins: (a) 0 < pTW < 50 GeV, (b) 50 ^ pTW < 100 GeV, (c) 100 ^ p TW < 200 GeV, (d) pTW ^ 200 GeV 
and (e) for the combination of all pTW bins. The signal distributions are shown for m H = 120 GeV and are enhanced by a factor of five for visibility. The shaded area indicates 
the total uncertainty on the background prediction. For better visibility, the signal histogram is stacked onto the total background, unlike the various background components 
which are simply overlaid in the distribution.

to those with min(^φ(ETmiss, jet)) < 1.8 is determined for events 
with ^φ(ETmiss, pTmiss) >π /2. This ratio is then applied to events 
with ^φ(E Tmiss, pTmiss) <π /2 to estimate the multijet background 
in the signal region. Upper estimates of the multijet contamination 
in the signal region are found to be 0.85, 0.04 and 0.26 events for 
120< pTV <160 GeV, 160^ pTV <200 GeV and pTV ^200 GeV, re
spectively. The accuracy of the estimate is limited by the number 
of events in the control regions.

The distribution of m^^ in the ZH→ ^+^-bb¯ channel is shown 
in Fig. 1(a) after all analysis requirements have been applied (ex
cept for the di-lepton mass cut), including the requirement of 
two b -tagged jets. The signal region is seen to be dominated 

by Z + jet with smaller contributions from top-quark and dibo
son production. The E Tmiss distribution in the WH → ^νbb¯ chan
nel is shown in Fig. 1(b) after all requirements, except for the 
mT and E Tmiss cuts. The signal region is seen to have large con
tributions from top-quark production and W + jet, with smaller 
contributions from the multijet background, Z + jet and dibo
son production. Figs. 1(c) and 1(d) show the ^φ(ETmiss, pTmiss) and 
min(^φ(ETmiss, jet)) distributions for the ZH→ νν¯bb¯ channel, af
ter all requirements except for those applied to these variables. 
The multijet background shape in Fig. 1(c) is obtained from data 
events with min(^φ(ETmiss, jet)) < 0.4, after subtracting the re
maining backgrounds, and normalized to the data in the region
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Fig. 4. The invariant mass mbb¯ for ZH→ νν¯ bb¯ shown for the different pTZ bins: (a) 120 < pTZ < 160 GeV, (b) 160 ^ pTZ < 200 GeV, (c) p TZ ^ 200 GeV and (d) for the 
combination of all p TZ bins. The signal distributions are shown for mH = 120 GeV and are enhanced by a factor of five for visibility. The shaded area indicates the total 
uncertainty on the background prediction. For better visibility, the signal histogram is stacked onto the total background, unlike the various background components which 
are simply overlaid in the distribution.

defined by ^φ(ETmiss, pTmiss)>π /2. In Fig. 1(d), the multijet shape 
is obtained from events with ^φ(ETmiss, pTmiss)>π /2 and normal
ized to data events with min(^φ(ETmiss,jet))<0.4.

It can be seen that the requirements on these variables effec
tively reduce the multijet background. The signal region has large 
contributions from Z + jet and top, with smaller contributions from 
the W + jet, diboson production and multijet backgrounds. For all 
distributions, the data are reasonably well described by MC sim
ulation and the multijet background, which was determined from 
data.

7. Systematic uncertainties

The sources of systematic uncertainty considered are those af
fecting the various efficiencies (reconstruction, identification, se
lection), as well as the momentum or energy of physics objects, 
the normalization and shape of the mbb¯ distribution of the signal 
and background processes, and the integrated luminosity. Among 
these, the leading instrumental uncertainties for all channels are 
related to the uncertainty on the b-tagging efficiency, which varies 
between 5% and 19% depending on the b-tagged jet pT [44], and 
the jet energy scale (JES) for b-tagged jets which varies between 
3% and 14% depending on the jet p T and η [49]. The pT depen
dence of the b-tagging efficiency has been considered, based on 
the full covariance matrix of the measured b -tagging efficiency in 
jet p T intervals [44]. The uncertainty on the flavour composition 
of the Z + jet and W + jet background is estimated by varying the 

relative fraction of Z + c -jets and W + c -jets derived from the fit 
described in Section 6 by 30%.

The uncertainties on the SM Higgs boson inclusive cross sec
tions are evaluated by varying the factorization and renormaliza
tion scales, and by taking into account the uncertainties on the 
PDFs, on the strong coupling constant and on the H → bb¯ branch
ing fraction. These uncertainties are estimated to be ≈ 4% for both 
WH and ZH production and are treated according to the rec
ommendations given in Refs. [21,50,51]. Additional uncertainties 
are considered, as a function of the transverse momentum of the 
W and Z bosons, which range from ≈ 4% to ≈ 8%, depending on 
channel and on the pWT or p TZ interval. These correspond to the dif
ference between the inclusive and differential electroweak correc
tions [22,12], and to differences in acceptance between the Pythia 
and Powheg + Herwig generators. The latter arise mainly from 
the perturbative QCD model uncertainty caused by rejecting events 
with three or more jets in the WH→ ^νbb¯ and ZH→ νν¯bb¯ anal
yses.

The uncertainties on the normalizations of the Z + jet, W + jet 
and top-quark backgrounds are taken from the statistical uncer
tainties on the fits to control regions and mbb¯ sidebands (see Sec
tion 6) and from variations of the nominal fit result induced by 
the remaining sources of systematic uncertainty. The resulting nor
malization uncertainties are applied to the ZH→ νν¯ bb¯ channel. 
A correlation between the normalizations of the W + jet and top
quark backgrounds is introduced by the simultaneous fit to the 
mbb¯ sidebands and the WH top control region in the WH → ^ν bb¯ 
channel. This correlation is taken into account when transferring
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Table 1
Number of data, simulated signal, and estimated background events in each bin of pTV for the WH→ ^νbb¯, ZH→ ^+^-bb¯ and ZH→ νν¯bb¯ channels. The signal corresponds 
to a Higgs boson mass of mH = 120 GeV. The number of events is shown for the full signal region (mbb¯ ∈[80 GeV, 150 GeV] ). Background sources found to be negligible are 
signalled with “–”. Relative systematic uncertainties on the hypothesized signal and estimated total background are shown.

bin ZH→ ^+^-bb¯ 
pTV [GeV]

WH £vbb
pTV [GeV]

ZH vi?bb
pTV [GeV]

0-50 50-100 100-200 >200 0-50 50-100 100-200 >200 120-160 160-200 >200

Number of events for 80 < mbb < 150 GeV
Signal 1.3 ± 0.1 1.8± 0.2 1.6± 0.2 0.4± 0.1 5.0 ± 0.6
Top 17.4 24.1 7.3 0.2 229.9
W + jets - - - - 285.9
Z + jets 123.2 119.9 55.9 6.1 11.1
Diboson 7.2 5.6 3.6 0.7 12.6
Multijet - - - - 55.5
Total BG 148 ± 10 150±6 67± 4 6.9± 1.2 596±23

Data 141 163 61 13 614

Components of the relative systematic uncertainties of the background [%]
b-tag eff 1.4 1.0 0.3 4.8 0.9
BG norm 3.6 3.4 3.6 3.8 2.7
Jets/ETmiss 2.1 1.2 2.7 5.1 1.5
Leptons 0.2 0.3 1.1 3.4 0.1
Luminosity 0.2 0.1 0.2 0.4 0.1
Pileup 0.9 1.6 0.5 1.3 0.1
Theory 5.2 1.3 4.7 14.9 2.2

Total BG 6.9 4.3 6.6 17.3 3.9

Components of the relative systematic uncertainties of the signal [%]
b-tag eff 6.4 6.4 7.0 13.7 6.4
Jets/ETmiss 4.9 3.2 3.5 5.5 5.8
Leptons 0.9 1.2 1.7 2.6 3.0
Luminosity 3.9 3.9 3.9 3.9 3.9
Pileup 0.5 1.1 1.8 2.2 1.2
Theory 4.6 3.6 3.3 5.3 4.4

Total signal 10.1 9.1 9.6 16.5 11.4

5.1 ± 0.6 3.7 ± 0.4 1.2 ± 0.2 2.0 ± 0.2 1.2 ± 0.1 1.5 ± 0.2
342.7 201.3 8.2 35.2 8.3 4.1
193.6 85.8 17.5 13.2 7.8 4.8
10.5 2.8 0.0 31.5 11.9 7.1
11.9 7.8 1.4 4.6 4.3 3.6
38.2 3.6 0.2 - - -
598± 16 302 ± 10 27 ± 5 85± 8 32± 3 20± 3

588 271 15 105 22 25

1.3 0.9 7.2 4.1 4.2 5.5
1.8 1.8 4.5 2.7 2.2 3.2
1.4 2.1 9.5 7.7 8.2 12.1
0.2 0.2 1.7 0.0 0.0 0.0
0.1 0.1 0.2 0.2 0.5 0.7
0.2 0.8 0.5 1.6 2.5 3.0
0.3 1.6 14.8 2.9 4.0 7.7

2.7 3.4 19.6 9.7 10.6 16.0

6.4 7.0 12.1 7.1 8.2 9.2
4.6 3.7 3.3 7.3 5.1 6.3
3.0 3.0 3.2 0.0 0.0 0.0
3.9 3.9 3.9 3.9 3.9 3.9
0.3 0.3 1.6 0.2 0.2 0.0
4.7 5.0 8.0 3.3 3.3 5.6

10.8 11.0 16.0 11.8 11.4 13.4

Table 2
The observed and expected 95% CL exclusion limits on the Higgs boson cross section for each channel, expressed in multiples of the SM cross section as a function of the 
hypothesized Higgs boson mass. The last two columns show the combined exclusion limits for the three channels.

Mass [GeV] ZH→ ^+^-bb¯ WH→ ^vbb¯ ZH→ vv¯bb¯ Combined
Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp.

110 7.7 6.0 3.3 4.2 3.7 4.0 2.5 2.5
115 7.7 6.2 4.0 4.9 3.6 4.2 2.6 2.7
120 10.4 8.0 4.9 5.9 4.8 5.0 3.4 3.3
125 11.6 9.1 5.5 7.5 7.3 6.0 4.6 4.0
130 14. 4 11.6 5.9 9.2 10.3 7.6 5.5 4.9

to the ZH→ νν¯ bb¯ channel the uncertainties on the normalization 
of these backgrounds.

The background normalization corrections are determined in 
an inclusive way, using all selected events in the ZH→ ^+ ^-bb¯ 
and WH → ^νbb¯ channels, and the shape of the mbb¯ and pTV 
distributions are in each case taken from the MC simulation. 
Therefore, a possible mismodelling of the underlying mbb¯ and p TV 
distributions, as predicted by the MC generators, is also consid
ered. An uncertainty due to the shape of the p TZ distribution 
for the Z + jet background in the ZH→ ^+ ^-bb¯ channel is es
timated by finding variations of the MC pTZ distribution in the 
mbb¯ sidebands which cover any differences between MC simula
tion and data. The mbb¯ distribution of simulated Z + jet events is 
then reweighted according to these variations, to estimate the ef
fect on the final results. An uncertainty due to the modelling of 
W + jet in the WH → ^ν bb¯ channel is estimated by reweighting 
the p TW and mbb¯ distributions of simulated W + jet events by vari
ations motivated by a comparison of different theoretical models 
(Powheg + Pythia, Powheg + Herwig, aMC@NLO + Herwig [52] 
and Alpgen + Herwig). Theoretical uncertainties of 11% and 15% 

are applied to the normalization of the diboson samples and the 
single-top sample, respectively. The normalization uncertainty for 
the multijet background is taken to be 30% for WH → ^νbb¯ ,as 
described in Section 6. For ZH→ ^+^-bb¯ and ZH→ νν¯ bb¯ this 
background is found to be negligible. The uncertainty in the in
tegrated luminosity has been estimated to be 3.9% [15,16]. This 
uncertainty is applied only to the simulated signal and to the di
boson background, which are not normalized to the data. Where it 
is applied, this systematic uncertainty is assumed to be correlated 
among the different samples.

8. Results

The analysis is performed for five Higgs boson mass hypothe
ses between 110 GeV and 130 GeV and the signal hypothesis is 
tested based on a fit to the invariant mass distribution of the b - 
jet pair, mbb¯, in the signal region (80 < mbb¯ < 150 GeV). The mbb¯ 
distribution is shown in Figs. 2–4 for each channel, separately for 
different ranges of pTV . The data distributions are overlaid with the 
expectations from the MC simulation and data-driven backgrounds.
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Fig. 5. Expected (dashed) and observed (solid line) exclusion limits for (a) the ZH→ ^+^-bb¯, (b) WH → ^νbb¯ and (c) ZH→ νν¯bb¯ channels expressed as the ratio to the 
SM Higgs boson cross section, using the profile-likelihood method with CLs . The dark (green in the web version) and light (yellow in the web version) areas represent the 
±1σ and ±2σ ranges of the expectation in the absence of a signal. (d) shows the 95% CL exclusion limits obtained from the combination of the three channels.

Within the experimental uncertainty, the data show no excess over 
the background expectation. The signal shape is dominated by the 
experimental resolution on the jet energy measurement. The mbb¯ 
resolution for signal events is about 16 GeV on average.

The number of events in the signal region selected in data is 
shown in Table 1 for each channel. The expected number of sig
nal events for mH = 120 GeV is also shown, along with the cor
responding estimated number of background events. Also shown 
are the relative systematic uncertainties on the signal and total 
background yields arising from the following sources: b-tagging ef
ficiency and mis-tag rate, background normalization, jet and E Tmiss 
uncertainties, lepton reconstruction and identification, integrated 
luminosity, overlaid collision events (pileup), and uncertainties on 
the MC predictions (theory). Uncertainties on the shape of the mbb¯ 
distribution are also taken into account in the fit.

For each Higgs boson mass hypothesis, a one-sided upper limit 
is placed on the ratio of the Higgs boson production cross sec
tion to its SM value, μ = σ /σSM, at the 95% CL. The exclusion 
limits are derived from the CLs [53] treatment of the p -values 
computed with the profile likelihood ratio test statistic [54], as 
implemented in the RooStats program [55], using the binned distri
bution of mbb¯ . The systematic uncertainties are treated by making 
the expected mbb¯ templates and sample normalizations dependent 
on additional fit parameters (“nuisance parameters”), one for each 
systematic uncertainty, which are then constrained with Gaussian 

terms within their expected uncertainties. The dependence of the 
mbb¯ shapes on the nuisance parameters is described with bin-by- 
bin linear interpolation between the corresponding +1σ or -1σ 
variations and the nominal case.

The resulting exclusion limits are listed in Table 2 for each 
channel and for the statistical combination of the three channels. 
They are also plotted in Fig. 5. The limits are expressed as the 
multiple of the SM Higgs boson production cross section which 
is excluded at 95% CL for each value of the Higgs boson mass. 
The observed upper limits range between 7.7 and 14.4 for the 
ZH→ ^+^-bb¯ channel, between 3.3 and 5.9 for the W H → ^νbb¯ 
channel and between 3.7 and 10.3 for the ZH→ ν ν¯ bb¯ channel, 
depending on the Higgs boson mass. The combined exclusion limit 
for the three channels together ranges from 2.5 to 5.5 times the 
SM cross section, depending on the Higgs boson mass. The limits 
include systematic uncertainties, the largest of which arise from 
the top, Z + jet, and W + jet background estimates, the b-tagging 
efficiency, and the jet energy scale. The systematic uncertainties 
weaken the limits by 25–40% depending on the search channel.

9. Summary

This Letter presents the results of a direct search by ATLAS for 
the SM Higgs boson produced in association with a W or Z bo
son. The following decay channels are considered: ZH→ ^+^-bb¯,
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W H → ^νbb¯ and ZH→νν¯bb¯, where ^ corresponds to an electron 
or a muon. The mass range 110 < mH < 130 GeV is examined for 
five Higgs boson mass hypotheses separated by 5 GeV steps. The 
three channels use datasets corresponding to 4.6–4.7 fb-1 of pp 
collisions at s = 7 TeV. No significant excess of events above the 
estimated backgrounds is observed. Upper limits on Higgs boson 
production, at the 95% CL, of 2.5to5.5 times the SM cross sec
tion are obtained in the mass range 110–130 GeV. The expected 
exclusion limits range between 2.5 and 4.9 for the same mass in
terval.
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