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A search for the electroweak pair production of charged sleptons and weak gauginos decaying into 
final states with two leptons is performed using 4.7 fb-1 of proton–proton collision data at s = 
7 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excesses are 
observed with respect to the prediction from Standard Model processes. In the scenario of direct slepton 
production, if the sleptons decay directly into the lightest neutralino, left-handed slepton masses between 
85 and 195 GeV are excluded at 95% confidence level for a 20 GeV neutralino. Chargino masses between 
110 and 340 GeV are excluded in the scenario of direct production of wino-like chargino pairs decaying 
into the lightest neutralino via an intermediate on-shell charged slepton for a 10 GeV neutralino. 
The results are also interpreted in the framework of the phenomenological minimal supersymmetric 
Standard Model.

© 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

Weak scale Supersymmetry (SUSY) [1–9] is an extension to 
the Standard Model (SM). It postulates for each known boson or 
fermion the existence of a particle whose spin differs by one-half 
unit from the SM partner. The introduction of these new parti
cles provides solutions to the hierarchy problem [10–13] and, if 
R-parity is conserved [14–18], a dark matter candidate in the form 
of the lightest supersymmetric particle (LSP). R-parity conservation 
is assumed in this Letter, hence SUSY particles are always pro
duced in pairs. In a large fraction of the SUSY parameter space 
the LSP is the weakly interacting lightest neutralino, χ˜10 .

Gluinos (g˜ ) and squarks (q˜ ) are the SUSY partners of gluons and 
quarks. Charginos (χ˜i±, i = 1, 2) and neutralinos (χ˜ 0j , j = 1, 2, 3, 4) 
are the mass eigenstates formed from the linear superposition of 
the SUSY partners of the Higgses and electroweak gauge bosons: 
higgsinos, winos and the bino (collectively, gauginos). The SUSY 
partners of the charged leptons are the selectron, smuon and stau, 
collectively referred to as charged sleptons (^˜± ). The SUSY part
ners of the standard model left-handed leptons are referred to 
as left-handed sleptons. If the masses of the gluinos and squarks 
are greater than a few TeV and the weak gauginos and sleptons 
have masses of a few hundreds of GeV, the direct production of 
weak gauginos and sleptons may dominate the production of SUSY 
particles at the Large Hadron Collider (LHC). Such a scenario is
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possible in the general framework of the phenomenological mini
mal supersymmetric SM (pMSSM) [19]. Naturalness suggests that 
third generation sparticles, charginos and neutralinos should have 
masses of a few hundreds of GeV [20,21]. Light sleptons are ex
pected in gauge mediated [22] and anomaly mediated [23,24] SUSY 
breaking scenarios. Light sleptons could also play a role in helping 
SUSY to provide a relic dark matter density consistent with obser
vations [25,26].

This Letter presents the first search for direct left-handed slep- 
ton pair production at the LHC, and a dedicated search for direct 
chargino pair production in final states with two leptons (elec
trons, e , or muons, μ). Searches for the general pair production 
of gauginos decaying into two-lepton final states are also pre
sented. The analysis presented in this Letter is not sensitive to 
right-handed slepton pair production which has much lower cross
section.

1.1. Direct slepton and chargino pair production

Sleptons can be produced directly in a process similar to Drell– 
Yan production [27]. The search in this Letter targets the direct pair 
production of left-handed charged sleptons, where each charged 
slepton ^˜ (selectron or smuon) decays through ^˜± → ^± χ  ̃10, yield
ing a final state with two same flavour (SF) charged leptons. 
The undetected χ  ̃10 gives rise to large missing transverse momen
tum in the event. Previous experimental searches for direct slepton 
production [28] assumed gaugino unification. In the present work 
this assumption is dropped, thereby removing the lower limit on 
the mass of the χ  ̃10. Direct chargino pair production, where each 0370-2693/ © 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license. http://dx.doi.org/10.1016/j.physletb.2012.11.058
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chargino decays through χ  ̃1± → ^± νχ˜ 10 leads to a signature simi
lar to that of slepton pair production. The analysis presented also 
targets this production channel and subsequent decay, setting lim
its on the chargino mass, without the assumptions on the mass of 
the χ  ̃20 usually present in trilepton searches.

1.2. Other weak gaugino production

In the general framework of the pMSSM, several weak gaug- 
ino production channels can lead to final states with two leptons. 
Production modes such as χ˜20χ˜i±=1,2 or χ˜20χ˜ j0=2,3,4, with the sub
sequent decays χ˜20 → ^±^∓χ˜10 and χ˜j0,χ˜i± → qq¯^χ˜10 are addressed 
by a signal region containing two leptons and two jets. In order 
to complement existing and future trilepton searches a dedicated 
signal region with two same charge leptons is designed to be sen
sitive to trilepton final states from χ˜ 20 χ  ̃1± → (^∓ ^∓ χ  ̃10 ) + (^∓ νχ  ̃10 ) 
where one lepton is not identified. All final states yield missing 
transverse energy due to the presence of two χ˜10 's.

Model-independent visible cross-section upper limits are ob
tained in each signal region to address the large variety of possible 
production and decay modes in the gaugino sector. The results are 
also interpreted in the framework of the pMSSM. This search is 
not sensitive to weak gaugino decays via on-shell Z bosons. Previ
ous limits on weak chargino and neutralino production have been 
placed at LEP [28], the Tevatron [29,30] and at the LHC [31,32].

2. The ATLAS detector

The ATLAS experiment [33] is a multi-purpose particle physics 
detector with a forward–backward symmetric cylindrical geometry 
and nearly 4π coverage in solid angle.1 It contains four supercon
ducting magnet systems, which include a thin solenoid surround
ing the inner tracking detector (ID), and barrel and end-cap toroids 
supporting a muon spectrometer. The ID occupies the pseudorapid
ity region |η| < 2.5 and consists of a silicon pixel detector, a silicon 
microstrip detector (SCT), and a transition radiation tracker (TRT). 
In the pseudorapidity region |η| < 3.2, high-granularity liquid
argon (LAr) electromagnetic (EM) sampling calorimeters are used. 
An iron-scintillator tile calorimeter provides coverage for hadron 
detection over |η| < 1.7. The end-cap and forward regions, span
ning 1.5 < |η| < 4.9, are instrumented with LAr calorimeters for 
both EM and hadronic measurements. The muon spectrometer sur
rounds the calorimeters and consists of a system of precision track
ing chambers (|η| < 2.7), and detectors for triggering (|η| < 2.4).

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z -axis along the beam pipe. Cylindrical coordinates (r ,φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity η is defined in terms of the polar angle θ by η =-ln tan(θ/2).

3. Simulated samples

3.1. Standard Model production

Monte Carlo (MC) simulated event samples are used to de
velop and validate the analysis procedure and to evaluate the SM 
backgrounds in the signal region. The dominant backgrounds in
clude fully-leptonic tt¯, Z/γ∗ + jets, single top and dibosons (WW, 
WZ and ZZ). Production of top-quark pairs is simulated with 
POWHEG [34], using a top-quark mass of 172.5 GeV. Samples of 
W to l ν and Z /γ ∗ to ll, produced with accompanying jets (of both 
light and heavy flavour), are obtained with ALPGEN [35]. Diboson 
(WW, WZ, ZZ) production is simulated with SHERPA [36] in sig
nal regions requiring jets and with HERWIG [37] elsewhere. Single 

top production is modelled with MC@NLO [38–40]. Fragmentation 
and hadronisation for the ALPGEN and MC@NLO samples are per
formed with HERWIG, using JIMMY [41] for the underlying event, 
and with PYTHIA [42] for the POWHEG sample. Expected diboson 
yields are normalised using NLO QCD predictions obtained with 
MCFM [43,44]. The top-quark contribution is normalised to ap
proximate next-to-next-to-leading order (NNLO) calculations [45]. 
The inclusive W and Z /γ ∗ production cross-sections are nor
malised to the next-to-next-to-leading order (NNLO) cross-sections 
obtained using FEWZ [46]. MC@NLO samples are used to assess the 
systematic uncertainties associated with the choice of generator 
for tt¯ production, and AcerMC [47] samples are used to assess 
the uncertainties associated with initial and final state radiation 
(ISR/FSR) [48]. ALPGEN, HERWIG and SHERPA samples are used 
to assess the systematic uncertainties associated with the choice 
of generator for diboson production. SHERPA is used to evaluate 
the small contribution from internal conversions.

3.2. Direct slepton and direct gaugino production

Four signal regions are designed, optimised for the discovery 
of various SUSY models where sleptons or gauginos are directly 
produced in the pp interaction. The pMSSM framework is used to 
produce two sets of signal samples, one where sleptons are di
rectly produced and one where gauginos are directly produced. 
These samples are used to set the limits on the masses of the di
rectly produced sleptons and gauginos. Samples are also produced 
in a simplified model at given LSP and chargino masses, and are 
then used to set limits on the chargino mass, independently of the 
χ˜ 20 mass. In all SUSY models the masses of the squarks, gluinos 
and third generation supersymmetric partners of the fermions are 
large (2.5 TeV in the direct slepton production pMSSM models and 
2 TeV in the direct gaugino pMSSM and simplified models).

The direct slepton models are based on those described in 
Ref. [49]. Masses of all gauginos apart from the χ  ̃10 are set to 
2.5 TeV. The sensitivity of the present search to a given model 
is determined by the slepton production cross-section and by the 
mass of the χ˜10 , which affects the kinematics of the final state lep
tons. The mass of the bino-like χ˜ 10 is varied by scanning values 
of gaugino mass parameter M1 instepsof20GeVintherange 
20–160 GeV. The common selectron and smuon mass is generated 
in the range 70–190 GeV, scanned in steps of 20 GeV with the 
constraint m^˜ > mχ˜ 0 + 30 GeV. The cross-section for direct slepton 
pair production in these models decreases from 3.9 to 0.05 pb in
dependently of neutralino mass as the slepton mass increases from 
70 to 190 GeV.

In the considered simplified models, the masses of the rele
vant particles (χ˜10, ν˜ , ^˜L , χ˜1± and χ˜20) are the only free param
eters. The latter are wino-like and χ˜ 10 is bino-like. The χ  ̃1± are 
pair-produced via the s-channel exchange of a virtual gauge boson 
and decay via left-handed sleptons, including τ˜ , and ν˜ of mass 
mν = m^ = (mχ0 + mχ± )/2 with a branching ratio of 50% each. ˜ ^˜L χ˜ 1 χ˜ 1
The cross-section for χ˜ 1± χ  ̃1∓ pair production in these models is 
as high as 3 pb for a chargino mass of 50 GeV and decreases 
rapidly at higher masses, reaching below ∼ 0.2 pb for masses 
above 200 GeV.

For the other weak gaugino production channels, a set of 
pMSSM models with intermediate sleptons in the gaugino decay 
chain are generated. The right-handed sleptons, with a common 
mass for all three generations, are inserted halfway between the 
two lightest neutralino masses while left-handed slepton masses 
are kept beyond reach.

The masses of the charginos and the neutralinos depend on the 
gaugino and Higgsino mass parameters M1 , M2 and μ and the 
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ratio of the expectation values of the two Higgs doublets (tanβ) 
via mixing matrices [50]. The chargino masses are given by the so
lution of a 2 × 2 matrix equation which is dependent on M 2, μ 
and tan β [51]. The neutralino masses are found by solving a 4 × 4 
matrix equation; solutions to which are given in Refs. [52–54]. 
The parameters M1 , M2 and μ are varied independently while 
tanβ is set to 6. In the pMSSM model the cross-sections vary 
significantly (between 0.5 and 100 pb for M 1 = 250 GeV, with 
the highest cross-sections at low M 2 and μ). The present direct 
gaugino production search is only sensitive to models with inter
mediate sleptons.

Signal samples for the pMSSM and slepton model points are 
generated with HERWIG, whereas Herwig++ [55] is used to 
generate the simplified model points. Signal cross-sections are 
calculated to next-to-leading order in the strong coupling con
stant (NLO) using PROSPINO [56]. The nominal cross-section and 
the uncertainty are taken from an envelope of cross-section pre
dictions using different parton distribution function (PDF) sets 
and factorisation and renormalisation scales, as described in 
Ref. [57].

All MC samples are produced using a GEANT4 [58] based detec
tor simulation [59]. The effect of multiple proton–proton collisions 
from the same or different bunch crossings is incorporated into 
the simulation by overlaying additional minimum bias events onto 
hard scatter events using PYTHIA. Simulated events are weighted 
to match the distribution of the number of interactions per bunch 
crossing observed in data.

4. Data and event selection

The 7 TeV proton–proton collision data analysed were recorded 
between March and October 2011. Application of beam, detector 
and data-quality requirements yields a total integrated luminos
ity of 4.7 fb-1 . Events are triggered using a combination of sin
gle and double lepton triggers. The single electron triggers vary 
with the data taking period, and the tightest trigger has an effi
ciency of ∼ 97% for offline electrons with p T > 25 GeV. The single 
muon trigger used for all data taking periods reaches an efficiency 
plateau of ∼ 75% (∼ 90%) in the barrel (end-caps) for muons with 
p T > 20 GeV. All quoted efficiencies have been measured with re
spect to reconstructed leptons. The double lepton triggers reach 
similar plateau efficiencies, but at lower p T thresholds: > 17 GeV 
for the dielectron trigger, and > 12 GeV for the dimuon trigger; 
for the electron-muon trigger the thresholds are 15 and 10 GeV 
respectively. One or two signal leptons are required to have trig
gered the event, and be matched to the online triggered leptons: 
one lepton if one is above the appropriate single lepton trigger 
plateau threshold, or two leptons if there is no such lepton. An 
exception to this rule is applied in the μμ channel. In this case 
when one lepton is above the single lepton trigger plateau thresh
old, and the other above the double lepton threshold, a logical OR 
of both triggers is used to recover efficiency.

Jet candidates are reconstructed using the anti-kt jet clustering 
algorithm [60] with a distance parameter of 0.4. The jet candidates 
are corrected for the effects of calorimeter non-compensation and 
inhomogeneities by using pT and η-dependent calibration factors 
based on MC simulations and validated with extensive test-beam 
and collision-data studies [61]. Only jet candidates with transverse 
momenta p T > 20 GeV and |η| < 4.5 are subsequently retained. 
Jets likely to have arisen from detector noise or cosmic rays are re
jected [61]. Electron candidates are required to have pT > 10 GeV, 
|η| < 2.47, and pass the “medium” shower shape and track selec
tion criteria of Ref. [62]. Muon candidates are reconstructed using 
either a full muon spectrometer track matched to an ID track, or a 
partial muon spectrometer track matched to an ID track. They are 

E miss,rel. =

then required to have pT > 10 GeV and |η| < 2.4. They must be 
reconstructed with sufficient hits in the pixel, SCT and TRT detec
tors.

The measurement of the missing transverse momentum two- 
vector, pTmiss , and its magnitude, E Tmiss, is based on the transverse 
momenta of all electron and muon candidates, all jets, and all clus
ters of calorimeter energy with |η| < 4.9 not associated to such 
objects. The quantity E Tmiss,rel. is defined as

ETmiss if ^φ^, j ^ π/2,

ETmiss × sin ^φ^, j if ^φ^, j < π/2,

where ^φ^,j is the azimuthal angle between the direction of pTmiss 
and that of the nearest electron, muon or jet. In a situation where 
the momentum of one of the jets or leptons is significantly mis
measured, such that it is aligned with the direction of pTmiss ,only 
the E Tmiss component perpendicular to that object is considered. 
This is used to significantly reduce mis-measured E Tmiss in pro
cesses such as Z/γ∗ → e+e-,μ+μ- [63].

Signal electrons, muons and jets are then selected. Signal elec
trons are further required to pass the “tight” [62] quality criteria, 
which place additional requirements on the ratio of calorimetric 
energy to track momentum, and the number of high-threshold hits 
in the TRT. They are also required to be isolated: the p T sum of 
tracks above 1 GeV within a cone of size ^ R = (^η)2 + (^φ)2 = 
0.2 around each electron candidate (excluding the electron candi
date itself) is required to be less than 10% of the electron pT . Signal 
muons must also be isolated: the pT sum of tracks within a cone 
of size ^ R = 0.2 around the muon candidate is required to be less 
than 1.8 GeV.

Signal jets are subject to the further requirements p T > 30 GeV, 
|η| < 2 . 5 and a “jet vertex fraction” greater than 0.75. The jet ver
tex fraction is defined as the total track momentum associated to 
the jet and coming from the primary vertex divided by the total 
track transverse momentum in the jet.

The jet vertex fraction quantifies the fraction of track transverse 
momentum from the primary vertex, associated to a jet. This vari
able is used to remove jets that originated from other collisions, 
and also discards jets without reconstructed tracks.

A b -tagging algorithm [64], which exploits the long lifetime 
of weak b - and c -hadron decays inside a candidate jet, is used 
to identify jets containing a b -hadron decay. The mean nominal 
b-tagging efficiency, determined from tt¯ MC events, is 80%, with 
a misidentification (mis-tag) rate for light-quark/gluon jets of less 
than 1%. Scale factors (which depend on p T and η) are applied to 
all MC samples to correct for small discrepancies in the b-tagging 
performance observed in data with respect to simulation.

Basic data quality requirements are then applied. Selected 
events in each signal region (SR-) and control region must satisfy 
the following requirements. The primary vertex in the event must 
have at least five associated tracks and each event must contain 
exactly two signal leptons of opposite-sign (OS) or same sign (SS). 
Both of these leptons must additionally satisfy the full list of lep
ton requirements, and the dilepton invariant mass, m^^, must be 
greater than 20 GeV across all flavour combinations.

5. Signal regions

In this analysis four signal regions are defined. The first 
and main signal region (labelled SR-mT2) exploits the “strans- 
verse” mass variable, mT2 [65,66], to provide sensitivity to both 
χ  ̃1± and ^˜± pair production. This variable is defined as: mT2 = 
minqT+rT=pmiss[max(mT (pT̂1,qT),mT (pT̂2,rT))], where pT̂1 and pT̂2 
are the transverse momenta of the two leptons, and qT and rT
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Decay modes targeted by each signal region, χ˜ i denotes either a chargino or a neutralino. In decays producing three real leptons, one must be mis-reconstructed or fall outside the acceptance of the detector.
Table 1

Targeted process Signal regionTwo-lepton final states
^˜±^˜∓ → (^∓χ˜10) +(^∓χ˜10) 
χ˜1±χ˜1∓ → (^∓νχ˜10) + (^∓νχ˜10) 
χ˜20χ˜i → (^∓^∓χ˜10)+ (qq¯^χ˜10)

SR-mT2SR-mT2, SR-OSjvetoSR-2jetsThree-lepton final states
χ˜20χ˜1± → (^∓^∓χ˜10)+ (^∓νχ˜10) SR-OSjveto, SR-SSjveto

Table 2Signal regions. OS (SS) denotes two opposite-sign (same-sign) signal leptons, of same (SF) or different (DF) flavour. The Z -veto rejects events with 
m^^ within 10 GeV of the Z boson mass (91.2 GeV). The mCT-veto rejects events kinematically consistent with tt¯ (Section 5.2). The values quoted for E Tmiss,rel. and mT2 are in units of GeV.SR- mT2 OSjveto SSjveto 2jetscharge OS OS SS OSflavour any any SF

m^^ Z-veto Z-veto – Z-vetosignal jets =0 =0 ^2signal b-jets – – =0
Emiss,rel. > 40 > 100 > 50other m T2 > 90 – mCT-veto

are two vectors which satisfy qT + rT = pTmiss . mT indicates the 

transverse mass, mT = 2ET^,1pET,q(1 - cos φ), where ET is the 
transverse energy of a particle and φ the angle between the two 
particles in the transverse plane. The minimisation is performed 
over all possible decompositions of pTmiss.

The search for ^˜± pair production uses only the same flavour 
channels e+ e- and μ+ μ- , while the χ  ̃1± pair production search 
also relies on e±μ∓ . Additional sensitivity to χ˜1± pair production 
is provided by the second signal region, SR-OSjveto, which selects 
OS lepton pairs with high E Tmiss in events with no signal jets.

The production modes χ  ̃20 χ˜ i± or χ  ̃20 χ˜ i0, with the subsequent de
cays χ˜20 → ^±^∓χ˜10 and χ˜i0, χ˜i± → qq¯ ^χ˜10 are targeted by a region 
called SR-2jets, which selects events with two signal jets and two 
OS leptons.

In this Letter the region SR-OSjveto and an equivalent region, 
SR-SSjveto, which instead selects the events with SS lepton pairs, 
also target a three lepton final state. The explicit veto in this anal
ysis on a third lepton makes the results in these regions orthog
onal to results from direct gaugino searches with three or more 
leptons [32]. These regions recover events which are not recon
structed in searches for ^ 3 leptons because one of the three 
leptons falls outside the acceptance of the detector and selection 
criteria. The processes directly targeted by each signal region are 
stated explicitly in Table 1.

The exact requirements on the values to be taken by each vari
able in each signal region were determined by optimising the 
expected reach using a significance measure [67] in either the 
neutralino–slepton mass plane of the pMSSM model (SR-mT2), 
the neutralino–chargino mass plane of the simplified model (SR- 
OSjveto and SR-SSjveto) or the M 1–μ mass plane of the pMSSM 
(SR-2jets). Table 2 summarises the requirements for entering each 
signal region.

5.1. Direct slepton and chargino pair production

In SR-mT2 the properties of mT2 are exploited to search for 
^˜± ^˜∓ and χ˜1±χ˜1∓ production followed by decay to final states con

taining exactly two OS leptons (of different flavour, DF, or same 
flavour, SF), no signal jets, and E Tmiss from the two χ˜10 . In this sig
nal region tt¯ and WW are dominant backgrounds. For large mass 
differences between the sleptons (charginos) and the lightest neu- 
tralino, the mT2 distribution for signal events extends significantly 
beyond the distributions for tt¯ and diboson backgrounds. The op
timised value for the lower mT2 requirement is 90 GeV, just above 
the W boson mass (which is the approximate end-point of the 
WW and tt¯ distributions).

A rejection of events with m ̂ ^ within 10 GeV of the Z mass 
reduces Z /γ ∗ backgrounds. For the direct slepton pMSSM mod
els with a 20 GeV neutralino, the product of the kinematic and 
geometrical acceptance and reconstruction and event selection ef
ficiencies varies between 0.1 and 4.0% in this SR for slepton masses 
between 90 and 190 GeV. For fixed 190 GeV slepton mass, this 
product increases from 0.2 to 4.0% as the neutralino mass de
creases from 140 to 20 GeV. In the simplified models, for χ  ̃1± χ˜ 1∓ 
pair production, the product of acceptance and efficiency ranges 
between 1 and 7%, increasing towards higher chargino and lower 
neutralino masses.

In SR-OSjveto a different approach to reducing the backgrounds 
is taken. The mT2 variable is not used, and instead more stringent 
requirements are replaced on E Tmiss,rel. to suppress the tt¯ back
ground. The dominant Z background is suppressed by rejecting 
events with m^^ within 10 GeV of the Z boson mass. The final 
requirement, on E Tmiss,rel. , further increases sensitivity to the sig
nals which are associated with much higher E Tmiss than the SM 
backgrounds. In the simplified models, for χ˜ 1± χ  ̃1∓ pair produc
tion, the product of acceptance and efficiency ranges between 1 
and 8%, increasing towards higher chargino and lower neutralino 
masses.

In SR-mT2 the expected number of direct slepton signal events 
for m^˜ = 130 GeV and mχ˜ 0 = 20 GeV is 20.7 ± 0.8(syst) ± 
0.6(theory), where the first uncertainty denotes experimental un
certainties detailed below, while the theory uncertainty contains 
PDF and scale uncertainties. In SR-OSjveto the expected number 
of direct chargino pair events with mχ˜ ± = 175 GeV and mχ˜ 0 = 
25 GeV is 67.8 ± 3.4(syst) ± 2.3(theory). 1

5.2. Other weak gaugino production

In the production channel and decay χ˜ 20 χ˜ i → (^∓ ^± χ˜ 10 ) + 
(qq¯ ^ χ˜10) the resulting OS two-lepton final state has significant ETmiss 
and at least two signal jets. The region SR-2jets is thus sensitive to 
these decays. In SR-2jets, top background is reduced using a “top
tag” veto. The top-tagging requirement is imposed through the use 
of the contransverse mass variable mCT [68]. This observable can 
be calculated from the four-momenta of the selected signal jets 
and leptons:

mC2T(v1,v2)= ET(v1)+ ET(v2) 2 - pT(v1)-pT(v2) 2,

where vi can be a lepton (l), jet (j) or a lepton-jet combina
tion. Transverse momentum vectors are defined by pT and trans
verse energies ET are defined as E T = pT2 + m2 . The quantities 
mCT( j, j), mCT(l, l) and mCT( jl, jl) are bounded from above by an
alytical functions of the top-quark and W boson masses. A top
tagged event must have at least two jets with p T > 30 GeV, and 
the scalar sum of the pT of at least one combination of two 
signal jets and the two signal leptons in the event must ex
ceed 100 GeV. Furthermore, top-tagged events are required to 
possess mCT values calculated from combinations of signal jets 
and leptons consistent with the expected bounds from tt¯ events
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Table 3Requirements for entering each control region for top, WW and Z + X background estimation in the OS signal regions. These are used to estimate the top background in all OS signal regions, WW in SR-OSjveto and Z + X in all SF channels of the OS signal regions. When each OS signal region requires differing control region definitions, the conditions are given as a comma separated list (SR-OSjveto, SR-2jets, SR-mT2). The Z -veto is a rejection of events with m^^ within 10 GeV of the Z -mass (91.2 GeV), whereas the Z -window defines the reverse. In the WW control region the b-jets considered are those with pT > 20 GeV. The values quoted for E Tmiss,rel. are in units of GeV. top WW Z+ X

m^^ Z-veto Z-veto Z-windowsignal jets ^2 =0 = 0, ^ 2, ^ 0signal b -jets ^1 =0 ^ 0, = 0, ^ 0
Emiss,rel. > 100, 50, 40 70–100 > 100, 50, 40other – – –, mCT-veto, –

as described in Ref. [69]. Further top rejection is achieved using 
a veto on any events containing a signal jet tagged as a b -jet. 
Z backgrounds are reduced using the Z -veto, and sensitivity in
creased by searching at high E Tmiss,rel. . The expected number of 
signal events in SR-2jets from χ˜20χ˜1± → (^∓^±χ˜10) + (qq¯ ^χ˜10) for 
a pMSSM point with M 1 = 100 Ge2V,1 M2 = 120 Ge1V, μ = 1010 GeV 
is 37.6 ± 4.9(syst) ± 7.0(theory).

In the regions targeting fully-leptonic χ˜ 20 χ  ̃1± decays (SR-OSjveto 
and SR-SSjveto), a veto on events containing a signal jet reduces 
hadronic backgrounds, and high E Tmiss,rel. increases the sensitivity 
to SUSY decays. The final state leptons can be of either OS or SS. 
In the absence of significant expected Z background in the SS sig
nal region, no Z -veto is applied. The expected number of signal 
events in SR-SSjveto from fully-leptonic χ  ̃20 χ˜ 1± decays for a sim
plified model with m 0 = m ± = 200 GeV and m 0 = 50 GeV, is χ˜ 2 χ˜ 1 χ˜ 1
12.4 ± 1.4(syst) ± 0.7(theory).

6. Background evaluation

6.1. Backgrounds in SR-mT2

In this Letter, SR-mT2 is used to search for ^˜± pair production 
and provides the best sensitivity to χ˜ 1± pair production. The main 
backgrounds in this region are: fully-leptonic tt¯ and single top, 
Z/γ∗ + jets and dibosons (WW, WZ and ZZ).

Fully-leptonic tt¯ is comparable in size to the WW background 
in all flavour channels. Z/γ ∗ +jets, WZ and ZZ processes (collec
tively, Z + X ) are a small proportion of events in the DF channel, 
but comparable in size to the WW and tt¯ backgrounds in the SF 
channels. The remainder of the SM background is accounted for 
by fake lepton backgrounds. The methods used to evaluate these 
backgrounds in SR-mT2 are described in the following sections.

6.1.1. Top
The combined contribution from tt¯ and single top events in 

each channel (ee, e μ or μμ) is evaluated by normalising MC sim
ulation to data in an appropriate control region. Events in the 
control region (Table 3) must contain at least two signal jets, one 
of which must be b-tagged, and pass the requirement that E Tmiss,rel. 
must be greater than 40 GeV. The corresponding control region is 
dominated by top events. The contamination from non-top events 
is less than 4%. The number of top events in the signal region 
( N tSoRp) is estimated from the number of data events in the control 
region ( NtCoRp), after the subtraction of non-top backgrounds, using 
a transfer factor T :

NXSR = NXCR × T × ST .

The factor, T , the ratio of top events in the signal to those in the 
control region is derived using MC

T=
NXSR
NXCR MC

The factor ST corrects for possible differences in jet-veto ef
ficiency between data and MC simulation. Good agreement is ob
served in separate samples of tt¯ and Z/γ∗ +jets events and so this 
factor is taken to be equal to 1.0, with an uncertainty of 6%. The 
transfer factor is evaluated before the mT2 requirement is applied 
in the signal region since this requirement is designed to eliminate 
all but the tail of the mT2 distribution for tt¯. The efficiency of this 
requirement is then evaluated using MC simulation for a looser se
lection (which is assumed not to change the mT2 shape) and used 
to obtain the final estimate in SR-mT2. The efficiency of the mT2 re
quirement is found to be ∼ 2% in each channel for top events with 
an uncertainty of ∼ 50%. The uncertainty is largely dominated by 
MC statistical uncertainty, generator uncertainties and jet and lep
ton scales and resolutions.

The evaluated tt¯ components in each channel are consistent 
with pure MC estimates normalised to cross-sections to within 1σ . 
Data and MC simulation are also consistent at this level in the con
trol region. Negligible contamination from the SUSY signal models 
generated, in the region of the expected reach, is predicted.

6.1.2. Z + X
The Z/γ ∗ + jets background in the SF channels is also esti

mated by normalising MC simulation to data in a suitable control 
region. This procedure is important in order to handle appropri
ately possible detector imperfections affecting E Tmiss measurement. 
This technique also estimates the ZW and ZZ components, pro
viding a combined estimate of the total Z + X background in the 
SF channels.

In the DF channel the Z/γ∗ + jets contribution is significantly 
smaller and arises mainly from Z/γ ∗ → ττ decays. This and the 
diboson components of the Z + X background in the DF channel 
are estimated using MC simulation.

The control region (Table 3) used to estimate the Z + X back
ground in the SF channels is defined to be identical to the signal 
region but with the Z -veto reversed. The normalisation is eval
uated before the mT2 requirement, and the efficiency of the mT2 
requirement is measured separately using MC simulation. The pop
ulation of data events inside the control region not produced by 
Z + X processes is estimated using data e μ events inside the 
Z -window, correcting for the differences between electron and 
muon reconstruction efficiencies. This subtraction removes less 
than 2% of the events in the control region. This procedure also 
subtracts contributions from Z/γ∗ → ττ + jets events which must 
be estimated using MC simulation. The MC mT2 requirement ef
ficiency for Z + X events is taken to be 0.004 (0.003) for e+ e- 
(μ+μ- )eventswith∼ 50% uncertainty.

The estimated Z + X background is consistent within statis
tics with the MC prediction. No significant signal contamination 
is expected for the SUSY model points considered in the region of 
sensitivity for the searches reported in this Letter.

6.1.3. WW
The WW background is evaluated using MC normalised to 

cross-section and luminosity. The predictions from a variety of 
generators (see Section 3) were compared before application of the 
mT2 requirement (to maximise acceptance for comparison), in or
der to assess the theoretical uncertainty on this estimate. The mT2 
distribution in data agrees well with that in MC simulation, and
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Fig. 1. The E Tmiss,rel. distributions prior to the final requirement on E Tmiss,rel. for (a) SR-OSjveto, (b) SR-2jets and (c) SR-SSjveto, and (d) mT2 in SR-mT2, prior to the application of the mT2 requirement. In (d) only the SF channels are shown. The hatched bands indicate the experimental uncertainties on the background expectations. All components are from MC except for that labelled “Fake leptons”. The contribution labelled “Diboson” accounts for WW, WZ and ZZ processes. The bottom panels show the ratio of the data to the expected background (points) and the systematic uncertainty on the background (shaded area). In each figure two signal points are illustrated. In (d) two models of direct slepton pair production are illustrated, with (^˜,χ˜10) masses of (130, 20) and (190, 100) GeV. In (a) the two points illustrated are for χ˜1±χ˜1∓ production in the simplified model with (χ˜1±, χ˜10) masses of (175, 25) and (525, 425) GeV. In (c) the simplified model points illustrated have (χ˜1±, χ˜10) masses of (200, 50) and (112.5, 12.5) GeV. In (b) two pMSSM model points with masses (M1, M2, Mμ) of (100,120,100) and (140,160,300) GeV are illustrated.
the E Tmiss,rel. region under consideration (> 40 GeV) is close to the 
bulk of the WW sample.

6.1.4. Fake leptons
In this Letter the term “fake leptons” refers to both misiden

tified jets and real leptons that arise from decays or conversions. 
The numbers of fake lepton events are estimated using the “ma
trix method” [70]. First, fake leptons are identified as those sat
isfying a loose set of identification requirements corresponding 
to medium-level identification requirements and no isolation. The 
real efficiency r is calculated using data as the fraction of these 
loose leptons passing the signal lepton identification and isolation 

requirements in events with a lepton pair of mass lying within 
5GeVofthe Z boson mass. The fake efficiency f is calculated 
separately for misidentified jets or decays and conversions. The 
combined fake efficiency for misidentified jets or decays is calcu
lated using MC events with E Tmiss,rel. between 40 and 100 GeV, 

and validated using low-E Tmiss,rel. regions in data. This region of 
moderate E Tmiss,rel. is expected to give a sample composition that 
is representative of the various signal regions. The fake efficiency 
for conversions is estimated in a data sample dominated by this 
process, with two muons of invariant mass within 10 GeV of the 
Z -mass, ETmiss,rel. < 50 GeV and at least one loose electron with
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Table 4Systematic uncertainties (%) on the total background estimated in each signal region for all flavours combined. The total statistical uncertainty includes limited MC event numbers in the control and signal regions. Jet systematic uncertainties include: JES, JER and E Tmiss cluster and pile-up uncertainties. Lepton systematic uncertainties include: all lepton scales and resolutions, reconstruction and trigger efficiencies. MC modelling uncertainties include choice of generator, ISR/FSR and modelling of the 
Z/γ ∗ + jets line-shape.SR- mT2 OSjveto SSjveto 2jetsTotal statistical 9 4 13 6Total systematic 19 19 35 49Jet uncertainties 9 8 3 5Lepton uncertainties 14 1 1 5

b-Tagging efficiency 1 1 0 14MC modelling 7 17 4 45Fake leptons 5 5 35 4
mT < 40 GeV (the conversion candidate). The overall f used is 
then the weighted (according to the relative proportions of each 
component present in the signal region) average of these two fake 
efficiencies. Then, in the signal region the observed numbers of 
events in data with two loose leptons, two signal leptons, or one 

of each are counted. The number of events containing fake lep
tons in each signal region is finally obtained by acting on these 
observed counts with a 4 × 4 matrix with terms containing f and 
r that relates real–real, real–fake, fake–real and fake–fake lepton 
event counts to tight–tight, tight–loose, loose–tight and loose– 
loose counts.

6.2. Backgrounds in SR-OSjveto, SR-SSjveto and SR-2jets

The same techniques are used to estimate the backgrounds in 
each remaining signal region, with two exceptions which are de
tailed in this section. Table 3 details any changes to control region 
definitions used.

1. Due to the high E Tmiss,rel. requirement (> 100 GeV) in SR- 
OSjveto, WW is estimated using MC normalised to data in 
a control region. The control region used for its estimate is 
defined using the same requirements as the signal region but 
with slightly lower E Tmiss,rel. (for orthogonality with the signal 
region) and an additional b-jet veto to suppress tt¯ (Table 3). 
This control region is subject to a 24% contamination from top 
events, which is estimated and removed using MC simulation.

Table 5Evaluated SM backgrounds in each signal region separated by flavour (ee, e μ , μμ) and combined in an “all” channel. In SR-mT2 the evaluated background components in the SF channel are quoted separately as the e μ channel is not appropriate for a direct slepton search. The second quoted error is the total systematic uncertainty whereas the first is the statistical uncertainty arising from limited numbers of MC events. The effect of limited data events in the control region is included in the systematic uncertainty. In all OS signal regions and channels the component Z + X includes the contributions from Z/γ ∗ + jets, WZ and ZZ events. All statistical uncertainties are added in quadrature whereas the systematic uncertainties are obtained after taking full account of all correlations between sources, backgrounds and channels. Quoted also are the observed (expected) 95% confidence limits on the visible cross-section for non-SM events in each signal region, σvoibss(exp) .SR-mT2

e+e- e±μ∓ μ+μ- all SF
Z+X 3.2 ± 1.1 ±1.7 0.3± 0.1± 0.2 3.6± 1.3 ± 1.7 7.1± 1.7± 2.1 6.8 ±1.7 ±2.1
WW 2.3 ±0.3 ±0.4 4.8± 0.4± 0.7 3.5 ± 0.3 ± 0.5 10.6 ± 0.6 ± 1.5 5.8 ±0.4 ±0.9
tt¯, single top 2.6 ± 1.2 ±1.3 6.2± 1.6± 2.9 4.1± 1.3 ±1.6 12.9 ± 2.4 ± 4.6 6.8 ±1.8 ±2.3Fake leptons 1.0 ±0.6 ±0.6 1.1± 0.6± 0.8 - 0 . 02 ± 0 . 01 ± 0 . 05 2.2± 0.9± 1.4 1.0 ±0.6 ±0.6Total 9.2 ± 1.8 ±2.5 12.4 ± 1.7 ± 3.1 11.2 ± 1.9± 3.0 32.8 ± 3.2 ± 6.3 20.4 ± 2.6± 3.9Data 7 9 8 24 15
σvoibss(exp) (fb) 1.5 (1.8) 1.6 (2.0) 1.6 (1.9) 2.5 (3.3) 1.9 (2.5)SR-OSjveto

e+e- e±μ∓ μ+μ- all
Z+X 4.5 ± 1.2 ±1.2 3.0± 0.9± 0.5 4.7± 1.1 ± 1.2 12.2 ± 1.8 ± 1.8
WW 8.8 ± 1.8 ±4.4 20.9 ± 2.6 ± 6.2 13.3 ± 1.9± 3.5 43.0± 3.7 ± 12.2
tt¯, single top 21.1 ± 2.3± 4.2 47.7± 3.4± 20.5 27.5 ± 2.5± 9.0 96.2± 4.8 ±29.5Fake leptons 2.9 ±1.2 ±1.2 6.9± 1.8± 2.6 0.4 ± 0.6 ±0.3 10.3 ± 2.2 ± 4.1Total 37.2 ± 3.3± 6.4 78.5± 4.7± 20.9 45.9 ± 3.4± 9.4 161.7 ± 6.7 ± 30.8Data 33 66 40 139
σvoibss(exp) (fb) 3.3 (3.8) 6.8 (7.8) 4.0 (4.6) 9.8 (11.9)SR-SSjveto

e±e± e±μ± μ±μ± allCharge flip 0.49± 0.03± 0.17 0.34 ± 0.02 ± 0.11 — 0.83±0.04± 0.18Dibosons 0.62± 0.13± 0.18 1.93 ± 0.23 ± 0.36 0.94±0.16± 0.26 3.50±0.31± 0.54Fake leptons 3.2 ±0.9 ±1.7 2.9± 0.9± 1.9 0.6 ± 0.6 ±0.3 6.6± 1.4 ±3.8Total 4.3 ± 0.9 ±1.7 5.1± 1.0± 1.9 1.5 ± 0.6 ± 0.4 11.0 ± 1.5 ± 3.9Data 1 5 3 9
σvoibss(exp) (fb) 0.7 (1.1) 1.6 (1.6) 1.3 (0.9) 1.9 (2.1)SR-2jets

e+e- e±μ∓ μ+μ- SF
Z+X 3.8 ± 1.3 ±2.7 — 5.8± 1.6 ± 3.9 9.6± 2.0± 5.1
WW 6.4 ± 0.5 ±4.3 — 8.4 ± 0.6 ± 5.7 14.8 ± 0.7 ± 9.9
tt¯, single top 14.8 ± 1.9± 9.2 — 22.1 ± 2.1 ± 20.7 36.9± 2.9 ±29.6Fake leptons 2.5 ±1.2 ±1.5 — 1.7 ± 1.3 ±0.8 4.2± 1.8 ±2.3Total 27.5 ± 2.6 ±10.6 — 37.9 ± 3.0 ±21.0 65.5± 4.0 ± 31.8Data 39 — 39 78
σvoibss(exp) (fb) 6.9 (5.3) — 7.7 (7.6) 13.6 (12.5)
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Fig. 2. 95% CL exclusion limits for ^˜± pair production in the m^˜–mχ˜ 0 mass plane of (a) the direct slepton pMSSM and (b) χ˜1±χ˜1∓ pair production in the simplified model. The dashed and solid lines show the 95% CLs expected and observed limits, respectively, including all uncertainties except for the theoretical signal cross-section uncertainty (PDF and scale). The solid band around the expected limit shows the ±1σ result where all uncertainties, except those on the signal cross-sections, are considered. The ±1σ lines around the observed limit represent the results obtained when moving the nominal signal cross-section up or down by the ±1σ theoretical uncertainty. Illustrated also in (a) is the LEP limit [28] on the mass of the right-handed smuon, μ˜ R . The LEP limit is a conservative limit on slepton pair production: if right-handed slepton masses are excluded, left-handed sleptons of equivalent masses are automatically excluded. (For interpretation of the references to colour, the reader is referred to the web version of this Letter.)
2. In SR-SSjveto, the leptons have the same charge, resulting in a 

generally different background composition, and the presence 
of an additional component: “charge-flip”. The background 
components in this region are: fake leptons (estimated using 
the described matrix method), dibosons (estimated using MC 
events) and charge-flip. This mis-identification of charge arises 
when an electron in an event undergoes hard bremsstrahlung 
with subsequent photon conversion. The probability of an elec
tron undergoing a flip is measured from Z events in data using 
a likelihood technique [71], and in MC simulation. This prob
ability, evaluated as a function of electron rapidity and p T,is 
applied to tt¯ → e± ^∓ , Z + jets and diboson MC events to eval
uate the number of e± e± and e ± μ± events resulting from the 
charge-flip mechanism. The probability of misidentifying the 
charge of a muon is negligible. The possible double counting 
of charge-flip events in the matrix method for SR-SSjveto is 
not significant.

7. Systematic uncertainties

In this analysis systematic uncertainties arise in the estimates 
of the background in the signal regions, as well as on the estimate 
of the SUSY signal itself. The primary sources of systematic uncer
tainty are the jet energy scale (JES) [61] calibration, the jet energy 
resolution (JER) [72], choice of MC generator and lepton efficiencies 
and momentum measurements. Additional statistical uncertainties 
arise from limited numbers of MC and data events in the control 
and signal regions, and a 3.9% luminosity uncertainty [73,74] for 
normalising MC events to cross-sections.

The JES has been determined from a combination of test-beam, 
simulation and in-situ measurements from 2011 pp collision data. 
Uncertainties on the lepton identification, momentum/energy scale 
and resolution are estimated from samples of Z → l+l-, J /ψ → 
l+l- and W ± → ^∓ ν decays [75,76]. The uncertainties on the jet 
and lepton energies are propagated to E Tmiss,rel. ; an additional un
certainty on E Tmiss arising from energy deposits not associated to 

any reconstructed objects is also included [77]. Uncertainties on 
the b-tagging efficiency are derived from data samples contain
ing muons associated to jets [64] using the method described 
in Ref. [78]. Included are uncertainties in the mis-tag rate from 
charm [79], and light flavour tagging [80].

Theory and MC modelling uncertainties are evaluated for tt¯ us
ing the prescriptions described in Ref. [81] (choice of generator, 
and ISR/FSR). For dibosons they are evaluated by varying the choice 
of generator. Theoretical uncertainties on the Z /γ ∗ + jets back
ground from varying the PDF and renormalisation scales are also 
included.

When evaluating the fake lepton component in each region the 
dominant uncertainties arise from the dependency of the efficien
cies on E Tmiss,rel. , differences between efficiencies obtained using 
OS and SS events and uncertainties in the relative normalisations 
of the different components. An additional uncertainty is applied 
based on differences observed in the fake efficiencies measured 
from data to validate the MC efficiencies if different validation re
gions are chosen.

The relative sizes of these sources of systematic uncertainty are 
detailed in Table 4. In SR-mT2, the jet and lepton energy scales and 
resolutions are the most significant uncertainties. In SR-OSjveto 
and SR-2jets, where tt¯ and WW are the most significant SM back
grounds (accounting for approximately 80–85% of the SM contri
bution), the uncertainties in the MC modelling dominate. In SR- 
SSjveto, because of the significant fake component, the error on 
the fake estimate from the sources described becomes the only 
significant source of uncertainty.

In the SUSY mass planes, the theoretical uncertainty on each 
of the signal cross-sections is included. These arise from consid
ering the cross-section envelope defined using the 68% CL ranges 
of the CTEQ6.6 and MSTW 2008 NLO PDF sets, and indepen
dent variations of the factorisation and renormalisation scales 
(see Section 3). Further uncertainties on the numbers of pre
dicted signal events arise from the various experimental uncertain
ties.
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Fig. 3. 95% CL exclusion limits in the μ– M2 mass plane of the pMSSM for (a) M1 = 100 GeV, (b) M1 = 140 GeV and (c) M1 = 250 GeV. The dashed and solid lines show the 95% CLs expected and observed limits, respectively, including all uncertainties except for the theoretical signal cross-section uncertainty (PDF and scale). The solid band around the expected limit shows the ±1σ result where all uncertainties, except those on the signal cross-sections, are considered. The ±1σ lines around the observed limit represent the results obtained when moving the nominal signal cross-section up or down by the ±1σ theoretical uncertainty.
8. Results and interpretation

Fig. 1 illustrates the level of agreement in each signal re
gion, prior to the application of the final requirement on E Tmiss,rel. 
and mT2, between the data and the SM prediction. For each signal 
region two illustrative model points are also presented.

Table 5 compares the observations in data in each flavour chan
nel and in each signal region with the evaluated background con
tributions. Good agreement is observed across all channels and in 
each signal region. The absence of evidence for SUSY weak produc
tion allows limits to be set on the visible cross-section for non-SM 
physics in each signal region, σvis = σ × ε × A , for which this anal
ysis has acceptance A and efficiency ε . These are calculated using 
the modified frequentist CLs prescription [82] by comparing the 
number of observed events in data with the SM expectation using 
the profile likelihood ratio as test statistic. All systematic uncer

tainties and their correlations are taken into account via nuisance 
parameters.

The direct slepton pair production 95% CL exclusion region is 
shown in Fig. 2(a) in the neutralino–slepton mass plane, using 
the results of SR-mT2 in the SF channel. Shown are the 95% CLs 
expected (dashed black) and observed limits (solid red) obtained 
by including all uncertainties except the theoretical signal cross
section uncertainty. The solid yellow band indicates the impact of 
the experimental uncertainties on the expected limits whereas the 
dashed red lines around the observed limit show the changes in 
the observed limit as the nominal signal cross-sections are scaled 
up and down by the 1σ theoretical uncertainties. A common value 
for left-handed electron and left-handed smuon mass between 85 
and 195 GeV is excluded when the lightest neutralino has a mass 
of 20 GeV. The sensitivity decreases as the value of m^˜–mχ˜ 0 de
creases and gives rise to end-points in the mT2 distribution at 
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lower mass, nearer to the end-points of the SM backgrounds. For 
a 60 GeV neutralino only sleptons with masses between 135 and 
180 GeV are excluded.

The direct χ  ̃1± pair production limits are set for the simpli
fied model, in the scenario of wino-like charginos decaying into 
the lightest neutralino via an intermediate on-shell charged slep- 
ton. The best expected limits are obtained by using for each signal 
point the signal region that provides the best expected p -value. 
The resulting limit for χ  ̃1± χ  ̃1∓ production is illustrated in Fig. 2(b). 
Chargino masses between 110 and 340 GeV are excluded at 95% CL 
for a 10 GeV neutralino. The best sensitivity is provided by SR-mT2. 
Previous gaugino searches at the Tevatron and the LHC [29–32] fo
cused on χ˜ 1± χ  ̃20 associated production. The present result provides 
a new mass limit on χ˜1± independently of the mass of the χ˜20 .

The signal regions are combined in Fig. 3 to derive exclusion 
limits in the pMSSM μ– M 2 plane for tan β = 6, by selecting for 
each signal point the signal region which provides the best ex
pected p -value. Figs. 3(a)–3(c) show respectively the exclusion 
limits for M1 = 100, 140, 250 GeV. The present result significantly 
extends previous limits in the pMSSM μ– M 2 plane. The model in
dependent limits in Table 5 provide additional constraints on other 
gaugino production channels discussed previously in this Letter. 
In particular, SR-2jets provides sensitivity to models where one 
gaugino produced in association with χ˜ 20 decays hadronically. The 
best sensitivity to models where final states containing ^ 3 leptons 
dominate would come from a statistical combination of the results 
set in SR-2jets, SR-OSjveto and SR-SSjveto, and results of searches 
for three or more leptons [32].

9. Summary

This Letter has presented a dedicated search for ^˜± and χ˜ 1± 

pair production in final states with two leptons and E Tmiss .Insce
narios where sleptons decay directly into the lightest neutralino 
and a charged lepton, left-handed slepton masses between 85 and 
195 GeV for a 20 GeV neutralino are excluded at 95% confidence. In 
the scenario of chargino pair production, with wino-like charginos 
decaying into the lightest neutralino via an intermediate on-shell 
charged slepton, chargino masses between 110 and 340 GeV are 
excluded at 95% CL for a neutralino of 10 GeV. New limits in the 
pMSSM μ–M2 plane are provided for tanβ = 6. Signal regions 
targeting several gaugino production and decay modes into two- 
lepton final states have also been used to set limits on the visible 
cross-section.
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