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Abstract. Cache timing attacks use shared caches in multi-core pro-
cessors as side channels to extract information from victim processes.
These attacks are particularly dangerous in cloud infrastructures, in
which the deployed countermeasures cause collateral effects in terms of
performance loss and increase in energy consumption. We propose to
monitor the victim process using an independent monitoring (detector)
process, that continuously measures selected Performance Monitoring
Counters (PMC) to detect the presence of an attack. Ad-hoc counter-
measures can be applied only when such a risky situation arises. In our
case, the victim process is the Advanced Encryption Standard (AES)
encryption algorithm and the attack is performed by means of random
encryption requests. We demonstrate that PMCs are a feasible tool to
detect the attack and that sampling PMCs at high frequencies is worse
than sampling at lower frequencies in terms of detection capabilities,
particularly when the attack is fragmented in time to try to be hidden
from detection.

Keywords: cache attacks, flush+reload, AES, performance monitoring
counters

1 Introduction

In January 2018, Jann Horn [9] from Google Project Zero and a group of
researchers led by Paul Kocher independently disclosed three vulnerabilities,
named Spectre (variants 1 and 2) and Meltdown. They discovered that data
cache timing could be used to extract information about memory contents using
speculative execution. Since that moment, new variants of these transient exe-
cution attacks have been disclosed, such as Foreshadow or NetSpectre, to name
just two of them [5].

These attacks exploit speculative and out-of-order execution in high per-
formance microarchitectures together with the fact that in modern multi-core
architectures some resources are shared across cores. Hence, a malicious process
which is being executed in one core of the system can extract information from

†Corresponding author

The final authenticated version is available online at http://doi.org/10.1007/978-3-030-27713-0



2 Iván Prada et al.

a victim executed in a different core. The resource that is most commonly used
as side-channel to extract information is the shared cache [2].

This problem is particularly important in cloud environments, where not only
multiple users share a multi-core server but also multiple virtual machines can
co-reside in the same core due to consolidation in order to save energy. Moreover,
the use of simultaneous multithreading techniques, such as Intel’s Hyperthread-
ing technology, allow to leverage two or more logical cores per physical core,
increasing the degree of resources shared between users.

There has been a proliferation of ad-hoc defenses, mainly microcode and
software patches for the operating system and virtual machine monitor. Besides,
Intel announced hardware mitigations in its Cascade Lake processors, trying to
reduce performance loss due to the countermeasures for some of the attacks [11].

However, the impact of countermeasures on performance is still non negligi-
ble, and according to [5] varies from 0% to almost 75%. Thus, in most situations,
security comes at the expense of lower performance and higher energy consump-
tion (due to non-consolidating and disabling hyperthreading).

In this paper, we propose a new attack detection tool that is based on the
deployment of a process running in the same core that the victim process it
protects, and that detects situations in which an attack is being performed.
Following this idea, countermeasures are only taken when the risk level justifies
the cost.

The contribution of the paper is two-fold:

– We implement and describe the attack, and design and implement a detector
for it based on Performance Monitoring Counters (PMC), evaluating its
detection capabilities at different sampling frequencies and showing that high
sampling frequencies (100 µs) are noisier than lower ones (10 to 100 ms).

– We show that splitting the attack into small pieces and distributing those
pieces in time decreases detection capability in a different way for the dif-
ferent detection sampling frequencies. Only low frequencies (bigger than 10
ms) are still able to detect the time-fragmented attack.

The rest of the paper is structured as follows: Section 2 reviews the most
relevant works in the field; Section 3 outlines the main concepts needed for the
correct understanding of the attack and detection strategy. Then, the attack
implemented, detection using PMC and the time-fragmented attack are pre-
sented in Sections 4, 5 and 6, respectively. Finally, conclusions are presented in
Section 7.

2 Related Work

Detailed surveys on microarchitectural timing attacks in general [8, 2] and cache
timing attacks in particular [12] can be found in the literature. Besides, Canella
[5] performs a systematic evaluation of transient execution attacks.
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Time-driven attacks against the shared and inclusive Last Level Cache (LLC)
are mainly based on Flush&Reload [15] and their variants. So, Briongos [4] ex-
tracts the key from the AES T-table based encryption algorithm using improve-
ments over the original attack.

Recently, Performance Monitoring Counters have been used to detect the
attack. Chiappeta et al [6] monitor both victim and attacker, while CloudRadar
[16] monitors all the virtual machines running in the system. CacheShield [3] only
monitors the victim process to detect attacks on both AES and RSA algorithms.
None of them considered trying to hide the attack by dividing it into small
pieces distributed in time. Our approach is similar to CacheShield [3] in terms of
functionality, but we perform a more detailed study of how the specific timing
of the attack affects the detection capability.

3 Background concepts

For a correct understanding of the attacks and techniques described hereafter,
further details on two architectural concepts with direct impact on the attacks
are required: cache inclusion policies and memory de-duplication as a specific case
of shared memory. Then, the basics of the Flush&Reload attack are outlined.

3.1 Shared caches and inclusion policies in modern multi-cores

Modern multi-core processors feature multi-level caches in which levels can
be classified as shared/private across cores and hierarchies as inclusive, non-
inclusive or exclusive, depending on whether the content of a cache level is
present in lower cache levels. Of special interest for us is the combination of
shared/inclusive cache levels, such as LLC caches in modern Intel multi-cores;
in this scenario, a process executed on a specific core can produce side effects
on independent processes executed on a different core. This phenomena can be
exploited to perform cache-timing attacks. Supplementary techniques, such as
Intel’s Cache Allocation Technology (CAT [13]), can be leveraged to isolate spe-
cific LLC ways in order to boost performance (reducing contention), but also to
mitigate the effects of potential attacks in this type of processors and situations.

3.2 Shared memory and memory de-duplication

Modern operating systems, such as Linux, make an intensive use of shared mem-
ory across processes to improve memory usage efficiency. Some situations (e.g.
parent-child process hierarchies generated through fork()) are easily trackable,
but sharing memory pages across independent processes requires ad-hoc sophis-
ticated techniques. This is a very common scenario in multi-virtual machine
(multi-VM) deployments sharing the same physical resources, for example.

Memory de-duplication is a specific technique of shared memory, designed to
reduce the memory footprint in scenarios in which a hypervisor shares memory
pages with the same contents across different virtual machines, but with impact
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also on non-virtualized environments comprising random non-related processes.
In the Linux implementation (KSM, Kernel Samepage Merging), a kernel thread
periodically checks every page in registered memory sections, and calculates a
hash of its contents. This hash is then used to search other pages with identical
contents. Upon success, pages are considered identical and merged, saving mem-
ory space. Processes that reference to the original pages are updated to point to
the merged one. Only after a write operation from one of the VMs (or processes),
sharing finishes and the corresponding page is copied by COW (Copy-on-Write).

3.3 Flush&Reload

The Flush&Reload attack was first introduced in [15] and it has been used as
baseline by later works such as [10], among others. It takes advantage of the
combination of inclusive shared caches and memory de-duplication. The basics
of the attack are as follows: the attacker runs in a core which shares the last
level cache with the victim, and manages to share some page with it through
memory de-duplication. It can either contain shared data (i.e. the tables used
by the AES encryption algorithm) or shared instructions (for the attack against
RSA). In the first phase of the attack (Flush), the attacker evicts the shared
blocks from its own private cache, causing the eviction of those data from the
shared cache and all the other caches. In the second phase, the victim performs
some random work, bringing some of the shared data to the cache again. In the
last phase (Reload), the attacker accesses every shared data, measuring the time
it takes and it guesses which data have been used by the victim (cache hits) and
which ones were not used (cache misses). From this information, the attacker
extracts relevant data, such as the AES key.

4 Implementation of the AES attack

4.1 Experimental Setup

The experimental setup was deployed on a dual-socket server featuring two Intel
Xeon Gold 6138 chips with 20-cores each (hyperthreading was disabled), running
at 2 Ghz. The memory hierarchy comprises 96 Gbytes DDR4 RAM, 28 Mbytes
of unified L3 cache per chip (11-way associative), 1 Mbyte of unified L2 cache per
chip (16-way associative) and 32 Kbytes of L1 cache per core (8-way associative).
Cache line is 64 bytes. L1 TLB comprises 64 entries (4-way associative) with a
page size of 4 Kbytes.

From the software perspective, we employed a Debian GNU/Linux distribu-
tion with kernel 4.9.51-1 and GCC 6.3.0. PAPI version 5.5.1.0 [14] built on top of
the Linux perf event subsystem was employed to extract performance counters
information. OpenSSL version 1.1.1.b was used to implement the cryptographic
algorithm, compiled with the no-asm flag when using T-tables.
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4.2 AES algorithm

The AES algorithm is iterative, so obtaining each encryption needs the execution
of several rounds. In [7, 1], authors develop the underlying theory of polynomials
with coefficients in GF (28) (Galois Field of order 256), which is the base for the
extraction of transformation values of a single round. The round transformation
lies in four steps for the first rounds (SubByte, ShiftRows, MixColumns
and AddRoundKey) and three for the last round (all but one, MixColumns).
The number of rounds will depend on the length of the key; in our case, for 128-
bits key, we need 10 rounds. As stated by Daemen and Rijmen in [7], the round
transformation of AES can be optimized with 4 look-up tables (Ti, i ∈ 0 · · · 3)
that contain the pre-calculated values for each of the potential inputs. This way,
the encryption round is simplified to a few XOR operations and takes the form:

Si,j = Ti[s
k
i,j ]⊕RoundKeyki,j (1)

for the main rounds, and the last round:

Si,j = T(i+2)%4[s10i,j ]⊕RoundKey10i,j (2)

with Sk
i,j the encrypted char, si,j the previous state char, k ∈ 1 · · · 9 the k-th

round and s1 is the original message (s0) XOR with RoundKey0.

4.3 Implementation of the attack

The basis of the attack is simple: using T-Tables optimization to extract the
last round key (LRK) of AES. In Section 2, we exposed previous algorithms for
extraction of the AES key. We use the approach of [4] to break the OpenSSL
1.1.1.b AES 128 bits implementation (this library has had to be compiled with
no-asm flag, so that it uses the T-Tables implementation). The attack begins by
forcing the de-duplication of library pages (see Section 3.2). This step is manda-
tory so that victim and attacker can share pages of the dynamic library, hence
allowing the observation of memory addresses assigned to AES tables. In order
to obtain the origin of the dynamic library, we proceed by opening the library
and performing a memory projection (through mmap). Proceeding this way, the
KSM daemon will detect a matching in the contents of the mapped file and the
loaded dynamic library, and will force the de-duplication. We have experimen-
tally observed a delay of around 300 encryptions to unleash the de-duplication
of pages. At that point, the attack can commence. The start addresses of each
table are obtained by decompiling the library and determining the offset of each
table with respect to its start address.

As seen in Section 2, there are different ways to extract the key based on the
information left by the last round of encryption. In this work, we check whether
a cache line1 resides in L3 upon completion of the encryption process.

1A cache line –64 bytes in our target architecture– can store 16 elements of a table,
provided each element is stored as a 4-byte unsigned integer.
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These measurements have been carried out empirically by a Flush&Reload
technique (see Section 3.3) for each one of the four tables. In the following,
Tj is the corresponding line of the observed table; the attack proceeds by first
performing a flush operation of different lines of the table, followed by a random
encryption request. The response to this request is then stored (S[i] stores the
encrypted text on the i-th encryption), together with the information that will
be necessary to perform the attack: a matrix X is created and Xij set to 1 if
line Tj was in L3 after completing the i-th encryption, 0 otherwise.

Once these data are obtained, we proceed by searching for the most probable
characters belonging to the last round key, following the pseudo-code depicted
in Algorithm 1.1, that will return, for each position of the last round key, those
characters with the lowest probability. Hence, we will select:

LastRoundKeyi,j = min
t ∈ 0,...,num encrypt

LRKi,j [t] (3)

Once the characters of the last round key have been obtained, the last step
is just an inversion of the code used by AES to obtain the last round key, and
hence the initial key of the server.

Listing 1.1: Pseudo-code to obtain Last Round Key candidates.

1 f o r t in 0, · · · , num encrypt
2 f o r i in 0, 1, 2, 3
3 i f X[ ( i +2)%4][ t ] == 0
4 f o r j in 0, 1, 2, 3
5 f o r l in 0, · · · , line elems
6 LRKi,j [S

t
i,j ⊕ T(i+2)%4[l]] + +

7 end f o r
8 end f o r
9 end i f

10 end f o r
11 end f o r

5 Attack detection using PMCs

Cache timing attacks cause an anomalously high number of L3 misses, due to
the flush and reload activity; hence, measuring L3 misses is an straightforward
mechanism to detect them. As explained in Section 2, there have been some
works in this field and most of them use L3 misses.

In addition to L3 cache misses, we chose the total number of load instructions
executed by the victim as a way to estimate the number of encryptions being
performed by the victim, so that the ratio between both counters provides a
metric that is constant for different levels of load in the victim. Thus, our detec-
tion metric is the amount of L3 cache misses (in thousands) per load instruction
(1000*L3 misses/LD instruction).
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(a) Attack. Detection freq.: 100 µs (b) No attack. Detection freq.: 100 µs

(c) Attack. Detection freq.: 1 ms (d) No attack. Detection freq.: 1 ms

(e) Attack. Detection freq.: 10 ms (f) No attack. Detection freq.: 10 ms

(g) Attack. Detection freq.: 100 ms (h) No attack. Detection freq.: 100 ms

Fig. 1: Results obtained from performance counters at different sampling rates.
Each one of the four rows reports the results obtained for the L3 cache misses
(above) and number of load instructions (below) in the victim under attack (left)
and with no attack (right). The rows correspond to the different sampling rates
analyzed: 100 µs (first row), 1 ms (second row), 10 ms (third row) and 100 ms
(last row).
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Figure 1 reports the values of the chosen PMCs for the victim both in the
presence and absence of attack. The experiment was repeated at different sam-
pling frequencies, to study the effect of the sampling frequency in the detection
capability. Figure 2 shows the values of the proposed metric for the results in
Figure 1. The first observation is that the selected metric is an effective mecha-
nism to detect the attack; the values under attack are close to 1 while the values
without attack are 10 to 100 times lower. In this situation, the attack is detected
if, after the initial cold misses (identified as 100 ms in our experiments), the value
remains close to 1.

A second conclusion from Figure 2 is that sampling PMCs at 100 µs leads to
more noisy results for the no-attack experiment. Given that this sampling rate
also produces a higher overhead, we will not use that sampling frequency in the
following.

6 Analysis of a time-fragmented attack

In this section, we propose a complete set of experiments in order to determine
if the division of the attack in discrete pieces and their distributed execution in
time can potentially disguise the attack and invalidate the action of our detector.

We proceed by dividing the 50, 000 encryptions needed for the attack into
equally-sized groups (or “packets” in the following) of encryptions. We have
evaluated packets of decreasing sizes, namely: 5, 000, 500, 50 and 5 encryptions.
Furthermore, in order to analyze the effect of increasing the gap (time) between
packets, we call “interval” to the separation between two consecutive packets.
In our experiments, we vary the interval between packets from 10 µs to 100 ms.
For each combination of packet size and interval, we used the sampling rates of
the previous section except the highest one: 1 ms, 10 ms and 100 ms.

The most interesting results are obtained for small packets and large inter-
vals, as expected. Figure 3 shows the results when the attack is divided into
100 packets of 500 encryptions, and the time interval between two consecutive
packets is 10 ms. The sampling rate is either 1 ms or 10 ms. The metrics ob-
tained from the 10 ms samples are close to the usual value for the attack, but
the results for 1 ms samples switch from the values corresponding to an attack
(close to 1) to the no-attack values (close to 0). As expected, for the high res-
olution frequency, some samples do not find any difference between attack and
no-attack, because they fall in the interval of time between packets of the attack.
On the contrary, the low resolution samples always find the “big picture”.

Figure 4 reports an equivalent evaluation for packets 10 times smaller, with
the aim of reducing the time in which the attack can be detected. In this case,
the difference between the obtained results at different sampling rates is more
evident. The time interval between two consecutive packets is 10 ms and the
sampling rates are 1, 10 and 100 ms. For the 1 ms sampling rate, on one hand,
the no-attack experiment has higher number of L3 misses due to the separation
between packets. During those intervals some cache lines are evicted due to
normal functioning of the system. On the other hand, the experiment with attack
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(a) Attack. Detection freq.: 100 µs (b) No attack. Detection freq.: 100 µs

(c) Attack. Detection freq.: 1 ms (d) No attack. Detection freq.: 1 ms

(e) Attack. Detection freq.: 10 ms (f) No attack. Detection freq.: 10 ms

(g) Attack. Detection freq.: 100 ms (h) No attack. Detection freq.: 100 ms

Fig. 2: Metric evaluation for attack detection at different sampling rates. Each
row displays the proposed metric: 1000 L3 cache misses per load instruction
in the victim under attack (left-side column) and without attack (right-side
column). The four rows correspond to the four sampling rates analyzed: 100 µs
(first row), 1 ms (second row), 10 ms (third row) and 100 ms (last row).
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also switches from low to high values of the metric as in the previous experiment.
This fact can be observed in Figure 5, which is an augmented view of the results
for the attack with 1 ms sampling. It confirms that the attack can be more easily
hidden from the high resolution samples than from the lower ones.

Finally, the packet size is decreased to 5 encryptions. In this experiment,
when the interval between packets is longer than 1 ms the attack stops working.
The results for 1 ms interval are show in Figure 6 and they confirm that our
detection metric is able to detect the attack with a sampling rate of 10 ms or
bigger.

(a) (b)

(c) (d)

Fig. 3: Detection metric for packets of 500 encryptions with interval of 10 ms.
There is an attack in the left column and no attack in the right one. The sampling
rate is 1 ms (top) and 10 ms (bottom).

7 Conclusions

In this paper, we proposed a mechanism to protect victim processes running in
multi-core servers (either native or inside a VM) against cache timing attacks
by adding to the server a new detector process that monitors only the PMCs
associated to the victim process. To that end, we implemented a cache timing
attack against the table based AES encryption algorithm. We used 1000 L3 cache
misses per load instruction as a detection metric and achieved detection of the
attack for all the different sampling rates, although sampling at high frequency
is worse than at lower ones.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: Detection metric for packets of 50 encryptions with interval of 10 ms.
There is an attack in the left column and no attack in the right one. The sampling
rate is 1 ms (top), 10 ms (middle), and 100 ms (bottom).

Fig. 5: Augmented view of the detection metric for the attack with packets of 50
encryptions, interval of 10 ms and sampling rate of 1 ms.
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(a) (b)

(c) (d)

Fig. 6: Detection metric for packets of 5 encryptions with interval of 1 ms. There
is an attack in the left column and no attack in the right one. The sampling rate
is 1 ms (above) and 10 ms (below).

We have tried to hide the attack dividing it into small parts and interleav-
ing time slots with attack and without attack. Thus, sampling PMC at high
frequency makes detection of the attack more difficult. Again, lower frequency
monitoring (10 ms and 100 ms) results in higher detection capability.
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