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Abstract. Compute-heavy workloads are currently run on Hybrid HPC structures 
using x86 CPUs and GPUs from Intel, AMD, or NVidia, which have extremely 
high energy and financial costs. However, thanks to the incredible progress made 
on CPUs and GPUs based on the ARM architecture and their ubiquity in today’s 

mobile devices, it’s possible to conceive of a low-cost solution for our world’s 

data processing needs.  
Every year ARM-based mobile devices become more powerful, efficient, and 

come in ever smaller packages with ever growing storage. At the same time, 
smartphones waste these capabilities at night while they’re charging. This repre-
sents billions of idle devices whose processing power is not being utilized.  

For that reason, the objective of this paper is to evaluate and develop a hybrid, 
distributed, scalable, and redundant platform that allows for the utilization of 
these idle devices through a cloud-based administration service. The system 
would allow for massive improvements in terms of efficiency and cost for com-
pute-heavy workload. During the evaluation phase, we were able to establish sav-
ings in power and cost significant enough to justify exploring it as a serious al-
ternative to traditional computing architectures. 

Keywords: Smartphone, Distributed Computing, Cloud Computing, Mobile 
Computing, Collaborative Computing, Android, ARM, HPC. 

1 Introduction 

Since their inception, x86 CPUs (Intel/AMD) and their corresponding GPUs (In-
tel/AMD/NVidia) were developed to solve complex problems without taking into ac-
count their energy consumption. It was only in the 21st century that, with the exponen-
tial growth of data centers, the semiconductor giants began to worry and seriously 
tackle their chips’ TDP, optimize their architectures for higher IPC, and lower their 
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power consumption [1][2][3]. If we analyze the current context, the power and cooling 
bills are two of the biggest costs for data centers [4][5]. It is for this reason that energy 
consumption and efficiency are two key issues when designing any computing system 
nowadays and it is acknowledged that accomplishing compute benchmarks must not be 
done so by brute force but rather by optimizing resources and architectures, keeping in 
mind the high financial and environmental cost of the energy required by large data 
centers. 

Unlike the x86 processors, ARM-based chips were conceived with power efficiency 
as key priority from their inception, since these were oriented to the mobile devices and 
micro devices, which are for the most part battery-powered. Although the raw power 
of ARM chips is lower than that of their x86 counterparts, they are much more efficient 
power-wise [6][7][8]. At the same time, ARM-based devices vastly outnumber tradi-
tional x86 computers, so while their individual computer power might be lower, there 
is a very large install base with long idle periods while charging that, if properly man-
aged, could become massive distributed data centers consuming only a fraction of the 
energy for the same computing power as their traditional counterparts. This distributed 
workload during idle time principle has been used before in x86 for collaborative initi-
atives such as SETI@Home and Folding@Home which use the computing power of 
computers that people left turned on during idle period to construct large virtualized 
data centers. Currently some investigators have converted this collaborative model to 
work on mobile devices [9][10][11][12]. 

After analyzing the methodology, structures, and results obtained in those case stud-
ies, our team built and evaluated a collaborative platform for HPC based on ARM-
based mobile devices, following the footsteps of the previous study [8]. The platform 
receives data fragments and instructions from its clients via de cloud portal, generates 
tasks and distributes them to the worker nodes (mobile devices) for them to apply their 
massively parallelized computing power towards the function requested by the client. 
Once the task is complete, all worker nodes return their processed fragments to the 
central nodes and the final processed data is stored until the client requests it. In this 
paper in particular the implemented task was video compression using the FFMpeg 
library, which allows for different profiles and compression configurations to be re-
quested by the client, as defined by the previous study [8]. The platform was evaluated 
through a series of performance and power usage metrics both on ARM well as x86 
chips. This allowed us to make a comparative analysis between the architectures and 
demonstrate that it is completely feasible to offload compute heavy workloads to ARM 
architectures. It also allowed us to compare the power usage for the same task on ARM-
based chips compared to their x86 counterparts. An analysis of a cloud-based x86 ar-
chitecture (IaaS) was also performed with the objective of offering an estimation of the 
costs which could be recuperated if those tasks were to be migrated to the collaborative 
computing platform. 

In order to clearly describe the different aspects of the work, the rest of the paper is 
organized in the following manner: Section 2 details the implemented protocol, tech-
nologies used, and functions developed for it. Section 3 describes the testing model and 
metrics used. Based on that section as well as the data collected during the experiment, 
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section 4 presents an analysis of the results. Finally, the last chapter will focus on the 
conclusion and future work to further explore the topic. 

2 Distributed Architecture for HPC on ARM 

The developed architecture implemented a hybrid model composed of (a) cloud-based 
resources, and (b) mobile devices. In Fig. 1 a functional diagram is presented. 
The cloud resources (a) carry out the following functions: 

 RESTful web server for task reception and delivery  
 Admin and task management system 
 Database storing statistics (time used per task and power usage) 

The mobile devices (b) process the task fragments they receive in a collaborative and 
distributed fashion.  Each node has access to the application (apk) that allows it to ac-
cess the network and includes the video compression logic. 

 
Fig. 1. Functional Diagram of the Collaborating Computing Network 

2.1 Cloud Nodes 

RESTful web servers for task reception and delivery. A RESTful web app was de-
veloped through the SPRING Java framework so that both clients and nodes can com-
municate with the web servers in the network. A RESTController entity was developed 
for the purpose of establishing the connection with the distributed queuing system (Rab-
bitMQ), with the statistics database (MariaDB), and translating the HTTP requests from 
the users into specific functions as determined by the roles they possess.  All commu-
nication between clients, worker nodes, and servers is done through HTTP messages 
encoded using the JSON format, as are the task objects (Messages). 

Admin and task management system. In order to construct an admin and task man-
agement system that was persistent, redundant, and fault-tolerant, the RabbitMQ mid-
dleware was used as a message queue-based persistence module and was integrated 
with the RESTful Java platform. With this tool, we implemented persistent FIFO 
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queues and they were configured to offer high cluster availability. The messages stor-
age uses the exchange format (JSON).  

At the same time, the REST Java server implements a manual configuration model 
for the content of the general message queue whence worker nodes obtain their tasks. 
In the event of a server error, client-side issues, or execution timeout, the admin thread 
moved the task back from pending to available and places it back on the queue so that 
another worker can process it. 

Database with statistics data storage (time and power usage). The web server also 
includes a link to the MariaDB database through a CRUD schema using the DAO de-
sign pattern. The database must register each executed task, which worker node exe-
cuted it, the type of task, the processing time (milliseconds), and the power usage 
(watts).  This allows us to access that information for the purpose of evaluating different 
architectures and derive their efficiency from the comparative analysis between their 
performance and power usage 

2.2 Mobile Worker Nodes 

The application for the mobile nodes was developed on the native Android environment 
(Android Studio) and an apk was generated based on a Java codebase. The application 
is basically a series of modules that allow for the execution of the compute-heavy tasks 
to be performed without negatively impacting the OS. 

The application was developed using the MVC pattern, based on activities with Java 
on Android Studio.  A given activity defines a view that allows for the interaction with 
the user and visualization of the state changes made by the controller and on the flipside 
generates an independent worker thread which is in charge of the compute-heavy work-
load. This thread will continuously iterate the following process: first it connects to the 
REST server and downloads a task that needs to be processed, then it takes the param-
eters from the JSON message and applies them to the compression of the source video 
with the FFMpeg library which is integrated in the app as defined in the message.  Once 
the video has been compressed, it generates a new JSON message and sends it along 
with the compressed video back to the server.  Once the cycle is finished, it attempts to 
obtain another message from the queue and repeats the aforementioned process. 

It should be noted that in order to evaluate and compare the different platforms, a 
worker node was developed in Java for the x86 architecture with the same functions as 
those implemented on the Android app but without a GUI since the management is 
done through command line. 

The codebase and all the tools used in this project are available on GitHub at the 
following URL: https://github.com/dpetrocelli/distributedProcessingThesis  

https://github.com/dpetrocelli/distributedProcessingThesis
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3 Test model and metrics 

With the goal of evaluating the performance of our prototype, we ran compute tasks 
composed of video compression with different sets of parameters on both types of ar-
chitectures: ARM-based devices running Android and Intel x86-based devices. We aim 
to obtain the performance and power usage numbers for executing this task on these 
devices. For this purpose, the following steps were taken: 3.1) Selection of source vid-
eos; 3.2) Configuration of compression profiles and duration of video fragments; 3.3) 
Definition of the testing devices (ARM/x86); 3.4) Definition of the metrics to be meas-
ured; 3.5) Construction of the custom power usage meters. 

3.1 Selection of source videos 

In order to generate a test that could saturate devices of both architectures, we analyzed 
previous works and configurations [13][14] and used them as a reference for this test. 
Based on that we selected three source videos with characteristics that were relevant 
for both platforms (codecs used, bitrate, compression level, frame size, aspect ratio, bits 
per pixel, etc.). The overview of the most important properties of each video are de-
tailed in Table 1. 

Table 1. Principal characteristics of the source videos used for compression tests 

 

3.2 Configuration of compression profiles and video fragment duration 

The chosen codec AVC h.264 [15] (x264 library on FFMpeg) is widely supported on 
current devices and video streaming platforms such as Youtube, Vimeo, Netflix, etc.  
The encoding profiles of x264 that were selected to run the tests mentioned in this ac-
tivity are detailed below in Table 2. 

Table 2. Description of the properties of compression profiles used in FFMpeg 

 
Four profiles were selected for the two higher compression levels available on the 

x264 codec (main, high); these range from simple, low compression profiles, to com-
plex, high compression ones. As such, the encoding and compression performed will 
be the same as the most common configurations found on video streaming platforms; 
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which allows the public to access content in different qualities in order to match their 
device compatibility and connection bandwidth [16][17].  

In addition, each video is also split into 3 and 1 second fragments for each compres-
sion level. These are the recommended values for video streaming services [18][19]. 

3.3 Definition of testing equipment (ARM/x86) 

In order to evaluate the performance demands of the compression tasks, a mix of x86 
and ARM-based resources were used; these were chosen based on their compute power. 
Both architectures have a high-end cluster (x86-i7-16gb / ARM Samsung S7), and a 
mid-tier cluster (x86-i5-8gb / ARM Samsung A5 2017), all of them fully support en-
coding/decoding of x264 videos [20].  The relevant characteristics of the equipment are 
listed in Table 3. 

Table 3. Principal characteristics of the equipment used for compression tests 

 

3.4 Definition of measured metrics 

The following metrics were defined for evaluating the performance and power usage 
of the different architectures (x86/ARM) while performing compute-heavy tasks: 
 
Time Metrics. Processing time per task for each architecture (IndTime). 

 Minimum (MinIndTime) / Maximum (MaxIndTime) / Average (AVGIndTime) 

All metrics were measured in milliseconds. 
 
Power Usage Metrics. Register power usage metrics per task for each architecture 

 Minimum (MinWattCons) / Maximum (MaxWattCons) / Average (AVGWattCons) 

All metrics were measured in watts.  
It is worth mentioning that custom tools were developed for the purpose of measuring 
these power usage metrics. These tools are detailed in Subsection (3.5). 
 
Effectivity Score. The effectivity score is derived from the following metrics: the av-
erage task execution time (AVGIndTime) and power usage (AVGWattConsum) for 
each architecture as detailed below: 

𝑇𝑖𝑚𝑒𝑅𝑎𝑡𝑖𝑜 = 𝐴𝑉𝐺𝐼𝑛𝑑𝑇𝑖𝑚𝑒 (𝐴𝑅𝑀) ÷ 𝐴𝑉𝐺𝐼𝑛𝑑𝑇𝑖𝑚𝑒 (𝑥86) 
(Determines how many times slower the ARM device is) 

𝑃𝑜𝑤𝑒𝑟𝑈𝑠𝑎𝑔𝑒𝑅𝑎𝑡𝑖𝑜 = 𝐴𝑉𝐺𝑊𝑎𝑡𝑡𝐶𝑜𝑛𝑠 (𝑥86) ÷ 𝐴𝑉𝐺𝑊𝑎𝑡𝑡𝑠𝐶𝑜𝑛𝑠 (𝐴𝑅𝑀) 
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(Determines how many times less power the ARM device uses) 
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 = 𝑃𝑜𝑤𝑒𝑟𝑈𝑠𝑎𝑔𝑒𝑅𝑎𝑡𝑖𝑜 ÷ 𝑇𝑖𝑚𝑒𝑅𝑎𝑡𝑖𝑜 

If EffectivityScore = 1, equilibrium between architectures 
If EffectivityScore <1, the effectivity score is better on X86 
If EffectivityScore > 1, the effectivity score is better on ARM 

3.5 Construction of power usage devices. 

x86 Architecture. The x86 devices run on direct current provided by their power sup-
ply, which is fed from a standard 220V AC mains outlet. In order to measure their 
power usage, a non-invasive device was built from standard micro components which 
consists of a current clamp wired to an Arduino controller through a headphone jack 
connector and a multimeter for obtaining the grid voltage. 

ARM Android. While mobile devices also run on direct current, they obtain it directly 
from their built-in battery. Due to this, it was necessary to build a software-based power 
usage meter. After researching the matter [21] [22], the power usage meter protocol was 
integrated into the ARM worker apk through an independent thread which only runs 
while a task cycle is underway and does not interfere with it. This thread polls the bat-
tery sensor information from the OS every 1000 milliseconds.  

4 Experimentation and Analysis  

Having defined the testing model and metrics to be measured, the experiment was ex-
ecuted. The analysis of the results is detailed below. 

4.1 x86 Architecture Analysis: 

Power Usage Analysis: Taking into account the execution of the compression tasks 
for both architectures, the power usage of all their components (except for the monitor) 
required on average were: 115 Watts for the Intel i7 (37% higher than the CPU’s TDP: 

84 Watts) and 183 Watts for the Intel i5, (93% higher than the CPU’s TDP: 95 Watts). 
This increase is due to the i5 having a GPU (TDP: 66W) which aided in the assigned 
tasks. For this reason, the i5 cluster consumes, on average, 59% more than the i7 for all 
compression tasks. 

Performance Analysis: Both architectures correctly completed the compression tasks 
(4k, HD, 720p, 480p) in the fragment configurations used (1 and 3 seconds) since their 
processing capabilities and memory (including swap) are comparatively large. The 4k 
profile, both in its 1 and 3 second fragments and with the chosen compression presets, 
is the most complex task given that it presents a large jump in processing time compared 
to the other presets; this can be observed in Fig. 2.  This is basically due to the bitrate 
of the source video, which is 4 or 5 higher than the rest, as well as the use of the highest 
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quality profile available in the library (x264 high L@5.1) and its more in-depth preci-
sion requirement (preset: very slow). At the same time, it’s clear that the i7 architecture 

has, on average, a 40% performance lead on its competition. Based on this it can be 
deduced that, the higher the task complexity, the better the i7 architecture will perform 
compared to the i5 architecture. 

  
Fig. 2. x86 compression test results  

x86 Platform Choice for Comparison between Architectures. The x86-i7 cluster 
was chosen as the one to be used for the comparison between the x86 and ARM archi-
tectures based on the performance results detailed above and the fact that the x86-i7 
cluster uses on average 60% less power compared to the x86-i5 cluster. 

Cost Analysis: Definition of the Cloud Architecture. For the cloud architecture, 
“General Purpose Av2” virtual machine instances (IaaS) on Microsoft Azure were cho-

sen; specifically the “Standard_A8_v2” model, which contains 8 Virtual CPUs, 16GB 

of RAM and 80GB of SSD storage. It is the most similar configuration to the local i7 
cluster while also being the cheapest one. Working on a Linux environment, the oper-
ating cost is 0.4$/hour (Official Azure pricing in April 2019) [23]. 

In order to validate the performance and costs, the same 3-video compression test 
suite was executed on the cloud VM but only applying the most complex profile (4K) 
in the smallest fragment size (1 second), with the purpose of narrowing down the results 
to one task in particular. The result of this testing showed that, on average, the cloud 
VM is 130% slower than the i7 cluster, as shown in Fig. 3. 

 
Fig. 3. x86 vs Cloud IaaS compression test results 

Taking into account the requirement of compressing a 1-hour video split into 1-second 
fragments at the most complex profile (4k), the data from the previous analysis results 
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in cost figures of $10.15/h for the first video, $6.65/h for the second one, and $6.15/h 
for the third one as shown on Table 4. It should be noted that this is the estimated cost 
for just the processing time as it ignores any other costs arising from network usage, 
redundancy, traffic rules, etc. which all add further cost to cloud solutions [24]. 

Table 4. Azure IaaS Cost Estimates 

 
 

Furthermore, if the first video is taken as a reference (3dmark - 487MB - 2min 35s) and 
its file size is extrapolated to what it would be with a 1-hour duration, that would result 
in a file size of 11GB. According to a study [25] from encoding.com, one of the most 
extensive compression and streaming cloud-based platforms on the web, they received 
requests to process and compress more than 6.6PB of data between 2017 and 2018. 
Although the relationship is not entirely linear, handling these requests through the use 
of idle devices would result in significant energy as well as costs savings. 

4.2 ARM Architecture Analysis: 

Power Usage Analysis. For video compression, the test results show that the Samsung 
S7 cluster consumes, on average, 3,15W while the Samsung A5 2017 cluster consumes, 
on average, 2,25W. This means that the high end platform consumes on average 40% 
more than the mid-range platform. 

Performance Analysis. The S7 cluster is, on average, 39% faster than the A5 2017 for 
all the compression tasks, which matches the expected result based on their specifica-
tions. It can be concluded then that if we pair the performance and power usage metrics, 
they are pretty much equal in terms of performance/power. 

Both platforms successfully processed the one-second video fragment tasks in all 
four profiles. However, when attempting the three-second video fragment tasks, the 
two most complex tasks failed in all four profiles (sunflower_2160 and 3dmark-4k-
120fps) and the simplest one (bigbuckbunny_1500) was successfully processed in all 
its four profiles. The one-second video fragment task execution times are detailed in 
Fig. 4 on the left side. The compression performance of the three-second video frag-
ment tasks on the different architectures is only available for the video bigbuck-
bunny_1500, since the other two failed to process, and can be observed in Fig. 4 on the 
right side. 
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Fig. 4. ARM compression test results 

The cause for failure in the three-second video fragment tasks for the most complex 
videos is due to the devices’ inability to hold the necessary amount of data for pro-

cessing that task in memory since the mobiles clusters have much less ram than their 
x86 counterparts (3GB and 4GB against 8GB and 16GB) and completely lack swap 
memory as that feature is not supported on Android.  
Therefore, it is recommended that, for complex compression tasks, the video frag-

ment size should be limited to one-second in order to fully take advantage of the mid 
and high-end mobile devices available in the market today 

4.3 Comparative Analysis: 

The performance and power usage results of the i7-x86 architecture were compared 
through the effectivity index against the two mobile device clusters (Samsung S7 and 
Samsung A5 2017), only taking into account the one-second video compression tasks 
that the ARM devices were able to complete successfully.   

The ARM architecture, both on mid and high-end devices is between 5 and 16 times 
more effective compared to the x86 architecture depending upon the complexity of the 
task and source video. Generally, the less complex the task and source video are, the 
more effective ARM is. This can be observed in fig. 5  

Furthermore, the mid-range cluster was able to process the tasks in a similar 
timespan to that of the high-end cluster but with a proportionally lower power usage. 
Thus its effectivity score is, on average, 19% higher for the bigbuckbunny-1500 video, 
28% higher for sunflower-2160, and 12% higher for 3dmark-4k-120fps. 
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Fig. 5. Effectivity comparison of the platforms  

5. Conclusions 

A distributed collaborative platform was developed for the purpose of carrying out 
compute heavy tasks on mobile devices while they’re idle and charging their batteries. 

It was determined through experimentation and evaluation that mid and high-end An-
droid devices are capable of performing this type of tasks with a competitive power and 
cost advantage over traditional and cloud architectures. Furthermore, it was also 
demonstrated that the developed platform is sufficiently robust to withstand an assort-
ment of tasks and challenges often faced by this type of applications. Lastly, it was 
determined that the mid-range nodes with the highest efficacy scores might not be the 
fastest but will always be more competitive than their more powerful counterparts ow-
ing to their lower power usage and cost. 

6 Future Work 

Based on the work done in this paper, the next steps to be undertaken to extend the 
functionalities and analysis of the platform are: 

 Implement a scaling protocol for the cloud management nodes so that they can 
quickly respond (scale up or down) to the platform demand, as defined in [21]. 

 Implement other functions applicable to the massively parallel processing paradigm 
such as Distributed IR, machine learning, signal processing, physics simulations, 
pattern recognition in image and video, data clustering, etc. which allow for further 
testing and analysis of the capabilities of the devices and to improve the platform 

 Implement a classifier of tasks and worker nodes and intelligently allocate them ac-
cording to the complexity requirements and capabilities. 

 Implement Credit-based incentives model for contributing idle device time to the 
platform.  
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