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A search for long-lived particles is performed using a data sample of 4.7 fb- 1 from proton–proton 
collisions at a centre-of-mass energy s = 7 TeV collected by the ATLAS detector at the LHC. No excess 
is observed above the estimated background and lower limits, at 95% confidence level, are set on the 
mass of the long-lived particles in different scenarios, based on their possible interactions in the inner 
detector, the calorimeters and the muon spectrometer. Long-lived staus in gauge-mediated SUSY-breaking 
models are excluded up to a mass of 300 GeV for tanβ = 5–20. Directly produced long-lived sleptons are
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excluded up to a mass of 278 GeV. R -hadrons, composites of gluino (stop, sbottom) and light quarks, 
are excluded up to a mass of 985 GeV (683 GeV, 612 GeV) when using a generic interaction model. 
Additionally two sets of limits on R -hadrons are obtained that are less sensitive to the interaction model 
for R -hadrons. One set of limits is obtained using only the inner detector and calorimeter observables, 
and a second set of limits is obtained based on the inner detector alone.

© 2013 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

Heavy long-lived particles (LLP) are predicted in a range of 
theories which extend the Standard Model (SM). Supersymmetry 
(SUSY) [1–9] models allow long-lived charged sleptons (^˜), squarks 
(q˜) and gluinos (g˜ ). Heavy LLPs produced at the Large Hadron Col
lider (LHC) could travel with speed measurably lower than the 
speed of light. These particles can be identified and their mass, m, 
determined from their speed, β , and momentum, p,usingthere- 
lation m = p/γ β ,withγ being the relativistic Lorentz factor. Four 
different searches are presented in this Letter, using time-of-flight 
to measure β and specific ionisation energy loss, dE/dx,tomea- 
sure β γ . The searches are optimised for the different experimental 
signatures of sleptons and composite colourless states of a squark 
or gluino together with SM quarks and gluons, called R -hadrons.

Long-lived charged sleptons would interact like muons, releas
ing energy by ionisation as they pass through the ATLAS detector. 
A search for long-lived sleptons identified in both the inner detec
tor (ID) and in the muon spectrometer (MS) is therefore performed 
(“slepton search”). The results are interpreted in the framework of 
gauge-mediated SUSY breaking (GMSB) [10–16] with the light stau 
(τ˜ ) as the LLP. In these models a substantial fraction of the events 
would contain two LLP candidates, and this feature is also utilised
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in discriminating signal from background. Direct pair production 
of sleptons is also used to interpret the data independently of the 
mass spectrum of the other SUSY particles.

Coloured LLPs (q˜ and g˜ ) would hadronise forming R-hadrons, 
bound states composed of the LLP and light SM quarks or glu
ons. They may emerge as charged or neutral states from the pp 
collision and be converted to a state with a different charge by in
teractions with the detector material, and thus arrive as neutral, 
charged or doubly charged particles in the muon spectrometer.

In ATLAS, LLPs can be identified via the timing information in 
the muon spectrometer or calorimeters and via the measurement 
of the energy loss in the silicon pixel detector. All of these tech
niques are combined in this analysis to achieve optimal sensitivity 
for the “full-detector R -hadron search”. In addition, searches based 
on only the calorimeter and the inner detector information (“MS- 
agnostic R -hadron search”), and based solely on the inner detector 
(“ID-only R -hadron search”) are performed. The latter two cases 
are motivated by the limited understanding of R -hadron interac
tions in matter, in particular the possibility that R -hadrons are 
electrically neutral in the MS. Furthermore, these searches are sen
sitive to scenarios in which the R -hadrons decay before reaching 
the MS. In all searches the signal particles are assumed to be sta
ble within the ATLAS detector, at least to the point it hits the last 
relevant component of the subdetector used for detecting it.

Previous collider searches for LLPs have been performed at 
LEP [17–20], HERA [21], the Tevatron [22–28], and the LHC 
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2. Data and simulated samples

The work presented in this Letter is based on 4.7 fb-1 of pp 
collision data collected at a centre-of-mass energy s = 7TeV 
in 2011. The events are selected online by muon triggers for the 
slepton search and by missing transverse momentum and muon 
triggers for the R -hadron searches. Data and Monte Carlo Z → μμ 
samples are used for timing resolution studies. Monte Carlo signal 
samples are used to study the expected signal behaviour and to set 
limits.

The GMSB samples are generated with the following model 
parameters: number of super-multiplets in the messenger sector, 
N 5 = 3, messenger mass scale, mmessenger = 250 TeV, sign of the 
Higgsino mass parameter, sign(μ) = 1, and C grav, the scale factor 
for the gravitino mass which determines the τ˜ lifetime was set to 
5000 to ensure that the τ˜ does not decay in the detector. The ratio 
of the vacuum expectation values of the two Higgs doublets, tanβ, 
is varied between 5 and 40 and the SUSY-breaking mass scale Λ is 
varied from 50 to 150 TeV, corresponding to light τ˜ masses vary
ing from 122.2 to 465 GeV. The mass spectra of the GMSB models 
are obtained from the Spice program [36] and the events are gen
erated using Herwig [37].

The R -hadron samples are generated with gluino (squark) 
masses from 300–1500 GeV (200–1000 GeV). The pair production 
of gluinos and squarks is simulated in Pythia [38], incorporating 
specialised hadronisation routines [39–41] to produce final states 
containing R -hadrons. A 10% gluino-ball fraction is assumed in 
the gluino sample production. The simulation of R -hadron interac
tions with matter is handled by dedicated Geant4 [42,43] routines 
based on a generic model [44]. All Monte Carlo events pass the 
full ATLAS detector simulation [42,45] and are reconstructed with 
the same programs as the data. All signal Monte Carlo samples are 
normalised to the integrated luminosity of the data.

3. The ATLAS detector

The ATLAS detector [46] is a multipurpose particle physics 
detector with a forward–backward symmetric cylindrical geom
etry and near 4π coverage in solid angle.1 The ID consists of 
a silicon pixel detector, a silicon micro-strip detector, and a 
transition radiation tracker. The ID is surrounded by a thin su
perconducting solenoid providing a 2 T magnetic field, and by 
high-granularity liquid-argon sampling electromagnetic calorime
ters (LAr). An iron/scintillator-tile calorimeter provides coverage 
for hadrons in the central rapidity range. The end-cap and forward 
regions are instrumented with liquid-argon calorimeters for both 
electromagnetic and hadronic measurements. The MS surrounds 
the calorimeters and consists of three large superconducting air
core toroids each with eight coils, a system of precision tracking 
chambers, and detectors for triggering.

1 ATLAS uses a right-handed coordinate system with its origin at the nominalinteraction point in the centre of the detector and the z -axis coinciding with theaxis of the beam pipe. The x-axis points from the interaction point to the centre of the LHC ring, and the y -axis points upward. Cylindrical coordinates (r , φ )areused in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η =-ln tan(θ/2).

The ATLAS trigger system is designed to select the events of 
most interest with a data-taking rate of about 400 Hz from a 
beam bunch crossing rate as high as 40 MHz. The first-level trigger 
(level-1) selection is carried out by custom hardware and identi
fies detector regions and the bunch crossing for which a trigger 
element is found. The high-level trigger is performed by dedicated 
software, seeded by data acquired from the bunch crossing and re

gions found at level-1. The components of particular importance to 
this analysis are described in more detail below.

3.1. The pixel detector

As the innermost detector system in ATLAS, the silicon pixel 
detector provides at least three precision measurements for each 
track in the region |η| < 2.5 at radial distances from the LHC beam 
line r < 15 cm. The sensors in the pixel barrel (covering the cen
tral |η|-region) are placed on three concentric cylinders around the 
beam-line, whereas sensors in the end-cap (covering the high-|η| 
region) are located on three disks perpendicular to the beam axis 
on each side of the barrel. In the barrel (end-cap) the intrinsic ac
curacy is 10 μm in the r φ -plane and 115 μm in the z(r )-direction. 
The data are only read out if the signal is larger than a set thresh
old. The time for which the signal exceeds that threshold, ToT, is 
recorded. The larger the initial signal is the longer this time.

3.1.1. Pixel detector specific ionisation (d E /dx) measurement
The relation between the ToT and the charge deposition in each 

pixel is measured in dedicated calibration scans and shows a good 
linearity. Therefore, the ToT measurement is well correlated with 
the energy loss of a charged particle in the pixel detector. The 
maximum ToT value corresponds to 8.5 times the average charge 
released by a minimum ionising particle (MIP) for a track perpen
dicular to the silicon detectors and leaving all its ionisation charge 
on a single pixel. If this value is exceeded, the ToT (and therefore 
the charge) is not correctly measured. In LHC collisions the charge 
generated by one track crossing the pixel detector is rarely con
tained in just one pixel. Neighbouring pixels are joined together 
to form clusters and the charge of a cluster is calculated by sum
ming up the charges of all pixels after calibration correction. The 
specific energy loss dE /dx is defined as the average of all individ
ual cluster charge measurements for the clusters associated with 
the track. To reduce the Landau tails, the average is evaluated after 
having removed the cluster with the highest charge (the two clus
ters with the highest charge are removed for tracks having five or 
more clusters).

3.1.2. Mass measurement with the pixel detector
The masses of slow charged particles can be measured using 

solely the ID information by fitting each dE /dx and momentum 
measurement to an empirical Bethe–Bloch function and deducing 
their β γ value. The measurable β γ range lies between 0.2 and 
1.5, the lower bound being defined by the overflow in the ToT 
spectrum, and the upper bound by the overlapping distributions 
in the relativistic rise branch of the curve. This particle identifica
tion method [47] uses a five-parameter function to describe how 
the most probable value of the specific energy loss (M dE ) depends 

dx 
on βγ :

MdE(βγ)= pp13 ln^1+(p2βγ)p5^- p4. (1)
dx β 3

Fig. 1(left) shows how this function describes data for low 
momentum tracks. Fig. 1(right) shows the simulated pixel dE/dx 
spectra for singly-charged hypothetical R -hadrons of masses 100, 
300, 500 and 700 GeV. As expected, these distributions extend into 
the high pixel dE /dx region even for high momentum tracks. The 
most probable value of dE /dx for MIPs is about 1.2 MeV g-1 cm2 
with a spread of about 0.2 MeV g-1 cm2 and a slight η depen
dence, increasing by about 10% from low-η to high-η regions.

For all tracks having a reconstructed momentum p and a 
measured specific energy loss dE /dx above the value for MIPs, 
a mass estimate mβγ = p/β γ is obtained by inverting Eq. (1). 
The procedure is continuously monitored through precise (< 1%)
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Fig. 1. Left: Distribution of dE /dx versus charge times momentum for minimum bias collisions in a data sample from 2010. With tracks reconstructed for pT > 100 MeV this sample is more suitable for the calibration of the Bethe–Bloch function than 2011 data in which tracks had a cutoff of p T = 400 MeV. The distribution of the most probable value for pions (solid), kaons (dashed) and protons (dotted) are superimposed. The band due to deuterons is clearly visible. Right: Simulated distribution of specific energy loss versus momentum for singly-charged hypothetical R -hadrons of various masses.
measurements of the mass of known particles (kaons and protons). 
For LLPs the expected d E /dx values are much larger than those of 
SM particles, allowing for identifying them based on this informa
tion.

3.2. Calorimeters

Liquid argon is used as the active detector medium in the elec
tromagnetic (EM) barrel and end-cap calorimeters, as well as in 
the hadronic end-cap (HEC) calorimeter. All are sampling calorime
ters, using lead plates for the EM calorimeters and copper plates 
for the HEC calorimeter. The barrel EM calorimeter covers the re
gion |η| < 1.475 and consists of three layers and a pre-sampler. 
The EM end-cap calorimeter consists of three layers in the region 
1.375 < |η| < 2.5 (two for 2.5 < |η| < 3. 2) and a pre-sampler for 
1.5 < |η| < 1.8. The four layers of the HEC calorimeter cover the 
range 1.5 < |η| < 3 . 2.

The ATLAS tile calorimeter is a cylindrical hadronic sampling 
calorimeter. It uses steel as the absorber material and plastic scin
tillators as the active layers. It covers radii from 2280 to 4230 mm 
and the η coverage extends to |η| ^ 1.7. The calorimeter is sub
divided into a central barrel covering |η| ^ 1.0 and an extended 
barrel covering 0.8 ^ |η| ^ 1.7. Both barrel parts are divided into 
64 modules and the cells in each module are divided into three 
layers.

3.2.1. Calorimeter β measurement
The ATLAS tile and LAr calorimeters have sufficiently good tim

ing resolutions to distinguish highly relativistic SM particles from 
the slower moving LLPs. The time resolution depends on the en
ergy deposited in the cell and also the layer type and thickness, 
but typical resolutions are 2 ns for an energy deposit of 1 GeV and 
generally better for the tile calorimeter.

To ensure the highest possible timing accuracy, it is necessary 
to calibrate the data using particles with known speed. This cali
bration applies a common shift for each run, and is then performed 
as a function of calorimeter layer and cell energy. The reliability of 
such a calibration for this analysis depends on the assumption that 
the particles used for calibration have similar characteristics to the 
LLPs in question when depositing energy in the calorimeters. The 
analysis uses muons for this purpose and it is cross-checked that 
jets give a consistent result. The effect of a possible bias in the 

measured time for late-arriving signals was tested by applying an 
arrival-time-dependent resolution function and found negligible. 
The β measurements from all cells assigned to the extrapolated 
track are combined in a cell-energy-weighted average, typically 
using timing measurements from three or four calorimeter cells. 
The resolution of the resulting β measurement can be seen in 
Fig. 2(left). For data (MC) the mean β -value is 0.983 (0.986) and 
the resolution is 0.090 (0.092).

3.3. The muon detectors

The MS forms the outer part of the ATLAS detector and detects 
charged particles exiting the calorimeters and measures their mo
menta in the pseudorapidity range |η| < 2.7. It is also designed 
to trigger on these particles in the region |η| < 2.4. In the bar
rel the chambers are arranged in three concentric cylindrical shells 
around the beam axis, while in the two end-caps the muon cham
bers are arranged in three wheels that are perpendicular to the 
beam axis.

The precision momentum measurement is performed by mon
itored drift tube (MDT) chambers, using the η coordinate. These 
chambers consist of three to eight layers of drift tubes. In the for
ward region (2.0 < |η| < 2 . 7), cathode strip chambers are used in 
the innermost tracking layer. Resistive plate chambers (RPC) in the 
barrel region (|η| < 1.05) and thin gap chambers in the end-cap 
(1.05 < |η| < 2.4) provide a fast level-1 trigger and measure both 
the η and φ coordinates of the track.

3.3.1. β measurement in the MS
The default reconstruction of particles in the MDT cham

bers [48] relies on the assumption that they travel with the speed 
of light (β = 1). To improve the track quality for slow LLPs, the in
dividual track segments can be reconstructed with different values 
for β . The actual β of the particle is estimated from the set of seg
ments with the lowest χ 2. In a successive combined track re-fit, 
including ID and MS hits, the particle trajectory is estimated more 
accurately. The time-of-flight to each tube is then obtained using 
the difference between the time-of-flight corresponding to the re
fitted track position in each tube and the time actually measured. 
By averaging the β values estimated from the time-of-flight in the 
different tubes an improved MDT β estimation can be achieved.
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Fig. 2. Distribution of β for the calorimeter (left) and combined calorimeter + MS measurements (right) obtained for selected Z → μμ decays in data and MC simulation. The typical resolutions are quoted in the figures.
The RPCs have an intrinsic time resolution of ∼ 1 ns while the 

digitised signal is sampled with a 3.12 ns granularity, allowing a 
measurement of the time-of-flight. In the RPCs, β is first calculated 
separately for each hit from the independent position and time 
measurements. A single β estimate is obtained by averaging the β 
values from all the hits.

By definition, in a perfectly calibrated detector, any energetic 
muon coming from a collision at the interaction point will pass 
the detector at t0 = 0. The t0 distributions in the different detec
tor systems are measured and their means used to correct the 
calibration. The observed width of these distributions after cor
rection is used as the error on the time measurement in the β 
fit and to smear times in the simulated samples. The time res
olution in the MS (about 3 ns) does not depend on the arrival 
time.

3.4. Combining β measurements

There are three possible β measurements per track, from the 
RPCs, the MDTs and the calorimeters. The β measurements from 
the different detectors are only used if β>0.2 (the limit of the 
sensitivity) and if they are consistent internally, i.e. the χ 2 proba
bility of the average between hits is reasonable (calorimeter) or the 
RMS of the measurement is consistent with the expected errors 
(MS). Measurements that are accepted are combined in a weighted 
average. The weights are obtained from the calculated error of 
each measurement multiplied by the pulls of the β distributions 
for muons from Z boson decays.

Since β is estimated from the measured time-of-flight, for a 
given resolution on the time measurement, a slower particle has 
a better β resolution. Prior to the β estimation, the timing val
ues of the hits in the MC samples are smeared to reproduce the 
resolution measured in the data. Fig. 2(right) shows the β distri
bution for selected Z → μμ candidate events in data compared to 
simulation after having smeared the hit times in simulation as de
scribed above. The data are well reproduced by the smeared MC 
distribution: the mean values are 1.000 and 0.996 and the resolu
tion values are 0.035 and 0.033 for data and MC, respectively. The 
smearing mechanism reproduces the measured muon β distribu
tion. The same time-smearing mechanism is applied to the signal 
Monte Carlo samples.

4. LLP candidate and event selection

4.1. Trigger selection

This analysis is based on events collected by two main trigger 
types: single-muon and missing transverse momentum triggers.

4.1.1. Single-muon trigger
The muon trigger and its performance in 2011 data are de

scribed in detail in Refs. [49,50]. This analysis uses un-prescaled 
muon triggers with a pT threshold of 18 GeV. Offline muons are 
selected with p T > 50 GeV, well above the trigger threshold.

Level-1 muon triggers are accepted and passed to the high- 
level trigger only if assigned to the collision bunch crossing. Late 
triggers due to late arrival of the particles are thus lost. The trig
ger efficiency for particles arriving late at the muon spectrometer 
is difficult to assess from data, where the majority of candidates 
are in-time muons. This efficiency is obtained from simulated R - 
hadron and GMSB events passing the level-1 trigger simulation. 
The muon triggers are found to be efficient for GMSB signatures, 
which contain two typically high-β LLPs that reach the MS, and 
additional muons stemming from neutralino decays. The trigger 
efficiency increases roughly linearly from zero at β = 0.62 to its 
full potential of about 90% at β = 0.82 for sleptons and R -hadrons 
that reach the MS. The estimated trigger efficiency for GMSB slep- 
ton events is between 70% and 85%. Muon triggers are less efficient 
for R -hadron events, where one or both of the R -hadrons may be 
uncharged as they enter the MS and β is typically low.

4.1.2. Missing transverse momentum trigger
Since gluinos and squarks are produced via the strong interac

tion, R -hadron events often contain high-pT jets from QCD radia
tion. The modest energy depositions of the R -hadrons themselves 
combined with these jets naturally give rise to missing transverse 
momentum (magnitude denoted as ETmiss ).

The R -hadron analyses use missing transverse momentum trig
gers utilising only calorimeter information [51,50] with thresholds 
between 60 and 70 GeV (a full description of the ATLAS trigger 
system is given in [46]). For the full-detector search the single
muon trigger described in the previous section is used in addi
tion to the E Tmiss trigger. Unlike the muon trigger, there is no loss 
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of efficiency for the E Tmiss triggers when R -hadrons arrive late. 
The efficiency of the ETmiss triggers decreases with increasing R - 
hadron mass as the relative contribution of gg-initiated processes 
decreases, though it remains between 15% and 20% for heavy R - 
hadrons.

4.2. Offline selection

Two different signal types are studied: sleptons and R -hadrons. 
Given their different expected interactions with the ATLAS detec
tor, two dedicated LLP candidate and event selections are used as 
described in the following sections.

4.2.1. Common event selection
Collision events are selected by requiring a good primary ver

tex, with at least three ID tracks, and with requirements on the 
position of the reconstructed primary vertex. The primary vertex 
is defined as the reconstructed vertex with the highest p2T of 
associated tracks. Events recorded during a time where a prob
lem was present in one of the relevant subdetectors are rejected. 
Cosmic-ray background is rejected by removing tracks that do not 
pass close to the primary vertex in z. Candidates with an ID track 
with |zt0rk - zv0tx| > 10 mm or |dt0rk| > 2 mm are removed, where 
zt0rk is the coordinate along the beam direction and dt0rk is the 
transverse impact parameter at the distance of closest approach 
of the track to the primary vertex. Both requirements are tight
ened to 1.5 mm for the ID-only analysis. For the analyses involving 
the muon spectrometer, events with cosmic rays are also rejected 
by a topological cut on any two candidates with opposite η and φ 
(|η1 + η2| < 0.005 and ||φ1 - φ2|-π| < 0.005).

4.2.2. Slepton candidate selection
The analysis searching for sleptons requires two muon candi

dates in each event, because two sleptons are produced, and both 
have a high probability of being observed in the MS. Two sets of 
selection criteria are applied. A loose selection with high efficiency 
is used to select candidates in events where there are two LLP 
candidates. In events where only one candidate passes the loose 
selection, that candidate is required to pass a tight selection.

Candidates in the loose slepton selection are required to have 
p T > 50 GeV. The p T measurements in the ID and MS are re
quired to be consistent, so that the difference between the ID pT 
and the combined fit p T does not exceed a half of their average. 
Each candidate is required to have |η| < 2.5. Any two candidates 
that combine to give an invariant mass close to the Z boson mass 
(±10 GeV) are both rejected. Candidates are also required to have 
associated hits in at least two of the three super-layers of precision 
measurement chambers in the MS.

The number of calorimeter cells plus MS hits contributing 
to the β measurement must exceed the number of detector 
(sub)systems used by three. For signal LLPs, the β values are 
expected to be consistent between the individual measurements, 
whereas for muons a low β -value is typically due to a poor mea
surement in one detector component and thus not consistent 
between different components. Therefore the estimated β is re
quired to be consistent for measurements in the same detector 
system, based on the hit time resolutions, and the β measurements 
from the different detector systems are required to be consistent 
with each other. The different detector system measurements of 
β are required to be pair-wise consistent at the 3σ level, and the 
combined β to be consistent with the β γ estimated in the pixel 
detector within 3σ . Finally, in order to reduce the muon back
ground, the combined β measurement is required to be less than 
0.95.

To pass the tight selection, a candidate is required in addi
tion to have pT > 70 GeV, at least two separate detector systems 
measuring β , the number of hits minus the number of detector 
systems participating in the measurement be at least twelve, and 
the consistency between β estimates in different detector systems 
be within 2σ . These cuts are optimised to give better background 
rejection.

Finally, a mass cut is applied on the candidate mass, mβ = 
p/γ β , calculated from the candidate's measured momentum 
and β . This cut depends on the hypothetical τ˜ mass and is dif
ferent for different points in the GMSB model parameters space, 
determined by the expected significance of the signal. For the two- 
candidate sample, both masses are required to be above the cut.

The number of background and expected signal events above 
the mass cut in the two-candidate and one-candidate signal re
gions is used to search for the presence of sleptons and R -hadrons.

Typical efficiencies for signal events to pass all cuts including 
the mass cut are 20% for each of the one and two candidate event 
categories, giving 40% efficiency in total.

4.2.3. R -hadron candidate selection
Since the R -hadron contains light quarks and gluons in addition 

to the squark or gluino, the charge of the R -hadron can change 
following nuclear interactions with the detector material. This pos
sibility makes it difficult to rely on a single detection mechanism 
without some loss of detection efficiency, as a neutral state would 
go undetected until the next nuclear interaction occurs. Some of 
the main hadronic states regarded in the models considered are 
neutral, and it is thus natural to take an inside-out approach, 
starting from the ID track and adding discriminators from outer 
detector systems if a signal is seen along the extrapolated track. 
This is reflected in the three different R -hadron searches; “full
detector”, “MS-agnostic” (not considering the MS) and “ID-only” 
(relying solely on the ID); making successively fewer assumptions 
about the R -hadron scattering model and lifetime. While the first 
two differ only in their estimate of β (the “MS-agnostic” uses only 
the calorimeters) and the utilised triggers, the ID-only selection 
is generally more restrictive in order to reject the larger back
grounds.

In the full-detector and MS-agnostic analyses, R -hadron can
didates are required to have a good quality ID track with p > 
140 GeV and |η| < 2.5. The track must not be within an η –φ dis
tance ^ R = (^η)2 + (^φ)2 = 0.3 of any jet with p T > 40 GeV, 
reconstructed using the anti-kt jet algorithm [52] with distance 
parameter set to 0.4. Furthermore, the track must not have any 
nearby (^ R < 0.25) tracks with pT > 10 GeV nor pixel hits shared 
with another track. Tracks with momenta greater than 3.5 TeV are 
rejected as unphysical. The candidate must have a good dE /dx 
measurement and a good estimate of β . The uncertainty on β is 
required to be less than 10% when measured with the calorimeter 
only, and less than 4% when the result of a combination.

In the ID-only analysis, selection requirements are further tight
ened. Vertices must have more than four associated tracks and 
the ETmiss trigger must be confirmed off-line (ETmiss > 85 GeV, in
cluding MS contributions) to ensure better background rejection. 
Candidate R -hadron tracks must have more than two (six) pixel 
(silicon micro-strip) hits, impact parameters compatible with the 
primary vertex, p T > 50 GeV and p > 100 GeV. The isolation cut is 
also more severe, rejecting events that have a track of pT > 1GeV 
within ^ R = 0.25 of the R -hadron candidate. Additionally, tracks 
are discarded if their momentum resolution exceeds 50%, or if they 
are identified as an electron.

In events with multiple R -hadron candidates, only one – ran
domly chosen – candidate is used.



282 ATLAS Collaboration / Physics Letters B 720 (2013) 277–308

The final signal selection in the full-detector and MS-agnostic 
analyses, optimised for each mass hypothesis, is based on β γ and 
β requiring βγ < 1.5–2.0 and β < 0.8–0.9, with lower values for 
higher masses. A signal region is defined in the mβγ –mβ plane 
for each mass point. The lower value of the mass cut is set such 
that it corresponds to being 2σ of the mass resolution below the 
nominal mass value. The upper value is set to 2.5 TeV. For the ID- 
only analysis the final selection requires the measured dE /dx value 
to exceed a certain threshold, which has been set as function of η 
such that the rejection of MIPs is independent of η. The selection 
efficiency for gluino R -hadrons of 900 GeV mass is about 11% and 
7% in the full-detector and MS-agnostic analyses, respectively. It is 
about 6% in the ID-only analysis.

An alternative R -hadron model, which is an extension of the 
triple-Regge model used to describe squark R -hadrons [44] has 
also been considered. In this model, the signal efficiency is 40% 
lower at 300 GeV and increasing to the same level at 900 GeV 
above which it is higher, compared to the model used throughout 
this analysis.

5. Background estimation

The background for both the slepton and the R -hadron searches 
is mostly composed of high-pT muons with mis-measured β or 
large ionisation. The background estimation is derived from data in 
all cases. The background mass spectrum is estimated by calculat
ing a mass from the p T spectrum of candidates and the measured 
β distribution of the background obtained from control samples.

The estimation of the background mass distributions relies on 
two assumptions: that the signal-to-background ratio before apply
ing cuts on β is small, and that the β distribution for background 
candidates is due to the finite resolution of the measurement and 
is therefore independent of the source of the candidate and its mo
mentum. Checks of the validity of these assumptions are discussed 
in Section 6.3.

The detector is divided into η regions so that the β resolution 
within each region is similar. The muon β probability density func
tion (pdf) in each η region is the distribution of the measured β 
of all muons in the region normalised to one. The sample used in 
producing the β pdf is enlarged with respect to the main selection 
of the analysis by lowering the p T cut to 30 GeV and removing 
the Z veto, in order to increase the acceptance and reduce possi
ble signal contamination. Similarly, a βγ pdf is constructed from 
tracks in a background dominated region.

The reconstructed mass distribution of muons in different re
gions of the detector depends on both β and momentum distri
butions through m = p/γ β . The regions also differ in the muon 
momentum distribution; therefore the combination of momentum 
with random β (see below) is done separately in each region and 
the resulting mass distributions are added together.

5.1. Slepton search

The background is determined by convoluting the β -distribution 
of muons with the expected muon momentum spectrum. The mo
mentum spectrum is determined by selecting candidates that pass 
all selection requirements listed in Section 4.2.2 apart from the 
requirements on β and m. Each candidate then gets assigned a 
β -value by drawing it randomly from the muon β distribution. If 
the assigned β -value is below the cut value it is used (together 
with the measured momentum) to assign a mass to the candidate. 
The statistical uncertainty is reduced by using each muon candi
date multiple times. The distribution of mass values obtained this 
way gives the background estimate.

5.2. R-hadron searches

For the R -hadron full-detector and MS-agnostic analyses, the 
momentum, βγ and β are obtained by taking a pT -spectrum of 
charged particle tracks from the data and assigning randomly βγ 
and β values to these tracks. The mass is then calculated from the 
measured p value and the assigned value of β γ or β . The mass 
distributions are then normalised to data by scaling to a sideband 
outside the signal region.

For the ID-only analysis the choice of the control sample takes 
into account the non-negligible correlations between p,dE/dx 
and η . The ionisation dependence on the path length in the sensor 
is not linear [53], so the pixel dE /dx depends on η; the ionisation 
also depends on the particle βγ via the Bethe–Bloch formula, and 
therefore on its momentum, until the Fermi plateau is reached; fi
nally p and η are not uncorrelated. The distributions used for the 
random-sampling are derived from two categories of background 
events. They are obtained by applying modified selections which 
ensure that signal contamination is minimised.

• A first sample (“low-ionisation”) is used to generate the η 
and p distributions. This is selected in the same way as the 
event candidates, but without the requirement on high ion
isation. Instead, an upper bound is placed on the dE /dx (at 
(1.8 MeV g-1 cm2)), ensuring orthogonality with the signal se
lection.

• A second background sample (“low-momentum”) is used to 
generate the dE /dx templates. A background sample free of 
signal but with no upper bound on the dE/dx is obtained 
by considering tracks that have a maximum momentum of 
100 GeV. Specifically, tracks in the “low-momentum” back
ground sample satisfy all the event candidate requirements ex
cept that the transverse momentum cut is looser, p T > 10 GeV, 
and the momentum p is required to be between 40 and 
100 GeV (where the Fermi plateau has already been reached).

A large background sample consisting of two million p , η, 
dE /dx triplets is randomly generated. The momentum is first gen
erated according to a binned function based on “low-ionisation” 
events. Then the pseudorapidity is generated according to the η( p) 
binned functions based on “low-ionisation” events. Finally the ion
isation is generated according to dE /dx(η) binned functions based 
on “low-momentum” events. The normalisation of the generated 
background to the selected data is obtained by scaling the back
ground to the data before the high dE /dx cut and in the region 
of the mass distribution where no signal is expected (mass below 
140 GeV).

6. Systematic uncertainties

Several possible sources of systematic effects are studied. The 
resulting systematic uncertainties are summarised in Table 1.The 
errors given are those on the expected yields in the signal region.

6.1. Theoretical cross-sections

Signal cross-sections are calculated to next-to-leading order 
in the strong coupling constant, adding the resummation of soft 
gluon emission at next-to-leading-logarithmic accuracy (NLO + 
NLL) [54–60]. The nominal cross-section and the uncertainty are 
taken from an envelope of cross-section predictions using different 
PDF sets and factorisation and renormalisation scales, as described 
in Ref. [61]. This prescription leads to a 5% relative uncertainty 
on the expected signal normalisation in the slepton search, and a
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Table 1Summary of systematic uncertainties (given in percent). Ranges indicate a mass dependence for the given uncertainty (low mass–high mass).Source GMSB sleptons R-hadronsone-cand. two-cand. ID-only otherTheoretical uncertainty on signal acceptance 5 5 15–30Uncertainty on signal efficiencySignal trigger efficiency 1.8 1.8 4.5 4.5QCD uncertainties (ISR, FSR) – – 8.5 8.5Signal pre-selection efficiency – – – 1.5Momentum resolution 0.5 0.5 1.3 1.3Pixel dE /dx calibration – – 5.8–0.2 5Combined β timing calibration 4 6 – –Calorimeter β timing calibration – – – 1.0MS β timing calibration – – – 3.6Offline E Tmiss scale – – 7.3–4.5 –Total uncertainty on signal efficiency 4.4 6.3 13.4–10.6 1.6Luminosity 3.9 3.9 3.9 3.9Experimental uncertainty on background estimate 11 13 3–20 15
15% to 30% uncertainty for the R -hadron search, increasing with 
R -hadron mass.

6.2. Expected signal

The muon trigger efficiency is calculated using the tag-and- 
probe technique on Z → μμ events as described in Refs. [49,50]. 
The uncertainty on the single muon trigger efficiency is estimated 
to be 1%. The reduction in the muon trigger efficiency due to late 
arrival of particles is estimated from simulation. The effect of the 
difference between data and MC simulation in time alignment of 
hits in the muon trigger system relative to the LHC clock is esti
mated by shifting the hit time of the highest β candidate in each 
simulated event by 4 ns. The difference in trigger efficiency when 
this change is applied is between 0.5% and 1.5% for the different 
GMSB samples, and a systematic uncertainty of 1.5% is assigned. 
For R -hadrons the systematic uncertainty is estimated in the same 
way and found to be 2%.

The ETmiss trigger used for the R -hadrons relies on the emission 
of jets. Therefore, the trigger efficiency depends on the amount 
of initial and final state radiation (ISR and FSR). To evaluate the 
associated uncertainty, 1 TeV gluino pair-production samples are 
simulated in Pythia 6.4.26 using the Perugia 2011 tune [62], set
ting the radiation level low and high. A simple threshold curve 
modelling of the trigger is applied to all three samples. The largest 
variation from the central sample is found to be 8.5%.

The E Tmiss triggers use calorimeter energy deposits to calculate 
the transverse energy, and are thus blind to muons, which there
fore can be used for calibration and to study systematic errors. 
To evaluate the trigger efficiency, the trigger turn-on curve is ob
tained by fitting the measured efficiency vs. E Tmiss in Z → μμ 
events where the Z has a high pT , both in data and simula
tion. Simulated events are re-weighted so the distribution of col
lisions per bunch-crossing match the running conditions of the 
2011 data. These efficiency turn-on curves are then applied to 
the expected E Tmiss spectrum from simulated R -hadron events. The 
total uncertainty is estimated from three contributions: the rela
tive difference between the efficiencies obtained using the fitted 
threshold curves from Z → μμ data and simulation and the dif
ferences in efficiency obtained from independent ±1σ variations 
in fit parameters relative to the unchanged turn-on curve fit for 
both Z → μμ data and MC simulation. The total estimated E Tmiss 
trigger uncertainty, including effects of a 10% variation of the 
E Tmiss scale, is a 4.5% relative error on the efficiency for the sig
nal.

In the ID-only analysis, the effect of the offline E Tmiss measure
ment uncertainty on the total efficiency is evaluated by applying 
a scale factor of ± 10% and a smearing of up to 20% to the miss
ing transverse momentum [63]. The resulting uncertainty depends 
on the R -hadron mass and is between 7.3% (200 GeV) and 4.5% 
(1500 GeV) of the central value.

Differences in the selection efficiency between data and MC 
simulation for the R -hadron full-detector and MS-agnostic searches 
(excluding the final selection on β γ , β , momentum and mass se
lection) are evaluated using Z → μμ events. The overall relative 
uncertainty is found to be below 1.5%. The effect of the jet energy 
scale (JES) uncertainty on the requirement for signal candidates 
in the R -hadron full-detector and MS-agnostic searches to be sep
arated by ^ R = 0.3 from jets with pT > 40 GeV is found to be 
negligible.

To verify that the signal efficiency is insensitive to the pile-up 
re-weighting, a 900 GeV gluino sample is divided into samples of 
high (Nvtx ^ 8) and low (Nvtx < 8) number of reconstructed pri
mary vertices. The relative difference in reconstruction efficiency 
is found to be negligible.

The systematic uncertainty due to the track reconstruction ef
ficiency and momentum resolution differences between data and 
simulation is estimated [64] to be 0.5% on the acceptance for GMSB 
events. For analyses relying solely on the ID for tracking, the result
ing relative uncertainty on the signal efficiency is 1.3%.

Differences in the pixel dE /dx and the subsequent measure
ment of βγ between data and simulation are considered by com
paring the pixel dE /dx distribution for high-pT muons from Z → 
μμ events in data and MC simulation. This uncertainty is esti
mated to be 5%. In the ID-only analysis, this effect is evaluated 
by comparing the ionisation in data and simulation for MIPs and 
for particles with low βγ . Scale factors are measured in the two 
cases and found to be consistent. The uncertainty on the signal 
efficiency derived by applying these scale factors varies between 
0.2% and 5.8% in the studied mass range, decreasing with the par
ticle's mass.

The signal β resolution is estimated by smearing the measured 
time of hits in the MS and calorimeter according to the spread ob
served in the time calibration. The systematic uncertainty due to 
the smearing process is estimated by scaling the smearing factor 
up and down, so as to bracket the distribution obtained in data. 
A 4% (6%) systematic uncertainty is found in the one-candidate 
(two-candidate) GMSB signal region. The corresponding uncer
tainty for R -hadrons is 3.6%. The uncertainty due to the timing 
calibration of the calorimeter hits is further tested by comparing a
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Fig. 3. Observed data, background estimate and expected signal in the two-candidate signal region in the slepton search (top-left), full-detector R -hadron search (top-right), MS-agnostic R -hadron search (bottom-left) and in the ID-only R-hadron search (bottom-right). For the slepton search only the lower of the two masses is plotted and for the full-detector R -hadron search there is one candidate in the mβ γ overflow bin not shown in the figure. The dashed lines in the upper-right plot mark the lower edges of the signal region chosen for this R -hadron mass point.
calibration obtained from jet events to that obtained from muons. 
This results in a 1% relative systematic uncertainty on the signal 
yield.

An uncertainty of 3.9% [65,66] is assigned to the integrated lu
minosity corresponding to this data set.

6.3. Background estimation

The assumption that the β -pdf is independent of p is tested 
by constructing the β -pdf separately in each η-region using a 
low and a high-momentum sample. This results in differences of 
up to 10% on the background estimate. To quantify the variabil
ity of the β and momentum distributions within a region and 
its effect on the background estimation for sleptons, the detec
tor is sub-divided into 25 η regions instead of the eight used 
in the analysis and the background estimated with this division. 
The resulting systematic uncertainty is 6.5% for the two-candidate 
events and 3.1% for one-candidate events. The uncertainty on 
the background distribution due to the limited numbers of data 
events used to estimate the momentum distribution was calcu

lated by dividing the candidate sample randomly into two samples 
and estimating the background from each sub-sample separately. 
The resulting error in the slepton search is negligible. A com
parison of the muon β distribution in inclusive muon events to 
that from Z → μμ decays also exhibited negligible differences. 
The total uncertainty on the background estimate for the slepton 
search is 13% for two-candidate events and 11% for one-candidate 
events.

The total uncertainty in the background estimation for the full
detector R -hadron analysis is estimated as follows. The βγ and β 
pdfs are obtained by considering sidebands (lower momenta, for 
R -hadrons 40–100 GeV). Similarly, the momentum pdf is obtained 
from sidebands in β γ and/or β . Several variations of the size of 
the sidebands (and also inclusion of the signal region) result in 
8–10% uncertainty estimates for each of the two variables. To test 
the momentum dependence of the β pdf, the number of η bins is 
varied. The resulting systematic uncertainty is 2%. To estimate the 
uncertainty on the background distribution coming from the lim
ited statistics of the data samples used to estimate the momentum 
distribution, the candidate sample is divided randomly into two
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Fig. 4. Cross-section limits as a function of the τ˜ mass in GMSB models (top-left), limits on Λ and tan β in GMSB models (top-right) and the cross-section limits as a function of mass on directly produced sleptons (bottom). The top-left and bottom plots show observed and expected limits with ±1σ and ±2σ uncertainty bands, as well as the theoretical prediction for the cross-section is shown with a 1σ band. In the top-right plot, the observed and expected limits are shown, with the 1σ theoretical uncertainty and the 1σ band, respectively.
samples and the background estimate is derived from each sub
sample separately. The resulting uncertainty on the full-detector 
R -hadron search is 2% for low mass and 5% for high mass. The to
tal uncertainty on the background estimate from the above tests is 
15%.

For the ID-only analysis, the statistical uncertainty in the back
ground estimate dominates for most of the mass range, and is up 
to 20%. Other effects contribute at most a few percent. These in
clude variations from different binning choices for p , η and dE /dx 
in the two background samples, and a contribution from pile-up 
effects.

7. Results

The mass distributions observed in data together with the back
ground estimate, its systematic error and examples of signal are 
shown in Fig. 3, for the two-candidate signal region in the slep- 
ton search (top-left), the full-detector R -hadron search (top-right), 

the MS-agnostic R -hadron search (bottom-left) and the ID-only R - 
hadron search (bottom-right).

No indication of signal above the expected background is ob
served. Upper cross-section limits on new particles are set by 
counting the number of events passing a set of mass cuts opti
mised for a given mass point and model. For the ID-only analysis 
the full mass spectrum of the background and the hypothetical 
signal is considered. Cross-section limits are obtained using the 
CLs prescription [67]. Mass limits are derived by comparing the 
obtained cross-section limits to the lower edge of the 1σ band 
around the theoretically predicted cross-section for each process. A 
Poisson likelihood function is used for the R -hadron limit-setting 
while a likelihood combining two Poisson functions is used for the 
slepton search to benefit from the separation into one-candidate 
and two-candidate signal regions.

The resulting production cross-section limits in the GMSB sce
nario as a function of the stau mass are presented in Fig. 4 and 
compared to theoretical predictions. Long-lived staus in GMSB
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Fig. 5. Cross-section upper limits at 95% CL for gluino (left) and squark (right) R -hadrons in the full-detector search are shown. Both the expected limit with ±1σ and ±2σ uncertainty bands and the observed upper limit are given. In addition the theoretical prediction for the production cross-section calculated at NLO + NLL and its uncertainty are drawn.

Fig. 6. Cross-section upper limits at 95% CL for gluino (left) and squark (right) R-hadrons in the MS-agnostic search, which is independent of the fraction of R -hadrons that are charged in the MS. Both the expected limit with ±1σ and ±2σ uncertainty bands and the observed upper limit are given. In addition the theoretical prediction for the production cross-section calculated at NLO + NLL and its uncertainty are drawn.
models with N 5 = 3, mmessenger = 250 TeV and sign(μ) = 1are 
excluded at 95% confidence level (CL) up to a stau mass of 
300 GeV for tanβ = 5–20, and up to stau masses of 285 GeV and 
268 GeV for tanβ = 30 and tanβ = 40, with expected limits of 
305 GeV, 287 GeV and 270 GeV respectively. The lower limit on 
Λ is 99–110 TeV for values of tan β from 5 to 40. For Λ val
ues around this limit, strong production of squarks and gluinos 
is suppressed due to their large masses. Directly produced slep- 
tons comprise 38–64% of the GMSB cross-section, and depend 
only on the slepton mass. Using the same analysis, directly pro
duced long-lived sleptons, or sleptons decaying to long-lived ones, 
are excluded at 95% CL up to a τ˜ mass of 278 GeV (273 GeV 
expected) for models with slepton mass splittings smaller than 
50 GeV.

The resulting limits on R -hadrons are shown in Figs. 5 and 6 
compared to the theoretical cross-sections. Gluino R -hadrons in a 

generic interaction model are excluded up to a mass of 985 GeV. 
Stop R -hadrons are excluded up to a mass of 683 GeV, and 
sbottom R -hadrons are excluded up to a mass of 612 GeV. The 
according expected limits are 1012 GeV, 707 GeV and 645 GeV 
respectively. The MS-agnostic search yields a lower mass limit of 
989 GeV for gluinos, 657 GeV for stops and 618 GeV for sbottoms, 
with expected limits of 988 GeV, 647 GeV and 615 GeV respec
tively. The MS-agnostic limits are independent of the fraction of 
R -hadrons that arrive charged in the MS.

The limits from the ID-only search are shown in Fig. 7 com
pared to the theoretical cross-sections. Gluino R -hadrons with 
m < 940 GeV, stop R-hadrons with m < 604 GeV and sbottom R - 
hadrons with m < 576 GeV are excluded at 95% CL, with expected 
limits of 952 GeV, 620 GeV and 571 GeV respectively. The ID-only 
search has similar sensitivity also to R -hadrons with lifetimes as 
short as a few ns.
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Fig. 7. Cross-section upper limits at 95% CL for gluino (left) and squark (right) R -hadrons in the ID-only search. Both the expected limit with ±1σ and ±2σ uncertainty bands and the observed upper limit are given. In addition the theoretical prediction for the production cross-section calculated at NLO + NLL and its uncertainty are drawn.
8. Conclusion

Searches for long-lived massive particles were performed us
ing data from pp collisions at s = 7 TeV collected by the AT
LAS detector in 2011, corresponding to an integrated luminosity 
of 4.7 fb-1. Several different signatures are considered. The data 
are found to match the Standard Model background expectation 
in all signal regions. The exclusion limits placed for various mod
els impose new constraints on non-SM cross-sections. Long-lived 
τ˜'s in the GMSB model considered, for tanβ = 5–20, are excluded 
at 95% CL for masses up to 300 GeV, while directly produced 
long-lived sleptons, or sleptons decaying to long-lived ones, are 
excluded at 95% CL up to a τ˜ mass of 278 GeV for models with 
slepton mass splittings smaller than 50 GeV.

Long-lived R -hadrons containing a gluino (stop, sbottom) are 
excluded for masses up to 985 GeV (683 GeV, 612 GeV) at 95% CL, 
for a generic interaction model. Limits obtained independently of 
the fraction of R -hadrons that arrive charged in the MS exclude 
masses up to 989 GeV (657 GeV, 618 GeV). Furthermore, using 
only the inner detector, R -hadrons are excluded up to 940 GeV 
(604 GeV, 576 GeV).

These results substantially extend previous ATLAS limits [32,33], 
and are complementary to the searches for SUSY particles which 
decay promptly.
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Appendix A. Auxiliary material

Appendix consists of Figs. A.8–A.18 and Tables A.2–A.9.

Fig. A.8. Greyscale-printing version of Fig. 1(left): Distribution of dE /dx versus charge times momentum for minimum bias collisions in a data sample from 2010. With tracks reconstructed for p T > 100 MeV this sample is more suitable for the calibration of the Bethe–Bloch function than 2011 data in which tracks had a cutoff of p T = 400 MeV. The distribution of the most probable value for pions (solid), kaons (dashed) and protons (dotted) are superimposed. The band due to deuterons is clearly visible.
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Fig. A.9. Left: Muon trigger efficiency in simulated GMSB events as a function of the highest β candidate in the event. Right: Distribution of β for candidates with the highest β (black) and for all candidates in the events (red). Low-β candidates are found in triggered events because there is a high-β slepton or muon in the event that could trigger. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

Fig. A.10. Examples of the mβ γ vs. mβ distributions for gluino R -hadrons with masses of 300, 700, 900 and 1000 GeV, with the full-detector search. The figures show data, background and signal after β , β γ and p cuts. The dashed grey line highlights the counting window for each specific hypothesis, and is defined by requiring 90% of the signal to be within the window. There is one candidate in the mβ γ overflow.



ATLAS Collaboration / Physics Letters B 720 (2013) 277–308 289

Fig. A.11. Examples of the mβ γ vs. mβ distributions for gluino R -hadrons with masses of 300, 700, 900 and 1000 GeV, with the MS-agnostic search. The figures show data, background and signal after β , β γ and p cuts. The dashed grey line highlights the counting window for each specific hypothesis, and is defined by requiring 90% of the signal to be within the window.
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Fig. A.12. Observed data, background estimate and expected signal in the full-detector R -hadron search, for various mass hypotheses (300, 700, 900 and 1000 GeV). The 1D histograms are projections of the 2D signal range with unconstrained mβ γ .
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Fig. A.13. Observed data, background estimate and expected signal in the MS-agnostic R -hadron search, for various mass hypotheses (300, 700, 900 and 1000 GeV). The 1D histograms are projections of the 2D signal range with unconstrained mβ γ .
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Fig. A.14. Efficiency times acceptance for directly produced slepton events in the one-candidate and two-candidate signal regions as a function of the stau mass.

Fig. A.15. Efficiency times acceptance for the tested R -hadron mass hypotheses. Each point on the x-axis represent a hypothesis mass, the efficiency for a given hypothesis is based on the number of signal events in the counting region after cuts, divided by the number of generated events. The band represents the 11.4% systematic uncertainty on the efficiency.

Fig. A.16. Efficiency times acceptance for the tested R -hadron mass hypotheses. Each point on the x-axis represent a hypothesis mass, the efficiency for a given hypothesis is based on the number of signal events in the counting region after cuts, divided by the number of generated events. The band represents the systematic uncertainty on the efficiency, varying with mass as specified in Table 1.
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Fig. A.17. Proton mass calculated from the momentum measured in the inner detector and the specific energy loss measured in the pixel detector. The data, covering the 2011 statistics considered for this analysis, are subdivided in periods of similar data-taking conditions to illustrate the stability of the method. The red horizontal line represents the nominal proton mass value. Fig. A.18. Plot of the dE /dx most probable values (MPVs) obtained from data, selected as in the “low-ionisation” sample (see Section 5.2), as a function of η overlapped with a fit obtained using a third order polynomial.

Table A.2Signal efficiency, number of expected background events, events observed in data, expected and observed limit for the one candidate (SR1 ) and two candidates (SR2 ) signal regions in various GMSB scenarios.Λ
[TeV]

tanβ m
[GeV]

σ
[fb]

SR1 : ε × A
[%]

SR1 : Bkg SR1 : Obs SR2 : ε × A
[%]

SR2 : Bkg SR2 : Obs exp 
σ95CLs

σobs σ95CLs

60 5 191 43.8 22.4± 1.1 131± 17 115 17.2 ±1.2 0.62 ± 0.13 1 4.21 4.3570 5 221 18.4 20.7± 0.8 61±8 61 18.6 ±1.0 0.28 ± 0.05 1 3.44 4.5180 5 251 8.65 20.4± 1.0 31±4 35 19.0 ±1.0 0.17 ± 0.02 1 3.20 4.6190 5 281 4.47 21.1± 1.1 20± 2 24 18.7 ±1.2 0.077 ± 0.008 0 2.95 3.09100 5 312 2.48 19.5± 0.6 11.3 ± 1.2 14 19.8 ±1.3 0.045 ± 0.005 0 2.70 2.86110 5 343 1.43 19.6± 0.9 6.7 ± 0.7 6 20.2 ±1.3 0.022 ± 0.003 0 2.46 2.35120 5 373 0.86 17.3± 0.4 4± 0 . 4 3 20.4 ±1.3 0.014 ± 0.003 0 2.33 2.19130 5 404 0.53 18.3± 0.7 2.9 ± 0.3 1 20.5 ±1.3 0.0092 ± 0.0018 0 2.23 1.84140 5 435 0.34 18.2± 0.7 1.9 ± 0.2 1 17.9 ±1.2 0.0038 ± 0.0008 0 2.33 2.0760 10 189 47.7 21.1± 1.0 131± 17 115 17.6 ±1.1 0.62 ± 0.13 1 4.23 4.3170 10 218 20.0 20.4± 1.0 61±8 61 17.3 ±0.4 0.36 ± 0.06 1 3.68 4.3980 10 249 9.55 21.1± 1.0 39±5 41 19.2 ±1.0 0.17 ± 0.02 1 3.11 4.4890 10 279 5.00 20.1± 0.6 20± 2 24 20.4 ±1.3 0.1± 0.01 0 2.84 2.87100 10 309 2.80 19.7± 0.6 11.3 ± 1.2 14 20.2 ± 1.2 0.045 ± 0.005 0 2.64 2.81110 10 339 1.65 19.6± 0.9 6.7 ± 0.7 6 20.2 ±1.3 0.022 ± 0.003 0 2.45 2.35120 10 370 0.92 17.5± 0.5 4± 0 . 4 3 19.6 ±1.3 0.014 ± 0.003 0 2.25 2.24130 10 401 0.63 17.9± 0.7 2.9 ± 0.3 1 20.3 ±1.3 0.0092 ± 0.0018 0 2.25 1.87140 10 431 0.40 17.4± 0.9 1.9 ± 0.2 1 19.5 ±1.1 0.0049 ± 0.0012 0 2.23 2.0060 20 176 51.6 22.3± 0.8 171± 22 141 16.6 ±1.0 0.81 ± 0.19 1 4.74 4.3570 20 206 21.2 22.7± 1.3 101± 13 89 18.3 ±1.1 0.48 ± 0.09 1 3.78 4.1490 20 266 5.60 20.6± 0.7 25±3 29 20.3 ±1.5 0.132 ± 0.014 0 2.82 3.07100 20 295 3.14 18.8± 0.7 13.7 ± 1.5 19 19.4 ±1.5 0.059 ± 0.006 0 2.77 3.12110 20 325 1.87 17.7± 0.6 7.9 ± 0.8 9 18.0 ±1.2 0.028 ± 0.003 0 2.78 2.91120 20 355 0.96 19.5± 0.7 5.5 ± 0.6 4 20.4 ±1.2 0.018 ± 0.003 0 2.38 2.3960 30 153 61.8 21.1± 1.1 302± 38 237 17.6 ±0.9 1.57 ± 0.38 1 5.01 3.7370 30 183 26.4 22.9± 1.4 171± 22 141 19.1 ±1.1 0.81 ± 0.19 1 4.11 3.7490 30 241 6.80 20.6± 0.6 39±5 41 20.5 ±1.5 0.21 ± 0.03 1 3.06 4.23100 30 269 3.84 19.4± 1.0 25±3 29 17.3 ±1.1 0.1± 0.01 0 2.51 2.77110 30 298 2.30 20.9± 0.7 13.7 ± 1.5 19 21.2 ±1.5 0.059 ± 0.006 0 2.18 2.84130 30 355 0.89 20.1± 0.7 5.5 ± 0.6 4 22.7 ±1.5 0.018 ± 0.003 0 2.21 1.97140 30 383 0.58 19.5± 0.7 3.4 ± 0.4 2 20.7 ±1.5 0.0092 ± 0.0019 0 2.20 1.9560 40 113 111 21.0 ± 0.8 1057± 140 895 12.8 ±0.7 4.9± 1.1 3 4.01 6.30100 40 228 6.34 20.5± 0.8 49±6 51 21.5 ±1.5 0.28 ± 0.05 1 3.03 4.06110 40 254 3.60 21.3± 0.8 31±4 35 21.3 ±1.5 0.132 ± 0.014 0 2.79 2.78120 40 281 1.98 21.5± 0.6 20± 2 24 22.0 ±1.4 0.077 ± 0.008 0 2.55 2.67
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Table A.3Signal efficiency, number of expected background events, events observed in data, expected and observed limit for the one candidate (SR1 ) and two candidates (SR2 ) signal regions for direct slepton production.
m
[GeV]

σ
[fb]

SR1 : ε × A
[%]

SR1 : Bkg SR1 : Obs SR2 : ε × A
[%]

SR2 : Bkg SR2 : Obs exp 
σ95CLs

σobs 
σ95CLs

191 16.69 20.0 ±1.0 101± 13 89 22.3 ± 1.4 0.48 ± 0.09 1 3.78 3.60221 7.99 23.7 ±0.9 61±8 61 23.0 ± 1.2 0.28 ± 0.05 1 3.00 3.68251 4.26 22.0 ± 0.9 31±4 35 24.3 ± 1.6 0.132 ± 0.014 0 2.96 2.45281 2.33 20.6 ±0.5 17±2 21 24.2 ± 1.7 0.059 ± 0.006 0 2.68 2.48312 1.35 19.6 ±0.8 9.4 ± 1.0 10 25.2 ± 1.8 0.036 ± 0.004 0 2.40 2.17343 0.82 19.7 ±1.0 5.5 ± 0.6 4 25.0 ± 1.6 0.018 ± 0.003 0 2.00 1.86373 0.46 18.1 ±0.9 4.0 ± 0.4 3 26.1 ± 1.9 0.012 ± 0.003 0 1.96 1.82404 0.34 17.4 ±0.4 2.2 ± 0.3 1 25.2 ± 1.6 0.006 ± 0.001 0 1.76 1.69435 0.21 18.0 ±0.7 1.6 ± 0.2 1 24.3 ± 1.6 0.004 ± 0.001 0 1.69 1.75
Table A.4Signal efficiency, number of expected background events, events observed in data, expected (with 1σ uncertainties) and observed limit for various gluino R -hadron mass hypotheses in the full-detector search.

mg˜ Signal eff. Exp. bkg Obs. data Exp. limit +σ -σ Obs. limit
[GeV] [%] [events] [events] [fb] [fb] [fb] [fb]200 11.3 131.2 135 89 128 65 94300 12.6 18.7 15 19.0 27.7 13.6 14.6400 13.8 5.2 3 9.5 14.0 6.6 6.9500 14.4 1.8 2 6.3 9.0 4.8 6.9600 13.6 0.6 1 4.7 6.8 4.3 6.1700 13.4 0.3 1 4.7 6.1 4.4 6.3800 12.6 0.1 1 4.9 5.3 4.6 6.8900 10.9 0.2 1 5.7 6.1 5.4 7.81000 10.2 0.1 1 6.1 6.4 5.7 8.51100 9.3 0.0 1 6.7 7.0 6.2 9.31200 8.4 0.0 1 7.3 7.7 6.9 10.21300 6.9 0.0 0 8.7 9.5 7.9 8.61400 6.3 0.0 0 9.1 9.7 8.5 9.1

Table A.5Signal efficiency, number of expected background events, events observed in data, expected (with 1σ uncertainties) and observed limit for various sbottom R -hadron mass hypotheses in the full-detector search.
mb˜ Signal eff. Exp. bkg Obs. data Exp. limit +σ -σ Obs. limit
[GeV] [%] [events] [events] [fb] [fb] [fb] [fb]200 6.8 97.1 94 114 164 80 107300 8.9 22.0 18 29.9 43.2 20.8 23.0400 10.1 6.3 5 14.2 20.5 9.9 12.0500 10.2 1.4 2 8.2 11.9 6.3 9.8600 11.0 0.9 2 6.7 9.5 5.5 9.8700 10.8 0.3 1 5.9 7.8 5.3 7.8800 10.9 0.3 1 5.8 7.3 5.4 7.7900 10.8 0.2 1 5.7 7.2 5.5 7.9

Table A.6Signal efficiency, number of expected background events, events observed in data, expected (with 1σ uncertainties) and observed limit for various stop R -hadron mass hypotheses in the full-detector search.
mt̃ Signal eff. Exp. bkg Obs. data Exp. limit +σ -σ Obs. limit
[GeV] [%] [events] [events] [fb] [fb] [fb] [fb]200 15.2 128.4 122 64 94 46 58300 18.0 21.9 18 14.7 21.1 10.3 11.5400 19.2 4.6 4 6.4 9.5 4.8 6.1500 21.5 2.0 2 4.4 6.4 3.4 4.5600 21.4 0.6 2 3.0 4.4 2.9 5.2700 21.3 0.4 1 3.0 4.2 2.7 3.9800 21.9 0.3 1 2.8 3.6 2.6 3.8900 19.6 0.2 1 3.2 3.8 3.0 4.3
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Table A.7Signal efficiency, number of expected background events, events observed in data, expected (with 1σ uncertainties) and observed limit for various gluino R -hadron mass hypotheses in the MS-agnostic search.

mg˜ Signal eff. Exp. bkg Obs. data Exp. limit +σ -σ Obs. limit
[GeV] [%] [events] [events] [fb] [fb] [fb] [fb]200 3.2 45.2 47 138 199 100 146300 5.9 22.2 17 44 59 32 33400 6.2 2.1 0 11.7 14.4 9.5 9.3500 7.9 0.7 0 7.9 9.8 7.0 7.1600 7.8 0.7 0 8.0 9.3 7.0 7.4700 8.3 1.1 0 7.6 9.7 6.5 6.6800 8.0 0.8 0 9.5 10.9 7.4 11.2900 7.0 0.0 0 8.2 8.7 7.8 8.21000 7.3 0.2 0 8.1 8.7 7.6 8.01100 7.0 0.4 0 8.3 9.9 7.8 8.01200 6.1 0.2 0 9.8 10.6 9.2 9.61300 5.5 0.2 0 10.6 11.4 9.7 10.51400 5.3 0.0 0 10.4 10.9 9.9 10.4

Table A.8Signal efficiency, number of expected background events, events observed in data, expected (with 1σ uncertainties) and observed limit for various sbottom R -hadron mass hypotheses in the MS-agnostic search.
mb˜ Signal eff. Exp. bkg Obs. data Exp. limit +σ -σ Obs. limit
[GeV] [%] [events] [events] [fb] [fb] [fb] [fb]200 2.5 106.2 103 340 490 240 310300 4.7 25.5 17 55 67 39 38400 5.0 2.8 2 20.6 29.9 15.0 17.9500 6.0 0.9 0 10.6 12.0 9.1 9.6600 6.3 0.4 0 9.4 11.6 8.6 9.0700 6.5 0.2 0 9.1 10.6 8.4 9.0800 6.8 0.1 0 9.3 9.8 8.8 8.7900 6.6 0.7 0 9.1 10.7 8.2 8.5

Table A.9Signal efficiency, number of expected background events, events observed in data, expected (with 1σ uncertainties) and observed limit for various stop R -hadron mass hypotheses in the MS-agnostic search.
mt̃ Signal eff. Exp. bkg Obs. data Exp. limit +σ -σ Obs. limit
[GeV] [%] [events] [events] [fb] [fb] [fb] [fb]200 3.9 103.9 97 210 300 150 180300 7.0 15.3 10 28.5 37.2 21.4 19.9400 8.6 3.1 2 12.7 18.3 9.2 10.4500 9.5 0.9 0 7.8 8.9 5.2 5.2600 10.8 0.7 0 5.8 7.0 5.0 5.2700 10.2 0.9 0 6.5 8.6 5.5 5.7800 10.6 1.4 0 6.8 8.1 5.4 5.4900 10.2 0.1 0 5.8 6.0 5.4 5.7
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