Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for long-lived, multi-charged particles in *pp* collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector $\stackrel{\circ}{\approx}$

ATLAS Collaboration*

ARTICLE INFO

Article history: Received 22 January 2013 Received in revised form 3 April 2013 Accepted 19 April 2013 Available online 24 April 2013 Editor: H. Weerts

Keywords: High-energy collider experiment Long-lived particle Highly ionising New physics Multiple electric charges

ABSTRACT

A search for highly ionising, penetrating particles with electric charges from |q| = 2e to 6e is performed using the ATLAS detector at the CERN Large Hadron Collider. Proton–proton collision data taken at $\sqrt{s} = 7$ TeV during the 2011 running period, corresponding to an integrated luminosity of 4.4 fb⁻¹, are analysed. No signal candidates are observed, and 95% confidence level cross-section upper limits are interpreted as mass-exclusion lower limits for a simplified Drell–Yan production model. In this model, masses are excluded from 50 GeV up to 430, 480, 490, 470 and 420 GeV for charges 2e, 3e, 4e, 5e and 6e, respectively.

© 2013 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

Numerous theories of physics beyond the Standard Model (SM) predict long-lived¹ exotic objects producing anomalous ionisation. These include magnetic monopoles [1], dyons [2], long-lived micro black holes in models of low-scale gravity [3] and Q-balls [4], which are non-topological solitons predicted by minimal supersymmetric generalisations of the SM. No such particles have so far been observed in cosmic-ray and collider searches [1,5–7], including several recent searches at the Large Hadron Collider (LHC) [8–13]. The high centre-of-mass energy of the LHC makes a new energy regime accessible, and searching for multi-charged particles with electric charges $2e \leq |q| \leq 6e$ complements the searches for slow singly charged particles [10] and for particles with charges beyond 6e [8].

The existence of long-lived particles with an electric charge |q| > e could have implications for the formation of composite dark matter [14]. Two extensions of the SM in which heavy stable multi-charged particles are predicted are the AC model [15] and the walking technicolour model [16–18]. The AC model is based on the approach of almost-commutative geometry [19] which extends the fermion content of the SM by two heavy particles with

opposite electric charges, $\pm q$. The minimal walking technicolour model predicts the existence of three particle pairs, with electric charges given in general by q + e, q, and q - e, which would behave like leptons in the detector. In both of these models, |q| may be larger than e.

This Letter describes a search for multi-charged particles in $\sqrt{s} = 7$ TeV pp collisions using data collected in 2011 by the ATLAS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 4.4 fb⁻¹. Multi-charged particles will be highly ionising, and thus leave an abnormally large specific ionisation signal, dE/dx. In this Letter, a search for such particles traversing the ATLAS detector leaving a track in the inner tracking detector, and producing a signal in the muon spectrometer, is reported. A SM-like coupling proportional to the electric charge is assumed as the production model of the multi-charged particles. Therefore, the main production mode is Drell-Yan (DY) with no weak coupling. Multi-charged particles can also be pair-produced from radiated photons resulting in a larger production cross section, and in some cases non-perturbative effects [20] can also enhance the production rate. In the derivation of limits, neither enhancement is included in the calculation resulting in conservative limits in these scenarios.

2. ATLAS detector

The ATLAS detector [21] covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector (ID) comprising a silicon pixel detector (pixel), a silicon microstrip

^{*} E-mail address: atlas.publications@cern.ch.

 $^{^{-1}\,}$ The term long-lived in this paper refers to a particle that does not decay within the ATLAS detector.

^{0370-2693/ © 2013} CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license. http://dx.doi.org/10.1016/j.physletb.2013.04.036

detector (SCT) and a Transition Radiation Tracker (TRT). Apart from being a straw-based tracking detector, the TRT (covering $|\eta| < 2.0$ ² also provides particle identification via transition radiation and ionisation energy-loss measurements [22]. The ID is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, and by high-granularity liquid-argon (LAr) sampling electromagnetic calorimeters. An iron-scintillator tile calorimeter provides hadronic energy measurements in the central rapidity region. The endcap and forward regions are instrumented with LAr calorimeters for both electromagnetic and hadronic energy measurements. The calorimeter system is surrounded by a muon spectrometer (MS) incorporating three superconducting toroid magnet assemblies. The MS is a combination of several sub-detectors used to measure muons that traverse the ATLAS calorimeters. The Resistive Plate Chambers (RPC) in the barrel region ($|\eta| < 1.05$) and the Thin Gap Chambers (TGC) in the endcap region $(1.05 < |\eta| < 2.4)$ provide signals for the trigger for charged particles reaching the MS. Monitored Drift Tube (MDT) chambers measure the momentum and track positions of muons with very high precision.

3. Simulated samples

Benchmark samples of simulated events with multi-charged particles are produced for masses of 50, 100, 200, 300, 400, 500 and 600 GeV, with charges³ 2e, 3e, 4e, 5e and 6e. Pairs of longlived multi-charged particles are simulated using MADGRAPH5 [23] via the DY process to model the kinematic distributions. The DY production model also determines the cross section used for limit setting. Typical values for the cross sections of simulated multicharge pair-production range from tens of pb for a mass of 50 GeV down to a few fb at a mass of 600 GeV. Events are generated using the CTEQ6L1 [24] parton distribution functions, and Pythia version 6.425 [25] is used for hadronisation and underlying-event generation. A GEANT4 simulation [26,27] is used to model the response of the ATLAS detector, and the samples are reconstructed and analysed in the same way as the data. The production cross sections are estimated using MADGRAPH5 and are cross-checked with CALCHEP 3.4 [28]. Each simulated event is overlaid with additional collision events ("pile-up") in order to reproduce the observed distribution of the number of proton-proton collisions per bunch crossing. In 2011 data the average number of interactions per bunch crossing was typically between 5 and 20. These samples are used to determine the detection efficiency, the resolution on the quantities used in the event selection and the associated systematic uncertainties for multi-charged particles. While the background estimation is data-driven, muons from $Z \rightarrow \mu \mu$ simulated samples are used to calibrate the selection variables. These samples are generated in PYTHIA and passed through the GEANT4 simulation of the ATLAS detector.

4. Ionisation estimators

The specific energy loss, dE/dx, is described by the Bethe–Bloch formula [29]. The energy loss depends quadratically on the particle charge, q, so that particles with higher charges have a significantly higher energy loss.

4.1. MDT dE/dx

Each drift tube of the MDT system provides a signal proportional to the charge from ionisation, which is used to estimate dE/dx. A truncated mean of dE/dx, where the maximum value is removed, is used as the overall MDT dE/dx estimator. As each track crosses more than 20 drift tubes, the MDT dE/dx provides a good estimate of ionisation losses.

4.2. TRT dE/dx

Energy deposits in a TRT straw greater than 200 eV (lowthreshold hits) are used for tracking, while those that exceed 6 keV (high-threshold hits) occur due to the passage of highly ionising particles or due to transition radiation emitted by highly relativistic electrons when they cross radiator material between the straws. The estimated dE/dx value for each hit is derived from the time the signal remains above the low threshold. The TRT dE/dx is the truncated mean of the dE/dx estimates, where the highest estimate is removed. On average, a track in the TRT contains 32 hits. Additionally, the ratio of the number of high-threshold (HT) hits to the total number of TRT hits on a given track $f^{\rm HT}$ provides a second estimator of high ionisation.

4.3. Pixel dE/dx

The pixel detector measures the charge from ionisation in each pixel. The dE/dx from the pixel detector is calculated from the truncated mean of measurements from several clusters of pixels [30]. Particles with charges higher than 2*e* deposit energies which easily exceed the dynamic range of the pixel detector readout. Therefore, the electronic signal is saturated and pixel information will not be read out leading to an unreliable dE/dx measurement for such particles.

4.4. dE/dx significance

The significance of each dE/dx variable is defined as the difference between the observed dE/dx of the track and that expected for muons, measured in units of the uncertainty of the measurement:

$$S(dE/dx) = \frac{dE/dx_{track} - \langle dE/dx_{\mu} \rangle}{\sigma (dE/dx_{\mu})}.$$
 (1)

Here dE/dx_{track} represents the estimated dE/dx of the track, and $\langle dE/dx_{\mu} \rangle$ and $\sigma (dE/dx_{\mu})$, respectively, are the mean and the width of the dE/dx distribution for muons in data.

To obtain expected dE/dx values and their resolution for the different detector components (MDT, TRT, Pixel), the dE/dx variables are calibrated with muons from $Z \rightarrow \mu \mu$ events in data and simulation. Muons for this calibration are selected by requiring a track reconstructed in the MS matched to a good quality track in the ID with $p_T > 20$ GeV and $|\eta| < 2.4$. Each muon is further required to belong to an oppositely charged pair with dimuon mass between 81 GeV and 101 GeV. Fig. 1 shows the comparison between these muons in data and simulation for the MDT and TRT dE/dx significance. While the TRT distribution shows good agreement except in the tails, a discrepancy between simulation and data is observed for the MDT significance. This discrepancy has a small effect on the limit setting, and the effect is included in the systematic uncertainties. Fig. 2 shows the distributions of the MDT and TRT dE/dx significance for simulated muons from $Z \rightarrow \mu \mu$ production compared to those of multi-charged particles for different charges (2e, 4e and 6e) and for a mass of 200 GeV. For the multi-charge particle search, the S(MDT dE/dx) and S(TRT dE/dx)

² The ATLAS coordinate system is right-handed with the pseudorapidity, η , defined as $\eta = -\ln[\tan(\theta/2)]$, where the polar angle θ is measured with respect to the LHC beamline. The azimuthal angle, ϕ , is measured with respect to the x-axis, which points towards the centre of the LHC ring. The z-axis is parallel to the anti-clockwise beam viewed from above. Transverse momentum and energy are defined as $p_{\rm T} = p \sin \theta$ and $E_{\rm T} = E \sin \theta$, respectively.

 $^{^{3}}$ Wherever a charge is quoted for the exotic particles, the charge conjugate state is also implied.

Fig. 1. Comparison of normalised distributions of the *S*(MDT d*E*/d*x*) (top) and *S*(TRT d*E*/d*x*) (bottom) for muons from $Z \rightarrow \mu\mu$ events in data and simulation.

variables are required to exceed threshold values. These thresholds are established from the separation of the dE/dx significance distributions between muons and |q| = 2e signal particles. The dE/dx significance distributions for higher charge values, |q| > 2e, are further separated from muons, as seen for simulated events in Fig. 2. The detailed response for these higher charge particles may not be perfectly modelled by the simulation due to saturation effects. However, their dE/dx response will certainly be higher than that of |q| = 2e particles, and thus their detailed response has no significance for the analysis. The separation power of the pixel dE/dx significance is shown in Fig. 3 for a 2e charge at m = 200, 400 and 600 GeV. The behaviour of the dE/dx significance distributions is found to be as expected with respect to p_{T} , η , and ϕ . For simulated multi-charged particles the dE/dx significances strongly depend on the particle's charge and weakly on the particle's mass.

5. Event and candidate selection

Multi-charged candidates are sought for among those particles traversing the entire ATLAS detector, thus being initially selected as muons. Candidates are selected by analysing the specific ionisation losses in the different detectors. The search is based on a cut-and-count method, described in Section 6, where the signal region is defined by high dE/dx significances of the track measured by the TRT and MDT detectors.

Track reconstruction assumes particles with charge $\pm 1e$, whereas particles with higher charges bend more in the magnetic field. Therefore, the effective cut on the momentum of the multi-charged particle imposed by the trigger and selection is a factor

Fig. 2. Normalised distributions of S(MDT dE/dx) (top) and S(TRT dE/dx) (bottom) for simulated muons and multi-charged particles. Distributions are shown for the signal samples for |q| = 2e, 4e and 6e, for a mass of 200 GeV.

of |q|/e higher than the cut on the muon candidate. In the following, we will refer to p_T as the reconstructed transverse momentum assuming charge |q| = 1e.

5.1. Trigger and event selection

Events collected with a single-muon trigger [31] with a transverse momentum threshold of $p_{\rm T} = 18$ GeV are considered. In simulated events the trigger efficiency from the RPC is corrected as a function of a particle's η and β , where β is the ratio of the particle's velocity to the speed of light. Events are further required⁴ to contain either at least one muon with $p_{\rm T} > 75$ GeV or at least two muons with $p_{\rm T} > 15$ GeV.

5.2. Candidate selection

Candidate particles are tracks reconstructed in the MS which are required to be matched to the object passing the muon trigger, and to originate within tolerances from the primary interaction point. They must also be within the acceptance region $|\eta| < 2.0$, have a $p_T > 20$ GeV, and leave a high-quality track in the ID. However, because of potential pixel readout saturation, there is no requirement that a candidate particle has pixel information. The p_T measured by the muon system is smaller than the p_T

⁴ Information on the MDT d*E*/d*x* is not available in the standard ATLAS data stream. Hence, this analysis is based on a special stream which includes this information. The $p_{\rm T}$ requirements on muons given here are imposed for the preparation of this stream and are not optimised for the current analysis.

Fig. 3. Normalised distribution of S(pixel dE/dx) for simulated muons and multicharged particles. Distributions are shown for the signal sample for |q| = 2e, for masses of 200, 400 and 600 GeV. The structure at a significance of -5 is from pixel readout saturation.

Fig. 4. Normalised distribution of f^{HT} for simulated muons and multi-charged particles. Distributions are shown for the signal samples for |q| = 2e, 4e, and 6e for a mass of 200 GeV.

measured in the ID due to energy loss in the calorimeters, and the $p_{\rm T}$ in the ID is used for candidate selection. In the track candidate selection, the measurement of the ionisation energy loss in the calorimeter system was not used. However, the calorimeter energy loss was validated for use as an independent cross-check in case of an observation of candidates above the expected background.

An initial preselection of highly ionising candidates is based on the pixel dE/dx significance and the TRT high-threshold fraction $f^{\rm HT}$. As seen in Fig. 3, the pixel dE/dx significance is a powerful discriminator for particles with |q| = 2e. The signal region is defined by candidates with a significance greater than 10. For higher values of |q|, the pixel readout saturates and the dE/dx signal is no longer reliable. Therefore, to search for particles with |q| > 2e, the TRT $f^{\rm HT}$ (see Fig. 4) is used as a discriminating variable instead. The signal region is defined by requiring the $f^{\rm HT}$ to be above 0.4. This preselection using the pixel dE/dx or the $f^{\rm HT}$ reduces the background contribution by almost three orders of magnitude for both |q| = 2e and |q| > 2e.

In the final step of the search, the MDT dE/dx significance, S(MDT dE/dx), and the TRT dE/dx significance, S(TRT dE/dx), are used as discriminating variables to separate the signal and background. These variables are shown for real data and simulated signal events in Fig. 5 (Fig. 6) for candidates preselected as |q| = 2e (|q| > 2e). Only the signal sample for a mass of 200 GeV is shown

Fig. 5. The plane of TRT and MDT dE/dx significances after the |q| = 2e selection. The distributions of the 2011 data and the signal sample (here for a mass of 200 GeV) are shown. The regions labelled A, B and C are control regions used to estimate the background expected in the signal region D.

Fig. 6. The plane of TRT and MDT dE/dx significances after the |q| > 2e selection. The distributions of the 2011 data and the signal sample (here for a mass of 200 GeV and |q| = 4e) are shown. The regions labelled A, B and C are control regions used to estimate the background expected in the signal region D.

Table 1

The final signal regions for the two preselections.

	S(MDT dE/dx)	S(TRT dE/dx)
q = 2e	> 3	> 4
q > 2e	> 4	> 5

as there is very little change in the selection variables for different masses. As seen, the detector signatures are different for the two preselected samples, and thus the final signal regions are chosen differently. They are defined in Table 1. The selection was optimised using only simulated samples and data control samples without examining the signal region in the data.

6. Background estimation

The background contribution to the signal region is estimated using an ABCD method. In this method, the regions A, B, C and D are defined by dividing the plane of the uncorrelated TRT and MDT dE/dx significances using the final selection cuts, as seen in Figs. 5 and 6. The region D is defined as the signal region, with regions A, B and C as control regions for the background. The expected number of candidates from background in the region D, N_{data}^{D} , is estimated from the numbers of observed data candidates in regions A, B and C ($N_{data}^{A,B,C}$):

Table 2 The observed candidate yields in data for an integrated luminosity of 4.4 fb^{-1} . The last column shows the expected background in the signal region D with statistical uncertainty.

	А	В	С	D	D _{exp} .
q = 2e	8543	92	38	0	0.41 ± 0.08
q > 2e	4940	754	9	0	1.37 ± 0.46

Table 3

The efficiencies to select a signal candidate (in %) for the DY production model.

Mass	Efficiencies [%]				
[GeV]	q = 2e	q = 3e	q = 4e	q = 5e	q = 6e
50	4.3	2.0	0.3	0.03	0.003
100	8.6	5.5	2.3	0.4	0.07
200	12.6	9.2	4.6	1.8	0.5
300	12.6	9.9	5.8	2.5	0.8
400	10.9	9.0	5.6	2.9	1.0
500	9.9	8.5	5.3	2.9	1.3
600	7.8	6.8	4.6	2.3	1.1

$$N_{\rm data}^{\rm D} = \frac{N_{\rm data}^{\rm B} \times N_{\rm data}^{\rm C}}{N_{\rm data}^{\rm A}}.$$
 (2)

Table 2 gives the number of candidates in A, B and C, as well as the observed number of candidates in the signal region D after the final selection. These results are compared to the expected number of background candidates of 0.41 ± 0.08 for the |q| = 2e selection and 1.37 ± 0.46 for the |q| > 2e selection. The uncertainties are statistical. The systematic uncertainty on the background estimation is discussed in Section 8.1.

7. Signal selection efficiency

The signal cross section is given by

$$\sigma = \frac{N_{\text{data}}^{\text{rec}}}{2 \times \mathcal{L} \times \epsilon},\tag{3}$$

where \mathcal{L} is the integrated luminosity of the analysed data, $N_{\text{det}}^{\text{rec}}$ the number of candidate particles in data above the expected background and the factor of 2 is the number of particles per event in the DY model. The efficiency ϵ includes trigger, reconstruction and selection efficiencies. The efficiency is the number of all multicharged particles that satisfy the selection criteria divided by the number of all simulated multi-charged particles.

The efficiency to find a multi-charged particle is given in Table 3 for each signal sample. Several factors contribute to the overall low efficiency and its dependencies on mass and charge. The $|\eta| < 2.0$ selection and the requirement to reach the MS with a β which fits the timing window for the trigger are the primary causes of the reduction in efficiency. For the simulated signal samples, this timing requirement generally implies a momentum requirement stricter than the explicit p_T selection. The implied selection can be as high as approximately $p_T/q > 120$ GeV. The charge dependence of the efficiency results from higher ionisation and the higher effective single-muon p_T selection, which are augmented by the factors q^2 and q, respectively. The mass dependence has two competing factors: at low mass there are more candidates above $|\eta| = 2.0$, while at high mass the β spectrum is softer.

8. Systematic uncertainties

The systematic uncertainties on the background estimate and on the signal efficiency are determined by varying the selection cuts within the uncertainty on each selection variable.

8.1. Background estimation uncertainty

The background estimate in the signal region, D, relies on the fact that the S(TRT dE/dx) and the S(MDT dE/dx) are uncorrelated. To estimate potential influences of signal contamination close to the region boundaries and remaining correlations in the tails of the distributions, the ABCD regions are varied. For this estimate, the signal region D is maintained, but regions A, B and C are redefined by excluding the region close to the default cut from the background estimation. This ensures a higher background purity. This test is performed for many different definitions of the control regions and leads to an uncertainty of 5% on the estimated background contribution in the signal region.

8.2. Trigger efficiency uncertainty

The uncertainty on the trigger efficiency has two sources: the standard uncertainty on the trigger efficiency of 1% as determined by ATLAS muon performance studies [31] and a β -dependent trigger uncertainty. The size of the β -dependent part is dominated by the uncertainty on the timing correction of the RPC trigger efficiency (trigger for $|\eta| < 1.05$). This correction is varied by $\pm 50\%$ to account for the large dependence of the efficiency on the trigger timing. The relative difference of the trigger efficiencies between the nominal and the varied correction depends on the mass and charge of the benchmark samples, and ranges from less than 1% for |q| = 6e, m = 50 GeV to 24% for |q| = 5e, m = 600 GeV. The timing in the TGC (trigger for $|\eta| \ge 1.05$) for data and simulation is in good agreement, and the systematic uncertainty for the TGC timing correction is negligible. The systematic uncertainty on whether a candidate particle would reach the MS in the timing window for the trigger selection also depends on the simulation of energy losses in the calorimeters and the material description of the detector. In a study using muons from $Z \rightarrow \mu\mu$ events in data and simulation, the energy losses were shown to be in excellent agreement. The energy-loss difference between data and simulation is less than 5%. A cross-check that varies the amount of material by $\pm 10\%$ has a negligible effect on the total systematic uncertainty.

8.3. Uncertainties due to selection

The uncertainties on the selection efficiency arise from the uncertainties on each selection variable used. The following variations of the nominal cuts are studied: $p_{\rm T}$ by $\pm 3\%$, S(pixel dE/dx) by \pm 5%, TRT HT fraction by \pm 20%, S(TRT dE/dx) by \pm 5% and S(MDT dE/dx) by -5% and +50%. For the p_T cut this corresponds to the resolution of the track p_{T} measurements. The variation of 20% of the TRT HT fraction arises from the pile-up dependence of this variable. For the pixel and the TRT dE/dx significances, 5% corresponds to the observed agreement of the mean and width of these distributions in the $Z \rightarrow \mu \mu$ events in data and simulation. This is also applied to the lower variation of S(MDT dE/dx). Here, a relative shift between simulation and data is observed. The magnitude and direction of this shift suggest a variation of S(MDT dE/dx) by 50% in the positive direction. While this would have been important for a potential signal interpretation, it has only a small effect on the limit setting. For all other variables the variations have no observable effect in any of the signal samples. The total systematic uncertainties on the efficiency arising from these cut variations range up to 2.1%.

8.4. Summary of systematic uncertainties

In Table 4 the quadratic sums of all the systematic uncertainties considered above are summarised for the different signal

Fig. 7. Upper limits on the production cross section of multi-charged highly ionising particles from pair-production as a function of particle mass. The dotted line shows the expected limit with the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainty bands. The observed limit is compared with the predicted rapidly falling cross section from the DY model. The plots are shown separately for charges from |q| = 2e to |q| = 6e. In the |q| = 2e case, the observed limit lies on top of the expected limit.

Table 4

Summary of relative systematic uncertainties on the expected number of candidates derived from the uncertainties on the background estimation, trigger efficiency, Monte Carlo statistics and due to selection cuts.

Mass	Quadratic s	Quadratic sum of systematic uncertainties [%]				
[GeV]	q = 2e	q = 3e	q = 4e	q = 5e	q = 6e	
50	8	6	6	10	19	
100	10	9	7	12	28	
200	13	12	10	9	12	
300	14	15	15	12	11	
400	17	17	18	18	13	
500	18	18	19	21	18	
600	22	22	23	25	24	

samples. The two main uncertainties are the uncertainty on the trigger efficiency and the uncertainty due to the small number of Monte Carlo events. The latter makes a significant contribution for some of the high-charge and low-mass samples. The 50 GeV samples were produced with a selection at the generator level requiring $p_{\rm T}/q > 15$ GeV in order to decrease the statistical uncertainty. The systematic uncertainties vary between 6% and 28% in total.

The uncertainty on the integrated luminosity is estimated to be 3.9% from Van der Meer scans [32,33] and is not included in Table 4.

9. Results

No signal candidates are found for either the |q| = 2e or the |q| > 2e selected sample. The results are consistent with the expectation of $0.41 \pm 0.08 \pm 0.02$ and $1.37 \pm 0.46 \pm 0.07$ background candidates, respectively. From these numbers the expected and observed limits are computed using pseudo-experiments. For the total cross-section limit, the systematic uncertainties on efficiency and the luminosity are taken into account in the pseudo-experiments. For every benchmark point, 100 000 pseudo-experiments are used. The measurement excludes DY model pair-production over wide ranges of tested masses. Fig. 7 shows the

Fig. 8. Observed 95% CL cross-section upper limits and theoretical cross sections as functions of the multi-charged particle mass.

observed 95% confidence level cross-section limits as a function of mass for the five different charges. Due to the low number of expected events, the dominant uncertainty arises from Poisson statistics as reflected in the asymmetric uncertainty bands. The limits range from around 10^{-2} pb for the lower charges to 10^{-1} pb for |q| = 6e. In addition to the expected and observed limits the predicted cross section is shown for the simplified Drell-Yan model. For the given model the cross-section limits can be transformed into mass-exclusion lower limits from 50 GeV to 430, 480, 490, 470 and 420 GeV for charges |q| = 2e, 3e, 4e, 5e and 6e, respectively. Fig. 8 summarises the observed limits.

10. Summary

A search for long-lived, multi-charged particles has been performed using an integrated luminosity of 4.4 fb⁻¹ of *pp* collisions recorded by the ATLAS detector at the LHC. No candidates are found in the 2011 data set, consistent with the background expectation. The results presented here are the first mass limits from ATLAS for charges of 2e to 6e, filling the missing range of charges between the searches for slow singly charged long-lived particles [10] and searches for particles with charges from 6e to 17e [8].

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada: CERN: CONICYT, Chile: CAS, MOST and NSFC, China: COL-CIENCIAS, Colombia: MSMT CR. MPO CR and VSC CR. Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF. European Union: IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN–CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[1] M. Fairbairn, et al., Phys. Rep. 438 (2007) 1, arXiv:hep-ph/0611040.

[2] J. Schwinger, Phys. Rev. 144 (1966) 1087.

ATLAS Collaboration

- [3] S. Dimopoulos, G.L. Landsberg, Phys. Rev. Lett. 87 (2001) 161602, arXiv:hep-ph/ 0106295.
- [4] A. Kusenko, M.E. Shaposhnikov, Phys. Lett. B 418 (1998) 46, arXiv:hep-ph/ 9709492.
- [5] SLIM Collaboration, S. Cecchini, et al., Eur. Phys. J. C 57 (2008) 525, arXiv: 0805.1797 [hep-ex].
- [6] D0 Collaboration, V.M. Abazov, et al., Phys. Rev. Lett. 102 (2009) 161802, arXiv: 0809.4472 [hep-ex].
- [7] CDF Collaboration, T. Aaltonen, et al., Phys. Rev. Lett. 103 (2009) 021802, arXiv:0902.1266 [hep-ex].
- [8] ATLAS Collaboration, Phys. Lett. B 698 (2011) 353, arXiv:1102.0459 [hep-ex].
- [9] ATLAS Collaboration, Phys. Lett. B 701 (2011) 1, arXiv:1103.1984 [hep-ex].
- [10] ATLAS Collaboration, Searches for heavy long-lived sleptons and R-hadrons with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV, CERN-PH-EP-2012-236, arXiv:1211.1597 [hep-ex].
- [11] CMS Collaboration, JHEP 1103 (2011) 024, arXiv:1101.1645 [hep-ex].
- [12] CMS Collaboration, Phys. Lett. B 713 (2012) 408, arXiv:1205.0272 [hep-ex].
- [13] ATLAS Collaboration, Phys. Rev. Lett. 109 (2012) 261803, arXiv:1207.6411 [hepex].
- [14] M.Y. Khlopov, Mod. Phys. Lett. A 26 (2011) 2823, arXiv:1111.2838 [astroph.CO].
- [15] C.A. Stephan, J. Phys. A 39 (2006) 9657, arXiv:hep-th/0509213.
- [16] F. Sannino, K. Tuominen, Phys. Rev. D 71 (2005) 051901, arXiv:hep-ph/0405209.
- [17] S.B. Gudnason, C. Kouvaris, F. Sannino, Phys. Rev. D 73 (2006) 115003, arXiv: hep-ph/0603014.
- [18] R. Foadi, M.T. Frandsen, T.A. Ryttov, F. Sannino, Phys. Rev. D 76 (2007) 055005, arXiv:0706.1696 [hep-ph].
- [19] A. Connes, Noncommutative Geometry, Academic Press, London, San Diego, 1994.
- [20] A. Sakharov, Sov. Phys. Usp 34 (1991) 375, Zh. Eksp. Teor. Fiz. 18 (1948) 631.
- [21] ATLAS Collaboration, JINST 3 (2008) S08003.
- [22] ATLAS Collaboration, Particle identification performance of the ATLAS transition radiation tracker, ATLAS-CONF-2011-128, http://cdsweb.cern.ch/record/ 1383793.
- [23] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, JHEP 1106 (2011) 128, arXiv:1106.0522 [hep-ph].
- [24] J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky, W. Tung, JHEP 0207 (2002) 012, arXiv:hep-ph/0201195.
- [25] T. Sjostrand, S. Mrenna, P. Skands, JHEP 0605 (2006) 026, arXiv:hep-ph/ 0603175.
- [26] GEANT4 Collaboration, S. Agostinelli, et al., Nucl. Instrum. Meth. A 506 (2003) 250.
- [27] ATLAS Collaboration, Eur. Phys. J. C 70 (2010) 823, arXiv:1005.4568 [physics. ins-det].
- [28] A. Belyaev, N.D. Christensen, A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, arXiv:1207.6082 [hep-ph].
- [29] H. Bethe, Ann. Phys. 5 (1930) 325.
- [30] ATLAS Collaboration, dE/dx measurement in the ATLAS pixel detector and its use for particle identification, ATLAS-CONF-2011-16, http://cdsweb.cern.ch/ record/1336519.
- [31] ATLAS Collaboration, Performance of the ATLAS muon trigger in 2011, ATLAS-CONF-2012-099, http://cdsweb.cern.ch/record/1462601.
- [32] ATLAS Collaboration, Eur. Phys. J. C 71 (2011) 1630, arXiv:1101.2185 [hep-ex].
- [33] ATLAS Collaboration, Luminosity determination in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector in 2011, ATLAS-CONF-2011-116, http://cdsweb. cern.ch/record/1376384.

G. Aad ⁴⁸, T. Abajyan ²¹, B. Abbott ¹¹¹, J. Abdallah ¹², S. Abdel Khalek ¹¹⁵, A.A. Abdelalim ⁴⁹, O. Abdinov ¹¹, R. Aben ¹⁰⁵, B. Abi ¹¹², M. Abolins ⁸⁸, O.S. AbouZeid ¹⁵⁸, H. Abramowicz ¹⁵³, H. Abreu ¹³⁶, B.S. Acharya ^{164a,164b,a}, L. Adamczyk ³⁸, D.L. Adams ²⁵, T.N. Addy ⁵⁶, J. Adelman ¹⁷⁶, S. Adomeit ⁹⁸, P. Adragna ⁷⁵, T. Adye ¹²⁹, S. Aefsky ²³, J.A. Aguilar-Saavedra ^{124b,b}, M. Agustoni ¹⁷, M. Aharrouche ⁸¹, S.P. Ahlen ²², F. Ahles ⁴⁸, A. Ahmad ¹⁴⁸, M. Ahsan ⁴¹, G. Aielli ^{133a,133b}, T.P.A. Åkesson ⁷⁹, G. Akimoto ¹⁵⁵, A.V. Akimov ⁹⁴, M.A. Alam ⁷⁶, J. Albert ¹⁶⁹, S. Albrand ⁵⁵, M. Aleksa ³⁰, I.N. Aleksandrov ⁶⁴, F. Alessandria ^{89a}, C. Alexa ^{26a}, G. Alexander ¹⁵³, G. Alexandre ⁴⁹, T. Alexopoulos ¹⁰, M. Alhroob ^{164a,164c}, M. Aliev ¹⁶, G. Alimonti ^{89a}, J. Alison ¹²⁰, B.M.M. Allbrooke ¹⁸, P.P. Allport ⁷³, S.E. Allwood-Spiers ⁵³, J. Almond ⁸², A. Aloisio ^{102a,102b}, R. Alon ¹⁷², A. Alonso ³⁶, F. Alonso ⁷⁰, A. Altheimer ³⁵, B. Alvarez Gonzalez ⁸⁸, M.G. Alviggi ^{102a,102b}, K. Amako ⁶⁵, C. Amelung ²³, V.V. Ammosov ^{128,*}, S.P. Amor Dos Santos ^{124a}, A. Amorim ^{124a,c}, N. Amram ¹⁵³, C. Anastopoulos ³⁰, L.S. Ancu ¹⁷, N. Andari ¹¹⁵, T. Andeen ³⁵, C.F. Anders ^{58b}, G. Anders ^{58a}, K.J. Anderson ³¹, A. Andreazza ^{89a,89b}, V. Andrei ^{58a},

 MTLAS Collaboration / Physics Letters B722 (2013) 305-323
 M-L. Andrieux ⁵⁵, X.S. Anduaga ⁷⁰, S. Angelidakis ⁹, P. Anger ⁴⁴, A. Angerami ³⁵, F. Anghinolfi ³⁰, A. Anisenkov ¹⁰⁷, N. Anjos ^{124a}, A. Annovi ⁴⁷, A. Antonaki ⁹, M. Antonelli ⁴⁷, A. Antonov ⁹⁶, J. Antos ^{144b}, F. Anulli ^{132a}, M. Aoki ¹⁰¹, S. Aoun ⁸³, L. Aperio Bella ⁵, R. Apolle ^{118,d}, G. Arabidze ⁸⁸, I. Aracena ¹⁴³, Y. Arai ⁶⁵, A.T.H. Arce ⁴⁵, S. Arfaoui ¹⁴⁸, J-F. Arguin ⁹³, S. Argyropoulos ⁴², E. Arik ^{19a,*}, M. Arik ^{19a,}
 A.J. Armbruster ⁸⁷, O. Arnaez ⁸¹, V. Arnal ⁸⁰, A. Artamonov ⁹⁵, G. Artoni ^{132a,132b}, D. Arutinov ²¹, S. Asai ¹⁵⁵, S. Ask ²⁸, B. Åsman ^{146a,146b}, D. Asner ²⁹, L. Asquith ⁶, K. Assamagan ^{25,e}, A. Astbury ¹⁶⁹, M. Atkinson ¹⁶⁵, B. Aubert ⁵, E. Auge ¹¹⁵, K. Augsten ¹²⁶, M. Aurousseau ^{145a}, G. Avolio ³⁰, D. Axen ¹⁶⁸, G. Azuelos ^{33,J},
 Y. Azuma ¹⁵⁵, M.A. Baak ³⁰, G. Baccaglioni ^{89a}, C. Bacci ^{134a,134b}, A.M. Bach ¹⁵, H. Bachacou ¹³⁶, K. Bachas ¹⁵⁴, M. Backes ⁴⁹, M. Backhaus ²¹, J. Backus Mayes ¹⁴³, E. Badescu ^{26a}, P. Bagnaia ^{132a,132b}, S. Bahinipati ³, Y. Bai^{33a}, D.C. Bailey ¹⁵⁸, T. Bain ³⁵, J.T. Baines ¹²⁹, O.K. Baker ¹⁷⁶, M.D. Baker ²⁵, S. Baker ⁷⁷, P. Balek ¹²⁷, E. Banas ³⁹, P. Banerjee ⁹³, Sw. Banerjee ¹⁷³, D. Banfi ³⁰, A. Bangert ¹⁵⁰, V. Bansal ¹⁶⁹, B. Barberis ^{50a,50b}, M. Barbero ²¹, D.Y. Bardin ⁶⁴, T. Barillari ¹⁹, M. Barisonzi ¹⁷⁵, T. Barklow ¹⁴³, N. Barlow ²⁸, B.M. Barnett ¹²⁹, R.M. Barnett ¹⁵, A. Barconcelli ^{134a}, G. Barone ⁴⁹, A.J. Barvilos ⁸⁶, J. Barreiro Guimarães da Costa ⁵⁷, R. Bartoldus ¹⁴³, A.E. Barton ⁷¹, V. Bartsch ¹⁴⁹, A. Basye ¹⁶⁵, R.L. Bates ⁵³, L. Batelow ²⁸, B.M. Barnett ¹²⁹, R.M. Barnett ¹⁵, A. Baronor⁴¹, K. Becker ¹⁷⁶, K. Becker ¹⁷⁵, S. Beckre ⁹⁸, M. Beckingham ¹³⁸, K.H. Becks ¹⁷⁵, A.J. Beddall ^{19c}, A. Bedthal ^{19c}, N. Bedikain ¹⁷⁶, V.A. Bednyakov ⁶⁴, C.P. Bee K. Bendtz ^{146a, 146b}, N. Benekos ¹⁶⁵, Y. Benhammou ¹⁵³, E. Benhar Noccioli ⁴⁹, J.A. Benitez Garcia ^{159b}, D.P. Benjamin ⁴⁵, M. Benoit ¹¹⁵, J.R. Bensinger ²³, K. Benslama ¹³⁰, S. Bentvelsen ¹⁰⁵, D. Berge ³⁰, E. Bergeaas Kuutmann ⁴², N. Berger ⁵, F. Berghaus ¹⁶⁹, E. Berglund ¹⁰⁵, J. Beringer ¹⁵, P. Bernat ⁷⁷, R. Bernhard ⁴⁸, C. Bernius ²⁵, T. Berry ⁷⁶, C. Bertella ⁸³, A. Bertin ^{20a, 20b}, F. Bertolucci ^{122a, 122b}, M.I. Besana ^{89a,89b}, G.J. Besjes ¹⁰⁴, N. Besson ¹³⁶, S. Bethke ⁹⁹, W. Bhimji ⁴⁶, R.M. Bianchi ³⁰, L. Bianchini ²³, M. Bianco ^{72a,72b}, O. Biebel ⁹⁸, S.P. Bieniek ⁷⁷, K. Bierwagen ⁵⁴, J. Biesiada ¹⁵, M. Biglietti ^{134a}, H. Bilokon ⁴⁷, M. Bindi ^{20a,20b}, S. Binet ¹¹⁵, A. Bingul ^{19c}, C. Bini ^{132a,132b}, C. Biscarat ¹⁷⁸, B. Bittner ⁹⁹, C.W. Black ¹⁵⁰, K.M. Black ²², R.E. Blair ⁶, J.-B. Blanchard ¹³⁶, T. Blazek ^{144a}, I. Bloch ⁴², C. Blocker ²³, J. Blocki ³⁹, A. Blondel ⁴⁹, W. Blum ⁸¹, U. Blumenschein ⁵⁴, G.J. Bobbink ¹⁰⁵, V.S. Bobrovnikov ¹⁰⁷, S.S. Bocchetta ⁷⁹, A. Bocci ⁴⁵, C.R. Boddy ¹¹⁸, M. Boehler ⁴⁸, J. Boek ¹⁷⁵, T.T. Boek ¹⁷⁵, N. Boelaert ³⁶, J.A. Bogaerts ³⁰, A. Bogdanchikov ¹⁰⁷, A. Bogouch ^{90,*}, C. Bohm ^{146a}, J. Bohm ¹²⁵, V. Boisvert ⁷⁶, T. Bold ³⁸, V. Boldea ^{26a}, N.M. Bolnet ¹³⁶, M. Bomben ⁷⁸, M. Bona ⁷⁵, M. Boonekamp ¹³⁶, S. Bordoni ⁷⁸, C. Borer ¹⁷, A. Borisov ¹²⁸, G. Borissov ⁷¹, I. Borjanovic ^{13a}, M. Borri ⁸², S. Borroni ⁸⁷, J. Bortfeldt ⁹⁸, V. Bortolotto ^{134a,134b}, K. Bos ¹⁰⁵, D. Boscherini ^{20a}, M. Bosman ¹², H. Boterenbrood ¹⁰⁵, J. Bouchami ⁹³, J. Boudreau ¹²³, E.V. Bouhova-Thacker ⁷¹, D. Boumediene ³⁴, C. Bourdarios ¹¹⁵, N. Bousson ⁸³, A. Boveia ³¹, I. Boyd ³⁰, D. Boscherini ^{20a}, M. Bosman ¹², H. Botri Y, S. Borrom Y, B. Borrom Y, S. Bouchami ³⁰, J. Boudreau ¹²³, E.V. Bouhova-Thacker ⁷¹, D. Boumediene ³⁴, C. Bourdarios ¹¹⁵, N. Bousson ⁸³, A. Boveia ³¹, J. Boyd ³⁰, I.R. Boyko ⁶⁴, I. Bozovic-Jelisavcic ^{13b}, J. Bracinik ¹⁸, P. Branchini ^{134a}, A. Brandt ⁸, G. Brandt ¹¹⁸, O. Brandt ⁵⁴, U. Bratzler ¹⁵⁶, B. Brau ⁸⁴, J.E. Brau ¹¹⁴, H.M. Braun ^{175,*}, S.F. Brazzale ^{164a,164c}, B. Brelier ¹⁵⁸, J. Bremer ³⁰, K. Brendlinger ¹²⁰, R. Brenner ¹⁶⁶, S. Bressler ¹⁷², D. Britton ⁵³, F.M. Brochu ²⁸, I. Brock ²¹, R. Brock ⁸⁸, F. Broggi ^{89a}, C. Bromberg ⁸⁸, J. Bronner ⁹⁹, G. Brooijmans ³⁵, T. Brooks ⁷⁶, W.K. Brooks ^{32b}, G. Brown ⁸², P.A. Bruckman de Renstrom ³⁹, D. Bruncko ^{144b}, R. Bruneliere ⁴⁸, S. Brunet ⁶⁰, A. Bruni ^{20a}, M. Bruschi^{20a}, L. Bryngemark ⁷⁹, T. Buanes ¹⁴, Q. Buat ⁵⁵, F. Bucci ⁴⁹, J. Buchanan ¹¹⁸, P. Buchholz ¹⁴¹, R.M. Buckingham ¹¹⁸, A.G. Buckley ⁴⁶, S.I. Buda ^{26a}, I.A. Budagov ⁶⁴, B. Budick ¹⁰⁸, L. Bugge ¹¹⁷, O. Bulekov ⁹⁶, A.C. Bundock ⁷³, M. Bunse ⁴³, T. Buran ¹¹⁷, H. Burckhart ³⁰, S. Burdin ⁷³, T. Burgess ¹⁴, S. Burke ¹²⁹, E. Busato ³⁴, V. Büscher ⁸¹, P. Bussey ⁵³, C.P. Buszello ¹⁶⁶, B. Butler ¹⁴³, J.M. Butler ²², C.M. Buttar ⁵³, J.M. Butterworth ⁷⁷, W. Buttinger ²⁸, M. Byszewski ³⁰, S. Cabrera Urbán ¹⁶⁷, D. Caforio ^{20a,20b}, O. Cakir ^{4a}, P. Calafiura ¹⁵, G. Calderini ⁷⁸, P. Calfayan ⁹⁸, R. Calkins ¹⁰⁶, L.P. Caloba ^{24a}, R. Caloi ^{132a,132b}, D. Calvet ³⁴, S. Calvet ³⁴, R. Camacho Toro ³⁴, P. Camarri ^{133a,133b}, D. Cameron ¹¹⁷, L.M. Caminada ¹⁵, R. Caminal Armadans ¹², S. Campana ³⁰, M. Campanelli ⁷⁷, V. Canale ^{102a,102b}, F. Canelli ³¹, A. Canepa ^{159a}, J. Cantero ⁸⁰, R. Cantrill ⁷⁶, L. Capasso ^{102a,102b}, M.D.M. Capeans Garrido ³⁰,

A.A. Carter⁷⁵, J.R. Carter²⁸, J. Carvalho^{124a,i}, D. Casadei¹⁰⁸, M.P. Casado¹², M. Cascella^{122a,122b}, C. Caso^{50a,50b,*}, A.M. Castaneda Hernandez^{173,j}, E. Castaneda-Miranda¹⁷³, V. Castillo Gimenez¹⁶⁷, N.F. Castro ^{124a}, G. Cataldi ^{72a}, P. Catastini ⁵⁷, A. Catinaccio ³⁰, J.R. Catmore ³⁰, A. Cattai ³⁰, G. Cattani ^{133a,133b}, S. Caughron ⁸⁸, V. Cavaliere ¹⁶⁵, P. Cavalleri ⁷⁸, D. Cavalli ^{89a}, M. Cavalli-Sforza ¹², V. Cavasinni ^{122a,122b}, F. Ceradini ^{134a,134b}, A.S. Cerqueira ^{24b}, A. Cerri ¹⁵, L. Cerrito ⁷⁵, F. Cerutti ¹⁵, S.A. Cetin ^{19b}, A. Chafaq ^{135a}, D. Chakraborty ¹⁰⁶, I. Chalupkova ¹²⁷, K. Chan ³, P. Chang ¹⁶⁵, B. Chapleau ⁸⁵, J.D. Chapman²⁸, J.W. Chapman⁸⁷, D.G. Charlton¹⁸, V. Chavda⁸², C.A. Chavez Barajas³⁰, S. Cheatham⁸⁵, J.D. Chapman²⁸, J.W. Chapman⁸⁷, D.G. Charlton¹⁸, V. Chavda⁸², C.A. Chavez Barajas³⁰, S. Cheatham⁸⁵, S. Chekanov⁶, S.V. Chekulaev^{159a}, G.A. Chelkov⁶⁴, M.A. Chelstowska¹⁰⁴, C. Chen⁶³, H. Chen²⁵, S. Chen^{33c}, X. Chen¹⁷³, Y. Chen³⁵, Y. Cheng³¹, A. Cheplakov⁶⁴, R. Cherkaoui El Moursli^{135e}, V. Chernyatin²⁵, E. Cheu⁷, S.L. Cheung¹⁵⁸, L. Chevalier¹³⁶, G. Chiefari^{102a,102b}, L. Chikovani^{51a,*}, J.T. Childers³⁰, A. Chilingarov⁷¹, G. Chiodini^{72a}, A.S. Chisholm¹⁸, R.T. Chislett⁷⁷, A. Chitan^{26a}, M.V. Chizhov⁶⁴, G. Choudalakis³¹, S. Chouridou¹³⁷, I.A. Christidi⁷⁷, A. Christov⁴⁸, D. Chromek-Burckhart³⁰, M.L. Chu¹⁵¹, J. Chudoba¹²⁵, G. Ciapetti^{132a,132b}, A.K. Ciftci^{4a}, R. Ciftci^{4a}, D. Cinca³⁴, V. Cindro⁷⁴, A. Ciocio¹⁵, M. Cirilli⁸⁷, P. Cirkovic^{13b}, Z.H. Citron¹⁷², M. Citterio^{89a}, M. Ciubancan^{26a}, A. Clark⁴⁹, P.J. Clark⁴⁶, R.N. Clarke¹⁵, W. Cleland¹²³, J.C. Clemens⁸³, B. Clement⁵⁵, C. Clement^{146a,146b}, Y. Coadou⁸³, M. Cobal^{164a,164c}, A. Coccaro¹³⁸, J. Cochran⁶³, L. Coffey²³, J.G. Cogan¹⁴³, J. Coggeshall¹⁶⁵, J. Colas⁵, S. Cole¹⁰⁶, A.P. Colijn¹⁰⁵, N.J. Collins¹⁸, C. Collins-Tooth⁵³, J. Collot⁵⁵, T. Colombo^{119a,119b}, G. Colon⁸⁴, G. Compostella⁹⁹, P. Conde Muiño^{124a}, E. Coniavitis¹⁶⁶, M.C. Conidi¹², S.M. Consonni^{89a,89b}, V. Consorti⁴⁸, S. Constantinescu^{26a}, C. Conta^{119a,119b}, G. Conti⁵⁷, F. Conventi^{102a,k}, M. Cooke¹⁵, B.D. Cooper⁷⁷, A.M. Cooper-Sarkar¹¹⁸, K. Copic¹⁵, T. Cornelissen¹⁷⁵, F. Conventi ^{102a,k}, M. Cooke¹⁵, B.D. Cooper⁷⁷, A.M. Cooper-Sarkar¹¹⁸, K. Copic¹⁵, T. Cornelissen¹⁷⁵, M. Corradi ^{20a}, F. Corriveau^{85,l}, A. Cortes-Gonzalez¹⁶⁵, G. Cortiana⁹⁹, G. Costa^{89a}, M.J. Costa¹⁶⁷, D. Costanzo¹³⁹, D. Côté³⁰, L. Courneyea¹⁶⁹, G. Cowan⁷⁶, B.E. Cox⁸², K. Cranmer¹⁰⁸, D. Costanzo¹³⁹, D. Côté³⁰, L. Courneyea¹⁶⁹, G. Cowan⁷⁶, B.E. Cox⁸², K. Cranmer¹⁰⁸, S. Crépé-Renaudin⁵⁵, F. Crescioli⁷⁸, M. Cristinziani²¹, G. Crosetti^{37a,37b}, C.-M. Cuciuc^{26a}, C. Cuenca Almenar¹⁷⁶, T. Cuhadar Donszelmann¹³⁹, J. Cummings¹⁷⁶, M. Curatolo⁴⁷, C.J. Curtis¹⁸, C. Cuthbert¹⁵⁰, P. Cwetanski⁶⁰, H. Czirr¹⁴¹, P. Czodrowski⁴⁴, Z. Czyczula¹⁷⁶, S. D'Auria⁵³, M. D'Onofrio⁷³, A. D'Orazio^{132a,132b}, M.J. Da Cunha Sargedas De Sousa^{124a}, C. Da Via⁸², W. Dabrowski³⁸, A. Dafinca¹¹⁸, T. Dai⁸⁷, F. Dallaire⁹³, C. Dallapiccola⁸⁴, M. Dam³⁶, M. Dameri^{50a,50b}, D.S. Damiani¹³⁷, H.O. Danielsson³⁰, V. Dao⁴⁹, G. Darbo^{50a}, G.L. Darlea^{26b}, J.A. Dassoulas⁴², W. Davey²¹, T. Davidek¹²⁷, N. Davidson⁸⁶, R. Davidson⁷¹, E. Davies^{118,d}, M. Davies⁹³, O. Davignon⁷⁸, A.R. Davison⁷⁷, Y. Davygora^{58a}, E. Dawe¹⁴², I. Dawson¹³⁹, R.K. Daya-Ishmukhametova²³, K. De⁸, R. de Asmundis^{102a}, S. De Castro^{20a,20b}, S. De Cecco⁷⁸, J. de Graat⁹⁸, N. De Groot¹⁰⁴, P. de Jong¹⁰⁵, C. De La Taille¹¹⁵, H. De la Torre⁸⁰, F. De Lorenzi⁶³, L. de Mora⁷¹, L. De Nooij¹⁰⁵, D. De Pedis^{132a}, A. De Salvo^{132a}, U. De Sanctis^{164a,164c}, A. De Santo¹⁴⁹, J.B. De Vivie De Regie¹¹⁵, G. De Zorzi^{132a,132b}, W.J. Dearnaley⁷¹, R. Debbe²⁵, C. Debenedetti⁴⁶, B. Dechenaux⁵⁵, D.V. Dedovich⁶⁴, J. Degenhardt¹²⁰, J. Del Peso⁸⁰, T. Del Prete^{122a,122b}, T. Delemontex⁵⁵, M. Deliyergiyev⁷⁴, A. Dell'Acqua³⁰, L. Dell'Asta²², M. Della Pietra^{102a,k}, D. della Volpe^{102a,102b}, M. Delmastro⁵, P.A. Delsart⁵⁵, C. Deluca¹⁰⁵, S. Demers¹⁷⁶, M. Demichev⁶⁴, B. Demirkoz^{12,m}, S.P. Denisov¹²⁸, D. Derendarz³⁹, J.E. Derkaoui^{135d}, F. Derue⁷⁸, P. Dervan⁷³, K. Desch²¹, E. Devetak¹⁴⁸, P.O. Deviveiros¹⁰⁵, A. Dewhurst¹²⁹, B. DeWilde¹⁴⁸, M. Demichev⁶⁴, B. Demirkoz^{12,m}, S.P. Denisov¹²⁸, D. Derendarz³⁹, J.E. Derkaoui^{135d}, F. Derue⁷⁸, P. Dervan⁷³, K. Desch²¹, E. Devetak¹⁴⁸, P.O. Deviveiros¹⁰⁵, A. Dewhurst¹²⁹, B. DeWilde¹⁴⁸, S. Dhaliwal¹⁰⁵, R. Dhullipudi^{25,n}, A. Di Ciaccio^{133a,133b}, L. Di Ciaccio⁵, C. Di Donato^{102a,102b}, A. Di Girolamo³⁰, B. Di Girolamo³⁰, S. Di Luise^{134a,134b}, A. Di Mattia¹⁵², B. Di Micco³⁰, R. Di Nardo⁴⁷, A. Di Simone^{133a,133b}, R. Di Sipio^{20a,20b}, M.A. Diaz^{32a}, E.B. Diehl⁸⁷, J. Dietrich⁴², T.A. Dietzsch^{58a}, S. Diglio⁸⁶, K. Dindar Yagci⁴⁰, J. Dingfelder²¹, F. Dinut^{26a}, C. Dionisi^{132a,132b}, P. Dita^{26a}, S. Dita^{26a}, F. Dittus³⁰, F. Djama⁸³, T. Djobava^{51b}, M.A.B. do Vale^{24c}, A. Do Valle Wemans^{124a,o}, T.K.O. Doan⁵, M. Dobbs⁸⁵, D. Dobos³⁰, E. Dobson^{30,p}, J. Dodd³⁵, C. Doglioni⁴⁹, T. Doherty⁵³, T. Dohmae¹⁵⁵, Y. Doi^{65,*}, J. Dolejsi¹²⁷, Z. Dolezal¹²⁷, B.A. Dolgoshein^{96,*}, M. Donadelli^{24d}, J. Donini³⁴, J. Dopke³⁰, A. Doria^{102a}, A. Dos Anjos¹⁷³, A. Dotti^{122a,122b}, M.T. Dova⁷⁰, A.D. Doxiadis¹⁰⁵, A.T. Doyle⁵³, N. Dressnandt¹²⁰, M. Dris¹⁰, J. Dubbert⁹⁹, S. Dube¹⁵, E. Duchovni¹⁷², G. Duckeck⁹⁸, D. Duda¹⁷⁵, A. Dudarev³⁰, F. Dudziak⁶³, I.P. Duerdoth⁸², L. Duflot¹¹⁵, M-A. Dufour⁸⁵, L. Duguid⁷⁶, M. Dührssen³⁰, M. Dunford^{58a}, H. Duran Yildiz^{4a}, M. Düren⁵², R. Duxfield¹³⁹, M. Dwuznik³⁸, W.L. Ebenstein⁴⁵, J. Ebke⁹⁸, S. Eckweiler⁸¹, K. Edmonds⁸¹, W. Edson², C.A. Edwards⁷⁶, N.C. Edwards⁵³, W. Ehrenfeld⁴², T. Eifert¹⁴³, G. Eigen¹⁴, K. Elis⁷⁵, N. Ellis³⁰, J. Elmsheuser⁹⁸, M. Elsing³⁰, D. Emeliyanov¹²⁹, R. Engelmann¹⁴⁸, F. Ellinghaus⁸¹, K. Ellis⁷⁵, N. Ellis³⁰, J. Elmsheuser⁹⁸, M. Elsing³⁰, D. Emeliyanov¹²⁹, R. Engelmann¹⁴⁸,

A. Engl⁹⁸, B. Epp⁶¹, J. Erdmann¹⁷⁶, A. Ereditato¹⁷, D. Eriksson^{146a}, J. Ernst², M. Ernst²⁵, J. Ernwein¹³⁶, D. Errede¹⁶⁵, S. Errede¹⁶⁵, E. Ertel⁸¹, M. Escalier¹¹⁵, H. Esch⁴³, C. Escobar¹²³, X. Espinal Curull¹², B. Esposito⁴⁷, F. Etienne⁸³, A.I. Etiennve¹³⁶, E. Etzion¹⁵³, D. Evangelakou⁵⁴, H. Evans⁶⁰, L. Fabbri^{20a,20b}, C. Fabre³⁰, R.M. Fakhrutdinov¹²⁸, S. Falciano^{132a}, Y. Fang^{33a}, M. Fanti^{89a,89b}, A. Farbin⁸, A. Farilla^{134a}, J. Farley¹⁴⁸, T. Farooque¹⁵⁸, S. Farrell¹⁶³, S.M. Farrington¹⁷⁰, P. Farthouat³⁰, F. Fassi¹⁶⁷, P. Fassnacht³⁰, D. Fassouliotis⁹, B. Fatholahzadeh¹⁵⁸, A. Favareto^{89a,89b}, L. Fayard¹¹⁵, P. Federic^{144a}, O.L. Fedin¹²¹, W. Fedorko⁸⁸, M. Fehling-Kaschek⁴⁸, L. Feligioni⁸³, C. Feng^{33d}, E.J. Feng⁶, A.B. Fenyuk¹²⁸, J. Ferrari¹⁰⁵, R. Ferrari^{119a}, D.E. Ferreira de Lima⁵³, A. Ferrer¹⁶⁷, D. Ferrere⁴⁹, C. Ferretti⁸⁷, A. Ferretto Parodi^{50a,50b}, M. Fiascaris³¹, F. Fiedler⁸¹, A. Filipčič⁷⁴, F. Filthaut¹⁰⁴, M. Fincke-Keeler¹⁶⁹, M.C.N. Fiolhais^{124a,i}, L. Fiorini¹⁶⁷, A. Firan⁴⁰, G. Fischer⁴², M.J. Fisher¹⁰⁹, M. Flechl⁴⁸, I. Fleck¹⁴¹, J. Fleckne⁸¹, P. Fleischmann¹⁷⁴, S. Fleischmann¹⁷⁵, T. Flick¹⁷⁵, A. Floderus⁷⁹, L.R. Flores Castillo¹⁷³, A.C. Florez Bustos^{159b}, M.J. Flowerdew⁹⁹, T. Fonseca Martin¹⁷, A. Formica¹³⁶, A. Forti⁸², D. Fortin^{159a}, D. Fournier¹¹⁵, A.J. Fowler⁴⁵, H. Fox⁷¹, P. Francavilla¹², M. Franchini^{20a,20b}, S. Franchino^{119a,119b}, D. Francis³⁰, T. Frank¹⁷², M. Franklin⁵⁷, S. Franz³⁰, M. Fraternali^{119a,119b}, S. Fratina¹²⁰, S.T. French²⁸, C. Friedrich⁴², F. Friedrich⁴⁴, D. Froidevaux³⁰, J.A. Frost²⁸, C. Fukunaga¹⁵⁶, E. Fullana Torregrosa¹²⁷, D. Fourniel Y. A.J. rownel Y. H. Fox Y. P. Frankavina Y. M. Frankinin Y. S. Fraina ¹²⁰, S.T. French ²⁸, C. Friedrich ⁴², F. Friedrich ⁴⁴, D. Froidevaux ³⁰, J.A. Frost ²⁸, C. Fukunaga ¹⁵⁶, E. Fullana Torregrosa ¹²⁷, B.G. Fulsom ¹⁴³, J. Fuster ¹⁶⁷, C. Gabaldon ³⁰, O. Gabizon ¹⁷², T. Gadfort ²⁵, S. Gadomski ⁴⁹, G. Gagliardi ^{50a,50b}, P. Gagnon ⁶⁰, C. Galea ⁹⁸, B. Galhardo ^{124a}, E.J. Gallas ¹¹⁸, V. Gallo ¹⁷, B.J. Gallop ¹²⁹, P. Gallus ¹²⁵, K.K. Gan ¹⁰⁹, Y.S. Gao ^{143,g}, A. Gaponenko ¹⁵, F. Garberson ¹⁷⁶, C. García ¹⁶⁷, J.E. García Navarro ¹⁶⁷, M. Garcia-Sciveres ¹⁵, R.W. Gardner ³¹, N. Garelli ³⁰, V. Garonne ³⁰, C. Gatti ⁴⁷, G. Gaudio ^{119a}, B. Gaur ¹⁴¹, L. Gauthier ¹³⁶, P. Gauzzi ^{132a,132b}, I.L. Gavrilenko ⁹⁴, C. Gay ¹⁶⁸, G. Gaycken ²¹, E.N. Gazis ¹⁰, P. Ge^{33d,q}, Z. Gecse ¹⁶⁸, C.N.P. Gee ¹²⁹, D.A.A. Geerts ¹⁰⁵, Ch. Geich-Gimbel ²¹, K. Gellerstedt ^{146a,146b}, C. Gemme ^{50a}, A. Gemmell ⁵³, M.H. Genest ⁵⁵, S. Gentile ^{132a,132b}, M. George ⁵⁴, S. George ⁷⁶, D. Gerbaudo ¹², P. Gerlach ¹⁷⁵, A. Gershon ¹⁵³, C. Geweniger ^{58a}, H. Ghazlane ^{135b}, N. Ghodbane ³⁴, B. Giacobbe ^{20a}, S. Giagu ^{132a,132b}, V. Giangiobbe ¹², F. Gianotti ³⁰, B. Gibbard ²⁵, A. Gibson ¹⁵⁸, S.M. Gibson ³⁰, M. Gilchriese ¹⁵, D. Gillberg ²⁹, A.R. Gilliman ¹²⁹, D.M. Gingrich ^{3,f}, J. Ginzburg ¹⁵³, N. Giokaris ⁹, M.P. Giordani ^{164c}, R. Giordano ^{102a,102b}, F.M. Giorgi ¹⁶, P. Giovannini ⁹⁹, P.F. Giraud ¹³⁶, D. Giulgni ^{89a}, M. Giunta ⁹³, B.K. Gjelsten ¹¹⁷, L.K. Gladilin ⁹⁷, C. Glasman ⁸⁰, J. Glatzer ²¹, A. Gaova⁴², K.W. Glitza ¹⁷⁵, G.L. Glonti ⁶⁴, J.R. Coddard ⁷⁵, J. Godfrey ¹⁴², J. Godlewski ³⁰, M. Goesle ⁴², C. Goeringer ⁸¹, S. Goldfarb ⁸⁷, T. Golling ¹⁷⁶, D. Golubkov ¹²⁸, A. Gomes ^{124a,c}, L.S. Gomez Fajardo ⁴², R. Gonçalo ⁷⁶, J. Goncalves Pinto Firmino Da Costa ⁴², L. Gonella ²¹, S. González de la Hoz ¹⁶⁷, G. Gonzalez Parra ¹², M.L. Gonzalez Silva ²⁷, S. Gonzalez-S G. Goltzalez Parta ¹, M.L. Goltzlez Silva ¹, S. Goltzlez-Sevina ¹, J., Goltzlez ¹⁰¹, E. Goltslez ¹⁰¹, E. Goltslez ¹⁰², E. Gorsin ¹⁰, E. Goltslez ¹⁰³, C. Görsling ¹⁷⁵, B. Gorini ³⁰, E. Gorini ^{72a,72b}, A. Gorišek ⁷⁴, E. Gornicki ³⁹, A.T. Goshaw ⁶, M. Gosselink ¹⁰⁵, C. Gössling ⁴³, M.I. Gostkin ⁶⁴, I. Gough Eschrich ¹⁶³, M. Gouighri ^{135a}, D. Goujdami ^{135c}, M.P. Goulette ⁴⁹, A.G. Goussiou ¹³⁸, C. Goy ⁵, S. Gozpinar ²³, I. Grabowska-Bold ³⁸, P. Grafström ^{20a,20b}, K-J. Grahn ⁴², E. Gramstad ¹¹⁷, F. Grancagnolo ^{72a}, S. Grancagnolo ¹⁶, V. Grassi ¹⁴⁸, V. Gratchev ¹²¹, N. Grau ³⁵, H.M. Gray ³⁰, J.A. Gray ¹⁴⁸, E. Graziani ^{134a}, O.G. Grebenyuk ¹²¹, T. Greenshaw ⁷³, Z.D. Greenwood ^{25,n}, K. Gregersen ³⁶, I.M. Gregor ⁴², P. Grenier ¹⁴³, J. Griffiths ⁸, N. Grigalashvili ⁶⁴, A.A. Grillo ¹³⁷, S. Grinstein ¹², Ph. Gris ³⁴, Y.V. Grishkevich ⁹⁷, J.-F. Grivaz ¹¹⁵, A. Grohsjean ⁴², E. Gross ¹⁷², J. Grosse-Knetter ⁵⁴, J. Groth-Jensen ¹⁷², K. Grybel ¹⁴¹, D. Guest ¹⁷⁶, C. Guicheney ³⁴, E. Guido ^{50a,50b}, S. Guindon ⁵⁴, U. Gul ⁵³, J. Gunther ¹²⁵, B. Guo ¹⁵⁸, J. Guo ³⁵, P. Gutierrez ¹¹¹, N. Guttman ¹⁵³, O. Gutzwiller ¹⁷³, C. Guyot ¹³⁶, C. Gwenlan ¹¹⁸, C.B. Gwilliam ⁷³, A. Haas ¹⁰⁸, S. Haas ³⁰, C. Haber ¹⁵, H.K. Hadavand ⁸, D.R. Hadley ¹⁸, P. Haefner ²¹, F. Hahn ³⁰, Z. Hajduk ³⁹, H. Hakobyan ¹⁷⁷, D. Hall ¹¹⁸, K. Hamacher ¹⁷⁵, P. Hamal ¹¹³, K. Hamano ⁸⁶, M. Hamer ⁵⁴, A. Hamilton ^{145b,r}, S. Hamilton ¹⁶¹, L. Han ^{33b}, K. Hanagaki ¹¹⁶, K. Hanawa ¹⁶⁰, M. Hance ¹⁵, C. Handel ⁸¹, P. Hanke ^{58a}, J.R. Hansen ³⁶, J.B. Hansen ³⁶, J.D. Hansen ³⁶, P.H. Hansen ³⁶, P. Hansson ¹⁴³, K. Harafoo, T. Harenberg ¹⁷⁵, S. Harkusha ⁹⁰, D. Harper ⁸⁷, R.D. Harrington ⁴⁶, O.M. Harris ¹³⁸, J. Hartert ⁴⁸, F. Hartjes ¹⁰⁵, T. Harvagaa ⁶⁵, A. Harveg ⁵⁶, S. Hasegawa ¹⁰¹, Y. Hasegawa ¹⁴⁰, S. Hassani ¹³⁶, S. Haug ¹⁷, M. Hauschild ³⁰, R. Hauser ⁸⁸, M. Havranek ²

A. Henrichs ¹⁷⁶, A.M. Henriques Correia ³⁰, S. Henrot-Versille ¹¹⁵, C. Hensel ⁵⁴, C.M. Hernandez ⁸, Y. Hernández Jiménez ¹⁶⁷, R. Herrberg ¹⁶, G. Herten ⁴⁸, R. Hertenberger ⁹⁸, L. Hervas ³⁰, G.G. Hesketh ⁷⁷, N.P. Hessey ¹⁰⁵, E. Higón-Rodriguez ¹⁶⁷, J.C. Hill ²⁸, K.H. Hiller ⁴², S. Hillert ²¹, S.J. Hillier ¹⁸, I. Hinchliffe ¹⁵, E. Hines ¹²⁰, M. Hirose ¹¹⁶, F. Hirsch ⁴³, D. Hirschbuehl ¹⁷⁵, J. Hobbs ¹⁴⁸, N. Hod ¹⁵³, M.C. Hodgkinson ¹³⁹, P. Hodgson ¹³⁹, A. Hoecker ³⁰, M.R. Hoeferkamp ¹⁰³, J. Hoffman ⁴⁰, D. Hoffmann ⁸³, M. Hohlfeld ⁸¹, M. Holder ¹⁴¹, S.O. Holmgren ^{146a}, T. Holy ¹²⁶, J.L. Holzbauer ⁸⁸, T.M. Hong ¹²⁰, L. Hooft van Huysduynen ¹⁰⁸, S. Horner ⁴⁸, J-Y. Hostachy ⁵⁵, S. Hou ¹⁵¹, A. Hoummada ^{135a}, J. Howard ¹¹⁸, J. Howarth ⁸², I. Hristova ¹⁶, J. Hrivnac ¹¹⁵, T. Hryn'ova ⁵, PJ. Hsu ⁸¹, S.-C. Hsu ¹³⁸, D. Hu ³⁵, Z. Hubacek ³⁰, F. Hubaut ⁸³, F. Huegging ²¹, A. Huettmann ⁴², T.B. Huffman ¹¹⁸, E.W. Hughes ³⁵, G. Hughes ⁷¹, M. Huhtinen ³⁰, M. Hurwitz ¹⁵, N. Huseynov ^{64,s}, J. Huston ⁸⁸, J. Huth ⁵⁷, G. Iacobucci ⁴⁹, G. Iakovidis ¹⁰, M. Ibbotson ⁸², I. Ibragimov ¹⁴¹, L. Iconomidou-Fayard ¹¹⁵, J. Idarraga ¹¹⁵, P. Iengo ^{102a}, O. Igonkina ¹⁰⁵, Y. Ikegami ⁶⁵, M. Ikeno ⁶⁵, D. Iliadis ¹⁵⁴, N. Ilic ¹⁵⁸, T. Ince ⁹⁹, P. Ioannou ⁹, M. Iodice ^{134a}, K. Iordanidou ⁹, V. Ippolito ^{132a,132b}, A. Irles Quiles ¹⁶⁷, C. Isaksson ¹⁶⁶, M. Ishino ⁶⁷, M. Ishitsuka ¹⁵⁷, R. Ishmukhametov ¹⁰⁹, C. Issever ¹¹⁸, S. Istin ^{19a}, A.V. Ivashin ¹²⁸, W. Iwanski ³⁹, H. Iwasaki ⁶⁵, J.M. Izen ⁴¹, V. Izzo ^{102a}, B. Jackson ¹²⁰, J.N. Jackson ⁷³, P. Jackson ¹, M.R. Jaekel ³⁰, V. Jain ², K. Jakobs ⁴⁸, S. Jakobsen ³⁶, T. Jakoubek ¹²⁵, J. Jakubek ¹²⁶, D.O. Jamin ¹⁵¹, D.K. Jana ¹¹¹, E. Jansen ⁷⁷, H. Jansen ³⁰, J. Janssen ²¹, V. Izzo ^{102a}, B. Jackson ¹²⁰, J.N. Jackson ⁷³, P. Jackson ¹, M.R. Jaekel ³⁰, V. Jain ², K. Jakobs ⁴⁸, S. Jakobsen ³⁰, T. Jakoubek ¹²⁵, J. Jakubek ¹²⁶, D.O. Jamin ¹⁵¹, D.K. Jana ¹¹¹, E. Jansen ⁷⁷, H. Jansen ³⁰, J. Janssen ²¹, A. Jantsch ⁹⁹, M. Janus ⁴⁸, R.C. Jared ¹⁷³, G. Jarlskog ⁷⁹, L. Jeanty ⁵⁷, G.-Y. Jeng ¹⁵⁰, I. Jen-La Plante ³¹, D. Jennens ⁸⁶, P. Jenni ³⁰, P. Jež ³⁶, S. Jézéquel ⁵, M.K. Jha ^{20a}, H. Ji ¹⁷³, W. Ji ⁸¹, J. Jia ¹⁴⁸, Y. Jiang ^{33b}, M. Jimenez Belenguer ⁴², S. Jin ^{33a}, O. Jinnouchi ¹⁵⁷, M.D. Joergensen ³⁶, D. Joffe ⁴⁰, M. Johansen ^{146a, 146b}, K.E. Johansson ^{146a}, P. Johansson ¹³⁹, S. Johnert ⁴², K.A. Johns ⁷, K. Jon-And ^{146a, 146b}, G. Jones ¹⁷⁰, R.W.L. Jones ⁷¹, T.J. Jones ⁷³, C. Joram ³⁰, P.M. Jorge ^{124a}, K.D. Joshi ⁸², J. Jovicevic ¹⁴⁷, T. Jovin ^{13b}, X. Ju ¹⁷³, C.A. Jung ⁴³, R.M. Jungst ³⁰, V. Juranek ¹²⁵, P. Jussel ⁶¹, A. Juste Rozas ¹², S. Kabana ¹⁷, M. Kaci ¹⁶⁷, A. Kaczmarska ³⁹, P. Kadlecik ³⁶, M. Kado ¹¹⁵, H. Kagan ¹⁰⁹, M. Kagan ⁵⁷, E. Kajomovitz ¹⁵², S. Kalinin ¹⁷⁵, L.V. Kalinovskaya ⁶⁴, S. Kama ⁴⁰, N. Kanaya ¹⁵⁵, M. Kaneda ³⁰, S. Kaneti ²⁸, T. Kanno ¹⁵⁷, V.A. Kantserov ⁹⁶, J. Kanzaki ⁶⁵, B. Kanlan ¹⁰⁸, A. Kanliv ³¹, D. Kar ⁵³, M. Karagounis ²¹, K. Karakostas ¹⁰, M. Karnevskiy ^{58b}, J. Jones ¹⁰⁰, M. Kanaya ¹⁰⁰, Karnevskiy ^{58b}, J. Jones ¹⁰⁰, M. Karnevskiy ¹⁰⁰, J. Karnevskiy ¹⁰⁰ A. Kaczmarska³⁹, P. Kadlecik⁴⁰, M. Kado¹¹⁵, H. Kaga¹⁰⁵, M. Kagan¹⁷⁵, E. Kajomovitz¹²⁵, S. Kalinin¹⁷⁵, L.V. Kalinovskaya⁶⁴, S. Kama⁴⁰, N. Kanaya¹⁵⁵, M. Kaneda³⁰, S. Kaneti²⁸, T. Kanno¹⁵⁷, V.A. Kantserov⁹⁶, J. Kanzaki⁶⁵, B. Kaplan¹⁰⁸, A. Kaply³¹, D. Kar⁵³, M. Karaegounis²¹, K. Karakostas¹⁰, M. Karnevskiy^{58b}, V. Kartvelishvili⁷¹, A.N. Karyukhin¹²⁸, L. Kashif¹⁷³, G. Kasieczka^{58b}, R.D. Kass¹⁰⁹, A. Kastanas¹⁴, Y. Kataoka¹⁵⁵, J. Katzy⁴², V. Kaushik⁷, K. Kawagoe⁶⁹, T. Kawamoto¹⁵⁵, G. Kawamura⁸¹, M.S. Kayl¹⁰⁵, S. Kazama¹⁵⁵, V.F. Kazanin¹⁰⁷, M.Y. Kazarinov⁶⁴, R. Keeler¹⁶⁹, P.T. Keener¹²⁰, R. Kehoe⁴⁰, M. Keil⁵⁴, G.D. Kekelidze⁶⁴, J.S. Keller¹³⁸, M. Kenyon⁵³, O. Kepka¹²⁵, N. Kerschen³⁰, B.P. Kerševan⁷⁴, S. Kersten¹⁷⁵, K. Kessoku¹⁵⁵, J. Keung¹⁵⁸, F. Khalil-zada¹¹, H. Khandanyan^{146a,146b}, A. Khanov¹¹², D. Kharchenko⁶⁴, A. Khodinov⁹⁶, A. Khomich^{58a}, T.J. Khoo²⁸, G. Khoriauli²¹, A. Khoroshilov¹⁷⁵, V. Khovanskiy⁹⁵
E. Khramov⁶⁴, J. Khubua^{51b}, H. Kim^{146a,146b}, S.H. Kim¹⁶⁰, N. Kimura¹⁷¹, O. Kind¹⁶, B.T. King⁷³, M. King⁶⁶, R.S.B. King¹¹⁸, J. Kirk¹²⁹, A.E. Kiryunin⁹⁹, T. Kishimoto⁶⁶, D. Kisielewska³⁸, T. Kitamura⁶⁶, T. Kittelmann¹²³, K. Kiuchi¹⁶⁰, E. Kladiva^{144b}, M. Klein⁷³, U. Klein⁷³, K. Kleinknecht⁸¹, M. Klemetti⁸⁵, A. Klier¹⁷², P. Klimek^{146a,146b}, A. Klimentov²⁵, R. Klingenberg⁴³, J.A. Klinge⁷³, P. Kluit¹⁰⁵, S. Kluth⁹⁹, E. Kneringer⁶¹, E.B.F.G. Knoops⁸³, A. Knue⁵⁴, B.R. Ko⁴⁵, T. Kobayashi¹⁵⁵, M. Kobel⁴⁴, M. Kocian¹⁴³, P. Kody¹²⁷, S. Koenig⁸¹, F. Koetsveld¹⁰⁴, P. Koevesarki²¹, T. Koffas²⁹, E. Koffeman¹⁰⁵, L.A. Kogan¹¹⁸, S. Kohlmann¹⁷⁵, F. Kohn⁵⁴, Z. Kohout¹²⁶, T. Kohriki⁶⁵, T. Koi¹⁴³, G.M. Kolachev^{107,*}, H. Kolanoski¹⁶, V. Kolesnikov⁶⁴, I. Kolestou⁸⁹, J. Koll⁸⁸, A.A. Komar⁹⁴, Y. Komori¹⁵⁵, T. Kondo⁶⁵, K. Köneke³⁰, A.C. Köngi¹⁰⁴, T. Kono⁴⁹, J. Korotov¹²⁸, O. Kortner⁹⁹, S. Kortn J. Kretzschmar⁷³, K. Kreutzfeldt⁵², N. Krieger⁵⁴, P. Krieger¹⁵⁸, K. Kroeninger⁵⁴, H. Kroha⁹⁹, J. Kroll¹²⁰, J. Kroseberg²¹, J. Krstic^{13a}, U. Kruchonak⁶⁴, H. Krüger²¹, T. Kruker¹⁷, N. Krumnack⁶³, Z.V. Krumshteyn⁶⁴, M.K. Kruse⁴⁵, T. Kubota⁸⁶, S. Kuday^{4a}, S. Kuehn⁴⁸, A. Kugel^{58c}, T. Kuhl⁴², D. Kuhn⁶¹, V. Kukhtin⁶⁴, Y. Kulchitsky⁹⁰, S. Kuleshov^{32b}, C. Kummer⁹⁸, M. Kuna⁷⁸, J. Kunkle¹²⁰, A. Kupco¹²⁵, H. Kurashige⁶⁶, M. Kurata¹⁶⁰, Y.A. Kurochkin⁹⁰, V. Kus¹²⁵, E.S. Kuwertz¹⁴⁷, M. Kuze¹⁵⁷, J. Kvita¹⁴², R. Kwee¹⁶, A. La Rosa⁴⁹, L. La Rotonda^{37a,37b}, L. Labarga⁸⁰, S. Lablak^{135a}, C. Lacasta¹⁶⁷,

F. Lacava ^{132a,132b}, J. Lacey ²⁹, H. Lacker ¹⁶, D. Lacour ⁷⁸, V.R. Lacuesta ¹⁶⁷, E. Ladygin ⁶⁴, R. Lafaye ⁵, B. Laforge ⁷⁸, T. Lagouri ¹⁷⁶, S. Lai ⁴⁸, E. Laisne ⁵⁵, L. Lambourne ⁷⁷, C.L. Lampen ⁷, W. Lampl ⁷, E. Lançon ¹³⁶, U. Landgraf ⁴⁸, M.P.J. Landon ⁷⁵, V.S. Lang ^{58a}, C. Lange ⁴², A.J. Lankford ¹⁶³, F. Lanni ²⁵, K. Lantzsch ³⁰, A. Lanza ^{119a}, S. Laplace ⁷⁸, C. Lapoire ²¹, J.F. Laporte ¹³⁶, T. Lari ^{89a}, A. Larner ¹¹⁸, M. Lassnig ³⁰, P. Laurelli ⁴⁷, V. Lavorini ^{37a, 37b}, W. Lavrijsen ¹⁵, P. Laycock ⁷³, O. Le Dortz ⁷⁸, Lindon 196, A. Lanzella, N. Laplace 78, C. Lapoire 41, J. E. Laporte 136, J. Larl 894, A. Larner 1175, M. Lassnig 30, P. Laurelli 47, V. Lavorini 374,37b, W. Lavrijsen 15, P. Laycock 73, O. Le Dortz 78, E. Le Guirrice 83, E. Le Menedeu 12, T. LeCompte 6, F. Ledroit-Guillon 55, H. Lee 105, J.S.H. Lee 116, S.C. Lee 151, L. Lee 176, M. Lefebver 169, M. Legendre 136, F. Legger 98, C. Leggett 15, M. Lehmacher 21, G. Lehmann Miotto 30, A.G. Leister 176, M.A.L. Leite 24d, R. Leitner 127, D. Lellouch 172, B. Leminer 54, V. Lendermann 584, K.J.C. Leney 145b, T. Leuz 105, G. Lenzen 175, B. Lenzi 30, K. Leonhardt 44, S. Leontsinis 10, F. Leydoue 3, D. Levin 87, L. Levi 187, Z. Liang 118, W. H. Laio 34, B. Lieyton 16, B. Li 33b, B. Li 83, H. Li 148, H.L. Li 31, S. Li 33b, V. X. Li 87, Z. Liang 118, W. H. Liao 34, B. Liberti 135a, P. Lichard 30, M. Lichtnecker 96, K. Lie 165, W. Liebgi 47, C. Limosani 86, M. Liwas 165, D. Lissauer 25, A. Lister 49, A.M. Litke 137, C. Liu 29, D. Liu 151, J. E. Liu 87, L. Liu 87, M. Liu 33b, Y. Liu 33b, X. Livermore 118, A. Lueres 55, J. Llorente Merino 80, S.L. Lloyd 75, F. Lo Sterzo 1324, 1324, E. Lobolzinska 42, P. Loch 7, W.S. Lockman 137, T. Loddenkoetter 21, F.K. Loebinger 82, A.E. Loovschall-Jensen 36, A. Loginov 176, C.W. Loh 168, T. Lohse 16, K. Lonwasser 48, M. Lokajicek 125, V.P. Lombardo 5, R.E. Long 71, L. Lopes 124a, D. Lopez 74, L. Lorenz 98, N. Lorenzo Martinez 115, M. Lowa 143, g. F. Lu 33a, H.J. Lubatti 138, C. Luci 1324, 1324, A. Lounis 115, K.F. Loureiro 162, J. Lowe 6, P.A. Love 71, A.J. Lowe 143, g. F. Lu 33a, H.J. Lubatti 138, C. Liu 137, T. Loddenkoetter 21, F.K. Loebinger 79, J. Lundberg 146a, 146b, D. Lundberg 146a, 146b, M. Lukas 61, L. Luminari 132a, E. Lund 117, B. Lundberg 79, J. Lundberg 146a, 146b, D. Lundberg 146a, 146b, M. Lukas 61, L. Luminari 132a, E. Lund 117, B. Lundberg 79, J. Lundberg 146a, 146b, D. Lundberg 146a, 146b, M. Lukas 61, L. Luminari 132a, E. Lund 117, B. Lundberg 79, J. Lundberg 146a, 146b, M. Lukas 61, Luminari 132a, E. Lund 11 R. Mashinistov ⁹⁴, J. Masik ⁸², A.L. Maslennikov ¹⁰⁷, I. Massa ^{20a,20b}, G. Massaro ¹⁰⁵, N. Massol ⁵, P. Mastrandrea ¹⁴⁸, A. Mastroberardino ^{37a,37b}, T. Masubuchi ¹⁵⁵, H. Matsunaga ¹⁵⁵, T. Matsushita ⁶⁶, P. Mättig ¹⁷⁵, S. Mättig ⁴², C. Mattravers ^{118,d}, J. Maurer ⁸³, S.J. Maxfield ⁷³, D.A. Maximov ^{107,h}, A. Mayne ¹³⁹, R. Mazini ¹⁵¹, M. Mazur ²¹, L. Mazzaferro ^{133a,133b}, M. Mazzanti ^{89a}, J. Mc Donald ⁸⁵, S.P. Mc Kee ⁸⁷, A. McCarn ¹⁶⁵, R.L. McCarthy ¹⁴⁸, T.G. McCarthy ²⁹, N.A. McCubbin ¹²⁹, K.W. McFarlane ^{56,*}, J.A. Mcfayden ¹³⁹, G. Mchedlidze ^{51b}, T. Mclaughlan ¹⁸, S.J. McMahon ¹²⁹, R.A. McPherson ^{169,l}, A. Meade ⁸⁴, J. Mechnich ¹⁰⁵, M. Mechtel ¹⁷⁵, M. Medinnis ⁴², S. Meehan ³¹, R. Meera-Lebbai ¹¹¹, T. Meguro ¹¹⁶, S. Mehlhase ³⁶, A. Mehta ⁷³, K. Meier ^{58a}, B. Meirose ⁷⁹, C. Melachrinos ³¹, B.R. Mellado Garcia ¹⁷³, F. Meloni ^{89a,89b}, L. Mendoza Navas ¹⁶², Z. Meng ^{151,y}, A. Mengarelli ^{20a,20b}, S. Menke ⁹⁹, E. Meoni ¹⁶¹, K.M. Mercurio ⁵⁷, P. Mermod ⁴⁹, L. Merola ^{102a,102b}, C. Meroni ^{89a}, F.S. Merritt ³¹, H. Merritt ¹⁰⁹, A. Messina ^{30,z}, J. Metcalfe ²⁵, A.S. Mete ¹⁶³, C. Meyer ⁸¹, C. Meyer ³¹, J-P. Meyer ¹³⁶, J. Meyer ¹⁷⁴, J. Meyer ⁵⁴, S. Michal ³⁰, L. Micu ^{26a}, R.P. Middleton ¹²⁹, S. Migas ⁷³, L. Mijović ¹³⁶, G. Mikenberg ¹⁷², M. Mikestikova ¹²⁵, M. Mikuž ⁷⁴, D.W. Miller ³¹, R.J. Miller ⁸⁸, W.J. Mills ¹⁶⁸, C. Mills ⁵⁷, A. Milov ¹⁷², D.A. Milstead ^{146a,146b}, D. Milstein ¹⁷², A.A. Minaenko ¹²⁸, M. Miñano Moya ¹⁶⁷, I.A. Minashvili ⁶⁴, A.I. Mincer ¹⁰⁸, B. Mindur ³⁸, M. Mineev ⁶⁴, Y. Ming ¹⁷³, L.M. Mir ¹², G. Mirabelli ^{132a}, J. Mitrevski ¹³⁷, V.A. Mitsou ¹⁶⁷, S. Mitsui ⁶⁵, P.S. Miyagawa ¹³⁹, J.U. Mjörnmark ⁷⁹, T. Moa ^{146a,146b},

V. Moeller²⁸, S. Mohapatra¹⁴⁸, W. Mohr⁴⁸, R. Moles-Valls¹⁶⁷, A. Molfetas³⁰, K. Mönig⁴², J. Monk⁷⁷, E. Monnier⁸³, J. Montejo Berlingen¹², F. Monticelli⁷⁰, S. Monzani^{20a,20b}, R.W. Moore³, G.F. Moorhead⁸⁶, C. Mora Herrera⁴⁹, A. Moraes⁵³, N. Morange¹³⁶, J. Morel⁵⁴, G. Morello^{37a,37b}, D. Moreno⁸¹, M. Moreno Llácer¹⁶⁷, P. Morettini^{50a}, M. Morgenstern⁴⁴, M. Morii⁵⁷, A.K. Morley³⁰, G. Mornacchi³⁰, J.D. Morris⁷⁵, L. Morvaj¹⁰¹, N. Möser²¹, H.G. Moser⁹⁹, M. Mosidze^{51b}, J. Moss¹⁰⁹, R. Mount¹⁴³, E. Mountricha^{10,aa}, S.V. Mouraviev^{94,*}, E.J.W. Moyse⁸⁴, F. Mueller^{58a}, J. Mueller¹²³, K. Mueller²¹, E. Mountricha ^{10,aa}, S.V. Mouraviev ^{94,*}, E.J.W. Moyse ⁸⁴, F. Mueller ^{58a}, J. Mueller ¹²³, K. Mueller ²¹, T. Mueller ⁸¹, D. Muenstermann ³⁰, T.A. Müller ⁹⁸, Y. Munwes ¹⁵³, W.J. Murray ¹²⁹, I. Mussche ¹⁰⁵, E. Musto ¹⁵², A.G. Myagkov ¹²⁸, M. Myska ¹²⁵, O. Nackenhorst ⁵⁴, J. Nadal ¹², K. Nagai ¹⁶⁰, R. Nagai ¹⁵⁷, K. Nagano ⁶⁵, A. Nagarkar ¹⁰⁹, Y. Nagasaka ⁵⁹, M. Nagel ⁹⁹, A.M. Nairz ³⁰, Y. Nakahama ³⁰, K. Nakamura ¹⁵⁵, T. Nakamura ¹⁵⁵, I. Nakano ¹¹⁰, G. Nanava ²¹, A. Napier ¹⁶¹, R. Narayan ^{58b}, M. Nash ^{77,d}, T. Nattermann ²¹, T. Naumann ⁴², G. Navarro ¹⁶², H.A. Neal ⁸⁷, P.Yu. Nechaeva ⁹⁴, T.J. Neep ⁸², A. Negri ^{119a,119b}, G. Negri ³⁰, M. Negrini ^{20a}, S. Nektarijevic ⁴⁹, A. Nelson ¹⁶³, T.K. Nelson ¹⁴³, S. Nemecek ¹²⁵, P. Nemethy ¹⁰⁸, A.A. Nepomuceno ^{24a}, M. Nessi ^{30,ab}, M.S. Neubauer ¹⁶⁵, M. Neumann ¹⁷⁵, A. Neusiedl ⁸¹, R.M. Neves ¹⁰⁸, P. Nevski ²⁵, F.M. Newcomer ¹²⁰, P.R. Newman ¹⁸, V. Nguyen Thi Hong ¹³⁶, R.B. Nickerson ¹¹⁸, R. Nicolaidou ¹³⁶, B. Nicquevert ³⁰, F. Niedercorn ¹¹⁵, J. Nielsen ¹³⁷, N. Nikiforou ³⁵, A. Nikiforov ¹⁶, V. Nikolaenko ¹²⁸, I. Nikolic-Audit ⁷⁸, K. Nikolics ⁴⁹, K. Nikolopoulos ¹⁸, H. Nilsen ⁴⁸, P. Nilsson ⁸, Y. Ninomiya ¹⁵⁵, A. Nisati ^{132a}, R. Nisius ⁹⁹, T. Nobe ¹⁵⁷, L. Nodulman ⁶, M. Nomachi ¹¹⁶, I. Nomidis ¹⁵⁴, S. Norberg ¹¹¹, M. Nordberg ³⁰, J. Novakova ¹²⁷, M. Nozaki ⁶⁵, L. Nozka ¹¹³, I.M. Nugent ^{159a}, A.-E. Nuncio-Quiroz ²¹, G. Nunes Hanninger ⁸⁶, T. Nunnemann ⁹⁸, E. Nurse ⁷⁷, B.J. O'Brien ⁴⁶, D.C. O'Neil ¹⁴², V. O'Shea ⁵³, L.B. Oakes ⁹⁸, F.G. Oakham ^{29,f}, H. Oberlack ⁹⁹, J. Ocariz ⁷⁸, A. Ochi ⁶⁶, S. Oda ⁶⁹, S. Odaka ⁶⁵, J. Odier ⁸³, H. Ogren ⁶⁰, A. Oh⁸², S.H. Oh ⁴⁵, C.C. Ohm ³⁰, T. Ohshima ¹⁰¹, S. Oda⁶⁹, S. Odaka⁶⁵, J. Odier⁸³, H. Ogren⁶⁰, A. Oh⁸², S.H. Oh⁴⁵, C.C. Ohm³⁰, T. Ohshima¹⁰¹, W. Okamura¹¹⁶, H. Okawa²⁵, Y. Okumura³¹, T. Okuyama¹⁵⁵, A. Olariu^{26a}, A.G. Olchevski⁶⁴, S.A. Olivares Pino^{32a}, M. Oliveira^{124a,i}, D. Oliveira Damazio²⁵, E. Oliver Garcia¹⁶⁷, D. Olivito¹²⁰, A. Olszewski³⁹, J. Olszowska³⁹, A. Onofre^{124a,ac}, P.U.E. Onyisi^{31,ad}, C.J. Oram^{159a}, M.J. Oreglia³¹, Y. Oren¹⁵³, D. Orestano^{134a,134b}, N. Orlando^{72a,72b}, I. Orlov¹⁰⁷, C. Oropeza Barrera⁵³, R.S. Orr¹⁵⁸, B. Osculati ^{50a,50b}, R. Ospanov ¹²⁰, C. Osuna ¹², G. Otero y Garzon ²⁷, J.P. Ottersbach ¹⁰⁵, M. Ouchrif ^{135d}, E.A. Ouellette ¹⁶⁹, F. Ould-Saada ¹¹⁷, A. Ouraou ¹³⁶, Q. Ouyang ^{33a}, A. Ovcharova ¹⁵, M. Owen ⁸², S. Owen ¹³⁹, V.E. Ozcan ^{19a}, N. Ozturk⁸, A. Pacheco Pages ¹², C. Padilla Aranda ¹², S. Pagan Griso ¹⁵, E. Paganis¹³⁹, C. Pahl⁹⁹, F. Paige²⁵, P. Pais⁸⁴, K. Pajchel¹¹⁷, G. Palacino^{159b}, C.P. Paleari⁷, S. Palestini³⁰, D. Pallin³⁴, A. Palma^{124a}, J.D. Palmer¹⁸, Y.B. Pan¹⁷³, E. Panagiotopoulou¹⁰, J.G. Panduro Vazquez⁷⁶, P. Pani¹⁰⁵, N. Panikashvili⁸⁷, S. Panitkin²⁵, D. Pantea^{26a}, A. Papadelis^{146a}, Th.D. Papadopoulou¹⁰, 25 A. Paramonov⁶, D. Paredes Hernandez³⁴, W. Park^{25,ae}, M.A. Parker²⁸, F. Parodi ^{50a,50b}, J.A. Parsons³⁵, U. Parzefall⁴⁸, S. Pashapour⁵⁴, E. Pasqualucci ^{132a}, S. Passaggio ^{50a}, A. Passeri ^{134a}, F. Pastore ^{134a,134b,*}, Fr. Pastore ⁷⁶, G. Pásztor ^{49,af}, S. Pataraia ¹⁷⁵, N.D. Patel ¹⁵⁰, J.R. Pater ⁸², S. Patricelli ^{102a,102b}, T. Pauly³⁰, M. Pecsy ^{144a}, S. Pedraza Lopez ¹⁶⁷, M.I. Pedraza Morales ¹⁷³, S.V. Peleganchuk ¹⁰⁷, D. Pelikan ¹⁶⁶, M. Pecsy ¹⁴⁷, S. Pedraza Lopez ¹⁴⁷, M.I. Pedraza Morales ¹⁴⁷, S.V. Pelegalichuk ¹⁴⁷, D. Pelikali ¹⁴⁷, H. Peng ^{33b}, B. Penning ³¹, A. Penson ³⁵, J. Penwell ⁶⁰, M. Perantoni ^{24a}, K. Perez ^{35, ag}, T. Perez Cavalcanti ⁴², E. Perez Codina ^{159a}, M.T. Pérez García-Estañ ¹⁶⁷, V. Perez Reale ³⁵, L. Perini ^{89a,89b}, H. Pernegger ³⁰, R. Perrino ^{72a}, P. Perrodo ⁵, V.D. Peshekhonov ⁶⁴, K. Peters ³⁰, B.A. Petersen ³⁰, J. Petersen ³⁰, T.C. Petersen ³⁶, E. Petit ⁵, A. Petridis ¹⁵⁴, C. Petridou ¹⁵⁴, E. Petrolo ^{132a}, F. Petrucci ^{134a,134b}, D. Petschull ⁴², M. Petteni ¹⁴², R. Pezoa ^{32b}, A. Phan ⁸⁶, P.W. Phillips ¹²⁹, G. Piacquadio ³⁰, A. Picazio ⁴⁹, D. Petschull⁴², M. Petteni¹⁴², R. Pezoa^{32b}, A. Phan³⁶, P.W. Phillips¹²⁹, G. Piacquadio³⁰, A. Picazio⁴⁹, E. Piccaro⁷⁵, M. Piccinini^{20a,20b}, S.M. Piec⁴², R. Piegaia²⁷, D.T. Pignotti¹⁰⁹, J.E. Pilcher³¹, A.D. Pilkington⁸², J. Pina^{124a,c}, M. Pinamonti^{164a,164c,ah}, A. Pinder¹¹⁸, J.L. Pinfold³, A. Pingel³⁶, B. Pinto^{124a}, C. Pizio^{89a,89b}, M.-A. Pleier²⁵, E. Plotnikova⁶⁴, A. Poblaguev²⁵, S. Poddar^{58a}, F. Podlyski³⁴, L. Poggioli¹¹⁵, D. Pohl²¹, M. Pohl⁴⁹, G. Polesello^{119a}, A. Policicchio^{37a,37b}, A. Polini^{20a}, J. Poll⁷⁵, V. Polychronakos²⁵, D. Pomeroy²³, K. Pommès³⁰, L. Pontecorvo^{132a}, B.G. Pope⁸⁸, G.A. Popeneciu^{26a}, D.S. Popovic^{13a}, A. Poppleton³⁰, X. Portell Bueso³⁰, G.E. Pospelov⁹⁹, S. Pospisil¹²⁶, I.N. Potrap⁹⁹, C.J. Potter ¹⁴⁹, C.T. Potter ¹¹⁴, G. Poulard ³⁰, J. Poveda ⁶⁰, V. Pozdnyakov ⁶⁴, R. Prabhu ⁷⁷, P. Pralavorio ⁸³, A. Pranko ¹⁵, S. Prasad ³⁰, R. Pravahan ²⁵, S. Prell ⁶³, K. Pretzl ¹⁷, D. Price ⁶⁰, J. Price ⁷³, L.E. Price ⁶, D. Prieur ¹²³, M. Primavera ^{72a}, K. Prokofiev ¹⁰⁸, F. Prokoshin ^{32b}, S. Protopopescu ²⁵, J. Proudfoot ⁶, X. Prudent ⁴⁴, M. Przybycien ³⁸, H. Przysiezniak ⁵, S. Psoroulas ²¹, E. Ptacek ¹¹⁴, E. Pueschel ⁸⁴, D. Puldon ¹⁴⁸, J. Purdham ⁸⁷, M. Purohit ^{25,ae}, P. Puzo ¹¹⁵, Y. Pylypchenko ⁶², J. Qian ⁸⁷, A. Quadt ⁵⁴, ^{80a} ^{80b} D.R. Quarrie¹⁵, W.B. Quayle¹⁷³, M. Raas¹⁰⁴, V. Radeka²⁵, V. Radescu⁴², P. Radloff¹¹⁴, F. Ragusa^{89a,89b},

G. Rahal ¹⁷⁸, A.M. Rahimi ¹⁰⁹, D. Rahm ²⁵, S. Rajagopalan ²⁵, M. Rammensee ⁴⁸, M. Rammes ¹⁴¹, A.S. Randle-Conde ⁴⁰, K. Randrianarivony ²⁹, K. Rao ¹⁶³, F. Rauscher ⁹⁸, T.C. Rave ⁴⁸, M. Raymond ³⁰, A.L. Read ¹¹⁷, D.M. Rebuzzi ^{119a,119b}, A. Redelbach ¹⁷⁴, G. Redlinger ²⁵, R. Reece ¹²⁰, K. Reeves ⁴¹, A. Reinsch ¹¹⁴, I. Reisinger ⁴³, C. Rembser ³⁰, Z.L. Ren ¹⁵¹, A. Renaud ¹¹⁵, M. Rescigno ^{132a}, S. Resconi ^{89a}, B. Resende ¹³⁶, P. Reznicek ⁹⁸, R. Rezvani ¹⁵⁸, R. Richter ⁹⁹, E. Richter-Was ⁵, M. Ridel ⁷⁸, M. Rijpstra ¹⁰⁵, M. Rijssenbeek ¹⁴⁸, A. Rimoldi ^{119a,119b}, L. Rinaldi ^{20a}, R.R. Rios ⁴⁰, I. Riu ¹², G. Rivoltella ^{89a,89b}, F. Rizatdinova ¹¹², E. Rizvi ⁷⁵, S.H. Robertson ^{85,1}, A. Robichaud-Veronneau ¹¹⁸, D. Robinson ²⁸, J.E.M. Robinson ⁸², A. Robson ⁵³, J.G. Rocha de Lima ¹⁰⁶, C. Roda ^{122a,122b}, D. Roda Dos Santos ³⁰, A. Roe ⁵⁴, S. Roe ³⁰, O. Røhne ¹¹⁷, S. Rolli ¹⁶¹, A. Romaniouk ⁹⁶, M. Romano ^{20a,20b}, G. Romeo ²⁷, E. Romero Adam ¹⁶⁷, N. Rompotis ¹³⁸, L. Roos ⁷⁸, E. Ros ¹⁶⁷, S. Rosati ^{132a}, K. Rosbach ⁴⁹, A. Rose ¹⁴⁹, M. Rose ⁷⁶, G.A. Rosenbaum ¹⁵⁸, P.L. Rosendahl ¹⁴, O. Rosenthal ¹⁴¹, L. Rosselet ⁴⁹, V. Rossetti ¹², E. Rossi ^{132a,132b}, L.P. Rossi ^{50a}, M. Rotaru ^{26a}, I. Roth ¹⁷², J. Rothberg ¹³⁸, D. Rousseau ¹¹⁵, C.R. Royon ¹³⁶, A. Rozanov ⁸³, Y. Rozen ¹⁵², X. Ruan ^{33a,ai}, F. Rubbo ¹², I. Rubinskiy ⁴², N. Ruckstuhl ¹⁰⁵, V.I. Rud ⁹⁷, C. Rudolph ⁴⁴, G. Rudolph ⁶¹, F. Rühr ⁷, A. Ruiz-Martinez ⁶³, L. Rumyantsev ⁶⁴, Z. Rurikova ⁴⁸, N.A. Rusakovich ⁶⁴, K. KOZELI ****, K. KUBDO ***, L. KUDDINSKIJ ***, N. KUCKSULII ****, V.L. KUD ****, C. KUDOIDN***, K. KUDOIDN***, K. KUDOIDN***, K. KUDOIDN****, K. KUDOIDN***, K. KUDOIDN****, K. KUDOIDN****, K. KUDOIDN***, K. KUDOIDN***, K. KUDOIDN** G. Rudolph⁶¹, F. Rühr⁷, A. Ruiz-Martinez⁶³, L. Rumyantsev⁶⁴, Z. Rurikova⁴⁸, N.A. Rusakovich⁶⁴, A. Ruschke⁹⁸, J.P. Rutherfoord⁷, N. Ruthmann⁴⁸, P. Ruzicka¹²⁵, Y.F. Ryabov¹²¹, M. Rybar¹²⁷, P. Soueid ⁹³, A. Soukharev ¹⁰⁷, S. Spagnolo ^{72a,72b}, F. Spanò ⁷⁶, R. Spighi ^{20a}, G. Spigo ³⁰, R. Spiwoks ³⁰,

M. Spousta ^{127,*ak*}, T. Spreitzer ¹⁵⁸, B. Spurlock ⁸, R.D. St. Denis ⁵³, J. Stahlman ¹²⁰, R. Stamen ^{58a}, E. Stanecka ³⁹, R.W. Stanek ⁶, C. Stanescu ^{134a}, M. Stanescu-Bellu ⁴², M.M. Stanitzki ⁴², S. Stapnes ¹¹⁷, E.A. Starchenko ¹²⁸, J. Stark ⁵⁵, P. Staroba ¹²⁵, P. Starovoitov ⁴², R. Staszewski ³⁹, A. Staude ⁹⁸, P. Stavina ^{144a,*}, G. Steele ⁵³, P. Steinbach ⁴⁴, P. Steinberg ²⁵, I. Stekl ¹²⁶, B. Stelzer ¹⁴², H.J. Stelzer ⁸⁸, O. Stelzer-Chilton ^{159a}, H. Stenzel ⁵², S. Stern ⁹⁹, G.A. Stewart ³⁰, J.A. Stillings ²¹, M.C. Stockton ⁸⁵, K. Stoerig ⁴⁸, G. Stoicea ^{26a}, S. Stonjek ⁹⁹, P. Strachota ¹²⁷, A.R. Stradling ⁸, A. Straessner ⁴⁴, J. Strandberg ¹⁴⁷, S. Strandberg ^{146a,146b}, A. Strandlie ¹¹⁷, M. Strang ¹⁰⁹, E. Strauss ¹⁴³, M. Strauss ¹¹¹, P. Strizenec ^{144b}, R. Ströhmer ¹⁷⁴, D.M. Strom ¹¹⁴, J.A. Strong ^{76,*}, R. Stroynowski ⁴⁰, B. Stugu ¹⁴, I. Stumer ^{25,*}, J. Stupak ¹⁴⁸, P. Sturm ¹⁷⁵, N.A. Styles ⁴², D. Su ¹⁴³, H.S. Subramania ³, R. Subramaniam ²⁵, A. Succurro ¹², Y. Sugaya ¹¹⁶, C. Suhr ¹⁰⁶, M. Suk ¹²⁷, V.V. Sulin ⁹⁴, S. Sultansoy ^{4d}, T. Sumida ⁶⁷, X. Sun ⁵⁵, J.E. Sundermann ⁴⁸, K. Suruliz ¹³⁹, G. Susinno ^{37a,37b}, M.R. Sutton ¹⁴⁹, Y. Suzuki ⁶⁵, Y. Suzuki ⁶⁶, M. Svatos ¹²⁵, S. Swedish ¹⁶⁸, I. Sykora ^{144a}, T. Sykora ¹²⁷, D. Ta ¹⁰⁵, K. Tackmann ⁴², A. Taffard ¹⁶³, R. Tafirout ^{159a}, N. Taiblum ¹⁵³, Y. Takahashi ¹⁰¹, H. Takai ²⁵, R. Takashima ⁶⁸, H. Takeda ⁶⁶, T. Takeshita ¹⁴⁰, Y. Takubo ⁶⁵, M. Taiblum ¹⁵³, Y. Takahashi ¹⁰¹, H. Takai ²⁵, R. Takashima ⁶⁸, J. Tanaka ¹⁵⁵, R. Tanaka ¹¹⁵, S. Tanaka ⁶⁵, A.J. Tanasijczuk ¹⁴², K. Tani ⁶⁶, N. Tannoury ⁸³, S. Tapprogge ⁸¹, D. Tardif ¹⁵⁸, S. Tarem ¹⁵², F. Tarrade ²⁹, G.F. Tartarelli ^{89a}, P. Tas ¹²⁷, M. Tasevsky ¹²⁵, E. Tassi ^{37a,37b}, Y. Tayalati ^{135d}, C. Taylor ⁷⁷, F.E. Taylor ⁹², G.N. Taylor ⁸⁶, W. Taylor ^{159b}, M. Teinturier ¹¹⁵, F.A. Teischinger ³⁰, M. Teixeira Dias C C. Taylor ⁷⁷, F.E. Taylor ⁵², G.N. Taylor ⁵⁵, W. Taylor ¹⁵⁵⁵, M. Teinturier ¹¹⁵, F.A. Teischinger ⁵⁶,
M. Teixeira Dias Castanheira ⁷⁵, P. Teixeira-Dias ⁷⁶, K.K. Temming ⁴⁸, H. Ten Kate ³⁰, P.K. Teng ¹⁵¹,
S. Terada ⁶⁵, K. Terashi ¹⁵⁵, J. Terron ⁸⁰, M. Testa ⁴⁷, R.J. Teuscher ^{158,l}, J. Therhaag ²¹,
T. Theveneaux-Pelzer ⁷⁸, S. Thoma ⁴⁸, J.P. Thomas ¹⁸, E.N. Thompson ³⁵, P.D. Thompson ¹⁸,
P.D. Thompson ¹⁵⁸, A.S. Thompson ⁵³, L.A. Thomsen ³⁶, E. Thomson ¹²⁰, M. Thomson ²⁸, W.M. Thong ⁸⁶,
R.P. Thun ⁸⁷, F. Tian ³⁵, M.J. Tibbetts ¹⁵, T. Tic ¹²⁵, V.O. Tikhomirov ⁹⁴, Y.A. Tikhonov ^{107,h}, S. Timoshenko ⁹⁶,
E. Tiouchichine ⁸³, P. Tipton ¹⁷⁶, S. Tisserant ⁸³, T. Todorov ⁵, S. Todorova-Nova ¹⁶¹, B. Toggerson ¹⁶³, J. Tojo⁶⁹, S. Tokár^{144a}, K. Tokushuku⁶⁵, K. Tollefson⁸⁸, M. Tomoto¹⁰¹, L. Tompkins³¹, K. Toms¹⁰³, A. Tonoyan¹⁴, C. Topfel¹⁷, N.D. Topilin⁶⁴, E. Torrence¹¹⁴, H. Torres⁷⁸, E. Torró Pastor¹⁶⁷, J. Toth^{83, af}, F. Touchard⁸³, D.R. Tovey¹³⁹, T. Trefzger¹⁷⁴, L. Tremblet³⁰, A. Tricoli³⁰, I.M. Trigger^{159a}, F. Touchard ⁸³, D.R. Tovey ¹³⁹, T. Tretzger ¹⁷⁴, L. Tremblet ³⁰, A. Tricoli ³⁰, I.M. Trigger ^{139a}, S. Trincaz-Duvoid ⁷⁸, M.F. Tripiana ⁷⁰, N. Triplett ²⁵, W. Trischuk ¹⁵⁸, B. Trocmé ⁵⁵, C. Troncon ^{89a}, M. Trottier-McDonald ¹⁴², P. True ⁸⁸, M. Trzebinski ³⁹, A. Trzupek ³⁹, C. Tsarouchas ³⁰, J.C-L. Tseng ¹¹⁸, M. Tsiakiris ¹⁰⁵, P.V. Tsiareshka ⁹⁰, D. Tsionou ^{5,al}, G. Tsipolitis ¹⁰, S. Tsiskaridze ¹², V. Tsiskaridze ⁴⁸, E.G. Tskhadadze ^{51a}, I.I. Tsukerman ⁹⁵, V. Tsulaia ¹⁵, J.-W. Tsung ²¹, S. Tsuno ⁶⁵, D. Tsybychev ¹⁴⁸, A. Tua ¹³⁹, A. Tudorache ^{26a}, V. Tudorache ^{26a}, J.M. Tuggle ³¹, M. Turala ³⁹, D. Turecek ¹²⁶, I. Turk Cakir ^{4e}, E. Turlay ¹⁰⁵, R. Turra ^{89a,89b}, P.M. Tuts ³⁵, A. Tykhonov ⁷⁴, M. Tylmad ^{146a,146b}, M. Tyndel ¹²⁹, G. Tzanakos ⁹, K. Uchida ²¹, I. Ueda ¹⁵⁵, R. Ueno ²⁹, M. Ughetto ⁸³, M. Ugland ¹⁴, M. Uhlenbrock ²¹, G. Tzanakos⁹, K. Uchida²¹, I. Ueda¹⁵⁵, R. Ueno²⁹, M. Ughetto⁸³, M. Ugland¹⁴, M. Uhlenbrock²¹, M. Uhrmacher⁵⁴, F. Ukegawa¹⁶⁰, G. Unal³⁰, A. Undrus²⁵, G. Unel¹⁶³, F.C. Ungaro⁴⁸, Y. Unno⁶⁵, D. Urbaniec³⁵, P. Urquijo²¹, G. Usai⁸, M. Uslenghi^{119a,119b}, L. Vacavant⁸³, V. Vacek¹²⁶, B. Vachon⁸⁵, S. Vahsen¹⁵, S. Valentinetti^{20a,20b}, A. Valero¹⁶⁷, S. Valkar¹²⁷, E. Valladolid Gallego¹⁶⁷, S. Vallecorsa¹⁵², J.A. Valls Ferrer¹⁶⁷, R. Van Berg¹²⁰, P.C. Van Der Deijl¹⁰⁵, R. van der Geer¹⁰⁵, H. van der Graaf¹⁰⁵, R. Van Der Leeuw¹⁰⁵, E. van der Poel¹⁰⁵, D. van der Ster³⁰, N. van Eldik³⁰, P. van Gemmeren⁶, J. Van Nieuwkoop¹⁴², I. van Vulpen¹⁰⁵, M. Vanadia⁹⁹, W. Vandelli³⁰, A. Vaniachine⁶, P. Vankov⁴², F. Vannucci⁷⁸, R. Vari^{132a}, E.W. Varnes⁷, T. Varol⁸⁴, D. Varouchas¹⁵, A. Vartapetian⁸, K.E. Varvell¹⁵⁰, V.I. Vassilakopoulos⁵⁶, F. Vazeille³⁴, T. Vazquez Schroeder⁵⁴, G. Vegni^{89a,89b}, J.J. Veillet¹¹⁵, F. Veloso^{124a}, R. Veness³⁰, S. Veneziano^{132a}, A. Ventura^{72a,72b}, D. Ventura⁸⁴, M. Venturi⁴⁸, N. Venturi¹⁵⁸, V. Vercesi^{119a}, M. Verducci¹³⁸, W. Verkerke¹⁰⁵, J.C. Vermeulen¹⁰⁵, A. Vest⁴⁴, M.C. Vetterli^{142,f}, I. Vichou¹⁶⁵, T. Vickev^{145b,am}, O.F. Vickev Boeriu^{145b}, G.H.A. Viehhauser¹¹⁸, S. Viel¹⁶⁸ M.C. Vetterli ^{142, f}, I. Vichou ¹⁶⁵, T. Vickey ^{145b, am}, O.E. Vickey Boeriu ^{145b}, G.H.A. Viehhauser ¹¹⁸, S. Viel ¹⁶⁸, M. Villa^{20a,20b}, M. Villaplana Perez¹⁶⁷, E. Vilucchi⁴⁷, M.G. Vincter²⁹, E. Vinek³⁰, V.B. Vinogradov⁶⁴, M. Virchaux^{136,*}, J. Virzi¹⁵, O. Vitells¹⁷², M. Viti⁴², I. Vivarelli⁴⁸, F. Vives Vaque³, S. Vlachos¹⁰, M. Virchaux ¹³⁶, %, J. Virzi ¹³, O. Vitells ¹⁷², M. Viti⁴², I. Vivarelli ⁴⁰, F. Vives Vaque³, S. Viachos ¹⁵, D. Vladoiu ⁹⁸, M. Vlasak ¹²⁶, A. Vogel ²¹, P. Vokac ¹²⁶, G. Volpi ⁴⁷, M. Volpi ⁸⁶, G. Volpini ^{89a}, H. von der Schmitt ⁹⁹, H. von Radziewski ⁴⁸, E. von Toerne ²¹, V. Vorobel ¹²⁷, V. Vorwerk ¹², M. Vos ¹⁶⁷, R. Voss ³⁰, J.H. Vossebeld ⁷³, N. Vranjes ¹³⁶, M. Vranjes Milosavljevic ¹⁰⁵, V. Vrba ¹²⁵, M. Vreeswijk ¹⁰⁵, T. Vu Anh ⁴⁸, R. Vuillermet ³⁰, I. Vukotic ³¹, W. Wagner ¹⁷⁵, P. Wagner ²¹, H. Wahlen ¹⁷⁵, S. Wahrmund ⁴⁴, J. Wakabayashi ¹⁰¹, S. Walch ⁸⁷, J. Walder ⁷¹, R. Walker ⁹⁸, W. Walkowiak ¹⁴¹, R. Wall ¹⁷⁶, P. Waller ⁷³, B. Walsh ¹⁷⁶, C. Wang ⁴⁵, H. Wang ¹⁷³, H. Wang ⁴⁰, J. Wang ¹⁵¹, J. Wang ^{33a}, R. Wang ¹⁰³, S.M. Wang ¹⁵¹,

T. Wang²¹, A. Warburton⁸⁵, C.P. Ward²⁸, D.R. Wardrope⁷⁷, M. Warsinsky⁴⁸, A. Washbrook⁴⁶, C. Wasicki⁴², I. Watanabe⁶⁶, P.M. Watkins¹⁸, A.T. Watson¹⁸, I.J. Watson¹⁵⁰, M.F. Watson¹⁸, G. Watts¹³⁸, S. Watts⁸², A.T. Waugh¹⁵⁰, B.M. Waugh⁷⁷, M.S. Weber¹⁷, J.S. Webster³¹, A.R. Weidberg¹¹⁸, P. Weigell⁹⁹, J. Weingarten⁵⁴, C. Weiser⁴⁸, P.S. Wells³⁰, T. Wenaus²⁵, D. Wendland¹⁶, Z. Weng^{151,w}, T. Wengler³⁰, S. Wenig³⁰, N. Wermes²¹, M. Werner⁴⁸, P. Werner³⁰, M. Werth¹⁶³, M. Wessels^{58a}, J. Wetter¹⁶¹, C. Weydert⁵⁵, K. Whalen²⁹, A. White⁸, M.J. White⁸⁶, S. White^{122a,122b}, S.R. Whitehead¹¹⁸, D. Whiteson¹⁶³, D. Whittington⁶⁰, D. Wicke¹⁷⁵, F.J. Wickens¹²⁹, W. Wiedenmann¹⁷³, M. Wielers¹²⁹, P. Wienemann²¹, C. Wiglesworth⁷⁵, L.A.M. Wiik-Fuchs²¹, P.A. Wijeratne⁷⁷, A. Wildauer⁹⁹, M.A. Wildt^{42,t}, I. Wilhelm¹²⁷, H.G. Wilkens³⁰, J.Z. Will⁹⁸, E. Williams³⁵, H.H. Williams¹²⁰, S. Williams²⁸, W. Willis³⁵, S. Willoca⁸⁴, I.A. Wilson¹⁸, M.G. Wilson¹⁴³, A. Wilson⁸⁷, I. Wingerter-Seez⁵ S. Williams²⁸, W. Willis³⁵, S. Willocq⁸⁴, J.A. Wilson¹⁸, M.G. Wilson¹⁴³, A. Wilson⁸⁷, I. Wingerter-Seez⁵, S. Winkelmann⁴⁸, F. Winklmeier³⁰, M. Wittgen¹⁴³, S.J. Wollstadt⁸¹, M.W. Wolter³⁹, H. Wolters^{124a,i}, W.C. Wong⁴¹, G. Wooden⁸⁷, B.K. Wosiek³⁹, J. Wotschack³⁰, M.J. Woudstra⁸², K.W. Wozniak³⁹, K. Wraight⁵³, M. Wright⁵³, B. Wrona⁷³, S.L. Wu¹⁷³, X. Wu⁴⁹, Y. Wu^{33b,an}, E. Wulf³⁵, B.M. Wynne⁴⁶, S. Xella³⁶, M. Xiao¹³⁶, S. Xie⁴⁸, C. Xu^{33b,aa}, D. Xu^{33a}, L. Xu^{33b}, B. Yabsley¹⁵⁰, S. Yacoob^{145a,ao}, M. Yamada⁶⁵, H. Yamaguchi¹⁵⁵, A. Yamamoto⁶⁵, K. Yamamoto⁶³, S. Yamamoto¹⁵⁵, T. Yamamura¹⁵⁵, T. Yamanaka¹⁵⁵, T. Yamazaki¹⁵⁵, Y. Yamazaki⁶⁶, Z. Yan²², H. Yang⁸⁷, U.K. Yang⁸², Y. Yang¹⁰⁹, Z. Yang^{146a,146b}, S. Yanush⁹¹, L. Yao^{33a}, Y. Yasu⁶⁵, E. Yatsenko⁴², J. Ye⁴⁰, S. Ye²⁵, A.L. Yen⁵⁷, M. Yilmaz^{4c}, R. Yoosoofmiya¹²³, K. Yorita¹⁷¹, R. Yoshida⁶, K. Yoshihara¹⁵⁵, C. Young¹⁴³, C.J.S. Young¹¹⁸, S. Youssef²², D. Yu²⁵, D.R. Yu¹⁵, J. Yu⁸, J. Yu¹¹², L. Yuan⁶⁶, A. Yurkewicz¹⁰⁶, B. Zabinski³⁹, R. Zaidan⁶², A.M. Zaitsev¹²⁸, L. Zanello^{132a,132b}, D. Zanzi⁹⁹, A. Zaytsev²⁵, C. Zeitnitz¹⁷⁵, M. Zeman¹²⁶, A. Zemla³⁹, O. Zenin¹²⁸, T. Ženiš^{144a}, D. Zerwas¹¹⁵, G. Zevi della Porta⁵⁷, D. Zhang⁸⁷, H. Zhang⁸⁸, J. Zhang⁶, X. Zhang^{33d}, Z. Zhang¹¹⁵, L. Zhao¹⁰⁸, Z. Zhao^{33b}, A. Zhemchugov⁶⁴, J. Zhong¹¹⁸, B. Zhou⁸⁷, N. Zhou¹⁶³, Y. Zhou¹⁵¹, C.G. Zhu^{33d}, H. Zhu⁴², J. Zhu⁸⁷, Y. Zhu^{33b}, X. Zhuang⁹⁸, V. Zhuravlov⁹⁹, A. Zibell⁹⁸, D. Zieminska⁶⁰, N.I. Zimin⁶⁴, R. Zimmermann²¹, S. Zimmermann²¹, S. Zimmermann⁴⁸, Z. Zinonos^{122a,122b}, M. Ziolkowski¹⁴¹, R. Zitoun⁵, L. Živković³⁵, V.V. Zmouchko^{128,*}, G. Zobernig¹⁷³, A. Zoccoli^{20a,20b}, M. zur Nedden¹⁶, V. Zutshi¹⁰⁶, L. Zwalinski³⁰ S. Winkelmann⁴⁸, F. Winklmeier³⁰, M. Wittgen¹⁴³, S.J. Wollstadt⁸¹, M.W. Wolter³⁹, H. Wolters^{124a,i}, A. Zoccoli^{20a,20b}, M. zur Nedden¹⁶, V. Zutshi¹⁰⁶, L. Zwalinski³⁰

¹ School of Chemistry and Physics, University of Adelaide, Adelaide, Australia

- ² Physics Department, SUNY Albany, Albany NY, United States
- ³ Department of Physics, University of Alberta, Edmonton AB, Canada
- 4 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupinar University, Kutahya; (c) Department of Physics, Gazi University, Ankara;
- (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey
- ⁵ LAPP. CNRS/IN2P3 and Université de Savoie. Annecv-le-Vieux. France
- ⁶ High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States
- ⁷ Department of Physics, University of Arizona, Tucson AZ, United States
- ⁸ Department of Physics, The University of Texas at Arlington, Arlington TX, United States
- ⁹ Physics Department, University of Athens, Athens, Greece
- ¹⁰ Physics Department, National Technical University of Athens, Zografou, Greece
- ¹¹ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ¹² Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
- ¹³ ^(a) Institute of Physics, University of Belgrade, Belgrade; ^(b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
- ¹⁴ Department for Physics and Technology, University of Bergen, Bergen, Norway
- ¹⁵ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States
- ¹⁶ Department of Physics, Humboldt University, Berlin, Germany
- ¹⁷ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
- ¹⁸ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
- ¹⁹ ^(a) Department of Physics, Bogazici University, Istanbul; ^(b) Division of Physics, Dogus University, Istanbul; ^(c) Department of Physics Engineering, Gaziantep University, Gaziantep;
- (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
- ²⁰ ^(a) INFN Sezione di Bologna; ^(b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
- ²¹ Physikalisches Institut, University of Bonn, Bonn, Germany
- ²² Department of Physics, Boston University, Boston MA, United States
- ²³ Department of Physics, Brandeis University, Waltham MA, United States
- 24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ^(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
- ²⁵ Physics Department, Brookhaven National Laboratory, Upton NY, United States
- 26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
- ²⁷ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- ²⁸ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- ²⁹ Department of Physics, Carleton University, Ottawa ON, Canada
- ³⁰ CERN, Geneva, Switzerland
- ³¹ Enrico Fermi Institute, University of Chicago, Chicago IL, United States
- 32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
- ^(a) Department of Physics, Chinese Academy of Sciences, Beijing; ^(b) Department of Modern Physics, University of Science and Technology of China, Anhui; ^(c) Department of Physics, Nanjing University, Jiangsu; ^(d) School of Physics, Shandong University, Shandong; ^(e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
- ³⁴ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
- ³⁵ Nevis Laboratory, Columbia University, Irvington NY, United States

ATLAS Collaboration / Physics Letters B 722 (2013) 305-323 ³⁶ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark ³⁷ ^(a) INFN Gruppo Collegato di Cosenza; ^(b) Dipartimento di Fisica, Università della Calabria, Rende, Italy ³⁸ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland ³⁹ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland ⁴⁰ Physics Department, Southern Methodist University, Dallas TX, United States ⁴¹ Physics Department, University of Texas at Dallas, Richardson TX, United States ⁴² DESY, Hamburg and Zeuthen, Germany ⁴³ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany ⁴⁴ Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany ⁴⁵ Department of Physics, Duke University, Durham NC, United States ⁴⁶ SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom ⁴⁷ INFN Laboratori Nazionali di Frascati, Frascati, Italy ⁴⁸ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany ⁴⁹ Section de Physique, Université de Genève, Geneva, Switzerland ⁵⁰ ^(a) INFN Sezione di Genova; ^(b) Dipartimento di Fisica, Università di Genova, Genova, Italy ⁵¹ (a) E, Andronikashvili Institute of Physics, Iv. Javakhishvili Tibilisi State University, Tbilisi, ^(b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia ⁵² II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany ⁵³ SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom ⁵⁴ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany ⁵⁵ Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France ⁵⁶ Department of Physics, Hampton University, Hampton VA, United States ⁵⁷ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States 58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany ⁵⁹ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan ⁶⁰ Department of Physics, Indiana University, Bloomington IN, United States ⁶¹ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria 62 University of Iowa, Iowa City IA, United States ⁶³ Department of Physics and Astronomy, Iowa State University, Ames IA, United States ⁶⁴ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia ⁶⁵ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan ⁶⁶ Graduate School of Science, Kobe University, Kobe, Japan ⁶⁷ Faculty of Science, Kyoto University, Kyoto, Japan ⁶⁸ Kyoto University of Education, Kyoto, Japan ⁶⁹ Department of Physics, Kyushu University, Fukuoka, Japan ⁷⁰ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina ⁷¹ Physics Department, Lancaster University, Lancaster, United Kingdom ⁷² (a) INFN Sezione di Lecce; ^(b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy 73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom ⁷⁴ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia ⁷⁵ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom ⁷⁶ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom ⁷⁷ Department of Physics and Astronomy, University College London, London, United Kingdom ⁷⁸ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France ⁷⁹ Fysiska institutionen, Lunds universitet, Lund, Sweden ⁸⁰ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain ⁸¹ Institut für Physik, Universität Mainz, Mainz, Germany 82 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom 83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France ⁸⁴ Department of Physics, University of Massachusetts, Amherst MA, United States ⁸⁵ Department of Physics, McGill University, Montreal QC, Canada 86 School of Physics, University of Melbourne, Victoria, Australia

⁸⁷ Department of Physics, The University of Michigan, Ann Arbor MI, United States

⁸⁸ Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States

⁸⁹ ^(a) INFN Sezione di Milano; ^(b) Dipartimento di Fisica, Università di Milano, Milano, Italy

⁹⁰ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

⁹¹ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Belarus

⁹² Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States

⁹³ Group of Particle Physics, University of Montreal, Montreal QC, Canada

⁹⁴ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

⁹⁵ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

⁹⁶ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

⁹⁷ D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

⁹⁹ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

¹⁰⁰ Nagasaki Institute of Applied Science, Nagasaki, Japan

¹⁰¹ Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

102 (a) INFN Sezione di Napoli; ^(b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy

¹⁰³ Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States

¹⁰⁴ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

¹⁰⁵ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

¹⁰⁶ Department of Physics, Northern Illinois University, DeKalb IL, United States

¹⁰⁷ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

¹⁰⁸ Department of Physics, New York University, New York NY, United States

¹⁰⁹ Ohio State University, Columbus OH, United States

¹¹⁰ Faculty of Science, Okayama University, Okayama, Japan

¹¹¹ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States

¹¹² Department of Physics, Oklahoma State University, Stillwater OK, United States

¹¹³ Palacký University, RCPTM, Olomouc, Czech Republic

¹¹⁴ Center for High Energy Physics, University of Oregon, Eugene OR, United States

¹¹⁵ LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

¹¹⁶ Graduate School of Science, Osaka University, Osaka, Japan

¹¹⁷ Department of Physics, University of Oslo, Oslo, Norway

¹¹⁸ Department of Physics, Oxford University, Oxford, United Kingdom

¹¹⁹ ^(a) INFN Sezione di Pavia; ^(b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy

¹²⁰ Department of Physics, University of Pennsylvania, Philadelphia PA, United States

¹²¹ Petersburg Nuclear Physics Institute, Gatchina, Russia

¹²² ^(a) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

¹²³ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States

124 (a) Laboratorio de Instrumentacao e Física Experimental de Particulas – UP, Lisboa, Portugal; (b) Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain

¹²⁵ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

¹²⁶ Czech Technical University in Prague, Praha, Czech Republic

¹²⁷ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

¹²⁸ State Research Center Institute for High Energy Physics, Protvino, Russia

¹²⁹ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

¹³⁰ Physics Department, University of Regina, Regina SK, Canada

¹³¹ Ritsumeikan University, Kusatsu, Shiga, Japan

¹³² ^(d) INFN Sezione di Roma I; ^(b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy

¹³³ ^(d) INFN Sezione di Roma Tor Vergata; ^(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

¹³⁴ ^(d) INFN Sezione di Roma Tre; ^(b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies and Université Hassan II, Casablanca; (b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semialia, Université Cadi Avvad, LPHEA, Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Ouida;

(e) Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco

136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France ¹³⁷ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States

¹³⁸ Department of Physics, University of Washington, Seattle WA, United States

¹³⁹ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

¹⁴⁰ Department of Physics, Shinshu University, Nagano, Japan

¹⁴¹ Fachbereich Physik, Universität Siegen, Siegen, Germany

¹⁴² Department of Physics, Simon Fraser University, Burnaby BC, Canada

¹⁴³ SLAC National Accelerator Laboratory, Stanford CA, United States

144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

145 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

¹⁴⁶ ^(a) Department of Physics, Stockholm University; ^(b) The Oskar Klein Centre, Stockholm, Sweden

¹⁴⁷ Physics Department, Royal Institute of Technology, Stockholm, Sweden

¹⁴⁸ Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States

¹⁴⁹ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

¹⁵⁰ School of Physics, University of Sydney, Sydney, Australia

¹⁵¹ Institute of Physics, Academia Sinica, Taipei, Taiwan

¹⁵² Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

¹⁵³ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

¹⁵⁴ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

¹⁵⁵ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

¹⁵⁶ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

¹⁵⁷ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

¹⁵⁸ Department of Physics, University of Toronto, Toronto ON, Canada

¹⁵⁹ ^(d) TRIUMF, Vancouver BC, ^(b) Department of Physics and Astronomy, York University, Toronto ON, Canada

¹⁶⁰ Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

¹⁶¹ Department of Physics and Astronomy, Tufts University, Medford MA, United States

¹⁶² Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

¹⁶³ Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States
 ¹⁶⁴ ^(a) INFN Gruppo Collegato di Udine; ^(b) ICTP, Trieste; ^(c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

¹⁶⁵ Department of Physics, University of Illinois, Urbana IL, United States

¹⁶⁶ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica

de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

¹⁶⁸ Department of Physics, University of British Columbia, Vancouver BC, Canada

¹⁶⁹ Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

¹⁷⁰ Department of Physics, University of Warwick, Coventry, United Kingdom

¹⁷¹ Waseda University, Tokyo, Japan

¹⁷² Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

¹⁷³ Department of Physics, University of Wisconsin, Madison WI, United States

¹⁷⁴ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

175 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

¹⁷⁶ Department of Physics, Yale University, New Haven CT, United States

¹⁷⁷ Yerevan Physics Institute, Yerevan, Armenia

¹⁷⁸ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

^a Also at Department of Physics, King's College London, London, United Kingdom.

^b Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas – LIP, Lisboa, Portugal.

Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at Department of Physics, University of Johannesburg, Johannesburg, South Africa.

^f Also at TRIUMF, Vancouver BC, Canada.

^g Also at Department of Physics, California State University, Fresno CA, United States.

- ^h Also at Novosibirsk State University, Novosibirsk, Russia.
- ⁱ Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
- ^j Also at Department of Physics, UASLP, San Luis Potosi, Mexico.
- ^k Also at Università di Napoli Parthenope, Napoli, Italy.
- ¹ Also at Institute of Particle Physics (IPP), Canada,
- ^m Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
- ⁿ Also at Louisiana Tech University, Ruston LA, United States.
- ^o Also at Departamento de Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
- ^p Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
- ^q Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States.
- ^r Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
- ^s Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
- ^t Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
- ^{*u*} Also at Manhattan College, New York NY, United States.
- $^{\nu}\,$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
- ^w Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
- ^x Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
- ^y Also at School of Physics, Shandong University, Shandong, China.
- ² Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.

^{aa} Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France.

- ^{ab} Also at Section de Physique, Université de Genève, Geneva, Switzerland.
- ^{ac} Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
- ad Also at Department of Physics, The University of Texas at Austin, Austin TX, United States.
- ^{ae} Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States.
- ^{df} Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary,
- ^{ag} Also at California Institute of Technology, Pasadena CA, United States.
- ^{*ah*} Also at International School for Advanced Studies (SISSA), Trieste, Italy.
- ai Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France,
- ^{*aj*} Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- *ak* Also at Nevis Laboratory, Columbia University, Irvington NY, United States.
- ^{al} Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
- ³⁰⁰ Also at Department of Physics and Astronomy, University of Snemeid, Snemeid, United Kingdom ³⁰⁰ Also at Department of Physics, Oxford University, Oxford, United Kingdom
- am Also at Department of Physics, Oxford University, Oxford, United Kingdom.
- ^{an} Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States.
- ⁴⁰ Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.

* Deceased.