
An analysis of local and global solutions to 
address Big Data imbalanced classification: a 

case study with SMOTE preprocessing.

María José Basgall1,2,3 s https://orad,org/0000-0002-7024-847X, y\yjdo Hasperué2 
https://orcid.org/0000-0002-9950-1563 Majuelo 

https://orcid.org/0000-000i-9i27-32i2, /lberto Fernández4 
https://orcid.org/0000-0002-6480-8434, and Francisco Herrera4

https://orcid.org/0000-0002-7283-312X

1 UNLP, CONICET, III-LIDI, La Plata, Argentina 
mjbasgallOlidi.info.unlp.edu.ar

2 Instituto de Investigación en Informática (III-LIDI), CIC-PBA 
Facultad de Informática - Universidad Nacional de La Plata, Argentina 

3 University of Granada, Granada, Spain
4 DaSCI Andalusian Institute of Data Science and Computational Intelligence, 

University of Granada, Granada, Spain

Abstract. Addressing the huge amount of data continuously generated 
is an important challenge in the Machine Learning field. The need to 
adapt the traditional techniques or create new ones is evident. To do 
so, distributed technologies have to be used to deal with the significant 
scalability constraints due to the Big Data context.
In many Big Data applications for classification, there are some classes 
that are highly underrepresented, leading to what is known as the im
balanced classification problem. In this scenario, learning algorithms are 
often biased towards the majority classes, treating minority ones as out
liers or noise.
Consequently, preprocessing techniques to balance the class distribution 
were developed. This can be achieved by suppressing majority instances 
(undersampling) or by creating minority examples (oversampling). Re
garding the oversampling methods, one of the most widespread is the 
SMOTE algorithm, which creates artificial examples according to the 
neighborhood of each minority class instance.
In this work, our objective is to analyze the SMOTE behavior in Big Data 
as a function of some key aspects such as the oversampling degree, the 
neighborhood value and, specially, the type of distributed design (local 
vs. global).

Keywords: big data, imbalanced classification, preprocessing techniques, 
SMOTE, scalability

1 Introduction

Currently, Data Science has an essential role on analyzing the enormous amount 
of data being generated in every moment. This is known as Big Data, and the

The final authenticated version is available online at http://doi.org/10.1007/978-3-030-27713-0 

https://orad,org/0000-0002-7024-847X
https://orcid.org/0000-0002-9950-1563
https://orcid.org/0000-000i-9i27-32i2
https://orcid.org/0000-0002-6480-8434
https://orcid.org/0000-0002-7283-312X
http://doi.org/10.1007/978-3-030-27713-0


2 M. J. Basgall et al.

more volume of available information, the more knowledge could be discovered 
[!]•

However, it is known that the “small data” or standard size problems im
plementations are not directly applicable to Big Data due to the scalability 
constraints [2]. For this reason, the traditional techniques have to be adapted 
to the “divide-and-conquer” approach proposed by “the facto” MapReduce [3] 
framework for Big Data. In this direction, two alternatives are known, the local 
and the global design approaches [4]. The former works with each data partition 
separately and the results of each Map process is put together on a single Reduce 
process. And the latter, generates global results by distributing data and models 
across the Map processes. This is considered as an exact model because the final 
results are obtained through a more complete insight of the data.

It has to be considered that this huge amount of data does not imply all 
of it will be useful. Indeed, most of the times, a subset of the data will be the 
real source of the knowledge discovery process. As it happens with “small data”, 
the results of this process are directly related to the quality of the data used. 
Thus, to obtain high quality data (also known as Smart Data [5]), preprocessing 
techniques have to be applied.

In order to study the data quality in a Big Data context, the focus is set 
on a common situation when a classification problem is faced: imbalanced (or 
uneven) data distribution. Imbalanced data classification is a meaningful topic 
due to the large amount of real problems in which the key concept is represented 
by the minority class (e.g., medical diagnosis of rare diseases).

In this research area, the existent methods for balancing data are under
sampling and oversampling. They work eliminating or creating, majority or mi
nority class instances, respectively. With respect to the oversampling methods, 
the SMOTE (“Synthetic Minority Oversampling TEchnique”) [6, 7] algorithm is 
one of the most widespread. SMOTE creates artificial examples by interpolation 
according to the neighborhood of each minority class instance.

In this work, an analysis of the current preprocessing solutions for imbal
anced Big Data behavior is carried out. A performance comparison of the so
lutions related to parameters of interest, such as the number of partitions and 
oversampling final ratio is shown. In addition, and regarding the SMOTE al
gorithm, the focus is on contrasting the behavior between the global and the 
local scheme implementations. The main objective is to analyze the obtained 
results to determine the dependency of the imbalance preprocessing or the data 
intrinsic quality. Another aspect to evaluate is if their performance behave as in 
traditional datasets context.

The article continues organized as follows. In Sect. 2, the current solutions 
for imbalanced Big Data classification are described. Section 3 details the exper
imental environment used in this work. Then, in Sect. 4, the comparative results 
are shown. Finally, in Sect. 5, conclusions and future works are described.



SMOTE local and global approaches for Big Data imbalanced classification. 3

2 Big Data and the imbalanced classification problem

In this section, a brief introduction to the most used Big Data frameworks is pre
sented in Sect. 2.1. Furthermore, a quick review about imbalanced classification 
and a description of its methods for Big Data are depicted in Sect. 2.2.

2.1 Big Data technologies

Due to Big Data, new technologies appeared in order to cope with it. Among 
them, in 2003 and developed by Google, the most significant was born: MapRe
duce [3]. This framework was design based on a “divide-and-conquer” scheme 
in order to process Big Data on a cluster using parallel and distributed imple
mentations. MapReduce model presents two stages called Map and Reduce. The 
former receives data and performs operations in order to transform them. The 
latter process the results of the previous phase to summarize them. This model 
works with key-value pairs. In order to process them in parallel, all the pairs of 
the same key are distributed to the same node.

The most popular open-source frameworks based on MapReduce model pro
gramming are Apache Hadoop [8] and Apache Spark [9,10]. The main difference 
between them is that Hadoop performs an intensive disk usage, and Spark an 
intensive memory usage. This generates that Spark outperforms Hadoop. Also 
Spark provides integration with many libraries such as MLlib [11] (the Machine 
Learning library), Spark Streaming [12] (to work with streams of data), among 
others. These are some of the reasons which make Spark the current widespread 
Big Data framework.

In Sec. 1 two design methods related to the use of data and models distri
bution were depicted: the local and the global [4]. Depending on which model is 
applied, the results of the developed algorithm will be approximated or exact.

2.2 Imbalanced classification in Big Data

In a classification task, poor quality or not optimal data, will imply that the 
results will neither be. A previous process of adaptation has to be applied on 
data to carry out a good learning. A common scenario to apply classifiers is 
when the dataset class distribution is imbalanced. The simplest preprocessing 
techniques to achieve a balanced dataset are ROS (Random Over Sampling) 
and RUS (Random Under Sampling) algorithms [13]. On one hand, ROS works 
replicating the minority instances in a random way in order to achieve the desired 
ratio balance between both classes. On the other hand, RUS creates a balanced 
dataset by random deletion of the majority instances.

As was introduced in Sec. 1, the SMOTE algorithm [6, 7] is one of the most 
applied on the oversampling preprocessing cases. SMOTE works over the minor
ity class instances (also known as positive instances) by calculating the k nearest 
neighbors (kNN) of each of them. This technique creates a balanced dataset in
terpolating each of the positive examples with its neighbors as can be seen in 
Fig. 1.



4 M. J. Basgall et al.

Fig. 1. Interpolation between a minority instance and its k nearest neighbors (fc = 4).

In the MapReduce approach, the data partitioning task may lead to lack 
of data when processing local models. Furthermore, it could also cause “small- 
disjuncts” [14], This extreme lower number of minority instances in each Map 
gives an incomplete representation of the dataset information. In particular, 
regarding the real neighborhood of each example. “Small-disjuncts” are tiny 
groups of very local data and with low density, surrounded by the majority class 
instances. Minority instances created from them may enter in the exclusive zones 
of the majority class inducing noise or an over-generalization.

To the best of our knowledge, no other solutions than the ROS, RUS and the 
SMOTE are currently available as preprocessing techniques for imbalanced Big 
Data problems.

In [15], authors present a work in which these methods have been adapted to 
the MapReduce programming style, making them suitable for Big Data. They 
are called RUS-BigData and ROS-BigData respectively, and both of them have 
been designed using the local approach. Each Map process adjusts the class 
distribution for the data that belongs to it by performing the under or the 
over sampling. Thus, these are solutions independent of the partitions number. 
Then, to obtain the balanced dataset, a single Reduce process collects the results 
generated by each Map.

Regarding the SMOTE algorithm, in [16] a global SMOTE fully scalable solu
tion was described, called SMOTE-BD. In order to cope with the potential data 
partitioning problems, the whole neighborhood of each minority class instance is 
taken into account. That is achieved by the use of scalable data structures. The 
source code of SMOTE-BD can be found as a package in the Spark-packages 
repository [17]. The k nearest neighbors (kNN) calculation was based on [18], 
Furthermore, a local SMOTE version called SMOTE-MR is available in [19]. The 
k nearest neighbors for each minority instance are obtained from data belong
ing to the same instance’s partition. Working independently on each Map, gives 
approximated final results. This is the reason why methods are called global (or 
exact) and local (or approximated) as mentioned before.

Some aspects to remark are that the exact approach requires more effort in 
the solution development than the approximated one (which is straightforward 
to the MapReduce programming model). And the main advantage of the exact 



SMOTE local and global approaches for Big Data imbalanced classification. 5

design is the learning of more robust models due to the capacity of sharing data 
and models [4, 20].

All of the mentioned preprocessing techniques in this section were developed 
using Apache Spark.

3 Experimental framework

In this section, the experimental environment is detailed. First, in Sect. 3.1 
the datasets and the algorithms parameters configuration used in the tests are 
enumerated. Then, the classifier and the evaluation metrics are described in Sec. 
3.2. Finally, in Sect. 3.3 the infrastructure used for the experiments is mentioned.

3.1 Datasets and algorithms parameters

In order to compare the performance of the four preprocessing algorithms for Big 
Data, three imbalanced datasets were selected from the UCI Machine Learning 
repository [21], each one with a very different imbalanced ratio.

Table 1 shows the datasets summary, where the number of examples (#£%), 
number of attributes number of instances for each class )#(maj; min)),
class distribution )%(maj; min)) and imbalance ratio )IR) are included.

Table 1. Datasets summary

Datasets #Ex. AAtts. A(maj; min) %(maj; min) IR

covtype7 464,677 54 (448,421; 16,256) (96.5; 3.5) 27.58
higgs 4,954,754 28 (4,663,298; 291,456) (94.12; 5.88) 16
susy 2,212,186 18 (2,169,299; 542,435) (80; 20) 4

The parameters used for the methods according to their authors’ specifica
tions are shown in Table 2. As can be seen, a division was made in order to 
show the parameters in common for all the algorithms and the specific for the 
SMOTEs.
The percentage of oversampling (% oversampling) represents the final desired 
distribution between classes, that is, the final ratio. For instance, if % oversampling = 
100, both classes will have the same quantity of instances, in other words, a 1:1 
ratio; and if % oversampling = 150, the minority class will end up with a 50% 
more of instances than the majority class, this mean, a 1.5:1 ratio, and so on. 
There are several studies where the percentage of oversampling had influenced 
significantly over the results [22] as they increase. In consequence, three values 
were selected for this parameter with the purpose to test each of them.

The number of partitions (# partitions) sets the amount of Map process to 
be used. That means the number in which input data will be split.



6 M. J. Basgall et al.

Regarding both SMOTE versions, as they calculate the k Nearest Neighbors 
of each minority instance, different values of the k parameter have been pro
posed. The euclidean distance function was used.

Table 2. Algorithms and parameters

Algorithms Parameters Values

All % oversampling
F partitions

100 / 150 / 200
32 / 64 / 128

SMOTEs k Nearest Neighbors 3/5/7
Distance function Euclidean

3.2 Classifier and evaluation metrics

The behavior of the resultant preprocessed datasets was tested using the Deci
sion Trees classifier (DT), implemented in the Spark’s MLlib library [11]. The 
Apache Spark and MLlib version used for this work was the 2.2.0.

Table 3 shows a confusion matrix for a binary problem from which the clas
sification quality metrics are obtained. This matrix organizes the samples of 
each class according to their correct or incorrect identification. Thus, the predic
tion quality for each individual class are represented by the True Positive (TP) 
and True Negative (TN) values. These measures indicate if the preprocessing is 
favoring a single class or concept.

Table 3. Confusion matrix for performance evaluation of a binary classification prob
lem

Predicted
Actual -------------------------------------------------------------

Positive Negative
Positive True positive (TP) False negative (FN) 
Negative False positive (FP) True negative (TN)

Also, four metrics that describe both classes independently are obtained from 
it:

True Positive Rate, defined as TPR = 
five instances correctly classified.

TP
TP + FN’

is the percentage of posi-



SMOTE local and global approaches for Big Data imbalanced classification. 7

True Negative Rate, defined as TNR 
negative instances correctly classified.

False Positive Rate, defined as FPR = 
ative instances misclassified.

False Negative Rate, defined as FNR = 
itive instances misclassified.

-------- ——, is the percentage ofFP + TN P S

FP
FP + TN’

FN
TP + FN

is the percentage of neg-

, is the percentage of pos-

In order to evaluate the performance in imbalanced classification scenarios, 
more robust metrics which make use of these rates exist. Two of the most widely 
used are the Geometric Mean (GM) [23] and the area under the ROC curve 
(AUC) [24]. The former is defined in Eq. 1 and it attempts to maximize the 
accuracy of each one of the two classes at the same time. The latter is defined 
by the area under the curve given by the Eq. 2 and it evaluates which model is 
better on average, with a single measure.

GM = x/TI’lt * TNR (1)

auc^ + tpp~fpr

3.3 Infrastructure

Concerning the infrastructure used to perform the experiments, the Hadoop 
cluster at University of Granada was used. The cluster consists of fourteen nodes 
connected via a Gigabit Ethernet network. Each node has a Intel Core i7-4930K 
microprocessor at 3.40GHz, 6 cores (12 threads) and 64 GB of main memory 
working under Linux CentOS 6.9. The infrastructure works with Hadoop 2.6.0 
(Cloudera CDH5.8.0), where the head node is configured as NameNode and 
ResourceManager, and the rest are DataNodes and NodeManagers.

4 Experimental results

In this section, the performances achieved by a Decision Tree classifier after 
applying independently each of the preprocessing techniques are presented.

The following tables show the average results of applying all the preprocessing 
methods (ROS, RUS, SMOTE-BD and SMOTE-MR)1 on the three datasets for 
each oversampling percentage and number of partitions values (shown on table 
2). Where boldface indicates the highest value, and the best result for each 
dataset is underlined.

The SMOTE variants are abbreviated as “SMT-BD” or “SMT-MR” in all tables.i



8 M. J. Basgall et al.

Tables 4, 5 and 6 present the obtained values considering the GM, TPR and 
TNR performance measures, respectively. In Table 4, no significant differences 
were found between the results for the same parameters configuration for each 
method. In general, it can be seen that all of techniques are scalable in quality 
regarding the partition numbers. This behavior was not expected for SMOTE- 
MR because the kNN of each positive instance is calculated over the data of its 
partition. Further investigation is ongoing to fully understand this result.

As mentioned in Sec. 3, we expected a performance improvement with the in
crease in the oversampling percentage. In our current datasets of study, no major 
variations in performance are seen, and if so, a small variation goes in the op
posite direction, giving worse results (e.g. higgs dataset) for larger oversampling 
percentage.

Comparing with previous experience on small data [14], the different obtained 
results may be due to the data quality, which has not been assessed yet. The 
selected large datasets may have high redundancy and, therefore, the zones which 
need to be more strengthened, are being neglected or underestimated.

Table 4. GM average results for the four methods over the datasets for 32, 64 and 128 
partitions and for 100, 150 and 200 oversampling percentage.

Perc

Part.
Method
Dataset

32
SMT-BD SMT-MR ROS RUS SMT-BD

64
SMT-MR ROS RUS

128
SMT-BD SMT-MR ROS RUS

100 higgs 0.6462 0.6477 0.6580 0.6560 0.6468 0.6474 0.6562 0.6505 0.6479 0.6476 0.6561 0.6568
covtype7 0.9249 0.9242 0.9363 0.9363 0.9251 0.9279 0.9232 0.9271 0.9306 0.9274 0.9234 0.9258
susy 0.7650 0.7671 0.7675 0.7633 0.7671 0.7681 0.7685 0.7666 0.7643 0.7671 0.7670 0.7655

150 higgs 0.6172 0.6157 0.6271 0.6223 0.6213 0.6153 0.6261 0.6225 0.6182 0.6135 0.6253 0.6266
covtype7 0.9250 0.9232 0.9123 0.9123 0.9341 0.9249 0.9235 0.9221 0.9285 0.9273 0.9200 0.9298
susy 0.7528 0.7578 0.7667 0.7389 0.7595 0.7646 0.7666 0.7432 0.7607 0.7645 0.7646 0.7274

200 higgs 0.6006 0.5973 0.5334 0.5245 0.6011 0.5976 0.5337 0.5196 0.5907 0.5984 0.5339 0.5472
covtype7 0.9236 0.9190 0.9186 0.9110 0.9196 0.9195 0.9187 0.9236 0.9229 0.9206 0.9187 0.9080
susy 0.7350 0.7357 0.7364 0.7191 0.7335 0.7323 0.7378 0.7293 0.7432 0.7334 0.7391 0.7411

Regarding runtimes, RUS and ROS have the best outperform due to the 
simplicity of their algorithms. Then follows understandably SMOTE-MR, due 
to the local nature of its approach. The partitioned data is processed locally in 
each Map, resulting in lower times. The SMOTE-BD presents the highest times 
of all the algorithms tested, using a distributed data approach, but giving an 
exact result. For instance, the runtime for SMOTE-MR versus SMOTE-BD for 
the higgs dataset, with 32 partitions, 150 % of oversampling and k equals to 5, 
is four times faster. It is evident that a compromise between the runtimes and 
the model approximation has to be considered. At last but not least, another 
important factor to point out is related with the data intrinsic quality, that 
has not been evaluated here, but it is possible to be affecting our results with 
redundancy and noise.



SMOTE local and global approaches for Big Data imbalanced classification. 9

Table 5. TPR average results for the four methods over the datasets for 32, 64 and 
128 partitions and for 100, 150 and 200 oversampling percentage.

Perc

Part.
Method
Dataset

32
SMT-BD SMT-MR ROS RUS SMT-BD

64
SMT-MR ROS RUS

128
SMT-BD SMT-MR ROS RUS

100 higgs 0.6126 0.6181 0.7534 0.7608 0.6114 0.6150 0.7610 0.7783 0.6209 0.6158 0.7601 0.7517
covtype7 0.9396 0.9627 0.9691 0.9687 0.9622 0.9511 0.9784 0.9499 0.9416 0.9423 0.9773 0.9812
susy 0.8511 0.8241 0.8131 0.8536 0.8282 0.8220 0.8045 0.8282 0.8153 0.8221 0.7825 0.8086

150 higgs 0.8074 0.8071 0.8323 0.4822 0.7909 0.8067 0.8336 0.4777 0.8024 0.8172 0.8348 0.4929
covtype7 0.9802 0.9815 0.9963 0.8655 0.9835 0.9822 0.9940 0.8952 0.9750 0.9777 0.9961 0.9599
susy 0.7069 0.7225 0.7553 0.9154 0.7333 0.7555 0.7445 0.9087 0.7378 0.7598 0.7375 0.9294

200 higgs 0.8527 0.8559 0.9236 0.3003 0.8520 0.8532 0.9234 0.2940 0.8549 0.8538 0.9231 0.3347
covtype7 0.9922 0.9930 0.9947 0.8657 0.9901 0.9910 0.9942 0.8979 0.9844 0.9853 0.9944 0.8541
susy 0.6411 0.6443 0.6456 0.9387 0.6376 0.6375 0.6489 0.9240 0.6706 0.6467 0.6526 0.9063

Table 6. TNR average results for the four methods over the datasets for 32, 64 and 
128 partitions and for 100, 150 and 200 oversampling percentage.

Perc

Part.
Method
Dataset

32
SMT-BD SMT-MR ROS RUS SMT-BD

64
SMT-MR ROS RUS

128
SMT-BD SMT-MR ROS RUS

100 higgs 0.6817 0.6787 0.5747 0.5655 0.6844 0.6816 0.5658 0.5437 0.6764 0.6811 0.5663 0.5738
covtype7 0.9120 0.8874 0.9046 0.9051 0.8896 0.9054 0.8712 0.9048 0.9202 0.9135 0.8724 0.8734
susy 0.6878 0.7140 0.7244 0.6826 0.7105 0.7178 0.7342 0.7096 0.7173 0.7158 0.7519 0.7247

150 higgs 0.4721 0.4698 0.4725 0.8031 0.4882 0.4694 0.4703 0.8111 0.4763 0.4606 0.4685 0.7965
covtype7 0.8729 0.8684 0.8354 0.9617 0.8874 0.8709 0.8580 0.9499 0.8844 0.8795 0.8497 0.9006
susy 0.8031 0.7954 0.7783 0.5965 0.7873 0.7738 0.7893 0.6079 0.7847 0.7693 0.7927 0.5692

200 higgs 0.4230 0.4169 0.3081 0.9161 0.4242 0.4185 0.3085 0.9183 0.4085 0.4195 0.3087 0.8946
covtype7 0.8598 0.8505 0.8484 0.9586 0.8541 0.8532 0.8489 0.9501 0.8654 0.8603 0.8488 0.9654
susy 0.8430 0.8402 0.8398 0.5510 0.8439 0.8415 0.8388 0.5756 0.8237 0.8319 0.8371 0.6061

5 Conclusions and future works

In this work, a behavior analysis of the current preprocessing techniques for bal
ancing Big Data was presented. Each solution use the MapReduce programming 
model through the Apache Spark framework, one of the most popular to deal 
with Big Data nowadays. Three of them were developed with a local approach 
and one with a global one. The main reason that motivated us was to evaluate 
if those methods perform as in the traditional data size problems.

Usually, in “small data” scenarios the performance of the SMOTE is bet
ter than the ROS and RUS proposals. Even though, our experiments results in 
Big Data do not show the same behavior. One cause could be the data qual
ity. The current available big datasets may have presence of redundancy, noise, 
dispersion, among others factors which deteriorate the quality of the experimen
tal results. Our intuition is that applying preprocessing techniques to balance 
the dataset is not enough, in which a previous data cleansing stage, may be 
necessary.



10 M. J. Basgall et al.

As future work, the development of hybrid models focused on the areas where 
resampling is specially needed will be carried out. In particular, the zones of 
interest are those with the presence of small disjuncts and overlapping. The 
proposal will prioritize the analysis of the local neighborhood of each minority 
class instance.

References

1. C.L. Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges, 
techniques and technologies: A survey on big data. Information Sciences, 275:314 
- 347, 2014.

2. Ronaldo C. Prati, Gustavo E. A. P. A. Batista, and Diego F. Silva. Class imbal
ance revisited: a new experimental setup to assess the performance of treatment 
methods. Knowledge and Information Systems, 45(l):247-270, 2015.

3. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on 
large clusters. In Proceedings of the 6th Conference on Symposium on Opearting 
Systems Design & Implementation - Volume 6, OSDI’04, pages 10-10, Berkeley, 
CA, USA, 2004. USENIX Association.

4. Sergio Ramirez-Gallego, Alberto Fernández, Salvador Garcia, Min Chen, and Fran
cisco Herrera. Big data: Tutorial and guidelines on information and process fusion 
for analytics algorithms with mapreduce. Information Fusion, 42:51-61, 2018.

5. Diego García-Gil, Julián Luengo, Salvador García, and Francisco Herrera. Enabling 
smart data: Noise filtering in big data classification. Inf. Sci., 479:135-152, 2019.

6. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Syn
thetic minority over-sampling technique. Journal of Artificial Intelligent Research, 
16:321-357, 2002.

7. A. Fernandez, S. Garcia, F. Herrera, and N.V. Chawla. Smote for learning from im
balanced data: Progress and challenges, marking the 15-year anniversary. Journal 
of artificial intelligence research, 61:863-905, 2018.

8. Tom White. Hadoop: The Definitive Guide. O’Reilly Media, 4th edition, 2015.
9. Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, 

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient 
distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. 
In Presented as part of the 9th USENIX Symposium on Networked Systems Design 
and Implementation (NSDI 12), pages 15-28, San Jose, CA, 2012. USENIX.

10. H. Karau, A. Konwinski, P. Wendell, and M. Zaharia. Learning Spark: Lightning- 
Fast Big Data Analytics. O’Reilly Media, 1st edition, 2015.

11. Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara- 
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris 
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet 
Talwalkar. MLlib: Machine learning in apache spark. Journal of Machine Learn
ing Research, 17(34):l-7, 2016.

12. Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and 
Ion Stoica. Discretized streams: Fault-tolerant streaming computation at scale. In 
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Princi
ples, SOSP T3, pages 423-438, New York, NY, USA, 2013. ACM.

13. Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. A 
study of the behavior of several methods for balancing machine learning training 
data. SIGKDD Explor. News!, 6(l):20-29, June 2004.



SMOTE local and global approaches for Big Data imbalanced classification. 11

14. Victoria López, Alberto Fernández, Salvador Garcia, Vasile Palade, and Francisco 
Herrera. An insight into classification with imbalanced data: Empirical results 
and current trends on using data intrinsic characteristics. Information Sciences, 
250(20):113-141, 2013.

15. A. Fernandez, S. del Rio, N. V. Chawla, and F. Herrera. An insight into imbalanced 
big data classification: Outcomes and challenges. Complex and Intelligent Systems, 
3(2):105-120, 2017.

16. María José Basgall, Waldo Hasperué, Marcelo Naiouf, Alberto Fernández, and 
Francisco Herrera. Smote-bd: An exact and scalable oversampling method for 
imbalanced classification in big data. Journal of Computer Science and Technology, 
18(03):e23, Dec. 2018.

17. SMOTE-BD Spark Package, https://spark-packages.org/package/majobasgall/ 
smote-bd, 2018.

18. Jesús Maillo, Sergio Ramirez-Gallego, Isaac Triguero, and Francisco Herrera, knn- 
is: An iterative spark-based design of the k-nearest neighbors classifier for big data. 
Knowledge-Based Systems, 117:3-15, 2017.

19. SMOTE-MR source code, https://github.com/majobasgall/smote-mr, 2018.
20. A. Fernandez, F. Herrera, O. Cordon, M. Jose del Jesus, and F. Marcelloni. Evolu

tionary fuzzy systems for explainable artificial intelligence: Why, when, what for, 
and where to? IEEE Computational Intelligence Magazine, 14(1):69-81, Feb 2019.

21. M. Lichman. UCI machine learning repository, 2013.
22. Pablo D. Gutierrez, Miguel Lastra, Jose Manuel Benitez, and Francisco Herrera. 

SMOTE-GPU: Big data preprocessing on commodity hardware for imbalanced 
classification. Progress in Artificial Intelligence, 6(4):347-354, 2017.

23. Ricardo Barandela, José Salvador Sánchez, Vicente Garcia, and E. Rangel. Strate
gies for learning in class imbalance problems. Pattern Recognition, 36(3):849-851, 
2003.

24. J. Huang and C. X. Ling. Using auc and accuracy in evaluating learning algorithms. 
IEEE Transactions on Knowledge and Data Engineering, 17(3):299-310, March 
2005.

https://spark-packages.org/package/majobasgall/
https://github.com/majobasgall/smote-mr

