
A Study of Non-Functional Requirements in Apps for
Mobile Devices

Leonardo Corbalán1,2[0000-0001-9026-8059], Pablo Thomas1[0000-0001-9861-987X], Lisandro
Delía1[0000-0003-0515-0609], Germán Cáseres1[0000-0003-3032-7023], Juan Fernández Sosa1[0000-

0002-0482-3392], Fernando Tesone1[0000-0001-9499-3127] and Patricia Pesado1[0000-0003-0000-3482]

1 Computer Science Research Institute LIDI (III-LIDI)*
School of Computer Science, National University of La Plata,

La Plata, Buenos Aires, Argentina
*Partner Center of the Scientific Research Agency of the Province of Buenos Aires (CICPBA)

{corbalan, pthomas, ldelia, gcaseres, jfernandez, ftesone,

ppesado}@lidi.info.unlp.edu.ar

Abstract. Nowadays, no one questions the crucial role of Requirements Engi-
neering in software systems development. Specifically, if apps are generated for
execution on mobile devices, certain non-functional requirements become high-
ly relevant. In this article, an experimental study on three non-functional re-
quirements that are essential for the development of native and multi-platform
mobile apps is detailed. These requirements are performance, energy consump-
tion and storage space utilization.

Keywords: Native Mobile Apps, Multi-Platform Mobile Apps, Non-Functional
Requirements.

1 Introduction

Not many years ago, Requirements Engineering was underestimated. Computer Sci-
ence professionals considered design or coding as more challenging stages in software
development. Currently, this situation has changed. Having the right requirements in
early development stages considerably reduces the risk of problems appearing later
on. In this context, and with the boom of mobile devices, software development is
particularly conditioned by complying with certain requirements, some non-functional
requirements in particular, that are critical in mobile apps.

In this article, the results obtained in [1] [2] and [3] are expanded.
This study is aimed at quantifying the impact of the development approach used on

three of the most popular non-functional requirements in the area of apps for mobile
devices: performance, energy consumption and use of storage space.

To choose cases for study, the multi-platform development classification proposed
by Raj and Tolety in [4] and reviewed by Xanthopoulos et al. in [5] was considered.

2 Corresponding author

The final authenticated version is available online at http://doi.org/10.1007/978-3-030-27713-0

2

This classification considers 4 categories: 1) mobile web approach, 2) hybrid ap-
proach, 3) interpreted approach and 4) cross-compilation approach.

The development approaches studied in this article were the native approach and
the hybrid, interpreted, and cross-compilation multi-platform variations. The mobile
web approach was excluded because a thorough analysis of that approach will be
done in the future. The tests detailed in this article were run on the Android platform,
which is the operating system that currently has the largest market share for mobile
devices [6].

Even though the general design of the experiments revolves around the develop-
ment approaches used, the tests had to be implemented using specific frameworks.
There are several of these development frameworks for each of the approaches being
considered. The ones chosen for this study are well known and very popular in the
field. Based on these, six different analysis scenarios were defined: 1) Android SDK
(native approach), 2) Cordova (hybrid approach), 3) Titanium (interpreted approach),
4) NativeScript (interpreted approach), 5) Xamarin (cross-compilation approach) and
6) Corona (cross-compilation approach). The same scenarios were used to test all 3
non-functional requirements being considered: performance, energy consumption and
use of storage space.

It should be noted that the results presented in this paper are linked to the state of
the art of the development framework used at the moment of carrying out the experi-
ments and, therefore, could change in the future as these frameworks evolve.

The rest of this article is organized as follows: Chapter 2 discusses the issue of per-
formance in mobile apps, Chapter 3 considers energy consumption, and Chapter 4 is
devoted to the use of storage space. Finally, the conclusions and future lines of work
are presented.

2 Performance

According to several quality standards, such as ISO/IEC 9126 and ISO/IEC 25010, an
efficient performance (least possible processing time) is one of the attributes that any
software application must meet [7-3]. This requirement gains significance in the con-
text of mobile devices due to its direct relation to energy consumption [8], which is a
critical aspect affecting battery autonomy.

User ratings in online app stores usually penalize low performance, generating
negative publicity as a result [6]. Andre Charland and Brian Leroux identified pro-
cessing time as one of the main issues to solve when developing multi-platform appli-
cations, and they stated that end users care about software quality and user experience
[9].

Some authors have studied application performance based on the development ap-
proach used. The work done by Corral et al. [10] around native and hybrid apps (de-
veloped using Phonegap) for a version of the Android operating system can be men-
tioned. However, there are not many articles analyzing app performance based on the
multi-platform development approaches mentioned in [4] and [5] that were used as
reference to establish the cases for analysis for this study.

3

2.1 Experiment

Tests were carried out for the 6 scenarios mentioned above, which include the most
relevant development frameworks at the time of writing this article. For the tests, 3
different mobile devices were used – two smartphones and a tablet, all three with
Android as OS; they are identified as Device A, Device B and Device C.

 Device A: smartphone, brand: Motorola, model: Moto-G2, processor: Quad-core
1.2 GHz Cortex-A7, RAM 1GB Snapdragon 400, OS: Android 4.4.

 Device B: smartphone, brand: Samsung, model: S6, processor: Octa-core (4x2.1
GHz Cortex-A57 & 4x1.5 GHz Cortex-A53), RAM 3GB Exynos 7420 Octa, OS:
Android 5.0.2.

 Device C: tablet, brand: Samsung, model: Tab 2, processor: Dual-core 1.0 GHz,
RAM 1GB TI OMAP 4430, OS: Android 4.2.2.

A total of 18 test cases were defined – one per device per scenario.
To assess processing speed, the calculation of the following series was proposed:

 𝑠𝑒𝑟𝑖𝑒 = ∑ ∑ (log2(𝑘) +
3𝑘

2𝑗
+ √𝑘100000

𝑘=1 + 𝑘𝑗−1)5
𝑗=1 (1)

This expression includes several iterations, mathematical functions and f arithmetics.
This type of calculation is frequent in applications that make intensive use of CPU
computation power, such as games, augmented reality apps, image treatment apps,
and so forth.

For each of the 18 test cases defined, 30 separate runs of the experiment were car-
ried out, obtaining in each case a sample T, where T = T1, T2, … T30, and Ti = time

required for calculating the series on the nth run of the experiment. Time Ti is ex-
pressed in milliseconds. In most of the practical cases of interest, 30 samples are
enough to propose �̅� as a good approximation to the real mean of the distribution. A
large number of experimental works published in this field used this number of meas-
urements for their data collection phases.

To characterize each of the samples obtained, statistic variables �̅� = (1/𝑛)∑ 𝑇𝑖
𝑛
𝑖=1

and 𝑆 = √(
1

𝑛−1
∑ (𝑇𝑖 − �̅�)2𝑛
𝑖=1), corresponding to the sample average and sample

standard deviation, respectively, were calculated.

2.2 Results

Table 1 and Figure 1 summarize the results obtained during the experiments. The
values of �̅� and S for the samples collected allow comparing the performance of the
apps generated using the different development approaches in each of the devices
used.

Clearly, for the three devices used for the tests, the apps generated with Na-
tiveScript, Titanium and Cordova were the most efficient ones, all of them completing
the required calculation. On the opposite end, Xamarin, Android SDK and Corona
always produced the slowest apps. Corona in particular stands out for its low perfor-
mance.

4

Table 1. Processing time (ms) – Intensive calculation

Framework
Device A Device B Device C
�̅� S �̅� S �̅� S

Android SDK 532.93 16.14 211.80 19.97 763.80 28.98
Cordova 230.33 14.22 85.77 8.83 190.60 9.36
Titanium 211.67 24.95 95.63 7.64 192.70 16.80
NativeScript 187.30 9.39 89.67 9.16 183.50 3.04
Xamarin 395.17 8.95 211.00 6.69 379.33 8.31
Corona 1401.73 12.60 600.53 5.95 1344.30 23.39

Fig. 1. Average processing time, in milliseconds.

It should be noted that the hybrid (Cordova) and interpreted (Titanium and Na-
tiveScrip) approaches, even if they operate differently, have one characteristic in
common: they both run JavaScript code. In all these frameworks, the JavaScript V8
engine is responsible for optimizing the code that is then interpreted by a WebView.
This engine has a crucial role and is largely responsible for the good results obtained.
The tests for these approaches had a better behavior than that of the native approach
(Android SDK) and the cross-compilation approach (Xamarin and Corona), which
yielded the lowest performance.

The same relative differences were observed with the different development
frameworks for all three devices used to carry out these tests.

3 Energy Consumption

Mobile device technology experienced a fast-paced development, significantly in-
creasing its capabilities and performance, but also its energy requirements. Since bat-
tery technology has not evolved at the same speed, energy consumption has to be
optimized to achieve a balance between performance and device autonomy.

Energy efficiency has become a relevant issue both for hardware manufacture as
well as for software development. There is also a related requirement to protect the
environment and general health of the planet. A higher energy consumption is against

0
200
400
600
800

1000
1200
1400
1600

NativeScript Titanium Cordova Xamarin Android SDK Corona

Average Time (ms) Device A Device B Device C

5

the current trend of green computing, which is attempting to achieve eco-friendly
computer systems.

The introduction of ARM's big.LITTLE technology [11] to improve energy effi-
ciency in mobile devices is an example of the commitment of hardware manufacturers
with this issue [12]. However, the solution depends largely on software developers. It
has been shown that, through changes in application source code, significant im-
provements can be obtained.

Many researchers have proposed solutions involving good programming practices.
In [13], it was shown that the fastest algorithms are not always the ones that consume
less energy. In [14] and [15], recommendations for the development of applications
with a reduced energy demand were presented. In [16], it was concluded that most (5
out of 8) of the best programming practices published by Google to optimize Android
app performance also had a positive impact on energy consumption. Other researchers
explored the advantages of the technology called Mobile Cloud Computing, which
integrates the concept of cloud computing to the mobile device environment. In [17]
and [18], it was shown that this technology is effectively useful to save energy.

Energy efficiency and development frameworks for mobile devices have been
widely studied separately; however, the articles considering both aspects simultane-
ously are scarce. This section is intended as a contribution in that direction, analyzing
the effects of the development approach on app energy consumption. The 6 develop-
ment frameworks mentioned in previous sections were considered, and 3 different
types of common apps: 1) Intensive processing, 2) Video playback and 3) Audio
playback.

3.1 Experiment

The platform chosen for testing was a medium-range smartphone – brand: Motorola,
model: Moto-G2, processor: Quad-core 1.2 GHz Qualcomm Snapdragon 400, GPU:
Adreno 305, RAM: 1GB, OS: Android 6.0. This device was selected as an average
representation of all devices considered during a preliminary testing phase.

Intensive processing, video playback and audio playback apps were developed,
each of them in six different versions – one for each development framework being
considered. This resulted in a total of 18 test cases. The intensive processing app con-
sisted in calculating the series used for performance analysis, discussed above, repre-
sented by Equation (1). The audio and video playback apps consisted in the playback
of a one-minute long multimedia resource. In the case of the video, the file was 89.2
Mb in size, with a resolution of 1280x720 pixels, H.264 as codec at 5585 Kbps, and
AAC audio tracks at 128 Kbps. For audio playback, the file used was 1.32 Mb in size
and MP3 AC3 as codec, at 128 Kbps.

For energy consumption measurements, Qualcomm's Trepn Profiler tool was used;
this is the same company that developed the smartphone processor used in all tests.
To minimize external interference during the tests, a number of conditions were ap-
plied: 1) the device was on plane mode, 2) screen brightness was at the minimum
level, 3) audio volume was set at 20%, 4) battery charge between 80% and 100%, 5)
the device was not connected to the battery charger, 6) the app was implemented on

6

dark mode, and 7) the app was running on the foreground, i.e., on the screen, during
the test.

For each of the tests that were defined, 30 separate runs were executed, obtaining
X = X1, X2, … X30 samples. In all cases, energy consumption, execution time and
CPU percentage use were measured. Sample average �̅� = (1/𝑛)∑ 𝑋𝑖

𝑛
𝑖=1 and sample

standard deviation 𝑆𝑋 = √(
1

𝑛−1
∑ (𝑋𝑖 − �̅�)2𝑛
𝑖=1) were calculated for all samples ob-

tained.

3.2 Results

Table 2. Intensive processing app

Framework
Power (mWh) CPU charge (%) Duration

(s)
�̅� SE �̅� SC �̅� ST

Cordova 1.597 0.136 35.924 2.571 8.467 0.679
Titanium 1.692 0.096 37.480 2.395 8.355 0.643

NativeScript 1.792 0.176 33.357 2.217 9.109 1.789
Xamarin 3.036 0.185 32.072 1.768 17.891 0.973

Android SDK 3.463 0.149 32.468 1.332 18.568 2.938
Corona 7.304 0.189 44.347 54.793 38.877 1.492

Table 3. Video playback app

 Framework
Power (mWh) CPU charge (%) Duration

(s)
�̅� SE �̅� SC �̅� ST

Android SDK 4.776 0.287 14.540 0.862 61.600 0.814
Corona 4.992 0.235 14.704 0.711 62.733 0.907

Xamarin 5.119 0.473 15.465 1.608 62.333 0.959
Titanium 5.262 0.502 15.204 1.643 63.633 1.033

NativeScript 11.112 1.590 17.839 2.210 63.333 1.295
Cordova 13.866 0.536 22.358 0.903 62.833 0.834

Table 4. Audio playback app

 Framework
Power (mWh) CPU charge

(%)
Duration

(s)
�̅� SE �̅� SC �̅� ST

Android SDK 3.920 0.291 10.497 0.882 64.033 0.999
Xamarin 4.010 0.201 10.592 0.613 64.967 1.098
Titanium 4.189 0.277 11.865 0.835 64.767 1.104

NativeScript 4.224 0.229 11.233 0.644 65.867 1.042
Cordova 4.288 0.191 11.473 0.487 65.733 1.388
Corona 5.194 0.387 14.680 1.080 64.800 1.031

7

Tables 2, 3 and 4 summarize test results for intensive processing, video playback and
audio playback, respectively. The histograms in Figure 2 show sample distribution for
energy consumption.

Fig. 2. Histograms representing test samples obtained.

As regards intensive processing, there are three clear groups of frameworks (see Table
2 and Figure 2 in Section A). The first group, with the highest energy efficiency, is
formed by Cordova, Titanium and NativeScript. The second group, with medium
efficiency, includes Xamarin and native Android SDK. Finally, with a much lower
performance, Corona is in the group that has the greatest impact on battery autonomy.
It is worth noting that the native development framework, Android SDK, is not
among the most efficient approaches. This would be explained by the low perfor-
mance of Java for mathematical functions in relation to execution time and, therefore,
energy consumption.

As regards video playback apps, there are two clearly defined groups (see Table 3
and Figure 2 in Section B). The first group, with greater energy efficiency, includes
Android SDK, Corona, Xamarin and Titanium. The second group is formed by Na-
tiveScript and Cordova. These two frameworks showed a really low efficiency level,
requiring more than double the power than the other frameworks that were tested. In
particular, Cordova consumes almost triple the power than Android SDK (the best
option). This significant difference is probably due to the fact that Cordova uses the
HTML video player, which requires more CPU power than what the operating system
provides.

In relation to audio playback apps, there are no major differences in energy con-
sumption among the various development approaches with the exception of Corona,
which stands out as the least efficient of the bunch (see Table 4 and Figure 2 in Sec-
tion C).

8

Even though all audio and video tests were done using a resource that was exactly
60 seconds long, tables 3 and 4 show differences in playback time. This is because the
time required to start up the app is different for the different frameworks used. The
native approach has advantages in this regard, but these become significant only if the
app is used for a short time. As use time increases, the relevance of this advantage
becomes less significant.

Figure 3 represents the values for �̅� (sample average) obtained for the 18 test cases
run. A quick visual inspection tells us that only one or tow of the development
frameworks analyzed stand out for being inefficient (high energy consumption) for all
three types of apps considered. This is the case of Corona for intensive processing,
Cordova and NativeScript for video playback, and Corona for audio playback. On the
other side of the coin, the most efficient framework does not stand out clearly from
the other frameworks that are also efficient. This indicates that, even if there is no
clear winner as the most efficient option, there is enough information as regards
which frameworks should be avoided in each case.

Fig. 3. Energy consumption by development framework used for the three types of apps con-

sidered.

Tables 2, 3 and 4 show that the impact of the development framework on energy con-
sumption is greater in intensive processing apps (the consumption of the app devel-
oped with Corona is 4.57 times that of the app developed with Cordova). This is also
significant in video playback apps (the consumption of the app developed with Cor-
dova is 2.9 times that of the app developed with Android SDK). Finally, the smallest
impact of the choice of development framework is found in audio playback apps,
where the consumption of the development using Corona (the least efficient frame-
work) is only 1.33 times that of the consumption of the development using Android
SDK (the most efficient framework).

Additionally, for all three types of apps considered, the development framework
with Titanium stands out for always being in the group of the most efficient frame-
works, even if it never got the first place.

4 Storage Space

There is a lot of variation in storage space size among the different models of
smartphones, this resource being critically scarce in less expensive devices. In the

0
2
4
6
8

10
12
14
16

Corona Android SDK Xamarin NativeScript Titanium Cordova

Energy Consumption (mWh) Intensive Processing
Video playback
Audio Playback

9

latter, the operating system and factory pre-installed apps take up a large portion of
the available space, which hinders the installation of new apps [19]. This problem is
worsened by a trend in the market towards the development of increasingly bigger
apps.

According to a study carried out on Google Play Store, the size of the apps has
quintupled between 2012 and 2017 [20]. This increase is due to the evolution of the
market, requiring new features and better resources in apps. However, users are reluc-
tant to resign storage space in their devices. The same study showed that the number
of effective installations decreases by 1% for each 6 megabytes of increase in app
size. Additionally, downloads are interrupted 30% more often in 100-megabyte apps
than in 10-megabytes ones.

It is apparent that developers must optimize storage space usage to reach a larger
number of potential users. Faced with this need, the scientific community has not
been indifferent. In [21] and [22], elastic mobile app design models are proposed.
These models use cloud computing technology to increase computation resources and
storage space, splitting the apps into modules and migrating to the cloud those that
require more resources. In addition to the obvious disadvantages, the excessive use of
space can also negatively impact energy consumption [23]. In [24], methods to reduce
the energy consumption associated with reading and writing access to storage space
are proposed.

To minimize the size of the apps built, the impact of the development approach
chosen on power consumption should also be considered. Below, we present the re-
sults of the experimental tests quantifying how large this impact is based on the de-
velopment framework used.

4.1 Experiment

The tests whose results are presented in the following section were carried out with
the 6 scenarios mentioned before. To assess the impact on the space used by the apps
built, the size of the APK file generated by the different development frameworks
being considered was measured. This information is independent from the device
where the app is later installed.

The specific tools and libraries used by the development frameworks to support
certain functionalities may impact differently the size of the resulting apps. To detect
such potential situations, three different types of apps were implemented for each of
the 6 scenarios defined, covering the usual functionalities: 1) text display, 2) video
playback and 3) audio playback. Thus, there are 18 test cases: The source code for all
developments produced for the experiments is publicly accessible on [25]

For all tests, the applications were generated following the standard procedure rec-
ommended by the documentation for each framework. In all cases, it was specifically
corroborated that no additional files, such as images or videos, were included. These
files are usually added by framework tools when a new app is built. Below, the results
obtained are displayed.

10

4.2 Results

Table 5 and Figure 4 show test results for the three types of apps considered. The
development frameworks used are ordered based on the size of the APK file obtained.
It can be seen that the sorting order is the same for all three types of apps considered.
In all cases, the native development with Android SDK was the most efficient ap-
proach, producing the smallest app, followed closely by Cordova, hybrid approach.
The apps generated with cross-compilation (Xamarin and Corona) are in intermediate
positions. Finally, the frameworks using the interpreted approach (Titanium and Na-
tiveScript) generated the largest APK packages.

Table 4. Size (in Mb) of the app package produced

Framework
Text-based

app
Video play-

back app
Audio play-

back app
Android SDK 1.48 1.04 1.38

Cordova 1.74 2.77 1.82

Xamarin 4.08 5.01 4.08

Corona 6.51 6.58 6.73

Titanium 8.54 9.23 9.16
NativeScript 12.49 12.47 21.11

Fig. 4. Package size by development framework used for the three types of apps considered.

5 Conclusions and Future Work

In this article, the results obtained in our previous work, presented in [1] [2] and [3],
are expanded.

Thorough tests of three of the most important non-functional requirements were
carried out. These requirements affect the development of apps for mobile devices:
performance, energy consumption and use of storage space.

To analyze each of these requirements, 6 of the most popular development frame-
works in the market were used: 1) Android SDK (native approach), 2) Cordova (hy-

0
2
4
6
8

10
12
14
16
18
20
22

Android SDK Cordova Xamarin Corona Titanium NativeScript

APK File Size (Mb) Text Display

Video Playback

Audio Playback

11

brid approach), 3) Titanium (interpreted approach), 4) NativeScript (interpreted ap-
proach), 5) Xamarin (cross-compilation approach) and 6) Corona (cross-compilation
approach).

The results obtained are a contribution for Software Engineers, allowing them to
prioritize the use of an approach over others, based on the expected levels of perfor-
mance, energy consumption and use of storage space.

Mobile app users heavily weight these non-functional requirements when it comes
to deciding whether to install an app on their mobile devices. This work presents an
advance in that regard, with concrete results.

Finally, an expansion is planned in the future to include iOS' mobile platform, in
addition to carrying out tests with other frameworks for the native and multi-platform
development approaches discussed here.

References

1. Delia, L.; Galdamez, N.; Corbalan, L.; Pesado, P.; Thomas, P.; Approaches to Mobile Ap-
plication Development: Comparative Performance Analysis. SAI Computing Conference
(SAI), 2017. IEEE, 2017. p. 652 – 659.

2. Corbalan L.; Fernandez Sosa J.; Cuitiño A.; Delia L.; Caseres G.; Thomas P.; Pesado P.,
Development Frameworks for Mobile Devices: A Comparative Study about Energy Con-
sumption (ICSE), MobileSoft 2018 5th IEEE/ACM International Conference on Mobile
Software Engineering and Systems on, Gothenburg Sweden, 2018.

3. Fernandez Sosa J.; Thomas P., Delía L.; Cáseres G., Corbalán L., Tesone F., Cuitiño A.,
Pesado P., Mobile Application Development Approaches: A Comparative Analysis on the
Use of Storage Space, CACIC 2018, Tandil, Argentina. ISBN: 978-950-658-472-6.

4. RAJ, CP Rahul; TOLETY, Seshu Babu. A study on approaches to build cross-platform
mobile applications and criteria to select appropriate approach. In: India Conference
(INDICON), 2012 Annual IEEE. IEEE, 2012. p. 625-629.

5. XANTHOPOULOS, Spyros; XINOGALOS, Stelios. A comparative analysis of cross-
platform development approaches for mobile applications. In: Proceedings of the 6th Bal-
kan Conference in Informatics. ACM, 2013. p. 213-220.

6. Florian Rösler, André Nitze, Andreas Schmietendorf. Towards a Mobile Application Per-
formance Benchmark. ICIW 2014: The Ninth International Conference on Internet and
Web Applications and Services, At Paris, France.

7. Jung, H.W, Kim, S.G., Chung, C.S. Measuring Software Quality: A Survey of ISO/IEC
9126. IEEE Software, Septem-ber/October 2004. pp. 88 – 92. 2004.

8. Luis Corral, Anton B. Georgiev, Alberto Sillitti, Giancarlo Succi, Can execution time de-
scribe accurately the energy consumption of mobile apps? An experiment in Android.
GREENS 2014 Proceedings of the 3rd International Workshop on Green and Sustainable
Software. Pages 31-37

9. Andre Charland, Brian Leroux, Mobile application development: web vs. native. Magazine
Communications of the ACM CACM Homepage archive Volume 54 Issue 5, May 2011
Pages 49-53 ACM New York, NY, USA

10. Luis Corral, Alberto Sillitti, Giancarlo Succi, Mobile multiplatform development: An ex-
periment for performance analysis, The 9th International Conference on Mobile Web In-
formation Systems (MobiWIS), Ontario, Canada, 2012.

12

11. big.LITTLE technology https://www.arm.com/why-arm/technologies/big-little [Last ac-
cess: March 2019].

12. BANERJEE, Abhijeet; ROYCHOUDHURY, Abhik. Future of mobile software for
smartphones and drones: Energy and performance. En Proceedings of the 4th International
Conference on Mobile Software Engineering and Systems. IEEE Press, 2017. p. 1-12.

13. BAYER, Hannah; NEBEL, Markus. Evaluating Algorithms according to their Energy
Consumption. Mathematical Theory and Computational Practice, 2009, p. 48.

14. LARSSON, Petter. Energy-efficient software guidelines. Intel Software Solutions Group,
Tech. Rep, 2011.

15. SIEBRA, Clauirton, et al. The software perspective for energy-efficient mobile applica-
tions development. In: Proceedings of the 10th International Conference on Advances in
Mobile Computing & Multimedia. ACM, 2012. p. 143-150.

16. CRUZ, Luis; ABREU, Rui. Performance-based guidelines for energy efficient mobile ap-
plications. In: Proceedings of the 4th International Conference on Mobile Software Engi-
neering and Systems. IEEE Press, 2017. p. 46-57.

17. KUMAR, Karthik; LU, Yung-Hsiang. Cloud computing for mobile users: Can offloading
computation save energy? Computer, 2010, vol. 43, no 4, p. 51-56.

18. GILL, Queen Kaur; KAUR, Kiranbir. A Review on Energy Efficient Computation Of-
floading Frameworks for Mobile Cloud Computing. 2016.

19. K. Vandenbroucke, D. Ferreira, J. Goncalves, V. Kostakos and K. D. Moor, “Mobile cloud
storage: a contextual experience.” Proceedings of the 16th international conference on
Human-computer interaction with mobile devices & services (MobileHCI '14), pp. 101-
110, 2014.

20. S. Tolomei, “Shrinking APKs, growing installs,” 20 November 2017. [Online]. Available
at: https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2
[Last access: March 2019].

21. X. Zhang, A. Kunjithapatham, S. Jeong and S. Gibbs, “Towards an Elastic Application
Model for Augmenting the Computing Capabilities of Mobile Devices with Cloud Compu-
ting,” Mobile Networks and Applications, vol. 16, nº 3, p. 270–284, 2011.

22. J. H. Christensen, “Using RESTful web-services and cloud computing to create next gen-
eration mobile applications.” In: Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and applications, New
York, 2009.

23. Y. Lyu, J. Gui, M. Wan and W. G. J. Halfond, “An Empirical Study of Local Database
Usage in Android Applications,” IEEE International Conference on Software Maintenance
and Evolution , Shanghai, China, 2017.

24. G. Z. David T. Nguyen, X. Qi, G. Peng, J. Zhao, T. Nguyen and D. Le, “Storage-aware
smartphone energy savings,” Proceedings of the 2013 ACM international joint conference
on Pervasive and ubiquitous computing, New York, 2013.

25. https://gitlab.com/iii-lidi/papers/apps-size.git [Last access: March 2019].

https://www.arm.com/why-arm/technologies/big-little
https://gitlab.com/iii-lidi/papers/apps-size.git

