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a b s t r a c t

From direct observations of the longitudinal development of ultra-high energy air showers performed
with the Pierre Auger Observatory, upper limits of 3.8%, 2.4%, 3.5% and 11.7% (at 95% c.l.) are obtained
on the fraction of cosmic-ray photons above 2, 3, 5 and 10 EeV ð1 EeV � 1018 eVÞ, respectively. These
are the first experimental limits on ultra-high energy photons at energies below 10 EeV. The results com-
plement previous constraints on top–down models from array data and they reduce systematic uncer-
tainties in the interpretation of shower data in terms of primary flux, nuclear composition and proton-
air cross-section.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Data taken at the Pierre Auger Observatory were searched
previously for ultra-high energy (UHE) photons above 10 EeV
[1,2]. In Ref. [1], the depth of shower maximum Xmax of air
showers observed by fluorescence telescopes in hybrid mode
(i.e. with additional timing information from the ground array)
was used to place an upper limit of 16% on the photon fraction
above 10 EeV, confirming and improving on previous limits from
ground arrays [3–6]. In Ref. [2], the larger number of events ta-
ken with the Auger ground array alone allowed us to place a
limit of 2% above 10 EeV, which imposes severe constraints on
‘‘top–down” models for the origin of ultra-high energy cosmic
rays.
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Observations in hybrid mode are also possible at energies below
10 EeV. Decreasing the energy threshold increases the event statis-
tics, which to some extent balances the factor �10 smaller duty cy-
cle compared to observations with the ground array alone. Thus,
based on the previous work, the search for photons is now ex-
tended to lower energy (here down to 2 EeV). We also improve
on our previous (statistics-limited) bound above 10 EeV from Ref.
[1].

Photons at EeV energies are expected to be produced in our cos-
mological neighborhood, as the energy attenuation length of such
photons is only of the order of a few Mpc. Possible sources of
EeV photons are the standard GZK process (see e.g. Refs. [7–9]),
the production by nuclei in regions of intense star light (e.g. in
the galactic center [10]), or exotic scenarios such as top–down
models (see Ref. [11] for a review). Compared to our previous con-
straints on top–down models from Ref. [2], the bounds derived in
this work provide a test of model predictions in a different energy
range and using a different experimental technique, thus giving an
independent confirmation of the model constraints.

Limits on EeV photons reduce corresponding systematic uncer-
tainties in other analyses of air shower data. For instance, the pres-
ence of a substantial photon component can severely affect the
reconstruction of the energy spectrum [12], the derivation of the
proton-air cross-section [13,14], and the interpretation of the ob-
served average Xmax [15] in terms of a nuclear primary
composition.

The structure of the paper is as follows. In Section 2, the analysis
is described and applied to the data. The results are discussed in
Section 3.
2. Data and analysis

The present analysis follows closely the one described in detail
in Ref. [1] which is called Hybrid-1 below. The basic idea is to com-
pare the measured Xmax values to those expected for primary pho-
tons, because UHE photon showers have significantly deeper
average Xmax. We provide a summary of the analysis method, pay-
ing special attention to differences or changes in the approach
compared to Hybrid-1.

The data used here were taken with a total of 18 fluorescence
telescopes located at three sites (‘‘Los Leones”,‘‘Los Morados” and
‘‘Coihueco”) between 1 December 2004 and 31 December 2007.
The number of ground stations grew in this period from about
530 to 1450. Compared to Hybrid-1 the data set above 10 EeV in-
creased in size by a factor �2.2.

The event reconstruction [16] is based on an end-to-end cali-
bration of the fluorescence telescopes [17], monthly models for
the atmosphere [18], and an average aerosol model based on local
atmospheric measurements [19]. The reconstruction of the longi-
tudinal profile is described in [20]. A correction of �1% for the
missing energy (energy carried by neutrinos or high energy
muons) is applied to the reconstructed calorimetric energy, corre-
sponding to the effective energy of primary photons [21].

The following quality cuts are applied to the collected events:

� number of phototubes in the fluorescence telescope triggered by
the shower P6;

� distance of closest approach of the reconstructed shower axis to
the surface detector station with the largest signal is <1.5 km,
and difference between the reconstructed shower front arrival
time at this station and the measured tank time is <300 ns;

� normalized v2
prof of the longitudinal shower profile fit [20] <6,

and ratio of v2
prof to v2

line < 0:9, where v2
line refers to a straight line

fit (the latter cut essentially rejects profiles with too few data
points);
� depth of shower maximum Xmax observed in the telescope field
of view (this cut may be relaxed in future to allow also the
search for deeply penetrating events with Xmax beyond the field
of view);

� minimum angle between the viewing direction of a triggered
pixel and the shower axis >15� (to reject events with a large
Cherenkov light contamination);

� primary energy E > f � EeV; f ¼ 2;3;5;10 (the analysis in Hybrid-
1 was restricted to f ¼ 10).

The criterion of Xmax being observed can introduce a bias against
the deeply penetrating photon primaries (e.g. for near-vertical
events). To reduce the dependence of the detector acceptance on
composition, fiducial volume cuts are applied:

� shower zenith angle > 35� þ g1ðEÞ

g1ðEÞ ¼
10�ðlg E=eV� 19:0Þ for lg E=eV 6 19:7;
7� for lg E=eV > 19:7;

�

� distance of telescope to shower core < 24 kmþ g2ðEÞ

g2ðEÞ ¼
12ðlg E=eV� 19:0Þ km for lg E=eV P 19:0;
6ðlg E=eV� 19:0Þ km for lg E=eV < 19:0:

�

The described cuts are identical to those from Hybrid-1 for
showers >10 EeV, but allow now for an extension of the energy
range down to 2 EeV.

To evaluate the detector acceptance as a function of energy for
different primary particles, simulations have been performed using
CORSIKA [22] with QGSJET01 [23] and FLUKA [24] as high- and
low-energy hadronic interaction models, respectively. The Monte
Carlo showers have been processed through a complete detector
simulation and reconstruction chain [16,25]. In Fig. 1 we show
the energy-dependent relative exposure obtained after trigger,
quality cuts, and fiducial volume cuts for primary photons, protons
and iron nuclei (normalized to 10 EeV protons). After fiducial vol-
ume cuts, the acceptance for photons is close to the acceptance
for nuclear primaries. Thus, the relative abundances of photon
and nuclear primaries are preserved to a good approximation. In
a similar way to Hybrid-1, we apply, for the derivation of an upper
limit on the photon fraction, an efficiency correction according to
the acceptances after fiducial volume cuts which is conservative
and independent of assumptions about the actual primary fluxes
(factor ‘‘�fvc”, see Appendix A).

Applying the selection cuts to the data, there remain
n0totalðE

c
thrÞ ¼ 2063;1021;436 and 131 events with energies greater

than Ec
thr ¼ 2;3;5 and 10 EeV, respectively. The label c in Ec

thr indi-
cates that the missing energy correction for photons has been ap-
plied. To obtain ntotalðEc

thrÞ from the total number of events
n0totalðE

c
thrÞ after fiducial volume cuts, those events need to be re-

jected where clouds may have disturbed the observation. The pres-
ence of clouds could change the efficiencies which are shown in
Fig. 1. Also, the reconstructed Xmax values may be affected. Partic-
ularly, clouds may obscure early parts of the shower profile such
that the remaining event profile looks deeply penetrating and,
hence, photon-like. Therefore we only use data where any distur-
bance by clouds can be excluded using information from the IR
cloud monitoring cameras [26,27]. In Hybrid-1 all events were indi-
vidually checked. As this is hardly feasible for the events in the
present data set (a full automatic processing of cloud data is in
preparation), the following approach is adopted. To determine
the efficiency �clc of passing the cloud cut we used the sample of
events with energy above 10 EeV. Accepting only events where
any disturbance by clouds could be excluded, 67 events out of
131 have been selected, corresponding to �clc ’ 0:51. We



lg (E/eV)
18 18.2 18.4 18.6 18.8 19 19.2 19.4

re
la

tiv
e 

ex
po

su
re

0

0.2

0.4

0.6

0.8

1

1.2

1.4 iron
proton
photon

lg (E/eV)
18 18.2 18.4 18.6 18.8 19 19.2 19.4

re
la

tiv
e 

ex
po

su
re

0

0.2

0.4

0.6

0.8

1

1.2

1.4
iron
proton
photon

lg (E/eV)
18 18.2 18.4 18.6 18.8 19 19.2 19.4

re
la

tiv
e 

ex
po

su
re

0

0.2

0.4

0.6

0.8

1

1.2

1.4 iron
proton
photon

Fig. 1. Relative exposure to primary photons, protons and iron nuclei, normalized
to protons at 10 EeV. Top panel requiring hybrid trigger, center panel after applying
quality cuts, bottom panel after applying fiducial volume cuts (see text). In order to
guide the eye polynomial fits are superimposed to the obtained values.
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Fig. 2. Closeup of the scatter plot of Xmax vs. energy for all events (blue dots) with
Xmax above 800 g cm�2 and energy above 2 EeV, after quality, fiducial volume and
cloud cuts. Red crosses show the 8 photon candidate events (see text). The solid red
line indicates the typical median depth of shower maximum for primary photons,
parameterized as Xc;med

max ¼ a � yþ b, for y ¼ lgðE=EeVÞ; y ¼ ½0;1:2�, where
a ¼ 100 g cm�2 and b ¼ 856 g cm�2. The dashed blue line results from simulations
of primary protons using QGSJET01. A fraction of 5% of the simulated proton
showers had Xmax values larger than indicated by the line. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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confirmed that this efficiency also holds at lower energy by apply-
ing the same criteria to a sub-set of �300 events at � 3 EeV. The
final number of ntotalðEc

thrÞ is then given by ntotalðEc
thrÞ ¼ �clc�

n0totalðE
c
thrÞ.

As the present data set above 2 EeV is about a factor �15 larger
than the one used in Hybrid-1, a different statistical method is ap-
plied to derive the photon limit. For the derivation of the limit in
Hybrid-1, each selected event was individually compared with
high-statistics photon simulation, using the respective primary en-
ergy and direction as simulation input. This method is CPU
demanding, and tailormade for a relatively small number of events.
We therefore adopt for our analysis the method applied in Ref. [2]
which needs as an input the total number of events, the number of
photon candidates (events having ‘‘photon-like” characteristics,
see below) and proper correction factors accounting for inefficien-
cies. The 95% c.l. upper limit F95

c ðEthrÞ on the fraction of photons in
the cosmic-ray flux above Ethr is then given by

F95
c ðEthrÞ ¼

n95
c-candðE

c
thrÞ

ntotalðEc
thrÞ

; ð1Þ

where n95
c-cand is the 95% c.l. upper limit on the number of photon

candidates and ntotal the total number of selected events. As it is
not known in advance whether photons indeed compose only a
negligible fraction of the cosmic-ray flux, we apply the missing en-
ergy correction appropriate for photons to all events and take here
ntotalðEc

thrÞ. This is conservative (larger value of F95
c ), since using the

missing energy correction for hadrons (factor ’1.07–1.14 [28,21])
would increase the total number of events above Ethr, i.e.
ntotalðEc

thrÞ < ntotalðEhad
thr Þ.

A scatter plot of Xmax vs. energy for all events above Ec
thr ¼ 2 EeV

with Xmax P 800 g cm�2 surviving quality, fiducial volume and
cloud cuts is shown in Fig. 2. Statistical uncertainties in individual
events are typically a few percent in energy and � 15—30 g cm�2 in
Xmax. Systematic uncertainties are �22% in energy [29] and
� 11 g cm�2 in Xmax [15].

The upper limit on the number of photon candidates n95
c-cand is gi-

ven by n95
c-cand ¼ n95

c-cand;obs=�obs, where n95
c-cand;obs is the 95% c.l. upper

limit on the number of photon candidates nc-cand;obs extracted (‘‘ob-
served”) from the data set and �obs is the corresponding efficiency.
nc-cand;obs is taken as the number of events which have the observed
Xmax above the median Xc;med

max of the distribution expected for pho-
tons of that energy and direction (‘‘photon candidate cut”). Addi-
tionally, on these particular events individual cloud checks have
been performed, and only events that pass this cloud check are fi-
nally considered as photon candidates. In Fig. 2, typical values of
Xc;med

max ðEÞ are indicated as a function of energy (solid red line). To
extract the specific value of Xc;med

max for each individual event,



Table 1
Characteristic parameters for the eight events surviving the photon candidate cut
(DXmax refers to the statistical uncertainty).

id Xmax ðg cm�2Þ DXmax ðg cm�2Þ Ec (EeV)

2051232 923 17 2.5
2053796 905 32 3.1
2201129 958 29 2.3
2566058 908 20 2.1
2798252 937 29 2.9
3478238 984 12 2.4
3554364 1042 12 2.5
3690306 912 27 2.5
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dedicated simulations with primary photons have been performed
for all potential candidate events, assuming the corresponding
energy and geometry.

There are nc-cand;obs ¼ 8;1;0;0 photon candidate events with
energies greater than 2, 3, 5 and 10 EeV, respectively. These candi-
date events are marked by red crosses in Fig. 2 and the event
parameters are listed in Table 1. As an illustration, the shower pro-
file of the candidate with the deepest Xmax is displayed in the left
panel of Fig. 3; in the right panel the measured Xmax value is shown
along with the results of the dedicated photon simulations.

We checked with simulations whether the observed number of
photon candidate events is significantly larger than the expecta-
tion in case of nuclear primaries only, i.e. whether primary photons
appear to be required to explain the photon candidates. The quan-
titative estimation of the background expected from nuclear
primaries suffers from substantial uncertainties, namely the uncer-
tainty of the primary composition in this energy range (a larger
background to photons would originate from lighter nuclear
primaries) and the uncertainty in the high energy hadronic interac-
tions models (for instance, reducing the proton-air cross-section
allows proton primaries to penetrate deeper into the atmosphere).
From simulations using QGSJET01 as the hadronic interaction
model, we found that the observed number of photon candidate
events is well within the number of background events expected
from a pure proton and a pure iron composition. For energies larger
than 2 EeV about 30 events are expected in the analyzed time win-
dow for proton and 0.3 for iron. The corresponding numbers above
3, 5, 10 EeV are about 12, 4, 1 events for proton and about 0.2, 0.1,
0.0 events for iron. Scenarios of a mixed composition, as also fa-
vored by our results on hXmaxi [15], can reproduce the observation.
]−2slant depth [g cm
700 800 900 1000 1100 1200 1

)]
−2

dE
/d

X 
[P

eV
/(g

 c
m

0

1

2

3

4

5

6

Fig. 3. Left panel: shower profile (black bullets) of the deepest Xmax candidate event in t
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We conclude that the observed photon candidate events may well
be due to nuclear primaries only. This also holds for the candidate
event with the largest Xmax shown in Fig. 3: proton showers with
comparable or larger Xmax value occur at a level of a few out of
thousand simulated events.

We now continue to derive the upper limit to the photon frac-
tion. n95

c-cand;obs is calculated from nc�cand;obs using the Poisson distri-
bution and assuming no background, i.e. nc-cand;obs is not reduced by
subtracting any event that may actually be due to nuclear prima-
ries. This procedure represents the most conservative approach
as it maximizes the value of n95

c-cand;obs. The efficiency �obs of photons
passing all cuts is given by �obs ¼ �fvc�pcc where �fvc ’ 0:72—0:77
(see Table 2) comes from the acceptance after fiducial volume cuts
(see Appendix) and, by construction, �pcc ¼ 0:50 is given by the
photon candidate cut above the median of the Xmax distribution
for photons. Thus, the upper limit is calculated according to

F95
c ðEthrÞ ¼

n95
c-cand;obsðE

c
thrÞ 1

�fvc

1
�pcc

n0totalðE
c
thrÞ�clc

: ð2Þ

Applied to the data, upper limits of 3.8%, 2.4%, 3.5% and 11.7% on the
fraction of cosmic-ray photons above 2, 3, 5 and 10 EeV are ob-
tained at 95% c.l.. Table 2 provides a summary of the quantities used
in the derivation of the integral upper limits.

We studied the robustness of the results against different
sources of uncertainty. Varying individual event parameters or
the selection criteria, within the experimental resolution, leaves
the results essentially unchanged. Uncertainties in the determina-
tion of the efficiency factors used in Eq. (2) are estimated to corre-
spond to an uncertainty DF95

c =F95
c ’ 0:15. Increasing (reducing) all

reconstructed Xmax values by DXsyst
max ¼ 11 g cm�2 [15] changes the

number of photon candidates above 2 EeV by þ1ð	0Þ and above
3 EeV by 	0ð�1Þ, while it does not affect the higher energies.
The limits then become 4.1% (3.8%) above 2 EeV and 2.4% (1.5%)
above 3 EeV. The energy scale Ethr which the limit F95

c ðEthrÞ refers
to, has a 22% systematic uncertainty [29]. Hence, the numerical
values of the limits F95

c derived here refer to an effective energy
threshold Eeff

thr ¼ kE 
 Ethr, with kE ¼ 0:78 . . . 1:22. Related to an in-
crease (reduction) of the energy scale is a small upward (down-
ward) shift of the Xmax value used for the photon candidate cut,
leading to stronger (weaker) criteria for an event to pass this cut.
This shift amounts to � 7 g cm�2 for a 22% change of the energy
scale. Finally, an uncertainty < 10 g cm�2 on the simulated photon
Xmax values comes from the need to extrapolate the photonuclear
300
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Table 2
Summary of the quantities used in the derivation of the integral upper limits on the
photon fraction for Ec

thr ¼ 2;3;5, and 10 EeV. Not listed are the efficiencies �clc ¼ 0:51
and �pcc ¼ 0:50 which do not depend on Ec

thr.

Ec
thr (EeV) nc-cand;obs n95

c-cand;obs n0total �fvc F95
c (%)

2 8 14.44 2063 0.72 3.8
3 1 4.75 1021 0.77 2.4
5 0 3.0 436 0.77 3.5

10 0 3.0 131 0.77 11.7
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Fig. 4. Upper limits on the photon fraction in the integral cosmic-ray flux for
different experiments: AGASA (A1, A2) [3,4], AGASA-Yakutsk (AY) [31], Yakutsk (Y)
[32], Haverah Park (HP) [5,6]. In black the limits from the Auger surface detector
(Auger SD) [2] and in blue the limits above 2, 3, 5, and 10 EeV derived in this work
(Auger HYB). The shaded region shows the expected GZK photon fraction as derived
in [7]. Lines indicate predictions from top–down models, see [8,33] and [34]. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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cross-section to high energy [30]. Adding in quadrature the dis-
cussed uncertainties in Xmax gives an effective total uncertainty
of � 16 g cm�2. Increasing (reducing) all reconstructed Xmax values
by this amount changes the number of photon candidates above 2
and 3 EeV by þ3ð	0Þ and by +1 (�1). Accordingly the limits then
become 4.8% (3.8%) above 2 EeV and 3.1% (1.5%) above 3 EeV, while
the limits above 5 and 10 EeV are unchanged.

3. Discussion

The derived upper limits are shown in Fig. 4 along with previous
experimental limits and model predictions (see Ref. [34] for a re-
view and references). These new bounds are the first ones at ener-
gies below 10 EeV and, together with Hybrid-1, the only ones
obtained so far from fluorescence observations (all other limits
coming from ground arrays). The results complement the previous
constraints on top–down models from Auger surface detector data.
It should be noted that due to the steep flux spectrum, even the
previous Auger bound of 2% above 10 EeV only marginally con-
strains the photon contribution above lower threshold energies
(for instance, even above 5 EeV, � 75% of the events are in the pre-
viously untested energy range of 5–10 EeV).

The photon limits derived in this work also help to reduce cer-
tain systematic uncertainties in other analyses of air shower data
such as (i) energy spectrum: the Auger method of reconstructing
the energy spectrum does not suffer from a large contamination
from photons at EeV energies; (ii) nuclear primary composition:
the interpretation of observables sensitive to the primary particle
(for instance the observed average Xmax) in terms of a nuclear pri-
mary composition can only be marginally biased by contributions
from photons; (iii) proton-air cross-section: the possible contami-
nation from photons was one of the dominant uncertainties for
deriving the proton-air cross-section [13,14], and this uncertainty
is now significantly reduced (to � 50 mb for data at EeV energies,
which corresponds to a relative uncertainty of �10%).

In future photon searches, the separation power between pho-
tons and nuclear primaries can be enhanced by adding the detailed
information measured with the surface detectors in hybrid events.
For an estimate of the future sensitivity of Auger to photons see
Ref. [34]. The information on event directions can also be used in
future analyses; for instance, an excess flux of photons from the
direction of the galactic center (e.g. Ref. [10]) can be searched for.
Acknowledgements

The successful installation and commissioning of the Pierre Au-
ger Observatory would not have been possible without the strong
commitment and effort from the technical and administrative staff
in Malargüe.

We are very grateful to the following agencies and organiza-
tions for financial support: Comisión Nacional de Energía Atómica,
Fundación Antorchas, Gobierno De La Provincia de Mendoza,
Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas,
in gratitude for their continuing cooperation over land access,
Argentina; the Australian Research Council; Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq), Financiadora
de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do
Estado de Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa
do Estado de São Paulo (FAPESP), Ministério de Ciência e Tecnolo-
gia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV
KJB300100801 and KJB100100904, MSMT-CR LA08016, LC527,
1M06002, and MSM0021620859, Czech Republic; Centre de Calcul
IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS),
Conseil Régional Ile-de-France, Département Physique Nucléaire
et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences de
l’Univers (SDU-INSU/CNRS), France; Bundesministerium für Bil-
dung und Forschung (BMBF), Deutsche Forschungsgemeinschaft
(DFG), Finanzministerium Baden-Württemberg, Helmholtz-
Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium
für Wissenschaft und Forschung, Nordrhein-Westfalen, Ministeri-
um für Wissenschaft, Forschung und Kunst, Baden-Württemberg,
Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero
dell’Istruzione, dell’Università e della Ricerca (MIUR), Italy; Conse-
jo Nacional de Ciencia y Tecnología (CONACYT), Mexico; Ministerie
van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (NWO), Stichting voor Funda-
menteel Onderzoek der Materie (FOM), Netherlands; Ministry of
Science and Higher Education, Grant Nos. 1 P03 D 014 30, N202
090 31/0623, and PAP/218/2006, Poland; Fundação para a Ciência
e a Tecnologia, Portugal; Ministry for Higher Education, Science,
and Technology, Slovenian Research Agency, Slovenia; Comunidad
de Madrid, Consejería de Educación de la Comunidad de Castilla La
Mancha, FEDER funds, Ministerio de Ciencia e Innovación, Xunta de
Galicia, Spain; Science and Technology Facilities Council, United
Kingdom; Department of Energy, Contract No. DE-AC02-
07CH11359, National Science Foundation, Grant No. 0450696,
The Grainger Foundation USA; ALFA-EC/ HELEN, European Union
6th Framework Program, Grant No. MEIF-CT-2005-025057, and
UNESCO.
Appendix A. Acceptance correction

The fraction of photons fc in the cosmic-ray flux integrated
above an energy threshold Ethr is given by
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fcðE P EthrÞ ¼
R

Ethr
UcðEÞdER

Ethr
UcðEÞdEþ

P
i

R
Ethr

UiðEÞdE
ðA:1Þ

where UcðEÞ denotes the differential flux of photons and
UiðEÞ; i ¼ p;He; . . . the fluxes of nuclear primaries.

The fraction of photons f det
c as registered by the detector is given

by

f det
c ðE P EthrÞ ¼

R
Ethr

AcðEÞUcðEÞdER
Ethr

AcðEÞUcðEÞdEþ
P

i

R
Ei

AiðEÞUiðEÞdE
ðA:2Þ

with AcðEÞ and AiðEÞ being the detector acceptances to photons and
nuclear primaries, respectively. Ei denotes the effective threshold
energy for primary nucleus i.

Thus, the upper limit f ul;det
c obtained to the registered data,

f ul;det
c > f det

c , needs to be corrected to resemble an upper limit on
the fraction of photons in the cosmic-ray flux. For the present anal-
ysis, a conservative and model-independent correction is applied
as follows. The approach adopted here extends the one introduced
in Hybrid-1, as we now also treat the case of AcðEÞ–const:

Ethr corresponds to the analysis threshold energy assuming pri-
mary photons. Ei is related to Ethr by the ratios of the missing en-
ergy corrections mc (for photons) and mi (for nuclear primaries),

Ei ¼ Ethr �
mi

mc
: ðA:3Þ

Since mc ’ 1:01 [21] and mi ’ 1:07—1:14 [28], Ei > Ethr. Thus,
replacing Ei by Ethr,

f det
c ðE P EthrÞ >

R
Ethr

AcðEÞUcðEÞdER
Ethr

AcðEÞUcðEÞdEþ
P

i

R
Ethr

AiðEÞUiðEÞdE

P

R
Ethr

Amin
c UcðEÞdER

Ethr
Amin

c UcðEÞdEþ
P

i

R
Ethr

AiðEÞUiðEÞdE
; ðA:4Þ

where Amin
c refers to the minimum value of AcðE P EthrÞ and using

a=ðaþ bÞP a0=ða0 þ bÞ for a P a0 P 0 and b > 0.
Next, the acceptance ratio �iðEÞ ¼ Amin

c =AiðEÞ is introduced,

f det
c ðE P EthrÞ >

R
Ethr

Amin
c UcðEÞdE

R
Ethr

Amin
c UcðEÞdEþ

P
i

R
Ethr

Amin
c
�iðEÞ

UiðEÞdE
: ðA:5Þ

From Fig. 1 the minimum acceptance ratio �minðEthrÞ 6 �iðE P EthrÞ
can be extracted for each threshold energy Ethr. In the current anal-
ysis, �minðEthrÞ � �fvcðEthrÞ ’ 0:72;0:77;0:77;0:77 for
Ethr ¼ 2;3;5;10 EeV. Hence, it follows:

f det
c ðE P EthrÞ >

R
Ethr

UcðEÞdER
Ethr

UcðEÞdEþ 1
�fvc Ethrð Þ

P
i

R
Ethr

UiðEÞdE

> �fvcðEthrÞ �
R

Ethr
UcðEÞdER

Ethr
UcðEÞdEþ

P
i

R
Ethr

UiðEÞdE

¼ �fvcðEthrÞ � fcðE P EthrÞ; ðA:6Þ

where it was used that 1
�fvcðEthrÞ

> 1.

Consequently, an upper limit Ful
c to the fraction of photons in

the cosmic-ray flux can conservatively be calculated as
Ful
c ¼ f ul;det

c

.
�fvc > f det

c

.
�fvc > fc: ðA:7Þ

The upper limit obtained this way does not depend on assumptions
about the differential fluxes UcðEÞ and UiðEÞ.
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