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Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing
observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric
model predicated on meteorological measurements and numerical weather predictions. GDAS provides
altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure,
and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger
Observatory are described. By comparisons with radiosonde and weather station measurements obtained
on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction new program was the measurement of atmospheric profiles with
The Pierre Auger Observatory [1,2] is located near the town of
Malargüe in the province of Mendoza, Argentina. At the site, at
the base of the Andes mountains, two well-established measure-
ment techniques are combined to measure extensive air showers
with energies above some 1017 eV. The hybrid detector consists
of a surface detector (SD) array and five fluorescence detector
(FD) buildings. Each of the slightly more than 1600 SD stations is
a water-filled Cherenkov detector, measuring the secondary parti-
cles of air showers that reach the ground. The detectors of the array
are spaced by 1.5 km (750 m in a small infill area in the western
part of the array) and provide the lateral particle distribution
around a shower core. Four FD buildings comprise six telescopes
each and one FD enhancement installation consists of three tele-
scopes. In each FD telescope, the UV light emitted by excited nitro-
gen molecules along the shower track is collected by a large
segmented mirror and reflected onto a camera composed of
440 PMTs. With this measurement, the geometry and the longitu-
dinal profile of the shower can be obtained.

For the reconstruction of extensive air showers, the optical prop-
erties of the atmosphere at the site of the observatory have to be
known. This is particularly true for reconstructions based on data
obtained with the fluorescence technique [3], but also impacts
upon data collected with the surface detectors [4]. The detection
of clouds is an important task of the atmospheric monitoring sys-
tems. Clouds can obstruct or – through scattering of the intense
Cherenkov light – amplify the apparent fluorescence light before
it reaches the FD. To eliminate data recorded in cloudy conditions
from physics analyses, lidar stations and infrared cloud cameras
are installed at each FD station of the Pierre Auger Observatory.
These instruments scan the fields of view of the fluorescence detec-
tors several times per hour during data taking periods to measure
the cloud coverage and the base height of clouds [5]. The vertical
profile of the aerosol optical depth is measured once every hour
using vertical laser shots from two facilities near the center of the
array. Using the calibrated laser energy and the amount of light
scattered out of the beam towards the FDs, the amount of aerosols
can be estimated [3]. Weather conditions near ground, and the
height-dependent atmospheric profiles of temperature, pressure
and water vapor pressure are relevant for several Auger Observa-
tory measurements. E.g., these parameters affect the production
of fluorescence light by excited nitrogen molecules at the shower
track, and the Rayleigh scattering of the light between the air
shower and detector. Atmospheric conditions are measured by
intermittent meteorological balloon radio soundings. Additionally,
ground-based weather stations measure surface data continuously.
The profiles from the weather balloons were averaged to obtain lo-
cal models, called (new) Malargüe Monthly Models [3]. Since March
2009, the atmospheric monitoring system has been upgraded with
the implementation of a rapid monitoring system [6]. Part of the
radio soundings shortly after the detection of particularly high-en-
ergy air showers, a system called Balloon-the-Shower (BtS). This en-
ables a high-quality reconstruction of the most interesting events.

However, performing radio soundings and applying these data
to air shower analyses is not straightforward. Very critical aspects
are the time of the weather balloon ascent and the data validity
period. Furthermore, performing radio soundings, in particular
within BtS, imposes a large burden on the collaboration. Therefore,
we investigate the possibility of using data from the Global Data
Assimilation System (GDAS), a global atmospheric model, for the
site of the Auger Observatory. The data are publicly available free
of charge via READY (Real-time Environmental Applications and
Display sYstem). Each data set contains all the main state variables
with their dependence on altitude with a validity period of
180 min for each data set.

Key aspects of the impact of the profiles of atmospheric state
variables on the development and detection of extensive air show-
ers are discussed briefly (Section 2). We motivate the necessity of
more reliable atmospheric profiles by a discussion about the data
validity period of weather balloons (Section 3), describe the con-
tent and processing of the GDAS data (Section 4) and compare
them to local measurements (Section 5). The new atmospheric
data are implemented in the data processing and simulation
framework of the Auger Observatory for an analysis of recon-
structed air showers (Section 6).
2. Impact of atmospheric state variables on the development
and detection of extensive air showers

Varying atmospheric conditions in terms of state variables like
temperature, pressure and humidity, may alter the development
and, in particular, the detection of extensive air showers. Here, dif-
ferent aspects relevant to the analysis of air showers at the Pierre
Auger Observatory are discussed.

The air fluorescence emission excited by the passage of an air
shower depends on pressure, temperature, and humidity [7]. The
collisional de-excitation of excited nitrogen molecules by other
molecules of the atmosphere like nitrogen, oxygen, and water va-
por counteracts the de-excitation of the molecules via radiation.
These quenching processes are pressure and temperature depen-
dent as described by kinetic gas theory, and dependent on the
water vapor content in air. Furthermore, the collisional cross sec-
tions for nitrogen–nitrogen and nitrogen–oxygen collisions follows
a power law in temperature, r / Ta. Most recent experimental data
indicate a negative exponent a. In reconstructions of air shower
data from the Auger Observatory, the fluorescence yield with its
dependence on atmospheric conditions is described using experi-
mental results from the AIRFLY experiment [8,9]. The absolute cal-
ibration of the main fluorescence emission at 337.1 nm is taken
from Nagano et al. [10]. The dependence of the fluorescence yield



P. Abreu et al. / Astroparticle Physics 35 (2012) 591–607 595
on atmospheric conditions translates to an atmospheric depen-
dence of the reconstructed cosmic ray energy and the depth of
shower maximum, the latter being an indicator for the mass of
the primary cosmic ray particle. Even short-term variations of
the atmosphere may introduce noticeable effects on these recon-
structed parameters.

Besides the fluorescence emission, the pressure, temperature
and humidity profiles of the atmosphere are important for other
aspects of the reconstruction of data collected by the FD. These in-
clude the conversion between geometrical altitudes and atmo-
spheric depth; the treatment of Cherenkov emission from air
showers; and the transmission of the produced photons from the
air shower to the FD:

� The air shower development is governed by the interactions and
decays of the secondary particles. These processes are largely
determined by the atmospheric depth X, the total column den-
sity of atmospheric matter traversed by the air shower at a
given point. X is calculated by integrating the density of air from
the top of the atmosphere, along the trajectory of the shower
through the gas. The observation of the longitudinal shower
profiles by fluorescence telescopes is based on geometrical alti-
tudes h. Thus, geometrical altitudes must be converted into
atmospheric depth by taking into account the actual air density
profile q(h) at the site of the Observatory, and the zenith angle h
of the trajectory of the shower,
Xðh0Þ ¼
1

cos h

Z 1

h0

qðhÞdh: ð1Þ
� The secondary particles in extensive air showers travel faster
than the speed of light in air. As a result, they induce the emis-
sion of Cherenkov light in a narrow, forward-beamed cone.
Some of this light in the UV range may be – depending on the
shower geometry relative to the FD telescope – detected
together with the fluorescence light. To effectively subtract
the Cherenkov photons from the total number of photons
detected, the amount of Cherenkov light emitted by the air
shower must be estimated. The Cherenkov yield depends on
the refractive index n of the air, which itself depends on the
wavelength of the emitted light as well as the temperature,
pressure and humidity [11,12]. Parameterized formulae for
the refractive index of dry air, CO2 and water vapor are used
to calculate a total refractive index,
ntot � 1 ¼ ðndry � 1Þ �
qdry

qair
þ ðnCO2 � 1Þ �

qCO2

qair

þ ðnw � 1Þ � qw

qair
: ð2Þ
Q

maxQ
The refractive index of each component is weighted with its den-
sity, which can be calculated using the number density and the mo-
lar mass of the constituent. Finally, the effect of the decreasing
number density with altitude is parameterized [13] as a function
of pressure p and temperature # in �C,
Q

nair � 1 ¼ ðntot � 1Þ � p � 1þ p � ð61:3� #Þ � 10�10

96095:4 � ð1þ 0:003661 � #Þ : ð3Þ

min
� Between the production of fluorescence and Cherenkov light in
the air shower and the detection at the FD telescope, the light is
scattered by molecules in the atmosphere. The transmission of
light depends on the Rayleigh cross section [14],
t start
balloon t balloon

burst t validity
end tt start

validity

rRðk;p; T; eÞ ¼

24p3

k4 � N2 �
n2

air � 1
n2

air þ 2

� �2

� Fairðk;p; eÞ; ð4Þ
Fig. 1. Schematic drawing of the procedure to find an extended time period of
validity for data from weather balloons based on data measured by ground-based
weather stations for typical atmospheric conditions. For details see text.
where k is the wavelength in m and N the atmospheric molecular
density, measured in molecules per m�3. Fair is the King factor that
accounts for the anisotropy in the scattering introduced by non-
spherical scatter centers, which depends slightly on pressure and
humidity. The refractive index nair depends on several atmospheric
state variables, see Eq. (3).

The last three itemized effects on the reconstruction of
extensive air showers can be taken sufficiently into account by
using a proper description of the atmospheric state, e.g., the local
atmospheric monthly models derived from multi-year meteorolog-
ical balloon radio soundings (see Section 3). They affect the recon-
struction results of air shower data, mainly primary energy and
position of shower maximum, only by marginally broadening the
uncertainties without any significant systematic shifts.

However, in the case of the earlier discussed fluorescence emis-
sion process and its atmospheric variability, systematic alterations
of the reconstruction results may be seen together with increased
uncertainties, even for short-term variations of the atmospheric
parameters. Finally, after this discussion on atmospheric influences
on FD analysis, it should be noted that uncertainties in the surface
detector signals introduced by varying atmospheric conditions
close to the ground are well understood and quantified [4].
3. Validity of radio soundings

Since August 2002, meteorological radio soundings have been
performed above the Pierre Auger Observatory to measure alti-
tude-dependent profiles of atmospheric variables, mainly pressure,
temperature, and relative humidity. Regular measurements were
done until December 2008 in order to collect data for all months.
After applying selection criteria, 261 profiles from the middle of
2002 until the end of 2008 could be used to build the new Malar-
güe Monthly Models [3]. Starting in March 2009, the radio sound-
ings became part of the rapid atmospheric monitoring system
known as the Balloon-the-Shower (BtS) program [6,15]. A fast on-
line air shower reconstruction with subsequent quality selections
is used to trigger the launch of a weather balloon by a local
technician.

A procedure was developed to find the period of time for which
the data measured during the ascent of a weather balloon give a
good description of the atmospheric conditions at the Pierre Auger
Observatory. The 3-dimensional atmospheric conditions before
and after a weather balloon ascent are unknown but data from lo-
cal weather stations may help to identify stable periods or trends
towards rapidly changing conditions. Every active weather station
is used as an independent source of data, no matter how many sta-
tions contribute information during the period of the weather bal-
loon ascent. For each station, the maximum variations of the
temperature, the pressure, and the humidity are obtained for the
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duration of the corresponding weather balloon launch defined as
the time between the start of the weather balloon and the burst
of the balloon, see Fig. 1.

The difference DQ – with Q being temperature T, pressure p, or
water vapor pressure e – between maximum (Qmax) and minimum
(Qmin) values of every station during weather balloon flights can be
seen in Fig. 2. From these histograms, periods with very stable con-
ditions (DQ < DQlow), with typical conditions, and with unstable
conditions are defined for each quantity Q (see caption of Fig. 2).

For typical conditions, the data of the weather stations are
scanned before and after the time of the balloon ascent for each
quantity Q, and the time at which any quantity leaves the range be-
tween Qmin and Qmax is determined. This time period gives the
validity time period of the radio sounding for every active weather
station. For launches performed during very stable conditions, the
differences in weather station data are quite small. Thus, only
small variations beyond the narrow interval would indicate the
end of validity, imposing very strict cuts on this type of launch.
For unstable conditions, the large DQ values could result in quite
long extended periods of validity. Since both cases result in inap-
propriate validity periods, two special criteria for each quantity
are found in addition to the typical case. For very stable conditions,
Qmax/min are redefined to eQ max =min ¼ Q � Q low=2, where Q is the
mean of the interval Qmin to Qmax and Qlow is 4 K in the case of tem-
perature data, 1 hPa for pressure data, and 0.8 hPa for water vapor
pressure data. After definition of eQ max =min, the same procedure as
for the typical conditions is applied. In case of unstable conditions,
the validity time period is set to the time period during which the
weather balloon ascended.

The average duration of a weather balloon ascent was about
100 min. A validity time period of 200 min on average is given by
the local weather station data as described above. Applying this
procedure, about half of the cosmic ray events which triggered
the BtS program are observed at times not covered by the period
of validity of the corresponding balloon launch.

Until its termination at the end of 2010, many details of local
atmospheric conditions could be studied with the BtS program.
The obtained atmospheric profiles can be applied to improve the
reconstruction of the most interesting, high-energy air showers.
However, the data are not suitable for application to the standard
reconstruction because of their short period of validity. Only very
few air shower events would be covered by atmospheric profiles
from radio soundings.
4. Global Data Assimilation System (GDAS)

In the field of numerical weather prediction, data assimilation is
the adjustment of the development within a model to the real
behavior of the atmosphere as found in meteorological observa-
tions [16]. The atmospheric models describe the atmospheric state
at a given time and position. Three steps are needed to perform a
full data assimilation:

1. Collect data from meteorological measuring instruments placed
all over the world. These instruments include weather stations
on land, ships, and airplanes as well as radiosondes and weather
satellites.

2. Use a short-term forecast from a previous iteration of the
numerical weather prediction together with the measurements
to describe the current situation. This additional information is
needed because the available observations alone are not suffi-
cient. The forecast or first guess adds more information to the
system, namely all knowledge of atmospheric behavior
expressed in mathematical model equations. The models use
non-linear differential equations based on thermodynamics
and fluid dynamics.

3. Adjust the model output to the measured atmospheric state.
The resulting 3-dimensional image of the atmosphere is called
analysis.

A schematic showing the principle of data assimilation is given
in Fig. 3. At a given time t0, the observations provide the value of a
state variable. A model forecast for this variable from a previous
iteration exists for the same time. The analysis step combines
observation and forecast to describe the current state better than
the forecast. This analysis is the initial point for the weather pre-
diction model to create the forecast for a later time t1.



Table 1
Vertical levels of pressure surfaces. The actual height for each pressure level is given
in the data file. For reference, the USStdA height is also listed in this table. Pressure
level 0 contains the surface values.

Level Pressure [hPa] Height [km] Level Pressure [hPa] Height [km]

23 20 26.4 11 600 4.2
22 50 20.6 10 650 3.6
21 100 16.2 9 700 3.0
20 150 13.6 8 750 2.5
19 200 11.8 7 800 1.9
18 250 10.4 6 850 1.5
17 300 9.2 5 900 1.0
16 350 8.2 4 925 0.8
15 400 7.2 3 950 0.5
14 450 6.3 2 975 0.3
13 500 5.6 1 1000 0.1
12 550 4.9 0 Surface
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4.1. GDAS data

The Global Data Assimilation System [18] is an atmospheric
model developed at NOAA’s6 National Centers for Environmental
Prediction (NCEP). It provides an analysis four times a day (0, 6,
12, and 18 UTC) and a 3-, 6- and 9-hour forecast. The numerical
weather prediction model used in the GDAS is the Global Forecast
System (GFS).

3-hourly data are available at 23 constant pressure levels – from
1000 hPa (roughly sea level) to 20 hPa (�26 km) – on a global 1�-
spaced latitude-longitude grid (180� by 360�). Each data set is com-
plemented by data for the surface level. The data are stored in
weekly files and made available online [18]. In Table 1, the level
indices corresponding to each data level are listed. For reference,
the altitude from the US Standard Atmosphere 1976 (USStdA)
[19] is also given in the table. The actual height of the pressure le-
vel is stored in the data file. GDAS data are available starting Janu-
ary 2005. There are two periods without data in the sets. The first
two weeks of May 2005 and weeks 3 and 4 of November 2005 are
missing. Other than that, the record is complete up to the present
time (end of November 2011).

Because of the lateral homogeneity of the atmospheric variables
across the Auger array [3], only one location point is needed to de-
scribe the atmospheric conditions. In Fig. 4, the available GDAS grid
points are marked as red crosses on a map together with a map of
the surface and fluorescence detectors of the Auger Observatory.
The grid point at 35� south and 69� west was chosen, at the
north-eastern edge of the surface detector array. The two points
to the west of the array are in the foothills of the Andes mountains
and therefore not suitable. The point to the south-east of the array
is quite far away and with a surface height of 1685 m a.s.l., it is also
too high. Nevertheless, the profiles at this point are very similar to
those at the chosen point, on average differing by less than 1 �C in
temperature and less than 0.3 hPa in water vapor pressure at all
altitudes, confirming the homogeneity.

The height at which the surface data are given changes over the
years for the selected grid point. Starting in January 2005, the sur-
face altitude is 1831.29 m above sea level. On May 31, 2005, the
surface height changes to 1403.38 m, and on August 22, 2006 it
goes down further to 1328.68 m and stays within a few centime-
ters of this value until July 27, 2010, when it changes to
1404.65 m. In Fig. 5, the surface height provided by the GDAS data
sets is shown between January 2005 and December 2010. For ref-
erence, the altitudes of the lowest SD tank (1331.05 m) and the
highest and lowest FD buildings (1712.3 m and 1416.2 m) are also
shown. The reasons for these changes are regular improvements of
6 National Oceanic and Atmospheric Administration.
the models and calculations used to produce the GDAS profiles, or
resolution changes in the meteorological model [20]. These
changes can occur again in the future, so the surface height of
the data has to be monitored for undesired changes [21].

For air shower analysis, only data above ground level in Malar-
güe are interesting. Therefore, we only use data from the surface
and from pressure levels 6 and above. The data from beginning
of January to the end of May 2005 have a surface height of around
1800 m. This is even above the height of the highest FD building at
Coihueco. We decided not to attempt an extrapolation down to the
actual ground level of around 1300 m and discard these data.
Therefore, the first data set we use is from June 1, 2005 at 0:00
UTC.

4.2. Preprocessing of data

For air shower analyses, several types of information are stored
in databases such as the one describing the state variables of the
atmosphere. It contains values for temperature, pressure, relative
humidity, air density, and atmospheric depth at several altitude
levels. The first three quantities and the altitude are directly avail-
able in the GDAS data. Air density and atmospheric depth must be
calculated. The surface data contain ground height, pressure at the
ground, and relative humidity 2 m above ground. Two temperature
values are given, one at the surface and one 2 m above ground. We
decided to use the latter since we use it together with the relative
humidity, which is also given 2 m above ground, to calculate water
vapor pressure.

In the GDAS data, the altitude is given in geopotential meters
with respect to a geoid (mean sea level). In the air shower analysis
framework of the Auger Observatory, geometric heights with re-
spect to the WGS-84 ellipsoid are used. To move from geoid to
ellipsoid, a constant value of 26 m that arises from the geographic
location of the Auger Observatory must be added to the height val-
ues of the model. The second step is to convert from geopotential
height h to geometric altitude z (both measured in m),

zðh;UÞ ¼ ð1þ 0:002644 � cosð2UÞÞ � hþ ð1þ 0:0089

� cosð2UÞÞ � h2

6245000
; ð5Þ

where U is the geographical latitude [22].
To calculate the air density, the relative humidity must be con-

verted into water vapor pressure, the partial pressure of water in
air in Pa. This conversion depends on air temperature. The follow-
ing approximation of the empirical Magnus formula is used in
these calculations:

e ¼ u
100%

� 6:1070 � exp
17:15 � #
234:9þ #

� �
; # P 0 �C; ð6Þ

e ¼ u
100%

� 6:1064 � exp
21:88 � #

265:5þ #

� �
; # < 0 �C; ð7Þ

where u is the relative humidity in % and # is the temperature in �C.
Now, the air density in kg m�3 can be calculated with

q ¼ p �Mair

R � T ; ð8Þ

where p is the pressure in Pa, T is the temperature in K, Mair is the
molar mass of air in kg mol�1 and R is the universal gas constant
8.31451 J K�1 mol�1. Moist air can be separated into three compo-
nents to calculate its molar mass: dry air, water vapor and carbon
dioxide. The molar mass of moist air is the sum of the molar masses
of the components, weighted with the volume percentage of that
component,

Mair ¼ Mdry �udry þMw �uw þMCO2 �uCO2
: ð9Þ
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The molar masses for dry air, water vapor and CO2 are 0.02897,
0.04401 and 0.01802 kg mol�1, respectively. The volume percentage
of CO2 is taken as 385 ppmv, the percentage of water uw is the par-
tial pressure e of water vapor divided by the pressure p, and dry air
makes up the rest, udry ¼ 1�uw �uCO2

. The atmospheric depth can
be calculated by integrating the air density in kg m�3 downward
along a vertical track in the atmosphere, starting at infinity

Xðh0Þ ¼
Z 1

h0

qdh: ð10Þ

Here, the atmospheric depth is calculated in kg m�2. In the astro-
particle community, the unit g cm�2 is more common and will be
used in this paper.

Since the GDAS data only go up to around 25–30 km, we have to
approximate the atmospheric depth at the top of the data profile
using X = p/g and integrate numerically from that height down to
ground level. g is the gravitational acceleration with dependence
on altitude and geographical latitude [23],

gðh;UÞ ¼ g0ðUÞ � ð3:085462 � 10�4 þ 2:27 � 10�7 � cosð2UÞÞ

� hþ ð7:254 � 10�11 þ 1:0 � 10�13 � cosð2UÞÞ � h2

� ð1:517 � 10�17 þ 6 � 10�20 � cosð2UÞÞ � h3
; ð11Þ

where g is in cm s�2 and g0(U) is the acceleration at sea level with
dependence on latitude,

g0ðUÞ ¼ 980:6160 � ð1� 0:0026373 � cosð2UÞ þ 0:0000059

� cos2ð2UÞÞ: ð12Þ

The integration is done by interpolating the density every 200 m
and using the trapezoidal rule to approximate the integral.

For the simulation and reconstruction of air showers, the
description of the atmospheric parameters should ideally range
from ground level to the top of the atmosphere. GDAS provides
data between about 1400 and 30,000 m. All profiles are extended
up to 100,000 m – the approximate boundary to outer space –
using the US Standard Atmosphere 1976 [19] which describes
the conditions above 30,000 m reasonably well. Below 1400 m,
pressure, atmospheric depth, density, and water vapor pressure
are exponentially extrapolated down to 1000 m based on the low-
est two data points. The temperature profile is extrapolated line-
arly. Both extensions are outside the field of view of all FD stations.
5. GDAS vs. local measurements

To validate the quality of the GDAS data and to verify its appli-
cability for air shower reconstructions at the Auger Observatory,
GDAS data are compared with local measurements – atmospheric
soundings with weather balloons and ground-based weather sta-
tions. The new Malargüe Monthly Models (nMMM) are also shown
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in some comparisons as a reference since they were the standard
profiles used in reconstructions until recently.

5.1. GDAS vs. soundings with weather balloons

Local atmospheric soundings have been performed above the
array of the observatory since 2002, but not on a regular basis. In
the beginning, several week-long campaigns of launches were per-
formed. Then, a pre-determined schedule was used to coordinate
launches during and between dark periods with FD data taking
and finally, with the BtS program, soundings are triggered by par-
ticularly high-energy events during FD data taking only. Most of
the balloons were launched from the Balloon Launching Station
(BLS, see Fig. 4). To provide a set of atmospheric data for every
measured air shower, the soundings were averaged to form
monthly mean profiles. The current version of these Malargüe
Monthly Models (nMMM) were compiled in early 2009. The mod-
els on average describe the atmosphere reasonably well, but show
considerable fluctuations when compared to the actual sounding
data [3]. The uncertainties of the profile for each variable are given
by the standard error of the variation within each month together
with the absolute uncertainties of the sensors measuring the corre-
sponding quantity. For atmospheric depth profiles, a piecewise fit-
ting procedure is performed to ensure a reliable application of
these parameterizations to air shower simulation programs. An
additional uncertainty is included which covers the quality of the
fitting procedure.

In Fig. 6, the GDAS data are compared with the measured radio-
sonde data between 2005 and 2008. The comparison between the
radiosonde data and the monthly mean profiles is also shown.
The monthly mean profiles are averaged from the sounding data
until end of 2008, thus, they fit local sounding data of this period
very well, see red squares in Fig. 6. The error bars denote the RMS
of the differences at each height. The wave-like shape in the
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Fig. 6. Difference of measured radiosonde data and GDAS models (black dots) and month
2008. (For interpretation of the references to color in this figure legend, the reader is re
difference graph for the atmospheric depth X is driven by the
piecewise parameterization of X in the nMMM. Above around
5 km, the GDAS data deviate only marginally from the measured
data (black dots in Fig. 6). Closer to the ground, slightly larger differ-
ences become apparent. The measured temperature is consistently
higher than the model temperature. However, this might be caused
by two problems acting in the same direction. For our local radio
soundings, the temperature sensor might be quite often not prop-
erly acclimatized to outside conditions but is affected by the inside
temperature of the Balloon Launching Station. It takes some min-
utes to overcome this effect during which time the weather balloon
is already launched. When compiling the nMMM, only temperature
data at 1600 m a.s.l. and above were taken from the radio sound-
ings. To extrapolate to lower altitudes, a fit to these sounding data
combined with data from local weather stations at 1401 m, 1420 m,
1423 m, 1483 m, and 1719 m was performed. However, data from
the weather stations might also be influenced by the direct surface
conditions beneath, since they are not standardized meteorological
stations. It is also possible that the GDAS model does not adequately
describe the heated surface of the elevated plain of the Pampa Ama-
rilla and tends to assume free-atmosphere conditions. The pressure
data of both models are in good agreement. The water vapor pres-
sure fits almost perfectly, although the model values close to
ground are both too low compared to real data which can be traced
back to the difficult handling of humidity in general. In particular,
the pressure differences propagate into the atmospheric depth
where we see deviations from the measured data on the same scale
as for the monthly mean profiles.

In the comparison displayed in Fig. 7, only radiosonde data from
2009 and 2010 are used in order to illustrate the strength of the
GDAS model data. The nMMM are completely independent of this
set of radio soundings. The most obvious changes compared with
Fig. 6 are the worse descriptions of actual radio soundings with
monthly mean profiles. Even though the uncertainties become lar-
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Fig. 7. Difference of measured radiosonde data and GDAS models (black dots) and monthly mean profiles (red squares) versus height for all radiosondes performed in 2009
and 2010. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Difference of measured radiosonde data and GDAS models for short (black dots) and long ascents (red squares) versus height. (For interpretation of the references to
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ger, the nMMM do not describe the conditions measured during
the years 2009 and 2010 very well. In contrast, the GDAS data
can represent the local conditions much better and the intrinsic
uncertainty is consistently small.
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In the following, the non-perfect agreement between GDAS data
and local sounding data below approximate 5 km a.s.l. is investi-
gated in more detail. This effect close to ground could be caused
by the nearby Andes and their influence on the climate above the
array. GDAS was developed for global atmospheric predictions
and therefore could be inadequate for very local atmospheric con-
ditions. Under normal circumstances, the wind carries weather
balloons launched at the Pampa Amarilla north-east or east with
a horizontal displacement of about 100–150 km for ascents up to
about 20 km a.s.l. In some cases however, the balloon just ascends
with only a small horizontal drift in any direction, whereas the
opposite extreme cases are horizontal displacements of more than
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Fig. 9. Difference of measured weather station data and GDAS models for all data from 20
On the left, the differences GDAS model minus measured data in temperature T, pressure
line) and the station at FD Loma Amarilla (dashed black line). On the right, the differe
represents the difference between data measured with the Los Leones (LL) weather statio
Morados (LM) minus CLF, the dashed red line is for Loma Amarilla (LA) minus CLF and the
the references to color in this figure legend, the reader is referred to the web version of
200 km. For this study, 25 short and localized ascents and 18
launches with very long balloon paths were selected manually.
The differences between GDAS data and the measured data for
both groups are shown in Fig. 8. The pressure data from GDAS do
not describe these extreme conditions at the Auger Observatory
as well as those seen under normal circumstances. For extremely
short soundings, the local measurements reveal a high pressure
area close to ground. This typically quite local effect is not repro-
duced by GDAS but for higher altitudes, the model data fit very
well again. High pressure zones often indicate a stable atmospheric
layering, so conditions change only on long-term scales. This could
cause the good description of temperature profiles by GDAS. For
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Table 2
Mean and variance values for the histograms shown in Fig. 9. Values for the pressure
were not corrected for the height difference of the stations, but they are consistent
with those differences. Applying the USStdA, the pressure difference due to the
different altitudes of the weather stations are �2.0 hPa (LL), �8.6 hPa (LA), �2.3 hPa
(LM), and �32.8 hPa (CO).

Mean RMS

T [K] p [hPa] e [hPa] T [K] p [hPa] e [hPa]

xWS � xGDAS

CLF 1.3 0.4 �0.2 3.9 1.2 2.1
LA �0.3 0.2 �0.7 3.9 1.1 2.3

xWS � xCLF

LL 0.6 �1.4 �0.2 2.4 0.4 1.2
LA 1.2 �7.8 0.2 2.5 0.5 1.3
LM 1.2 �1.7 0.3 3.2 0.4 1.1
CO �0.6 �33.9 �0.9 3.2 0.8 1.5
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the other extreme case, the launches with very long balloon paths,
the local pressure data indicate a low pressure area, accompanied
by significant winds. The conditions are dominated by turbulences,
indicated by short-term and small-scale temperature variations.
Thus, the GDAS model data do not fit the local measurements well.
Overall, it is rather difficult to say if the topology of the Andes is the
source of uncertainty or if it is also an effect of quite extreme
weather conditions which might be induced by the structure of
the Andes in the vicinity of the Pampa Amarilla. Moreover, both
groups of investigated ascents are extremes and do not describe
the usual conditions. Less than 20% of the ascents launched at
the Pierre Auger Observatory fall into either category.
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Finally, possible inconsistencies between local measurements
and GDAS data close to the surface are investigated by using
weather station data. While radiosondes may suffer from measure-
ment uncertainties near the ground, the weather stations are spe-
cifically designed to continuously measure the ground values.
5.2. GDAS vs. ground weather stations

Five weather stations continuously monitor atmospheric values
close to the ground, at about 2–4 m above surface level. Four are
located at the FD stations, and one was set up near the center of
the array at the Central Laser Facility (CLF). To make sure that
the GDAS data describe the conditions at the ground reasonably
well, the values provided by the GDAS data set are compared to
all available weather station data. The GDAS data are interpolated
at the height of the weather station.

In the histograms on the left of Fig. 9, the differences between
measured weather station data and GDAS model data are shown
for the weather stations close to the CLF and FD Loma Amarilla.
All data measured in 2009 were used. Temperature, pressure,
and water vapor pressure agree very well. Details of the histograms
are listed in Table 2.

On the right side of Fig. 9, the differences of the data of the indi-
vidual weather stations are shown. The CLF weather station is close
to the middle of the array and was chosen as a reference. Values for
the pressure were not corrected for the height difference of the
stations, but they are consistent with the height differences of
the stations. The mean and width of the CLF-LA distribution is very
similar to the distributions on the left for the GDAS data. These two
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histograms are expected to be similar because of the vicinity of the
selected GDAS grid point and the FD building Loma Amarilla. Over-
all, the differences between the GDAS data and the weather station
data are of the same order as the difference in data of two different
weather stations. Only the difficult predictability of water vapor in
the atmosphere close to ground can be seen again.

In Fig. 10, the differences in temperature for the weather station
at Los Morados are analyzed in more detail. At the top left, all data
measured every 5 min are compared with GDAS data. Additionally,
only station data every three hours at which new GDAS data are
available are shown, scaled by a factor of 36. Both distributions
show identical means of 0.1 K, as well as similar RMS values of
2.7 K and 2.6 K for all data and for the 3-hourly data, respectively.
The atmospheric parameters at the Observatory are very stable
during 3-hour periods. At the top right, the data are split into
day and night. Night is defined as the UTC hours between 0 and
10. Therefore, with 14 compared to 10 h of data, the daytime dis-
tribution contains more data. For Los Morados, both distributions
are close to each other, with a mean of 0.0 K and RMS of 2.9 K dur-
ing the day and a mean of 0.2 K and RMS of 2.4 K at night. A small
difference at night is noticeable, with the GDAS data giving higher
temperatures than the weather station. The distributions for differ-
ent years (bottom left) and different seasons (bottom right), repre-
sented by one month of summer and one from winter, show no
distinct features or differences. Similar studies for pressure and
water vapor pressure mostly yield similar results. Nevertheless,
two deviations from this general pattern are discussed in the
following.

In the left panel of Fig. 11, the temperature distributions for the
station at Loma Amarilla are shown, split into daytime (solid red)
and nighttime (dashed black) measurements. A clear separation
of the two distributions is found. The mean of the distributions is
�1.6 K for daytime and 1.6 K for nighttime, resulting in a difference
of 3.2 K. This difference might be due to the local environment in
which the weather station is placed. While some stations are far
away from the FD buildings, others had to be mounted closer to
or on top of other facilities. Thus, a standardized meteorological
measurement cannot be guaranteed.

On the right of Fig. 11, the water vapor pressure for different
seasons measured at the weather station at the CLF is shown. Clear
differences are apparent. In austral winter (July), the water vapor
pressure is very low, and the measurements agree better with
GDAS data, the mean of the distribution is 0.8 hPa with an RMS
of 1.2 hPa. In summer (January), the deviations are largest, where
the mean difference drops to �1.4 hPa, and the RMS doubles to
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Fig. 11. The difference of GDAS minus weather station data in temperature is shown in th
dashed black, daytime in solid red). In the right histogram, the water vapor pressure for th
in solid red). (For interpretation of the references to color in this figure legend, the read
2.4 hPa. This indicates that the GDAS description of humidity is
not perfect, underestimating the humidity in summer. However,
the water vapor pressure calculation strongly depends on the tem-
perature, so differences in temperature due to local effects of the
surroundings of the station also affect this comparison.

Apart from the differences that were seen between radiosonde
data and GDAS data near the surface in the previous section, the
comparison of GDAS data with weather station data shows a very
good agreement. We conclude that the GDAS data describe the
conditions at the Pierre Auger Observatory very well. Because of
their highly reliable availability and high frequency of data sets,
GDAS data are a suitable replacement for local radio soundings
and also for the local monthly models.
5.3. GDAS vs. radio soundings at other locations

In addition to the measurements in Argentina, similar radio-
sonde launches were performed in south-east Colorado, United
States. 27 weather balloons were launched between September
2009 and December 2010 using identical radiosondes and equip-
ment. The comparisons with the GDAS data for this location show
differences of the same order as for the location of the Pierre Auger
Observatory. This is remarkable because most of the global atmo-
spheric models, in particular those developed in Europe and North
America, typically describe the conditions at the northern hemi-
sphere much better. This is due to the fact that atmospheric mea-
surements in South America and in general at the southern
hemisphere are sparse and accurate modeling of the atmosphere
is predicated on real data.

Comparisons of GDAS data and radio soundings at further loca-
tions would go beyond the scope of this paper. Moreover, the radio
soundings from south-east Colorado are independent data while
other available data are from radio sounding databases which are
part of the global meteorological network used for the creation
of GDAS.
6. Air shower reconstruction

To study the effects caused by using the GDAS data, all air
shower data from the Auger Observatory collected between June
1, 2005 and end of 2010 are used in a reconstruction analysis using
the Offline software framework of the Pierre Auger Observatory
[24]. The change of atmosphere description will mainly affect the
reconstruction of the fluorescence data, c.f. Section 2. Therefore,
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we concentrate on this part in the following. It is known that vary-
ing atmospheric conditions alter the fluorescence light production
and transmission [3]. The transmittance of the actual atmosphere
is regularly measured during FD shifts and made available for air
shower reconstructions via databases. The light production has to
be calculated analytically during the reconstruction procedure.
Its strong atmosphere-dependence as described in Section 2 is ap-
plied in the air shower reconstruction analysis.

6.1. Data reconstruction

The following analysis is based on three sets of reconstructions.
The first set, FY, is the until recently standard reconstruction of the
Pierre Auger Observatory. The fluorescence yield is calculated with
its atmosphere-dependence as described in [25], along with the
monthly mean profiles (nMMM) obtained for the site of the Auger
Observatory. For the second set, FYmod, all currently known atmo-
spheric effects in the fluorescence calculation are taken into ac-
count. Together with the standard atmosphere-dependence, the
temperature-dependent collisional cross sections and humidity
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quenching are included ([7] and references therein). Parameteriza-
tions for these two effects are taken from AIRFLY [8] and later con-
ference contributions by the AIRFLY collaboration. Again, the
nMMM are used. The third set, FYGDAS

mod , also explores the efficiency
of the full atmosphere-dependent fluorescence description, but
here the atmospheric nMMM are exchanged with the new 3-
hourly GDAS data.

Comparing the reconstruction sets with each other, the varia-
tion of the reconstructed primary energy E of air showers and
the position of shower maximum Xmax can be determined, see
Fig. 12. In the two upper figures, the binned difference of E and
Xmax is displayed, and the dependences on energy and month of
these differences are shown in the figures in the middle and bot-
tom, respectively.

Using GDAS data for the reconstruction instead of nMMM af-
fects the reconstructed primary energy only slightly. The mean of
the difference FYGDAS

mod minus FYmod is 0.4% with an RMS of 1.4%
(Fig. 12, top left, solid black line). For the reconstructed Xmax, only
a small shift of �1.1 g cm�2 is found with an RMS of 6.0 g cm�2

(Fig. 12, top right, solid black line). However, comparing the full
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atmosphere-dependent reconstruction FYGDAS
mod with the unmodified

reconstruction FY, a clear shift in E can be seen. An increase in E by
5.2% (RMS 1.5%) and a decrease of Xmax by �1.9 g cm�2 (RMS
6.3 g cm�2) is found. These modified fluorescence settings are
now used in the reconstruction of the Pierre Auger Observatory,
in conjunction with other improvements to the procedure, see
[26].

The difference in reconstructed E vs. mean E (Fig. 12, middle
left) reveals a small energy dependence, increasing towards higher
energies. The description of atmospheric conditions close to the
ground is very difficult in monthly mean profiles since the fluctu-
ations in temperature and humidity are larger in the lower levels of
the atmosphere (below 4 km) than in the upper layers. Conse-
quently, a more precise description of actual atmospheric condi-
tions with GDAS will alter the energy reconstruction compared
with nMMM-based reconstructions for air showers that penetrate
deeply into the atmosphere, usually high-energy events. The full
atmosphere-dependent fluorescence calculation alters the light
yield for conditions with very low temperatures, corresponding
to higher altitudes. The energy dependence of the Xmax differences
is a combined effect of slightly changed humidity conditions close
to ground and temperature conditions higher up in the atmosphere
together with the full atmosphere-dependent fluorescence calcula-
tion (Fig. 12, middle right).

The difference in energy is quite uniform throughout the year,
see Fig. 12, bottom left. For switching on GDAS instead of nMMM
(black dots), it is confirmed that GDAS describes the conditions
at the Auger Observatory very well, as good as the nMMM. Switch-
ing on the full atmosphere-dependent fluorescence calculation
does not show a monthly dependence because the overall integral
of the longitudinal light profiles is hardly changed, see, e.g. [27].
Only the modification of the shape of the longitudinal light profile
causes a small monthly dependence of Xmax (Fig. 12, bottom right).

In the following, some systematics caused by the particular
shower geometry are studied. In the first set of figures (Fig. 13,
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top row), the difference in E and Xmax vs. zenith angle of the shower
h is displayed. The energy variation is quite uniform around the
mean value up to about 60�. Only more inclined showers show a
stronger shift of reconstructed energy for the modified fluores-
cence yield calculation. Concerning the position of shower maxi-
mum, a dependence on zenith angle can be seen above 30�.

Shown in the bottom row of Fig. 13, the E and Xmax dependence
on geometrical height of shower maximum gives a more pro-
nounced view of the atmospheric conditions in combination with
the atmosphere-dependent fluorescence description. Showers
reaching their maximum at an average altitude between 3 and
7 km show the mean E difference as expected from Fig. 12, top left.
However, showers with very shallow or very deep positions of
shower maximum are reconstructed with a 7–8% higher primary
energy compared with that using the standard fluorescence calcu-
lation. The reconstructed Xmax follows the expectations according
to the study shown in [27].
6.2. Impact on shower reconstruction uncertainties

To study the effect that the GDAS data have on the uncertainties
of air shower reconstructions, air showers induced by protons and
iron nuclei are simulated using the CONEX shower generator [28]
with the QGSJETII hadronic interaction model [29] for shower
energies between 1017.5 eV and 1020 eV. The fluorescence light is
generated including temperature-dependent collisional cross sec-
tions and vapor quenching. The time stamps of the air shower
events correspond to the times of 109 radio soundings between
August 2002 and December 2008 so that actual atmospheric pro-
files can be used in the simulation. All 109 launches were per-
formed at night during cloud-free conditions. After the
atmospheric transmission, the detector optics and electronics are
simulated. The resulting data are then reconstructed using the
radiosonde data, as well as the GDAS data.
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A basic set of quality cuts is applied. The shower maximum has
to be in the observed part of the track, and the uncertainty in
reconstructed energy and Xmax must be below 20% and 40 g cm�2,
respectively. Also, the Gaisser–Hillas profile fit has to have a given
quality, v2/Ndf < 2, and the fraction of Cherenkov light from the
shower observed by the telescopes must be less than 50%. After
applying all cuts, the values of energy and Xmax from the recon-
structions with different atmospheric description are compared.
The differences in these reconstructions yield the uncertainties
that are introduced by the use of the GDAS data instead of the ac-
tual atmospheric profile.

The same study has been performed to determine the uncer-
tainties from the nMMM [30]. There, the systematic error is less
than 1% in energy and less than 2 g cm�2 in Xmax. In the energy
range from 1017.5 eV to 1020 eV, random energy-dependent recon-
struction uncertainties of ±1% and ±5 g cm�2 for low energies up to
±2% and ±7 g cm�2 for high energies were found. In the course of
our new study, we compute the same uncertainties due to the
nMMM again. The main difference between the current analysis
and the previous one is the implementation of the temperature-
dependent collisional cross sections and the humidity quenching
in the calculation of the fluorescence yield.

In Fig. 14, both results of the new study are shown, the uncer-
tainties due to nMMM and those due to GDAS. A deviation from
zero indicates a systematic error, and the error bars denote the
RMS spread of all simulated events and are a measure of the recon-
struction uncertainty due to this atmospheric parameterization. In
the top panels, the influence of the nMMM compared to the real
atmospheric parameters from radiosondes is shown. The results
for the systematic shifts are in agreement with the previous study
[30], with only the systematic shift for Xmax in the lowest energy
bin being higher. The RMS spread in energy is ±0.9% for low ener-
gies and up to ±2.4% for high energies. In Xmax, the RMS is between
±4 g cm�2 for low energies and ±6.5 g cm�2 for high energies.

The influence on the reconstruction due to GDAS data is shown
in the bottom part of Fig. 14. The systematic shifts in energy are of
the same order, below 1%, but of opposite sign. The shifts in Xmax

are much smaller than for the nMMM, less than 0.5 g cm�2. The
RMS spread is also considerably smaller, ±0.9% and ±2 g cm�2 for
low energies, and ±1.3% and ±3.5 g cm�2 for high energies. The en-
ergy uncertainty at low energies is comparable to the uncertainty
introduced by the nMMM, but at high energies the uncertainty is
reduced by almost 50%. For Xmax, the uncertainties in all energy
bins are halved.

This study of the reconstruction uncertainties further demon-
strates the advantages of GDAS data over the monthly mean profiles.
7. Conclusion

The reconstructions of air showers measured at the Pierre Auger
Observatory have used a set of monthly mean profiles as the stan-
dard atmospheric description until recently. These profiles are
averages from meteorological radio soundings performed at the
site of the observatory over several years. The mean profiles de-
scribe the local conditions reasonably well, but cannot describe
short-term variations in the atmosphere. Because of the large bur-
den radio soundings impose on the collaboration, and their ambig-
uous duration of validity, data from the Global Data Assimilation
System (GDAS) are a welcome substitute for atmospheric descrip-
tions. GDAS data rely on established meteorological models and
have an excellent time resolution of 3 h.
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A direct comparison of GDAS data for the site of the Auger
Observatory with local atmospheric measurements validates the
adequate accuracy of GDAS data with respect to horizontal and
vertical as well as temporal resolution. The suitable online publica-
tion of these data by NCEP allows for an easy and timely updating
of atmospheric databases used at the Pierre Auger Observatory.

With an air shower reconstruction analysis, the applicability of
GDAS data to air shower analyses can be confirmed along with an
improved accuracy with respect to atmospheric conditions. Also,
the value of using an atmosphere-dependent fluorescence descrip-
tion has been demonstrated. Using simulated air showers, we show
that the GDAS data significantly reduce the systematic errors and
overall uncertainties in air shower reconstructions.

Because of the results discussed in this study, the standard air
shower analyses of the Pierre Auger Observatory are now applying
atmospheric data from GDAS and the fluorescence description
FYGDAS

mod as described in Section 6.
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