Total Alkaloids from *Solanum lyratum* Thunb. Inhibited HeLa Cells Proliferation Through Induction of Apoptosis and Cell Cycle Arrest

Wenzong LU *, Yuan NI, Chen ZHAO, Liang ZHANG & Yumiao REN

Department of Biomedical Engineering, College of Electronic and Information Engineering, Xi’an Technological University, Xi’an, Shaanxi Province 710021, People’s Republic of China

SUMMARY. The object of the present study was to investigate the anticancer properties of total alkaloids from *Solanum lyratum* Thunb (SLT-A), including the inhibitory effect of SLT-A on HeLa cells and the apoptosis-inducing capacity *in vitro*. In our study, cytotoxicity was measured by the growth inhibition assay and detection of apoptosis was performed by Hoechst33342 and Tdt-mediated dUTP nick end labeling (TUNEL) staining assays. The *in vitro* cytotoxic studies were complemented by the cell cycle analysis and determination caspase-3 activity. Reverse transcription-polymerase chain reaction (RT-PCR) assay was applied on the expression of apoptosis-associated genes. The result showed that treatment of HeLa cells with SLT-A resulted in the growth inhibition effect, and the IC_{50} value was approximately 82 μg/ml. SLT-A (80 μg/ml) induced more cell apoptosis of HeLa cells and accumulated the cells in the G2/M phase compared with the control cells. On the other hand, the expression of p53 and Bax gene was increased in the cells treated with SLT-A (80 μg/ml), with an increase in the activity of caspase-3, while Bcl-2 expression was not changed compared to the control cells. Our results demonstrated that SLT-A presented antiproliferative activity in HeLa cells and might be a potential anticancer drug.

KEY WORDS: Alkaloids, Anticancer, Apoptosis, HeLa cells, *Solanum lyratum* Thunb.

* Author to whom correspondence should be addressed. *E-mail:* wenzonglu@126.com