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Abstract 

We considerer parabolic partial differential equations: ( ) ( ),t x x
w w r x t− =  

under the conditions ( ) ( ) ( ) ( )1 1 1 2,     ,w a t k t w b t k t= = , ( ) ( )2 1,w x a h t=  on 

a region ( ) ( )1 1 2 2 2, , ;  E a b a b b= × = ∞ . We will see that an approximate solu-
tion can be found using the techniques of generalized inverse moments prob-
lem and also bounds for the error of estimated solution. First we transform 
the parabolic partial differential equation to the integral equation  

( ) ( ) ( )( ) ( )1 2

1 2
1, , d d

b b m x t
x ta a

e w x t w x t t x mϕ− + − =∫ ∫ . Using the inverse moments 

problem techniques we obtain an approximate solution ( ),np x t  of  

( ) ( ), ,x tw x t w x t− . Then we find a numerical approximation of ( ),w x t  
when solving the integral equation  

( )( ) ( )( ) ( ) ( )( ) ( )1 2

1 2

1 1 1 1
2, d d ,

b b m x z t

a a
e w x t t x t x m zϕ− + + − + + − =∫ ∫ , because solving the  

previous integral equation is equivalent to solving the equation  
( ) ( ) ( ), , ,x t nw x t w x t p x t− = . 
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1. Introduction 

We considerer parabolic partial differential equation of the form: 

( ) ( ),t x x
w w r x t− =                         (1) 
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where the unknown function ( ),w x t  is defined in ( ) ( )1 1 2, ,E a b a= × ∞  and 
( ),r x t  is known function. Under the conditions  

( ) ( ) ( ) ( )1 1 1 2,      ,w a t k t w b t k t= =                  (2) 

( ) ( )2 1,w x a h t=                         (3) 

This problem was studied under conditions of Cauchy in [1] and under con-
ditions of Neumann in [2]. 

Parabolic differential equations are commonly used in the fields of engineer-
ing and science for simulating physical processes. These equations describe var-
ious processes in viscous fluid flow, filtration of liquids, gas dynamics, heat 
conduction, elasticity, biological species, chemical reactions, environmental pol-
lution, etc. [3] [4]. 

In a variety of cases, approximations are used to convert parabolic PDEs to 
ordinary differential equations or even to algebraic equations. The existence and 
uniqueness properties of this problem are presented in literature. Several nu-
merical methods have been proposed for the solution of this problem [5] [6] [7]. 

Parabolic partial differential equations have been numerically solved by using 
a variety of techniques [8] [9] [10] [11]. 

The finite element method for the numerical solution of partial differential 
equations is a general method covering all the three main types of equations: el-
liptic, parabolic and hyperbolic equations [12]. 

Some meshless schemes to solve differential partial equations are the diffuse 
element method [13], the partition of unity method [14], the element-free Ga-
lerkin method [15], the reproducing kernel particle method [16], the finite point 
method [17], the meshless local Petrov-Galerkin method [18], the use of radial 
basis functions [19] and the general finite difference method [20]. 

The d-dimensional generalized moment problem [21] [22] [23] [24] [25] can 
be posed as follows: find a function f  on a domain dΩ ⊂ R  satisfying the 
sequence of equations 

( ) ( )d      i if x g x x iµ
Ω

= ∈∫ N                  (4) 

where ( )ig  is a given sequence of functions lying in ( )2 ΩL  linearly indepen-
dent, and the sequence of real numbers { }i i N

µ
∈

 is the known data. 
The moments problem of Hausdorff is a classic example of moments problem, 

and is to find a function ( )f x  in ( ),a b  such that  

( )d      
b i

i a
x f x x i Nµ = ∫   

In this case the functions ( )  i
ig x x i N=  . If the interval of integration is 

( )0,∞  we have the problem of moments of Stieltjes; if the interval of integration 
is ( ),−∞ ∞  we have the problem of moments of Hamburger. 

Moment problem is usually ill-posed in the sense that there may be no solu-
tion and if there is no continuous dependence on the given data. There are vari-
ous methods of constructing regularized solutions, that is, approximate solutions 
stable with respect to the given data. One of them is the method of truncated 
expansion. 
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The method of truncated expansion consists in approximating (4) by finite 
moment problems 

( ) ( )d      1, 2, ,i if x g x x i nµ
Ω

= =∫                   (5) 

and consider as an approximate solution of ( )f x  to ( ) ( )0
n

n i iip x xλϕ
=

= ∑ . 
The ( )i xϕ  result from orthonormalize 1 2, , , ng g g  and iλ  are coeffi-
cients as a function of the iµ . 

Solved in the subspace 1 2, , , ng g g  generated by 1 2, , , ng g g  (5) is sta-
ble. Considering the case where the data ( )1 2, , , nµ µ µ µ=   are inexact, con-
vergence theorems and error estimates for the regularized solutions they are ap-
plied. 

In this paper we consider a different way to numerically solve the problem 
given by Equation (1) with conditions (2) and (3): we first transform it into an 
integral equation which we then handle as a bidimensional moment problem. 
This approach was already suggested by Ang [25] in relation with the heat con-
duction equation. 

The work is organized as follows: in Section 2 first we transform the parabolic 
partial differential equation to the integral equation  

( ) ( ) ( )( ) ( )1 2

1 2
1, , d d

b b m x t
x ta a

e w x t w x t t x mϕ− + − =∫ ∫  

Using the inverse moments problem techniques we obtain an approximate 
solution ( ),np x t  of ( ) ( ), ,x tw x t w x t− . Then we find a numerical approxima-
tion of ( ),w x t  when solving the integral equation  

( )( ) ( )( ) ( ) ( )( ) ( )1 2

1 2

1 1 1 1
2, d d ,

b b m x z t

a a
e w x t t x t x m zϕ− + + − + + − =∫ ∫  

In Section 3 the method is illustrated with examples.  

2. Resolution of the Parabolic Partial Differential Equations 

Let ( )( ) ( ), ,F w x t r x t=  be a partial differential equations such as (1). The so-
lution ( ),w x t  is defined on the region ( ) ( )1 1 2 2 2, , ,  E a b a b b= × = ∞  and veri-
fies on the boundary C E= ∂ : 

( ) ( ) ( ) ( )1 1 1 2,      ,w a t k t w b t k t= =  

( ) ( )2 1,w x a h t=  

We apply the technique used in [2]. Let ( ) ( )( )1 2,F F w F w∗ =  be a vectorial 
field such that w  verifies ( ) ( )div F h w∗ ∗=  with h∗  a known function and,  
reciprocally, if w  verifies ( ) ( )div F h w∗ ∗=  then ( )( ) ( ), , .F w x t r x t=  

Specifically in this case ( )( ) ( ), t x x
F w x t w w= −  and we take 

( ) ( )( ) ( )1 2, ,xF F w F w w w∗ = = −  

( ) ( ),h w r x t∗ = −  

Let ( ), , ,u m z x t  be the auxiliary function 

( ) ( ) ( )1 1, , , m x z tu m z x t e− + − +=  
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Since  

( ) ( )divu F uh w∗ ∗=  

we have 

( ) ( )div d d
E E
u F A uh w A∗ ∗=∫∫ ∫∫  

Moreover, as 

( ) ( )div divu F uF F u∗ ∗ ∗= − ⋅∇  

( ) ( )div d div d d
E E E
u F A uF A F u A∗ ∗ ∗= − ∇∫∫ ∫∫ ∫∫            (6) 

where ( ),x tu u u∇ =  besides 

( ) ( ) ( )( )
( ) ( ) ( )( )

div d d

div d d

x txE E

x x tE E

uF A uw uw A

u F A u w u w A

∗

∗

= − =

= + −

∫∫ ∫∫
∫∫ ∫∫

       (7) 

Then of (6) and (7) 

( )d dx x tE E
u w u w A F u A∗− = ∇∫∫ ∫∫                   (8) 

On the other hand it can be proved that, after several calculations, (8) is writ-
ten as 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

1 2

1 2

1 2 1 2

1 2 1 2

2 2 1 1 1 1
1, , , , d , , , , , , , , d
1

1 , d d , d d
1

b b

a a

b b b b
x ta a a a

zw x a u m z x a x w b t u m z b t w a t u m z a t t
m

z w x t u t x w x t u t x
m

+
+ −

+
+

= −
+

∫ ∫

∫ ∫ ∫ ∫
 

and if z m=  then 

( ) ( )( ) ( )

( ) ( )

( ) ( ) ( ) ( )( ) ( )

1 2

1 2

1

1

2

2

2 2

1 1 1 1 1

, , , , , d d

, , , , d

  , , , , , , , , d

b b
x ta a

b

a

b

a

w x t w x t u m m x t t x

w x a u m m x a x

w b t u m m b t w a t u m m a t t mϕ

−

=

+ − =

∫ ∫

∫

∫

 

We take a base ( ){ }i i
mψ  of ( )2

2 2,L a b  and then the above equation can be 
transformed into a generalized moment problem  

( ) ( )( ) ( )1 2

1 2
, , , d d

b b
x t i ia a

w x t w x t H x t t x µ− =∫ ∫             (9) 

where  

( ) ( ) ( )2

2
, , , , d

b
i ia

H x t u m n x t m mψ= ∫  

and  

( ) ( )2

2
1 d

b
i ia

m m mµ ϕ ψ= ∫  

We can apply the truncated expansion method detailed in [24] and genera-
lized in [25] [26] to find an approximation ( ),np x t  for ( ) ( ), ,x tw x t w x t−  for 
the corresponding finite problem with 0,1, ,i n=   where n  is the number of 
moments iµ . We consider the base ( ),  0,1, 2,i x t iφ =   obtained by applying 
the Gram-Schmidt orthonormalization process on ( ),  0,1, 2,iH x t i =   and add-
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ing to the resulting set the necessary functions until reaching an orthonormal 
basis. 

We approach the solution ( ) ( ), ,x tw x t w x t−  with [25] [26]: 

( ) ( )
0 0

, ,   where    0,1, 2, ,
n i

n i i i ij j
i j

p x t x t C i nλφ λ µ
= =

= = =∑ ∑   

And the coefficients ijC  verifies 

( )
( ) ( )

( )
( )

1 1

2

, ,
1 ,   1 ;1

,

i i k
ij kj i

k j k

H x t x t
C C x t i n j i

x t

φ
φ

φ

− −

=

 
 = − ⋅ < ≤ ≤ <
 
 
∑  

The terms of the diagonal are 

( ) 1
,      0,1, , .ii iC x t i nφ

−
= = 

 

The proof of the following theorem is in [27] [28]. In [28] he proof is done for 

2b  finite. If 2b = ∞  instead of taking polynomials the Legendre are taken po-
lynomials of Laguerre. In [2] the demonstration is done for the one-dimen- 
sional case. 

Theorem. Let { } 0

n
i i

µ
=

 be a set of real numbers and suppose that ( ),f x t  ve-
rify for some ε  and E  (two positive numbers)  

( ) ( )2 1

2 1

2
2

0
, , d d

n b b
i ia a

i
H x t f x t x t µ ε

=

− ≤∑ ∫ ∫  

( )2 1

2 1

2 2 2d d
b b x t

x ta a
xf tf e x t E++ ≤∫ ∫  

then 

( )
( )

2 1

2 1

2
2 T 2

2, d d min ; 0,1, ,
8 1

b b

a a i

Ef x t x t CC i n
i

ε
  ≤ + = 

+  
∫ ∫   

where C  is the triangular matrix with elements ijC  ( )1 ;1 ,i n j i< ≤ ≤ <  and 

( ) ( )
( )

2 1

2 1

2
2 T 2

2, , d d
8 1

b b
na a

Ep x t f x t x t CC
n

ε− ≤ +
+∫ ∫  

It must be fulfilled that 

( ), 0     if        it f x t t i N→ →∞ ∀   

If we apply the truncated expansion method to solve Equation (9) we obtain 
an approximation ( ),np x t  for ( ) ( ) ( ), , ,x tf x t w x t w x t= − . Then we have an 
equation in first order partial derivatives of the form  

( ) ( ) ( ), , ,x t nw x t w x t p x t− =  

It is solved as in [28], we can prove that solving this equation is equivalent to 
solving the integral equation  

( ) ( ) ( ) ( )1 2

1 2
2, , , , d d ,

b b

a a
u m z x t w x t t x t x m zϕ− =∫ ∫  

where 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

1 1 2

1 1 2

2 1 1 1 1

2 2 2 2

, , , , , , , , , d

                , , , , , , , , d d d

b

a

b b b
na a a

m z u m z b t w b t u m n a t w a t t

u m z x b w x b u m n x a w x a x up t x

ϕ = − +  

+ − −  

∫

∫ ∫ ∫
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and ( ) ( )( ) ( )( )1 1 1 1, , , m x z tu m z x t e− + + − + += . Again we take a base ( ){ },ij ij
m zψ ∗  of 

( )2L E  and then the above equation can be transformed into a generalized mo-
ment problem  

( ) ( )1 2

1 2
, , d d

b b
ij ija a

w x t H x t t x µ∗ ∗=∫ ∫  

where  

( ) ( ) ( ) ( )1 2

1 2
, , , , , d d

b b
ij ija a

H x t u m n x t t x m z z mψ∗ ∗= −∫ ∫  

and  

( ) ( )1 2

1 2
2 , , d d

b b
ij ija a

m z m z z mµ ϕ ψ∗ ∗= ∫ ∫  

Applying again the techniques of generalized moments problem we found an 
approximate solution for ( ),w x t . 

3. Numerical Examples 
3.1. Example 1  

We consider the equation  

( )( )
( ) ( )

2

2

1 1 2
   in   0,1 0,

1

x t x

t xx

e t xe
w w E

t

− −+ + +
= − = × ∞

+
 

and conditions  

( ) ( ) ( ) ( )10, ;    1, 1 ;    , 0t t xw t e w t e e w x x e− − − −= = + = +  

The solution is ( ) ( ), t xw x t e e x− −= +  

First step: approximates ( ) ( ) ( ), , ,x tf x t w x t w x t= −  
We take the base ( ) 1       1, 2, ,5i m

i m m e iψ − −= =   

Accuracy is ( ) ( )( )1 2

1 2

1
2 2

5, , d d 0.409962
b b

a a
f x t p x t t x− =∫ ∫ . 

In Figure 1(a) the exact solution and the approximate solution are compared 
Second step: approximates ( ),w x t  
We take the base ( ) 1 1,    1, 2,3    1, 2,3i j m z

ij m z m z e i jψ − − − −= = =  

Accuracy is ( ) ( )( )1 2

1 2

1
2 2

9, , d d 0.131406
b b

a a
w x t p x t t x− =∫ ∫ . 

In Figure 1(b) the exact solution and the approximate solution are compared. 

3.2. Example 2 

We consider the equation  

( ) ( )     in     0,1 0,t xxw w E= = × ∞  

and conditions  

( ) ( ) ( )
2π π0, Exp ;   1, 0;   ,0 Cos

4 2
w t t w t w x x

   = − = =   
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(a) 

 
(b) 

Figure 1. (a) ( ) ( ), ,x tw x t w x t−  and ( )5 ,p x t ; (b) ( ),w x t  and ( )9 ,p x t . 

 

The solution is ( )
2π π, Exp Cos

4 2
w x t t x

   = −   
  

 

First step: approximates ( ) ( ) ( ), , ,x tf x t w x t w x t= −  
We take the base ( ) 1    1, 2, ,5i m

i m m e iψ − −= =   

Accuracy is ( ) ( )( )1 2

1 2

1
2 2

5, , d d 0.294629
b b

a a
f x t p x t t x− =∫ ∫ . 

In Figure 2(a) the exact solution and the approximate solution are compared 
Second step: approximates ( ),w x t  
We take the base ( ) 1 1,      1, 2,3     1, 2,3i j m z

ij m z m z e i jψ − − − −= = =  

Accuracy is ( ) ( )( )1 2

1 2

1
2 2

9, , d d 0.0673978
b b

a a
w x t p x t t x− =∫ ∫ . 

In Figure 2(b) the exact solution and the approximate solution are compared. 

3.3. Example 3  

We consider the equation  

( ) ( ) ( ) ( )3 5     in    0,1 0,x t
xx t xw w p t w e t E− −− = + + = × ∞  

where ( )p t  is unknown. And conditions  



M. B. Pintarelli 
 

22 

 
(a) 

 
(b) 

Figure 2. (a) ( ) ( ), ,x tw x t w x t−  and ( )5 ,p x t ; (b) ( ),w x t  and ( )9 ,p x t . 

 

( ) ( ) ( )3 1 30, ;    1, ;    , 0t t xw t e w t e w x e− − − −= = =  

The solution is ( ) 3, x tw x t e− −=  if ( ) 1p t t= +  
First step: approximates ( ) ( ) ( ), , ,x tf x t w x t w x t= −  

We take the base ( ) 1    1, 2, ,5i m
i m m e iψ − −= =   

Accuracy is ( ) ( )( )1 2

1 2

1
2 2

5, , d d 0.160504
b b

a a
f x t p x t t x− =∫ ∫ . 

In Figure 3(a) the exact solution and the approximate solution are compared 
Second step: approximates ( ),w x t  
We take the base ( ) 1 1,    1, 2,3   1, 2,3i j m z

ij m z m z e i jψ − − − −= = =  

Accuracy is ( ) ( )( )1 2

1 2

1
2 2

9, , d d 0.0388971
b b

a a
w x t p x t t x− = =∫ ∫ . 

In Figure 3(b) the exact solution and the approximate solution are compared. 

4. Conclusions  

An equation in parabolic partial derivatives of the form ( ) ( ),t x x
w w r x t− =  

where the unknown function ( ),w x t  is defined in ( ) ( )1 1 2, ,E a b a= × ∞  under 
the conditions  
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(a) 

 
(b) 

Figure 3. (a) ( ) ( ), ,x tw x t w x t−  and ( )5 ,p x t ; (b) ( ),w x t  and ( )9 ,p x t . 

 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 1,    ,    ,w a t k t w b t k t w x a h t= = =  

can be solved numerically by applying inverse moments problem techniques in 
two steps: first consider the integral equation  

( ) ( ) ( )( ) ( )1 2

1 2
1, , d d

b b m x t
x ta a

e w x t w x t t x mϕ− + − =∫ ∫  

and we can solve it numerically as an inverse moments problem, and get an ap-
proximate solution for ( ) ( ), ,x tw x t w x t− . Then in a second step we consider 
the integral equation  

( )( ) ( )( ) ( ) ( )( ) ( )1 2

1 2

1 1 1 1
2, d d ,

b b m x z t

a a
e w x t t x t x m zϕ− + + − + + − =∫ ∫  

and again we can solve it numerically as an inverse moments problem, and get 
an approximate solution for ( ),w x t . It is observed that the function ( ),r x t  is 
not used in calculations, but it is implicitly considered in the boundary condi-
tions.  

In this way it would be possible to solve, for example, the problem of finding 
( ),w x t  that satisfies  

( ) ( ) ( ) ( ) ( ) ( ), ,   in  0,1 0,t x x
w w p t w x t x t E− = + Φ = × ∞  
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under the conditions  

( ) ( ) ( ) ( ) ( ) ( )1 2 10,    1,    , 0w t k t w t k t w x h t= = =  

with unknown ( )p t  and known ( ),x tΦ . 
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