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PHENOMENOLOGY OF COSMIC RAY AIR SHOWERS
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The properties of cosmic rays with energies above 106 GeV have to be deduced
from the spacetime structure and particle content of the air showers which they
initiate. In this review, a summary of the phenomenology of these giant air showers
is presented. We describe the hadronic interaction models used to extrapolate
results from collider data to ultra high energies, an also the main electromagnetic
processes that govern the longitudinal shower evolution as well as the lateral spread
of particles.

1. Introduction

For primary cosmic ray energies above 106 GeV, the flux becomes so low

that direct detection of the primary particle using detectors in or above

the upper atmosphere is not longer possible. In these cases the primary

particle has enough energy to initiate an extensive air shower (EAS) in

the atmosphere. If the primary cosmic ray particle is a nucleon or nucleus

the cascade begins with a hadronic interaction. The number of hadrons

increases through subsequent generations of particle interactions. In each

generation about 20% of the energy is transferred to an electromagnetic

cascade by rapid decays of neutral pions. Ultimately, the electromagnetic

cascade dissipates roughly 90% of the primary particle’s energy trough ion-

ization. The remaining energy is carried by muons and neutrinos from

charged pion decays. The electromagnetic and weak interactions are rather

well understood. However, uncertainties in hadronic interactions at ultra

high energies constitute one of the most problematic sources of systematic

error in analysis of air showers. In what follows a brief report of the phe-

nomenology of EAS is presented, focusing in those aspects which are the
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main source of systematic uncertainties affecting somehow the determina-

tion of primary energy and mass composition. A complete review on the

phenomenology of cosmic ray air showers can be found in 1.

2. Hadronic Processes

Soft multiparticle production with small transverse momenta with respect

to the collision axis is a dominant feature of most hadronic events at center-

of-mass energies 10 GeV <
√
s < 50 GeV. Despite the fact that strict

calculations based on ordinary QCD perturbation theory are not feasible,

there are some phenomenological models that successfully take into ac-

count the main properties of the soft diffractive processes. These models,

inspired by 1/N QCD expansion are also supplemented with generally ac-

cepted theoretical principles like duality, unitarity, Regge behavior, and

parton structure. The interactions are no longer described by single parti-

cle exchange, but by highly complicated modes known as Reggeons. Up to

about 50 GeV, the slow growth of the cross section with
√
s is driven by a

dominant contribution of a special Reggeon, the Pomeron.

At higher energies, semihard interactions arising from the hard scatter-

ing of partons that carry only a very small fraction of the momenta of their

parent hadrons can compete successfully with soft processes. These semi-

hard interactions lead to the minijet phenomenon, i.e., jets with transverse

energy (ET = |p
T
|) much smaller than the total center-of-mass energy. Un-

like soft processes, this low-p
T
jet physics can be computed in perturbative

QCD. The parton-parton minijet cross section is given by

σQCD(s, p
cutoff
T

) =
∑

i,j

∫
dx1

x1

∫
dx2

x2

∫ ŝ/2

Q2

min

d|t̂| dσ̂ij

d|t̂|
x1fi(x1, |t̂|) x2fj(x2, |t̂|) ,

(1)

where x1 and x2 are the fractions of the momenta of the parent hadrons

carried by the partons which collide, dσ̂ij/d|t̂| is the cross section for

scattering of partons of types i and j according to elementary QCD di-

agrams, fi and fj are parton distribution functions (pdf’s), ŝ = x1 x2s

and −t̂ = ŝ (1 − cosϑ∗)/2 = Q2 are the Mandelstam variables for this

parton-parton process, and the sum is over all parton species. The inte-

gration limits satisfy Q2
min < |t̂| < ŝ/2, with Qmin the minimal momentum

transfer.

A first source of uncertainty in modeling cosmic ray interactions at

ultra high energy is encoded in the extrapolation of the measured parton

densities several orders of magnitude down to low x. Primary protons that
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impact on the upper atmosphere with energy ≈ 1011 GeV, yield partons

with x ≡ 2p∗
‖
/
√
s ≈ mπ/

√
s ∼ 10−7, whereas current data on quark and

gluon densities are only available for x ≈ 10−4 to within an experimental

accuracy of 3% for Q2 ≈ 20 GeV2 6. Moreover, application of HERA data

to baryonic cosmic rays assumes universality of the pdf’s.

For large Q2 and not too small x, the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) equations successfully predict the Q2 dependence

of the quark and gluon densities (q and g, respectively). In the double–

leading–logarithmic approximation the DGLAP equations predict a steeply

rising gluon density, xg ∼ x−0.4, which dominates the quark density at low

x, in agreement with experimental results obtained with the HERA col-

lider 7. Specifically, HERA data are found to be consistent with a power

law, xg(x,Q2) ∼ x−∆H , with an exponent ∆H between 0.3 and 0.4 8.

The high energy minijet cross section is then determined by the small-x

behavior of the parton distributions or, rather, by that of the dominant

gluon distribution (via the lower limits of the x1, x2 integrations) which

gives 9:

σQCD(s) ∝
∫ 1

2Q2

min
/s

dx1

x1
x−∆H

1

∫ 1

2Q2

min
/s

dx2

x2
x−∆H

2 ∼ s∆H ln(s/s0) , (2)

where s0 is a normalization constant. One caveat is that the inclusive

QCD cross section given in Eq. (2) is a Born approximation, and therefore

automatically violates unitarity.

The procedure of calculating the inelastic cross section from inclusive

cross sections is known as unitarization. In the eikonal model 11 of high

energy hadron-hadron scattering,the inelastic cross section, assuming a real

eikonal function, is given by

σinel =

∫
d2~b

{
1− exp

[
−2χ

soft
(s,~b)− 2χ

hard
(s,~b)

]}
, (3)

where the scattering is compounded as a sum of QCD ladders via hard and

soft processes through the eikonals χ
hard

and χ
soft

. It should be noted that

we have ignored spin-dependent effects and the small real part of the scat-

tering amplitude, both good approximations at high energies. Now, if the

eikonal function, χ(s,~b) ≡ χ
soft

(s,~b)+χ
hard

(s,~b) = λ/2, indicates the mean

number of partonic interaction pairs at impact parameter ~b, the probability

pn for having n independent partonic interactions using Poisson statistics

reads, pn = (λn/n!) e−λ. Therefore, the factor 1 − e−2χ =
∑∞

n=1 pn in

Eq. (3) can be interpreted semiclassically as the probability that at least 1

of the 2 protons is broken up in a collision at impact parameter ~b. With
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Figure 1. Energy dependence of the pp inelastic cross section as predicted by Eqs. (5)
and (6) with 0.3 < ∆H < 0.4. The darkly shaded region between the solid lines corre-
sponds to the model with Gaussian parton distribution in ~b. The region between the
dashed-dotted lines corresponds to the model with exponential fall-off of the parton
density in ~b.

this in mind, the inelastic cross section is simply the integral over all colli-

sion impact parameters of the probability of having at least 1 interaction,

yielding a mean minijet multiplicity of 〈njet〉 ≈ σQCD/σinel
12. The lead-

ing contenders to approximate the (unknown) cross sections at cosmic ray

energies, sibyll 13 and qgsjet 14, share the eikonal approximation but

differ in their ansätse for the eikonals. In both cases, the core of dominant

scattering at very high energies is the parton-parton minijet cross section

given in Eq. (1),

χ
hard

=
1

2
σQCD(s, p

cutoff
T

) A(s,~b) , (4)

where the normalized profile function,
∫
d2~b A(s,~b) = 1, indicates the dis-

tribution of partons in the plane transverse to the collision axis.

In the qgsjet-like models, the core of the hard eikonal is dressed with

a soft-pomeron pre-evolution factor. This amounts to taking a parton dis-

tribution which is Gaussian in the transverse coordinate distance |~b|.
In sibyll-like models, the transverse density distribution is taken as

the Fourier transform of the proton electric form factor, resulting in an

energy-independent exponential (rather than Gaussian) fall-off of the par-
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Figure 2. Left panel: The slowly rising curves indicate the mean inelasticity in proton
air collisions as predicted by qgsjet and sibyll. The falling curves indicate the proton
mean free path in the atmosphere. Right panel: Mean multiplicity of charged secondary
particles produced in inelastic proton-air collisions processed with qgsjet and sibyll.

ton density profile with |~b|. The main characteristics of the pp cascade

spectrum resulting from these choices are readily predictable: the harder

form of the sibyll form factor allows a greater retention of energy by the

leading particle, and hence less available for the ensuing shower. Conse-

quently, on average sibyll-like models predict a smaller multiplicity than

qgsjet-like models (see e.g. 16,17,18,19).

At high energy, χ
soft

≪ χ
hard

, and so the inelastic cross section is dom-

inated by the hard eikonal. With the appropriate choice of normalization,

the cross section in Eq. (2) can be well–approximated by a power law. This

implies that the growth of the inelastic cross section according to qgsjet-

like models is given by

σinel ∼
∫

d2~b Θ(bs−|~b|) = πb2s ∼ 4π α′

eff ∆H ln2(s/s0) ∼ 0.52 ∆H ln2(s/s0) mb .

(5)

For sibyll-like models, the growth of the inelastic cross section also satu-

rates the ln2 s Froissart bound, but with a multiplicative constant which is

larger than the one in qgsjet-like models 18. Namely,

σinel ∼ 3.2 ∆2
H ln2(s/s0) mb . (6)

Figure 1 illustrates the large range of predictions for pp inelastic cross

section which remain consistent with HERA data. When the two leading

order approximations discussed above are extrapolated to higher energies,
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both are consistent with existing cosmic ray data. Note, however, that

in both cases the range of allowed cross-sections at high energy varies by

a factor of about 2 to 3. The points in Fig. 1 correspond to the most

up-to-date estimate of the pp cross section from cosmic ray shower data 21.

There are three event generators, sibyll 13, qgsjet 14, and dpmjet 24

which are tailored specifically for simulation of hadronic interactions up to

the highest cosmic ray energies. The latest versions of these packages are

sibyll 2.1 25, qgsjet 01 26, and dpmjet III 27; respectively. In qgsjet,

both the soft and hard processes are formulated in terms of Pomeron ex-

changes. To describe the minijets, the soft Pomeron mutates into a “semi-

hard Pomeron”, an ordinary soft Pomeron with the middle piece replaced

by a QCD parton ladder, as sketched in the previous paragraph. This is

generally referred to as the “quasi-eikonal” model. In contrast, sibyll and

dpmjet follow a “two channel” eikonal model, where the soft and the semi-

hard regimes are demarcated by a sharp cut in the transverse momentum:

sibyll 2.1 uses a cutoff parametrization inspired in the double leading log-

arithmic approximation of the DGLAP equations, whereas dpmjet III uses

an ad hoc parametrization for the transverse momentum cutoff 8.

The transition process from asymptotically free partons to colour-

neutral hadrons is described in all codes by string fragmentation models 28.

Different choices of fragmentation functions can lead to some differences in

the hadron multiplicities. However, the main difference in the predictions

of qgsjet-like and sibyll-like models arises from different assumptions in

extrapolation of the parton distribution function to low energy.

Now we turn to nucleus-nucleus interactions, which cause additional

headaches for event generators which must somehow extrapolate pp inter-

actions in order to simulate the proton-air collisions of interest. All the

event generators described above adopt the Glauber formalism 10.

Since the codes described above are still being refined, the disparity

between them can vary even from version to version. At the end of the

day, however, the relevant parameters boil down to two: the mean free

path, λ = (σ̃prod n)
−1, and the inelasticity, K = 1 − Elead/Eproj, where n

is the number density of atmospheric target nucleons, Elead is the energy

of the most energetic hadron with a long lifetime, and Eproj is the energy

of the projectile particle. Overall, sibyll has a shorter mean free path

and a smaller inelasticity than qgsjet, as indicated in Fig. 2. Since a

shorter mean free path tends to compensate a smaller inelasticity, the two

codes generate similar predictions for an air shower which has lived through

several generations. The different predictions for the mean charged particle
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multiplicity in proton-air collisions are shown in Fig. 2. Both models predict

the same multiplicity below about 107 GeV, but the predictions diverge

above that energy. Such a divergence readily increases with rising energy.

As it is extremely difficult to observe the first interactions experimentally,

it is not straightforward to determine which model is closer to reality.

3. Electromagnetic Component

The evolution of an extensive air shower is dominated by electromagnetic

processes. The interaction of a baryonic cosmic ray with an air nucleus high

in the atmosphere leads to a cascade of secondary mesons and nucleons. The

first few generations of charged pions interact again, producing a hadronic

core, which continues to feed the electromagnetic and muonic components of

the showers. Up to about 50 km above sea level, the density of atmospheric

target nucleons is n ∼ 1020 cm−3, and so even for relatively low energies,

say Eπ± ≈ 1 TeV, the probability of decay before interaction falls below

10%. Ultimately, the electromagnetic cascade dissipates around 90% of the

primary particle’s energy, and hence the total number of electromagnetic

particles is very nearly proportional to the shower energy.

By the time a vertically incident 1011 GeV proton shower reaches the

ground, there are about 1011 secondaries with energy above 90 keV in the

the annular region extending 8 m to 8 km from the shower core. Of these,

99% are photons, electrons, and positrons, with a typical ratio of γ to e+e−

of 9 to 1. Their mean energy is around 10 MeV and they transport 85%

of the total energy at ground level. Of course, photon-induced showers are

even more dominated by the electromagnetic channel, as the only significant

muon generation mechanism in this case is the decay of charged pions and

kaons produced in γ-air interactions.

It is worth mentioning that these figures dramatically change for the case

of very inclined showers. For a primary zenith angle, θ > 70◦, the electro-

magnetic component becomes attenuated exponentially with atmospheric

depth, being almost completely absorbed at ground level. We remind the

reader that the vertical atmosphere is ≈ 1000 g/cm2, and is about 36 times

deeper for completely horizontal showers.

In contrast to hadronic collisions, the electromagnetic interactions of

shower particles can be calculated very accurately from quantum electro-

dynamics. Electromagnetic interactions are thus not a major source of

systematic errors in shower simulations. The first comprehensive treat-

ment of electromagnetic showers was elaborated by Rossi and Greissen 29.
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This treatment was recently cast in a more pedagogical form by Gaisser 30

and a summary is presented in 1.

The generation of the electromagnetic component is driven by electron

bremsstrahlung and pair production 31. Eventually the average energy per

particle drops below a critical energy, ǫ0, at which point ionization takes

over from bremsstrahlung and pair production as the dominant energy loss

mechanism. The e± energy loss rate due to bremsstrahlung radiation is

nearly proportional to their energy, whereas the ionization loss rate varies

only logarithmically with the e± energy. The changeover from radiation

losses to ionization losses depopulates the shower. One can thus categorize

the shower development in three phases: the growth phase, in which all the

particles have energy > ǫ0; the shower maximum, Xmax; and the shower

tail, where the particles only lose energy, get absorbed or decay.

The relevant quantities participating in the development of the electro-

magnetic cascade are the probability for an electron of energy E to radiate

a photon of energy k = yE and the probability for a photon to produce a

pair e+e− in which one of the particles (hereafter e−) has energy E = xk.

These probabilities are determined by the properties of the air and the cross

sections of the two processes.

In the energy range of interest, the impact parameter of the electron or

photon is larger than an atomic radius, so the nuclear field is screened by

its electron cloud. In the case of complete screening, where the momentum

transfer is small, the cross section for bremsstrahlung can be approximated

by 32

dσe→γ

dk
≈ Aeff

X0NAk

(
4

3
− 4

3
y + y2

)
, (7)

where Aeff is the effective mass number of the air, X0 is a constant, and

NA is Avogadro’s number. In the infrared limit (i.e., y ≪ 1) this approxi-

mation is inaccurate at the level of about 2.5%, which is small compared to

typical experimental errors associated with cosmic air shower detectors. Of

course, the approximation fails as y → 1, when nuclear screening becomes

incomplete, and as y → 0, at which point the LPM and dielectric suppres-

sion effects become important.This infrared divergence is eliminated by the

interference of bremsstrahlung amplitudes from multiple scattering centers.

This collective effect of the electric potential of several atoms is known as

the Landau-Pomeranchuk-Migdal (LPM) effect 33,34. Using similar approx-

imations, the cross section for pair production can be obtained 32.

The LPM suppression of the cross section results in an effective increase
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Figure 3. Left panel:Average longitudinal shower developments of 1011 GeV proton
(dashed-dotted line) and γ-rays with and without the LPM effect (solid and dotted lines,
respectively). The primary zenith angle was set to θ = 60◦. Right panel: Longitudinal
development of muons and electrons as a function of the slant depth for 1011 GeV
proton-induced showers.

of the mean free path of electrons and photons. This effectively retards the

development of the electromagnetic component of the shower. It is natural

to introduce an energy scale, ELPM, at which the inelasticity is low enough

that the LPM effect becomes significant 35.

The experimental confirmation of the LPM effect at Stanford Linear

Accelerator Center (SLAC) 36 has motivated new analyses of its conse-

quences in cosmic ray physics 37,38,39,40. The most evident signatures of

the LPM effect on shower development are a shift in the position of the

shower maximum Xmax and larger fluctuations in the shower development.

Since the upper atmosphere is very thin the LPM effect becomes notice-

able only for photons and electrons with energies above ELPM ∼ 1010 GeV.

For baryonic primaries the LPM effect does not become important until the

primary energy exceeds 1012GeV. To give a visual impression of how the

LPM effect slows down the initial growth of high energy photon-induced

showers, we show the average longitudinal shower development of 1010 GeV

proton and γ-ray showers (generated using aires 2.6.0 41) with and without

the LPM effect in Fig. 3.

At energies at which the LPM effect is important (viz., E > ELPM),

γ-ray showers will have already commenced in the geomagnetic field at al-
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most all latitudes. This reduces the energies of the primaries that reach the

atmosphere, and thereby compensates the tendency of the LPM effect to

retard the shower development. The first description of photon interactions

in the geomagnetic field dates back at least as far as 1966 42, with a punctu-

ated revival of activity in the early 1980’s 43. More recently, a rekindling of

interest in the topic has led to refined calculations 44,45. Primary photons

with energies above 1010 GeV convert into e+e− pairs, which in turn emit

synchrotron photons. Regardless of the primary energy, the spectrum of

the resulting photon “preshower” entering the upper atmosphere extends

over several decades below the primary photon energy, and is peaked at

energies below 1010 GeV 44. The geomagnetic cooling thus switches on at

about the same energy at which the LPM effect does, and thereby preempts

the LPM-related observables which would otherwise be evident.

The relevant parameter to determine both conversion probability and

synchrotron emission is E × B⊥, where E is the γ-ray energy and B⊥ the

transverse magnetic field. This leads to a large directional and geographi-

cal dependence of shower observables. Thus, each experiment has its own

preferred direction for identifying primary gamma rays.

3.0.1. Electron lateral distribution function

The transverse development of electromagnetic showers is dominated by

Coulomb scattering of charged particles off the nuclei in the atmosphere.

The lateral development in electromagnetic cascades in different materials

scales well with the Molière radius rM = Es X0/ǫ0, which varies inversely

with the density of the medium,rM = rM(hOL)
ρatm(hOL)
ρatm(h) ≃ 9.0 g/cm2

ρatm(h) , where

Es ≈ 21 MeV and the subscript OL indicates a quantity taken at a given

observation level.

Approximate calculations of cascade equations in three dimensions to

derive the lateral structure function for a pure electromagnetic cascade in

vertical showers were obtained by Nishimura and Kamata 51, and later

worked out by Greisen 52 in the well-known NKG formula,

ρ(r) =
Ne

r2M
C

(
r

rM

)s
NKG

−2 (
1 +

r

rM

)s
NKG

−4.5

, (8)

where Ne is the total number of electrons, r is the distance from the

shower axis. For a primary of energy E0, the so-called “age parameter”,

s
NKG

= 3 /(1 + 2 ln(E0/ǫ0)
t ), characterizes the stage of the shower devel-

opment in terms of the depth of the shower in radiation lengths, i.e.,

t =
∫∞

z ρatm(z) dz/X0.
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The NKG formula may also be extended to describe showers initiated

by baryons 53. In such an extension, one finds a deviation of behavior of

the Molière radius when using a value of the age parameter which is de-

rived from theoretical predictions for pure electromagnetic cascades. It is

possible to generalize the NKG formula for the electromagnetic component

of baryon-induced showers by modifying the exponents in Eq. (8) 53. The

derived NKG formula provides a good description of the e+e− lateral dis-

tribution at all stages of shower development for values of r sufficiently far

from the hadronic core. Fortunately, this is the experimentally interesting

region, since typical ground arrays can only measure densities at r > 100 m

from the shower axis, where detectors are not saturated. It should be

mentioned that an NKG-like formula can be used to parametrize the total

particle’s density observed in baryon-induced showers 54.

In the case of inclined showers, one normally analyzes particle densities

in the plane perpendicular to the shower axis. Simply projecting distribu-

tions measured at the ground into this plane is a reasonable approach for

near-vertical showers, but is not sufficient for inclined showers. In the latter

case, additionally asymmetry is introduced because of both unequal atten-

uation of the electromagnetic components arriving at the ground earlier

than and later than the core 53. Moreover, deflections on the geomagnetic

field become important for showers inclined by more than about 70◦.

In the framework of cascade theory, any effect coming from the influence

of the atmosphere should be accounted as a function of the slant depth

t 51. Following this idea, a LDF valid at all zenith angles θ < 70◦ can be

determined by considering

t′(θ, ζ) = t sec θ (1 +K cos ζ)−1 , (9)

where ζ is the azimuthal angle in the shower plane, K = K0 tan θ, and K0

is a constant extracted from the fit 53,55. Then, the particle lateral distri-

butions for inclined showers ρ(r, t′) are given by the corresponding vertical

LDF ρ(r, t) but evaluated at slant depth t′(θ, ζ) where the dependence on

the azimuthal angle is evident.

For zenith angles θ > 70◦, the surviving electromagnetic component

at ground is mainly due to muon decay and, to a much smaller extent,

hadronic interactions, pair production and bremsstrahlung. As a result

the lateral distribution follows that of the muon rather closely. In Fig. 3

the longitudinal development of the muon and electron components are

shown. It is evident from the figure that for very inclined showers the

electromagnetic development is due mostly to muon decay 57,56.
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3.1. The muon component

The muonic component of EAS differs from the electromagnetic compo-

nent for two main reasons. First, muons are generated through the decay

of cooled charged pions, and thus the muon content is sensitive to the ini-

tial baryonic content of the primary particle. Furthermore, since there is

no “muonic cascade”, the number of muons reaching the ground is much

smaller than the number of electrons. Specifically, there are about 5× 108

muons above 10 MeV at ground level for a vertical 1011 GeV proton induced

shower. Second, the muon has a much smaller cross section for radiation

and pair production than the electron, and so the muonic component of

EAS develops differently than does the electromagnetic component. The

smaller multiple scattering suffered by muons leads to earlier arrival times

at the ground for muons than for the electromagnetic component.

The ratio of electrons to muons depends strongly on the distance from

the core; for example, the e+e− to µ+µ− ratio for a 1011 GeV vertical proton

shower varies from 17 to 1 at 200 m from the core to 1 to 1 at 2000 m. The

ratio between the electromagnetic and muonic shower components behaves

somewhat differently in the case of inclined showers. For zenith angles

greater than 60◦, the e+e−/µ+µ− ratio remains roughly constant at a given

distance from the core. As the zenith angle grows beyond 60◦, this ratio

decreases, until at θ = 75◦, it is 400 times smaller than for a vertical

shower. Another difference between inclined and vertical showers is that

the average muon energy at ground changes dramatically. For horizontal

showers, the lower energy muons are filtered out by a combination of energy

loss mechanisms and the finite muon lifetime: for vertical showers, the

average muon energy is 1 GeV, while for horizontal showers it is about 2

orders of magnitude greater.

High energy muons lose energy through e+e− pair production, muon-

nucleus interaction, bremsstrahlung, and knock-on electron (δ-ray) pro-

duction 58. The first three processes are discrete in the sense that they

are characterized by high inelasticity and a large mean free path. On the

other hand, because of its short mean free path and its small inelasticity,

knock-on electron production can be considered a continuous process. The

muon bremsstrahlung cross section is suppressed by a factor of (me/mµ)
2

with respect to electron bremsstrahlung, see Eq. (7). Since the radiation

length for air is about 36.7 g/cm2, and the vertical atmospheric depth is

1000 g/cm2, muon bremsstrahlung is of negligible importance for vertical

air shower development. Energy loss due to muon-nucleus interactions is
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somewhat smaller than muon bremsstrahlung. Energy loss by pair produc-

tion is slightly more important than bremsstrahlung at about 1 GeV, and

becomes increasingly dominant with energy. Finally, knock-on electrons

have a very small mean free path, but also a very small inelasticity, so that

this contribution to the energy loss is comparable to that from the hard

processes.

In addition to muon production through charged pion decay, photons

can directly generate muon pairs, or produce hadron pairs which in turn

decay to muons. In the case of direct pair production, the large muon mass

leads to a higher threshold for this process than for electron pair produc-

tion. Furthermore, QED predicts that µ+µ− production is suppressed by a

factor (me/mµ)
2 compared the Bethe-Heitler cross section. The cross sec-

tion for hadron production by photons is much less certain, since it involves

the hadronic structure of the photon. This has been measured at HERA

for photon energies corresponding to Elab = 2 × 104 GeV. This energy is

still well below the energies of the highest energy cosmic rays, but nonethe-

less, these data do constrain the extrapolation of the cross sections to high

energies.

The muon content of the shower tail is quite sensitive to unknown de-

tails of hadronic physics. This implies that attempts to extract composition

information from measurements of muon content at ground level tend to

be systematics dominated. The muon LDF is mostly determined by the

distribution in phase space of the parent pions. However, the pionization

process together with muon deflection in the geomagnetic field obscures the

distribution of the first generation of pions. A combination of detailed sim-

ulations, high statistics measurements of the muon LDF and identification

of the primary species using uncorrelated observables could shed light on

hadronic interaction models.
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