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The 5* matrix ansatz is a rigorously model independent approach to describe the cross-sections and asymmetries in 
e+e“  annihilation. Using the cross-sections and asymmetries measured with the L3 detector during the 1990 and 1991 
running period, we determine the mass and the width of the Z boson, the contributions of the Z exchange and of the yZ 
interference. Including the polarization of the t lepton in the analysis, the leptonic helicity amplitudes of the scattering 
process are determined assuming lepton universality. The results are compared with other model independent ansatzes 
as realized in ZFITTER . A systematic bias of the Z mass due to the yZ interference term is detected, which leads to 
an underestimation of the error on mz for model independent determinations.
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1. Introduction

The successful operation of LEP has allowed a 
precise measurement of the e+e_ annihilation cross- 
sections and asymmetries near the Z resonance. The 
mass, total and partial widths of the Z boson have 
been determined with an excellent accuracy. The ex
perimental results confirm the Standard Model with 
percent precision [1-3].

In this paper we investigate to what extent a sat
isfactory description of the experimental data on the 
Z line shape can be reached with minimal assump
tions. We base this study on an S matrix approach, 
the details of which are explained elsewhere [4]. The 
scattering process is described by the superposition of 
massless and massive boson exchange, without mak
ing detailed assumptions about the dynamics of the 
process.

For the total cross-section the S  matrix approach 
is equivalent to the model independent approach 
derived earlier [5]. Other model independent ap
proaches to the Z line shape have been described in 
the literature [6-8] and used by L3 in previous stud
ies [ 1 ]. All of these studies have in common that the 
interference between the massless and the massive 
boson exchange for hadronic reactions is fixed to the 
value it assumes in the Standard Model. This treat
ment was shown to be sufficient at the previous level 
of accuracy, since the interference term is suppressed 
in the vicinity of the Z resonance. The present ac
curacy of lineshape measurements allows, however, 
to determine limits on the value of this interference 
term for total cross-sections as well as asymmetries, 
and for leptonic and hadronic final slates separately. 
We also study the influence of this term on the value 
of the Z mass, and the potential bias caused by fix
ing it to its Standard Model value. A discussion of 
the theoretical predictions for the interference term 
in the Standard Model and its measurability can be 
found in ref. [9].

We use our experimental measurements of the total 
cross-sections, the forward-backward asymmetries for 
all leptonic and hadronic Z decay channels as well 
as the polarization of tau leptons from Z decay. The 
total luminosity used is 17.2 pb*”1 (corresponding to 
about 40000 leptonic and 423 000 hadronic events) 
collected with the L3 detector in 1990 and 1991.

2. The L3 detector

The L3 detector at LEP covers 99% of the full solid 
angle. It is designed to measure energy and position 
of leptons, photons and jets with high precision. A de
tailed description of the detector and its performance 
can be found elsewhere [10].

The detector consists of a time expansion cham
ber (TEC) for the tracking and vertex reconstruc
tion of charged particles, a high resolution electromag
netic calorimeter made of about 11 000 bismuth ger
manium oxide (BGO) crystals, a hadron calorimeter 
(HCAL) with uranium absorber and brass propor
tional wire chambers and a high precision muon spec
trometer, consisting of three layers of multi-wire drift 
chambers. A cylindrical array of 30 scintillation coun
ters is installed in the barrel region between the BGO 
and the HCAL. The luminosity is measured by the 
luminosity monitors, two electromagnetic calorime
ters, situated symmetrically on either side of the inter
action point. Each calorimeter is a finely segmented 
and azimuthally symmetric array of 304 BGO crystals 
covering the polar range 24.93 < 0 < 69,94 mrad. All 
detectors are inside a 12 m inner diameter solenoidal 
magnet which provides a uniform magnetic field of 
0.5 T along the beam direction.

3. Z lineshape measurements

Operating the LEP storage ring in the vicinity of 
the Z mass with high luminosity permits a detailed 
study of the lineshape of the Z resonance. We have 
performed measurements of the reactions

(1) e+e- -» hadrons,

(2) e+e~ ß+ju~(y),

(3 )e+e~ -► T+r~ (y ) ,

(4) e+e” —» e+e~ (y ) .

The analysis methods used for these reactions are de
scribed in detail elsewhere [1,11]. The cross-sections 
and asymmetries determined with the data taken in 
the 1990 and 1991 runs of LEP have been published 
[1 ]. Additionally, we include the average r polariza-
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tion [ 12 ] at x/? = 91.222 GeV, Vx = -0.132±0.026± 
0.021.

4. The S  matrix formalism

The matrix element for the exchange of a photon 
and a Z boson in e+e" annihilation into massless 
fermions can be written as

M u(s)
R

+
R fi OG

Sz
n ~  1

/ = 0,3, (1)

with

t fpo lO ) =  -j- (7q -  a 2 + Cr3 ,

crS, (¿ ) -f CTq + CTj —  ÍJ2 ” *  0*3 • (4 cont’d)

The cross-sections can be parametrized as follows:

ijy
aA(s) = \na 1 ' A

^  + (j - m\ ) j {A

(s - m l )2 + m lT 2z

A = tot, fb, poi, fbpol,

where rl is the photon exchange term:

(5)

/,y
lÆyl2 if A = tot,

0 if A ^ tot.
(6 )

The Z exchange term, rA, and the yZ interference 
term, j Ai are given by

sz m\ -  imzr z.

The pole position for the Z-boson is given by sz, R y 
and Rz are the residuals for the photon and Z boson 
respectively. Rr is defined by

(2)

Qf is the charge of the corresponding fermion and 
a(s ) the running QED coupling constant.

I*  9

The coefficients R¿ describe the four helicity am
plitudes for the Z exchange:

Rz

,fl

+Rz {tL eg

Rz = ^z(eL eR

f2
Rz = -^z(eReL

fr fR+ ),

♦ fR fL ) ,

fR" fL+ ) ,

ß
R'z = ^z(eReL * (3)

The coefficients f)l l (s) of the power series in eq. ( 1 ) 
describe non-resonant contributions to the scattering 
process. As shown in refs. [4,5] these are numerically 
small around the Z resonance and are neglected for 
our analysis.

The cross-sections, a¡, arising from the correspond
ing M u can be combined to four linearly independent 
cross-sections, observable at LEP:

ö-tot fa) = +a0 + ÖÏ + <r2 + <?3 ,

rf'A R f/

/=i
+ 2 ^ lm C (A , 

mz

ÎA 2 Re C\ ,

r fA (7)
/ = 1

where {±1} indicates that the sign of Rz * and of Rz 
corresponds to the sign of cr, in eq. (4).

For the hadron channel one has to sum rA, rA and j A 
over all colours and open flavours. The asymmetries 
are defined by

u

A a (s ) =
<rA{s)
Ö’tot (S  )

A zfz tot. (8 )

Photonic corrections are included by convolution, for 
details see ref. [4],

Eqs. (l)- (8 ) completely define the framework of 
an S  matrix analysis of the Z lineshape. However, 
when comparing Z parameters to other approaches, 
the following clarification is necessary:

First, it should be noted that in the S  matrix ap
proach the total width, r z, is constant in contrast to 
the parametrization of the Breit-Wigner resonance of 
the Z lineshape, where p¿ is a result of quantum cor
rections, which are ̂ -dependent. This leads to a trans
formation of the Z mass, mz, to mz and of the total 
Z width, 7z, to Fz [13]:

rñz — [1 + (/z/^z)2] “ l/2mz ~ wz - 34 MeV,

O fb(s)  =  + # 0  “  G I +  Ö2 0*3 Í (4) r [1 + (rz/mz)2]- l,2r z * r z -  l MeV. (9)

498



Volume 315, number 3,4 PHYSICS LETTERS B 7 October 1993

Thus, the mass, Tñz, obtained from S  matrix fits 
should be shifted by -34 MeV and the total width, 
F z, by -1 MeV, with respect to the results obtained 
from the standard procedure [ 1 ].

Second, with vector and axial vector couplings of 
the Z to the fermions, eqs. (3) can be expressed as

R r o

R ri

R12

R Í3

K(gv + ga)(gl + g l),

K (gï + gl) (gl -  g l),

K(gv -  gl) (gl - g l ) ,

K ('gv ~ ga) (gl + g l ), (10)

with

K
\

V l l n a
(11)

Interpreting the couplings, gv and ga, as effective pa
rameters, the weak corrections are absorbed in the 
couplings.

For leptonic channels, the cross-sections (eqs, (4 )), 
or respectively, the helicity amplitudes (eqs. (3) ), can 
all be measured separately, assuming lepton universal
ity. However, for hadronic reactions the contributing 
flavours cannot all be separated. Therefore, one can 
only measure the sum of all contributions according 
to eq. (7), i.e. in terms of r̂ ad and ybad. In previous 
model independent studies [ 1 ], terms relating to jxSi 
were evaluated using the Standard Model relation

gl = g l ( l  -  4|Qf| sin2 0W) ,

with sin 0w taken from the leptonic lineshape.

(12)

5. S  matrix analysis

We used the program SMATASY [14] together 
with ZFITTER version 4,53 [7]. SMATASY relies 
on the S matrix ansatz for the total cross-section 
and for the three asymmetries. It is a generalization 
of the existing ZFITTER branch ZUSMAT, which 
considers only the total cross-section. Initial and fi
nal state QED corrections are taken into account by 
convolution in 0 (a 2), higher order corrections for 
initial state radiation are considered with common

photon exponentiation. Interference between initial 
and final state is neglected for radiative corrections.

The data listed in ref [ 1 ] have systematic uncer
tainties in addition to their statistical errors. These 
are caused by selection bias, theoretical uncertainties, 
limited Monte Carlo statistics etc. We consider a par
tial error correlation calculating a #2,

X
-lÂ l V~xÀ, (13)

where A is a column vector with elements such as 
(<7th - crexp) and M th - ^exp) and V is the N x N  
error correlation matrix between measurements. The 
diagonal elements of V are given by the quadratic 
sum of statistical and systematic errors, while the off- 
diagonal elements are given by the product of the com
mon systematic errors. This can be generalized also to 
the common systematic error between different data 
sets. The procedure to implement the LEP energy un
certainty is described in detail elsewhere [15].

6. Results

To study the influence of the yZ interference on the 
final results of mz and Fz the fits in the following 
sections are performed in two steps:

(a) All parameters except the photon exchange, ryA, 
are left free.

(b) In addition to r\, the contributions to the yZ 
interference, 7th0atd, are fixed to the value expected by 
the Standard Model.

In order to reduce the number of free parameters, 
lepton universality is assumed. The photon exchange 
term, rj0l (see eq. (2)), is fixed using the running 
coupling constant value at LEP energies, | a-1 (5 ) 
128,8, The quality of all fits is good. The x2 per degree 
of freedom varies between 0,75 and 0.78. The results 
of the S  matrix approach are compared to those of 
the model independent ansatzes of ZFITTER.

6.1. A fit to the total cross-section and 
forward-backward asymmetry

We perform a fit to the leptonic and hadronic 
cross-section data and the leptonic forward-backward 
asymmetries according to eq. (5), Assuming lepton 
universality, one gets for case (a) 8 and for (b) 6 free 
parameters: mz, Fz, and rth0atd, for hadrons and
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Table 1
Results of the S  matrix fit to total cross-sections and 
forward-backward asymmetries: (a) all parameters except 
the photon exchange are left free; (b) in addition the yZ 
interference terms are fixed to the Standard Model expec
tation.

Parameter Case (a) Case (b)

mz (GeV)
Pz (GeV) 
Jep
'tot
•lep

-'tot
Jep

%
X d
tot
/had
-'tot

91.152 ± 0.015 
2.494 ±0.012 

0.141 ±0.002 

0.032 ± 0.064 

0.004 ±0.001

0.674 ±0.087 
2.859 ± 0.030 
0.720 ±0.700

91.160 ± 0.010 
2.492 ±0.012 

0.140 ± 0.002 

fixed to 0.0058 

0.004 ±0.001

0.675 ± 0.087 
2.855 ± 0.029 

fixed to 0,219

rton Jtou rfbP> l̂bP f ° r lePtons- The results are shown 
in table 1. Comparing both fits, one notices that mz
increases by 8 MeV, when the yZ interference terms
are fixed in fit (b ), whereas the error on mz decreases
by 5 MeV. That means that fixing the yZ interference
introduces a systematic bias in the determination of
the Z mass. For all the other parameters the mean
values and errors remain unchanged. If  one compares
the values for Tñz with the results for mz, determined
with ZFITTER (see table 3), one finds the expected
offset between mz and mz of -34 MeV, only when
the yZ interference term for the hadron channel j th0atd
is treated in the same way.

(5.2. Determining the helicity amplitudes with the S  
matrix approach

In addition to the data set used in section 6.1, the 
t polarization measured in 1991 is also taken into 
account. Assuming lepton universality and CP con
servation three independent helicity amplitudes /?zp0, 
i?zPl and R f 1 can be determined corresponding to 
eqs. (3). It should be noted here, that in the r channel 
one has the possibility to determine all four ampli
tudes, because one can measure the total cross-section 
and all three asymmetries. The amplitudes i?zpl an(̂  
i?2p3 are equal by time reversal symmetry. The avail
able information is not sufficient to express rtoad and 
7totd by helicity amplitudes. Therefore, they still re
main independent parameters. The number of free pa
rameters is 7 in case (a) and 6 in case (b). For the

Table 2
Results of the S  matrix fit to total cross-sections, forward- 
backward asymmetries and x polarization: (a) all parame
ters except the photon exchange are left free; (b) in addi
tion the hadronic yZ interference terms for the total cross- 
section are fixed to the Standard Model expectation.

Parameter Case (a) Case (b)

mz (GeV) 

Pz (GeV)
lepQR

R iepl

D¡ep2
AZ, 
rhad 
tot 
j had 
Jtot

mz (GeV) 
r z (GeV)

&,lcp
ÔlcP&a
sin¿ 0 w

91.155 dh0.013 91.160 ± 0.010

2,494 0,012 2.492 ± 0.012

0.429 ± 0.012 0.429 ± 0.012

-0.370 ± 0.003 -0.370 ± 0.003

0.323 i 0.016 0.323 ± 0.016
2.860 ± 0.030 2.856 ± 0.029
0.620 ± 0.620 fixed to 0.219

91.189 ± 0.013 91.194 ± 0.010

2.495 ± 0.012 2.493 ± 0.012

-0.037 ± 0.010 -0.037 ± 0.010

-0.4991± 0,0019 —0.4988± 0.0019

0.2317 ± 0.0037 0.2316 ± 0.0037

fit we assume the helicity amplitudes to be real.
The first part of table 2 shows the results. The sec

ond part of table 2 shows quantities which are derived 
from the parameters in the upper part of the table, 
mz, Pz and mz, Pz  are related by eq. (9). Refering to 
eqs. ( 10 ) one can write the amplitudes R 1̂ 1 as func
tion of the couplings gjep and galep. Here we use i?2P0

and R ll pi to determine the couplings and sin2 #w, de
fined by eq. ( 12 ).

For the helicity fit one finds the same behaviour 
for mz as in the previous section. The error for mz 
increases when yth0ad is left free. The mean values and 
errors for all other parameters are almost unchanged.

As a cross check we compare the results of the S 
matrix approach with the ZFITTER results using the 
same measurements as for the helicity fit. In ZFIT 
TER two alternative model independent ansatzes are 
applied: the first is based on the assumption of real 
vector and axial vector couplings of the Z boson to 
fermions; the second relies on the assumption that 
scattering through the Z boson may be considered as 
subsequent formation and decay of a resonance de
scribed by the widths into the initial and final state 
fermions. The complications due to the handling of 
the yZ interference contribution for the hadronic final 
state, 7th0atd, are solved by fixing it to the value expected 
in the Standard Model. In order to check this proce-
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Table 3
Results of a model independent fit to total cross-sections, 
forward-backward asymmetries and r polarization using 
ZFITTER : (a) all parameters except the photon exchange 
are left free; (b) in addition the hadronic yZ interference 
terms for the total cross-section are fixed to the Standard 
Model expectation.

Parameter Case (a) Case (b)

mz (GeV) 91.187 ±0.013 91.194 ±0.009
Tz (GeV) 2.492 ±0.012 2.490 ±0.012

?,lep —0.040 ±0.006 -0.040 ±0.006

? Jep -0.4989± 0.0016 -0.4986± 0.0016

ĥad 1.751 ±0.011 1.750 ±0.011
/had
J  tot 1.00 ± 0.86 fixed to 0.219

sin¿ 0\y 0.2300± 0.0030 0.2300± 0.0029

dure a five parameter fit to the leptonic and hadronic 
cross-section data and the leptonic forward-backward 
asymmetry and the r polarization is performed.

In case (a) the term yjjjt1 is left free, and in case (b) 
the standard ZFITTER code is used with the fixed 
yth0ad. The results are shown in table 3* The second part 
of table 3 shows sin2 0W derived from &jep and #Jep.

If one modifies the standard ZFITTER program to 
allow for a fit to the hadronic interference term yth0ad, 
as it is done for the results (a) in table 3, one also finds 
that the mean value for mz decreases and that the 
error increases with respect to the standard ZFITTER 
results (b), by the same amount observed for the fits 
using the S  matrix formalism,

A comparison of the second part of table 2 with 
table 3 shows that one gets the same results for the 
S  matrix approach as with ZFITTER. The 5 matrix 
approach can, however, reproduce the mean value and 
error for mz only if the treatment of yth0ad is identical 
to the standard ZFITTER.

7. Conclusions

- The S  matrix approach allows a general model inde
pendent investigation of the cross-sections and asym
metries measured in the vicinity of the Z resonance 
and a determination of the mass and the width of the 
Z boson.
- The S  matrix approach can reproduce, with addi
tional assumptions, the results of other model inde

pendent ansatzes realized in ZFITTER.
- For model independent determinations, the fixing 
of the hadronic interference term for the total cross- 
section to the Standard Model expectation value leads 
to a systematic bias in the value of the Z mass and un
derestimates the systematical error on mz. This effect 
is also observed for ZFITTER. All other parameter 
are independent of yth0ad. Although the yZ interference 
contribution to the hadronic final state, yth0ad, is sup
pressed and its measurement is very poor, the influ
ence ofythod on the value mz is not negligible. The pro
cedure of fixing yth0ad by expressions predicted by the 
Standard Model should be checked when performing 
model independent fits to avoid misinterpretation of 
the results. An improved measurement of is ex
pected by running with higher luminosity at energies 
off the resonance (see [9]).

The results of the 5 matrix approach confirm the 
present values for mz and 7z within their errors. The 
good agreement of the 5 matrix approach with the 
Standard Model fit values means that there is no ev
idence for new physics in the data.
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