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We have searched for lepton flavour violation in Z° boson decays into lepton pairs, Z0- » ^ ,  Z°-->et, and Z°->e^i. The data sample 
is based on an integrated luminosity of 10.4 pb~ 1 corresponding to 370 000 Z°’s produced. We obtain upper limits on the branch
ing ratios of 4.8 X 10“ 5 for the (l i t , 3.4 X 10“ 5 for the ex and 2,4 X 10“ 5 for the e|i decay modes at the 95% confidence level.

Previous experiments [8-13] have searched for 
lepton flavour violating decays and have reported 
negative results. In this paper we present the results 
obtained with the L3 detector at LEP for the channels

Z0->et, Z0->e[x.

2. The L3 detector

The L3 detector covers 99% of An. The detector 
consists of a time expansion chamber (TEC), a high 
resolution electromagnetic calorimeter composed of 
BGO crystals, a ring of scintillation counters, a ura
nium and brass hadron calorimeter with propor-

1. Introduction

In the standard model [1,2] lepton flavour is ab
solutely conserved. However, there is no gauge prin
ciple requiring this conservation law. Different 
models [3 -7 ] , beyond the standard model, allow 
processes which violate lepton flavour conservation. 
In theories where such violation arises through mix
ing with new particles [3,5], the branching ratio for 
such processes, e.g. Z°->p.x, can be as large as 10-4 . 
The observation of such decays would be a clear in
dication of physics beyond the standard model.

1 Supported by the German Bundesministerium fur Forschung
und Technologie.
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tional wire chamber readout, and an accurate muon 
chamber system. These detectors are installed in a 12 
m diameter magnet which provides a uniform field 
of 0.5 T along the beam direction. The luminosity is 
measured with the help of two small-angle BGO 
calorimeters.

The central tracking chamber is a time expansion 
chamber which consists of two cylindrical layers of 
12 and 24 sectors, with 62 wires measuring the R-<f> 
coordinate. The single wire resolution is 58 jum av
eraged over the entire cell. The double-track resolu
tion is 640 |xm. The fine segmentation of the BGO 
detector and the hadron calorimeter allow us to mea
sure the direction of jets with an angular resolution 
of 2.5°, and to measure the total energy of hadronic 
events from Z° decay with a resolution of 10.2%. The 
muon detector consists of 3 layers of precise drift 
chambers, which measure a m uon’s trajectory 56 
times in the bending plane, and 8 times in the non- 
bending direction. The trigger efficiency for lepton 
pairs is greater than 99.9% in the barrel region 
[ 14,15 ]. A detailed description of each detector sub
system, and its performance, is given in re f  [ 16 ].

3. Preselection

For the present analysis we use the data sample 
based on an integrated luminosity of 10.4 pb _1 ac
cumulated during the 1990 and early 1991 runs cor
responding to the production of 370 000 Z°’s. The 
preselection cuts, used to select a data sample con
taining high energy dilepton events of all types, are 
the following:

(1) The total energy is greater than 30 GeV.
(2) The number of jets is 2 or 3.
(3) The number of tracks in the TEC is between 1 

and 5, to help remove hadron events.
(4) The number of calorimeter clusters is less than 

15, to help remove hadron events.
(5) The acolinearity angle between the two jets is 

smaller than 2 0 °, to remove radiative events.
( 6 ) |cos 8 1 of the thrust axis is less than 0.7, so 

that the event is well contained in the detector.
Jets are reconstructed using a two-step algorithm 

[17] which groups the energy deposited in the BGO 
crystals and in the hadron calorimeter towers into 
clusters before collecting the clusters into je ts . The

clustering algorithm normally reconstructs one clus
ter in the BGO for each muon, electron or photon 
shower, and a few clusters in the BGO and /o r hadron 
calorimeter for a hadronic decay of a single t . Under 
the above definition of a jet, particles with only one 
cluster in the BGO, like muons, are also considered 
as jets.

4. Detector resolution

The expected signature of Z°->|ax (Z°-+ex), is a 
beam energy muon (electron) opposite to the decay 
products of a x. The main background arises from 
i +x~ events with one of the taus decaying into a muon 
(electron) which carries almost all the energy of the 
tau. Good muon (electron) momentum resolution is 
essential to reduce this background while retaining a 
high detection efficiency.

Muons are identified and their momentum mea
sured in the muon chamber system surrounding the 
calorimeters. To be accepted, a muon track must have 
one track segment in each of the three layers of the 
muon chambers. The muon momentum resolution 
determined from dimuon events is 2.5% at 45 GeV 
as shown in fig. 1. This includes contributions from 
chamber resolution, multiple scattering and fluctua-

600

500

400
ifiC0)>LU 300

200

100

e+e'-> Z0-*  jiV(y) 

Resolution 2.50+.Q4 %

■ * ................l i t 1

0.95 1 1.05 1.1 1.15 1.2

Fig. 1. Muon energy (£„) resolution from events,
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tions of the energy loss in the calorimeter. Using die
lectron events, the expected width of the electron en
ergy distribution is determined to be 1.2%, which 
includes a substantial contribution from initial and 
final state radiation.

5. Monte Carlo simulation

In order to determine the acceptance for the three 
lepton flavour violating decay modes (Z°^p.x, 
Z°->ex, Z°-->eji), events were generated using a mod
ified version of the KORALZ [18] Monte Carlo gen
erator. To estimate the background from x+x~, 
e+e~ and qq events, various Monte Carlo generators 
have been used [18-20]. All Monte Carlo events in
clude a detailed simulation [21 ] #I of the L3 detec
tor, The same analysis program is used for both the 
data and the Monte Carlo events.

6. channel

For Z°~> j ix  we require one jet to be consistent with 
a beam energy muon and the other to be consistent 
with a t  decay. We have used the following selection:

For the \i candidate:
(1) The muon track must extrapolate to within 100 

mm of the nominal vertex position in the transverse 
plane and 200 mm in the longitudinal plane.

( 2 ) 0 . 9 7 < V £ h«m<1.08.
For the x candidate, in order to reject dimuon 

background, we require:
(3) There is no track found in the muon detector.
(4) The energy in the electromagnetic calorimeter 

is greater than 0.8 GeV.
(5) The TEC track, for a x candidate with purely 

electromagnetic energy, does not extrapolate to dead 
zones in the hadron calorimeter and the muon cham
bers. This rejects background from radiative dimuon 
events.

( 6 ) The energy distribution in the hadron calorim
eter is inconsistent with that of a muon.

*' GEANT version 3.13 (September 1989). The GHEISHA
program is used to simulate hadronic interactions. See ref.
[22}.

The last requirement can be quantitatively ex
pressed by the cut on the x l  variable:

y 2 _  ^  = 1 (E t — ) 2 e 
X " ~  < ( « - ! )

Ej is the energy deposited in layer i of the hadron 
calorimeter, which has a total of 10 layers. and 
a are the average value and standard deviation o f 
energy deposited in layer i by a muon as determined 
from the dimuon events. Fig, 2 shows the x% distri
bution for the Z°-> events. The mean value of this 
x \  variable is about one. For a x which decays had- 
ronically, the mean value of this x l  variable is a few 
hundred. This also helps reject radiative dimuon 
events when the radiating }x goes into a crack in the 
muon chambers and is therefore not detected.

Fig. 3 shows the distribution of the muon energy 
after all cuts, except cut (2), have been applied. The 
importance of lepton resolution to reject the x+x~ 
background is evident from this figure.

The above cuts, together with the preselection, re
sult in an overall detection efficiency of (22.5 ± 1.0 )% 
for Z°-»jxt. One candidate from the data satisfies the 
cuts. From Monte Carlo studies we expect a total o f
1.610.9 background events (0 .7±0.7  from 
0 ,9±0.5  from x+x_ and 0 from qq). Using Poisson

xjl

Fig. 2. The x l  distribution for Z d a t a  and Monte
Carlo. The arrow indicates the cut. The mean value of this 
variable for a % decaying hadronically, is a few hundred.
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Fig. 3. The distribution of the muon energy (E for the data, 
Monte Carlo background, and signal Monte Carlo, after
all cuts, but the muon energy cut (2), are applied. The normali
zation for the signal Monte Carlo is arbitrary. The arrows repre
sent the cut on muon energy.

statistics we set a 95% CL upper limit of 4 events from 
the Z°->|xx channel. This yields a 95% CL limit on 
the branching ratio of

Br(Z°->jix) < 4 .8 x  10“ 5 .

7. Z°->ex channel

For Z°->ex we require one jet to be consistent with 
a beam energy electron and the other to be consistent 
with a x decay. We have used the following selection: 
For the electron candidate:

(1) There is an electromagnetic cluster (energy Ee) 
associated with a track in the TEC.

(2 )  0.9 8 <  EqI £beam <  1.05
(3) The electromagnetic shower profile should be 

consistent with that of an electron.
The last requirement can be quantitatively ex

pressed by the cut on the xl variable:

Xe
I f .  ! ( £ , - £ „ )

5cr2.
* 'U C/

< 3

To define the xl variable the 6 most energetic crys
tals in the electromagnetic cluster are used. E t- is the

energy deposited in one crystal of the electromag
netic cluster, E ci and cre, are the average value and 
standard deviation of energy deposited in crystal /, 
determined from Z°->ee events. Crystals are ordered 
according to measured energy.

For the tau candidate:
(4) The energy in the electromagnetic calorimeter 

is less than 30 GeV in order to reject dielectron events.
(5) Jets associated with more than one TEC track 

and with more than 20 GeV of electromagnetic en
ergy are required to have a total jet energy less than 
0.93 E bc.dm, This cut removes four-lepton events, 
which have no missing energy.

( 6 ) If the jet has only one track in the TEC, tb^ 
energy in the last 6 layers of the hadron calorimeter 
is required to be greater than 0.13 of the sum of en
ergy in hadron and electromagnetic calorimeters.

The last cut removes dielectron events where one 
electron passes close to the cracks in the electromag
netic calorimeter without depositing all its energy. Fig. 
4 shows the distribution of the electron energy after 
all cuts except cut (2 ) have been applied.

This set of cuts, together with the preselection, 
yields an overall efficiency for the ex events of 
(2 4 .2 ± l.0 )% . We find no candidates remaining.

24

20

16

w
c<1)
LLJ 12

8

Data 

Background MC 

Z0~-»eT MC

Cut

V

1 ' ' ' - U _ J h ' * 1 ■

aT
1 11

L

0.85 0.875 0.9
i ^ l ' v ^ n . L j i

0.925 0.95 0.975 1 1.025 1.05
L

E e /E bearn

Fig, 4. The distribution of the electron energy (£ c) for the data, 
Monte Carlo background, and signal Z°->ex Monte Carlo, after 
all cuts, but the electron energy cut (2), are applied. The nor
malization for the signal Monte Carlo is arbitrary. The arrow rep
resents the cut on electron energy.

4 58



Volume 271, number 3,4 PHYSICS LETTERS B 21 November 1991

Table 1
Limits on branching ratios.

Z°-»HT Z°-»eT Z°-»en

this experiment 4.8X10- 5 3 .4x  10~ 5 2 .4X I0 ' 5

OPAL Collaboration a) 35 X10- 5 7.2X10 - 5 4 .6x  10“ s
CLEO and ARGUS Collaborationsb) 7.4X 10-s 12 x 10-5
Sindrum Collaborationc) 6.6X10 - ' 3

a) Ref. [ l l ] . b) Refs. [8 ,9 ] ,c) Ref. [13].

From Monte Carlo studies we expect a total of
0.8 ±0.3  background events (0.8 ±0.3 from x+x~, 0 
from e+e -  and 0 from qq). Using Poisson statistics 
we set a 95% CL upper limit of 3 events from the 
Z°->ex channel. This yields a 95% CL limit on the 
branching ratio of

Br(Z°-+ex) < 3 .4 x  10~5 .

8. channel

For Z°->e|i we require one jet to be consistent with 
a beam energy electron and the other to be consistent 
with a beam energy muon. This type of event is more 
easily identified than those containing x’s and allows 
the following, less restrictive, selection criteria:

For the electron candidate:
(1) There must be an electromagnetic cluster (en

ergy E t ) associated with a track in the TEC.
( 2 ) 0 .9 5 < £ e/ £ bcam<1.05
(3) No muons are present in this hemisphere.
For the muon candidate:
(4) 0 . 9 3 < ^ / £ ’beam< 1.08
(5) The energy in the hadron calorimeter is less 

than 10 GeV.
Together with the preselection this gives an overall 

r efficiency for the t \ i  channel of (34.7 ± 1.6 )%.
We applied the above cuts to the sample of prese

lected events. We find no candidates remaining. All 
t Monte Carlo i +x~, e+e~, and qq) give 0

events. Using Poisson statistics we set a 95% CL up
per limit of 3 events from the Z°->e|t channel. This 
yields a 95% CL limit on the branching ratio of

Br(Z°->e|i) < 2 .4 X  10“ 5 .

9. Conclusions

We have searched for lepton flavour violating de
cays in the channels Z°->|ru, Z°->et, and Z°->ep.. The 
candidates found ( 1 ,0  and 0 respectively ) are con
sistent with the expected background. We set the lim
its for these decay of: BR(Z°->jxi) < 4 . 8 x  10“ 5, 
BR(Z°-»ex) < 3 . 4 x  10-5 , and BR(Z°->e|i) < 2 .4 X
10“ 5 at the 95% CL. Table 1 shows a comparison be
tween these limits and previously obtained results. In 
order to transform the low energy limits [8,9,13] from  
x and  (i decays into limits for  Z°->|ix, Z°->ex and  
Z°->e(i the procedure described in re f  [23] has been 
used. Note that in contrast to the LEP limits which are 
given at the 95% CL the low energy limits are at the 
90% CL.
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