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We search for new resonances, Y, with mass, M y, in the range from 30 to 89 GeV, produced via the reaction e+e~->Z°->YY, 
where Y subsequently decays into e+e~, ji+ja-  or hadrons. We use 5.5. pb” 1 of data collected in the energy range 88 .
GeV, near the Z° peak. We obtain the following upper limits, at the 95% confidence level, on the product of the branching ratios: 
BR(Z°-»yY) x B R (Y -* e +e~) < 2 .8 x  10~4 for 30<A /V<89, BR(Z°~>yY) X B R (Y ^ h + h~) < 2 .3 x  10“ 4 for 30< M Y<89, 
BR(Z°->yY) xBR(Y->hadrons) < 4 .7 X 1 0 “ 4 for 30<AfY<86. These limits are valid for resonances with widths smaller than 
our mass resolution.

1. Introduction

High-energy e+e~ collisions at LEP provide an 
ideal data sample in which to search for physics be
yond the standard model [ 1 ]. We search for a high- 
mass resonance using data collected during a scan of 
the Z° resonance. The new resonance, Y, is produced 
via the following reaction:

1 Supported by the German Bundesministerium für Forschung 
und Technologie.

e+e-^Z°->yY, (i)

where

Y->e+e

Y->n+|i- ,

Y-> hadrons.

(2)

(3)

(4)

Some composite models [2,3] predict that high-mass 
resonances can be produced via reaction ( 1 ) with
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branching ratios as large as 10"2 [4], and the stan
dard model predicts a branching ratio of order 10“ 6 
for Higgs bosons produced in radiative decays of the
Z° [5],

In our search, the high-precision photon energy 
measurement of the L3 detector is used to obtain the 
mass spectrum of the system of particles recoiling 
against the photon. The recoil mass spectrum is then 
used to search for evidence of resonances with masses 
in the range from 30 to 89 GeV. Initial and final state 
photon bremsstrahlung in Z° decays constitutes the 
primary source of background in this search.

Limits on the production of such resonances have 
been reported by others [6,7], Searches for another 
consequence of compositeness, excited leptons, have 
been performed by the L3 Collaboration [8 ] and 
others [9].

2. The L3 detector

The L3 detector covers 99% of 4n [ 10]. It consists 
of a central tracking chamber (TEC), a high resolu
tion electromagnetic calorimeter composed of bis
muth germanium oxide (BGO) crystals, a ring of 
scintillation counters, a uranium and brass hadron 
calorimeter with proportional wire chamber readout, 
and a high-precision muon spectrometer. These de
tectors are located in a 12 m diameter magnet which 
provides a uniform field of 0.5 T along the beam di
rection. Forward BGO arrays, one either side of the 
detector, measure the luminosity by detecting small 
angle Bhabha events.

For the present analysis, we use data collected in 
the following ranges of polar angle:
-  central tracking chamber: 40 ° < 6 ̂  140 °,
-  electromagnetic calorimeter: 42° < 9 ^  138
-  hadron calorimeter: 5 °< 0 ^ 1 7 5 ° ,
-  muon spectrometer: 36° < 0 ^  144°,
where 9 is defined with respect to the beam axis. The 
trigger efficiency exceeds 99.9% for the reactions un
der study. Details regarding the trigger conditions and 
the determination of the trigger efficiency can be 
found in ref. [ 11].

The data were collected in 1990 at seven center of 
mass energies in the range from 88.2 to 94.2 GeV, at 
intervals of 1 GeV. The integrated luminosity is 5.5

pb 1 which corresponds to approximately 115 000 
hadronic Z° decays.

3. Event selection

We search for high-mass resonances produced via 
reaction ( 1 ) and subsequently decaying via reactions
(2 )-(4 ) . Therefore, we select three independent data 
samples for final states that consist of: y+ e  + e_ , 
y -fji+ja-  andy +  hadrons.

In order to determine our acceptance, we have gen
erated Monte Carlo events with resonances in the 
mass range from 35 to 87.5 GeV. The generator in
cludes initial state radiation to lowest order. Parton 
showers are generated with the JETSET 7.2 Monte 
Carlo program [ 12]. We have generated events with 
both scalar and vector angular distributions for the 
resonance and find that our acceptance is about 2% 
higher for scalar particles. We conservatively use the 
smaller acceptance and furthermore reduce this 
acceptance by one standard deviation in order to ac
count for systematic errors.

Initial and final state photon bremsstrahlung rep
resents the primary source of background events. We 
use the following Monte Carlo generator programs in 
order to estimate this background: BABAMC [13] 
for the y + e+e~ channel, KORALZ [14] for the 
y + (i+jx"~ channel and JETSET 7.2 for the y 4- had
rons channel.

The response of the L3 detector has been simulated 
with a program which includes the effects of energy 
loss, multiple scattering and showering in the detec
tor materials and the beam pipe. All generated events 
are tracked through the L3 detector by the simulation 
program and reconstructed by the same program that 
is used for the data.

The search is based on events containing an iso
lated energetic photon. Photons are observed as iso
lated clusters in the electromagnetic calorimeter. The 
energy of a cluster, E 9, is calculated by applying a po
sition-dependent leakage correction to the energy de
posited in a 3 x 3  array of crystals centered on the 
most energetic crystal in the cluster. The lateral en-

*' The L3 detector simulation is based on GEANT Version 3.13 
(September 1989) [15]. Hadronic interactions are simulated 
using the GHEISHA program, [16].
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ergy spread of the shower is determined from the ra
tio E 9/ E 25, where E 2$ is the corrected energy depos
ited in the 5X5 symmetric extension of the 3 x 3  
crystal array. An isolated photon or electron will have 
an E 9/ E 25 ratio very close to unity. For electromag
netic clusters we require an E 9/ E 25 ratio in the range 
between 0.90 and 1.04.

3. L y + e +e~ fina l state

We select e +e_ -+yH-e+e_ events using the follow
ing selection criteria:
-  There must be three electromagnetic clusters with 
energy greater than 2 GeV in the BGO calorimeter. 
Two of the clusters must be tagged as charged by a 
TEC track which points to within 35 mrad of the 
cluster in the R-(j> plane. No track must point to 
within 35 mrad of the third cluster. The 6 coordinate 
of the track, which is measured with lower resolu
tion, is not used for tagging.
-  The total energy deposited in the BGO calorimeter 
must be greater than 0.8 *J~s.
-  The angle between the photon candidate and the 
nearest e± candidate must be greater than 15°.

After applying the above selection requirements, we 
are left with 150 events, which correspond to an in
tegrated luminosity of 5.5 pb" \  Our acceptance var
ies linearly with the mass of the resonance from 
0.31 ± 0.02 at 40 GeV to 0.38 ± 0.02 at 80 GeV, where 
the quoted error is statistical.

Fig. la shows the photon energy spectrum for the 
data collected at x/s= 91 .2  GeV; also shown in the 
figure is the expected background normalized to the 
same luminosity. Good agreement between the data 
and background Monte Carlo is observed.

20

<ua o
20

t/3 ■*—* c<L>><D 10

<L)
X>P3 0

10

0

b) y-f-|i+ja:

c) y + hadrons

0 20
Ev (GeV)

40

Fig. 1. The photon energy distribution in (a) y + e +e~, (b) 
y-f and (c) y+  hadrons events at ^ = 9 1 . 2  GeV. The solid 
lines indicate expected background from standard model
processes.

A total of 104 events, corresponding to an inte
grated luminosity of 5.4 p b " 1, satisfy the above se
lection criteria. The acceptance increases linearly as 
a function of the resonance mass from 0.21 ± 0.02 at
40 GeV to 0.33 ± 0.02 at 80 GeV.

The photon energy spectrum for data collected at 
the Z° peak is shown in fig. lb. Good agreement be
tween the data and background Monte Carlo is 
observed.

3.2. fina l state 3.3. y + hadrons final state

We select events with two reconstructed tracks in 
the muon chambers using the selection criteria de
scribed in ref. [11]. We further require that these 
events contain an isolated photon which satisfies the 
following criteria:
-  The most energetic electromagnetic cluster in the 
BGO calorimeter, with an energy greater than 2 GeV, 
is chosen as the photon candidate.
-  The angle between the photon candidate and the 
nearest muon must be greater than 15°.

We select hadronic events that contain an isolated 
photon. In ref [ 11 ], the selection of e+e” hadrons 
events is described in detail. For this search we re
quire in addition that there be at least 5 charged tracks 
reconstructed in the TEC. The photon selection cri
teria have been tightened with respect to those of the 
leptonic channels in order to remove decay photons 
from 7t°’s and rfs.

-  The photon candidate must have an energy of at 
least 5 GeV and there must be no charged track
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pointing to within 100 mrad of the cluster in the R -  
<j) plane.

-  The cluster’s E 9/ E 25 ratio must be greater than 
0.97 and less than 1.04.
-  The energy leakage into the hadron calorimeter must 
not exceed 25% of the energy of the cluster.

-  The photon candidate must be separated by at 
least 45° from the nearest cluster of energy greater 
than 300 MeV in the electromagnetic calorimeter or 
greater than 2 GeV in the hadron calorimeter.

In total 178 events, corresponding to an integrated 
luminosity of 5.5. pb-1, survive the above require
ments. We estimate that (6 ±2)%  of the photons in 
the final data sample come from the decays of 7t0,s 
and rfs. The acceptance, in contrast to the leptonic 
channels, decreases linearly as a function of the res
onance mass; for a mass of 40 GeV the acceptance is 
0.40 + 0.03 while at 80 GeV the acceptance is 
0.20 ±0.02. This is due to the tighter isolation cut 
which is sensitive to the resonance mass. The sensi
tivity of the acceptance to the assumed Y->qq cou
plings is observed to be small. The acceptance varies 
by less than 10% for Y decaying only to bb or only to 
light quarks.

Fig. lc shows the photon energy spectrum for data 
collected at y fs  = 91.2 GeV. We observe good agree
ment between the data and background Monte Carlo.

4. Results

We search for evidence of new high-mass reso
nances in the reaction e+e~-> Z°->yY  using the mass 
spectrum of the particles recoiling against the pho
ton. The recoil mass, M Ri is given by

M i = s - 2 E ysf s . (5)

We use the recoil mass because of the high precision 
with which we measure the photon’s energy, cr(Ey) /  
Ey ~ 1%, and the small spread in the LEP center of 
mass energy, a{yTs) = 50 MeV [ 17 ]. The recoil mass 
spectra for all three channels are shown in fig. 2. The 
data and Monte Carlo background expectations are 
in good agreement and no indication of a resonance 
can be seen in any of the channels.

We search for resonances in the recoil mass spec
trum using a mass window, AM R, with a width cor
responding to AEy/Ey=6%) given by

10

5

oC/5w Q£> O >V
<+-4o
^  A<D 4 J3
Ë

o

10

0
90 80 10

M r  (GeV)

Fig. 2. The distribution of the mass recoiling against the photon 
in e+e“ ->Z°^YY events where Y decays into (a) e +e", (b) 
and (c) hadrons. The size of the bins is given by eq. (6 ). The 
smoothed solid lines indicate expected background from stan
dard model processes,

AMR= (0.06) (s—A /r ) /2Mr . (6 )

About 80% of the signal from a resonance whose 
width is significantly less than A M R will fall inside 
such a window. This efficiency is determined primar
ily by initial state radiation. For photon energies of 
less than 5 GeV the spread in the LEP center of mass 
energy becomes significant and less of the signal will 
be observed in the mass window.

We correct the number of events found in a given 
mass window for efficiency and compare to the num
ber of expected background events. The mass spec
trum is scanned in steps of |A M R. We use our mea
sured cross sections and Z° decay widths [11] to 
determine the total number of Z°’s which corre
sponds to the integrated luminosity of our data sam
ples. We calculate the upper limit on the product of 
the branching ratios B R (Z °^yY )xB R (Y ->e+e", 
jj.“4“ jll~ or hadrons) at the 95% confidence level using 
Poisson statistics [18]. The resulting limits as a func
tion of the recoil mass for each of the three decay 
channels are shown in fig. 3.
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Fig. 3. Upper limits, at the 95% CL, on the product of the branch
ing ratio for Z°->yY times the branching ratio for (a) Y -*e+e - , 
(b) Y->jj.+}i_ and (c) Y->hadrons. The solid line shows the up
per limits for resonances with widths that are less than AA/r (eq. 
( 6 ) ) and the dashed line shows upper limits for resonances with 
a width of 1 GeV.

If the resonance has a width which is larger than 
AMr our limits become less restrictive. For a mass of 
85 GeV AM R is 385 MeV, as given by eq. (6 ). Also 
shown in fig. 3 are upper limits on the branching ra
tio for a resonance with a Breit-Wigner line shape 
and a width of 1 GeV.

5. Conclusions

We have searched for evidence of production of 
new high-mass resonances in radiative decays of the 
Z°. We find no evidence for such resonances in the 
mass range from 30 to 89 GeV. We obtain the follow
ing upper limits, at the 95% confidence level, on the 
product of the branching ratios for narrow reso
nances, as seen in fig. 3:

BR(Z°-»yY) xB R (Y ->e+e")  < 2 .8 x  10" 4 
for 30< M Y <89 ,

BR(Z°->yY) x B R ( Y | i . + jo.-  ) <2.3 X 10~4
for 30 <AfY<89 ,

BR(Z°->yY) XBR(Y^hadrons) <4.7 X10“ 4
for 30<M y <86  .

The branching ratio limit in the hadronic channel is 
a factor of two smaller than earlier results [6]. The 
limits in the Y->e+e- , channels are new.
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