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1 Introduction

Precision measurements of top-quark-pair [1–7] and Z-boson [8–15] production by the

ATLAS [16] and CMS [17] collaborations at the CERN Large Hadron Collider (LHC) [18]

provide important tests of the Standard Model (SM). The experimental precision of such

measurements has reached the few-percent level in the case of the total tt̄ production

cross section, σtot
tt

, and the sub-percent level for the Z-boson production cross section with

subsequent Z → `+`− decay within the fiducial region defined by the detector acceptance,

σfid
Z . This experimental precision is complemented by an accurate determination of the

proton-proton, pp, collision luminosity, which has reached a precision of approximately

2% [19, 20]. These measurements are compared with theoretical predictions performed at

next-to-next-to-leading-order (NNLO) and next-to-next-to-leading-log (NNLL) accuracy in

quantum chromodynamics (QCD) for σtot
tt

[21–27] and at NNLO QCD plus next-to-leading-

order (NLO) electroweak (EW) accuracy for σfid
Z [28–35]. Quantitative comparisons to the

predictions can be used to impose constraints on a number of Standard Model parameters

such as the parton distribution functions (PDF), the strong coupling constant (αS) and

the top-quark mass (mt).

Further tests may be performed by examining the centre-of-mass-energy (
√
s) depen-

dence of the cross sections. Top-quark-pair and Z-boson production at various
√
s values

sample different Bjorken-x regions, with higher energies sampling smaller average x. This

dependence leads to a strong increase of the gluon-fusion-dominated tt̄ production cross

section with
√
s while the increase of the qq̄-dominated Z-boson production cross section

is more moderate. However, the luminosity uncertainties associated with such measure-

ments are dominated by effects uncorrelated between different centre-of-mass energies and

data-taking periods, thereby limiting the precision with which cross sections measured at

different
√
s values can be directly compared.

The luminosity uncertainties as well as some of the experimental uncertainties can

cancel when ratios of cross sections are evaluated. The predictions of the ratios of Z-

boson production cross sections at different centre-of-mass energies are only moderately

affected by PDF uncertainties, opening the possibility to use such measurements to cross-

normalise other measurements made at different
√
s values or in different running periods,

as well as providing cross-checks on the corresponding integrated-luminosity ratios and

their uncertainties.

Given that the tt̄ and Z-boson production dynamics are driven to a large extent by

different PDFs, the ratio of these cross sections at a given centre-of-mass energy has a

significant sensitivity to the gluon-to-quark PDF ratio [36, 37]. Double ratios of tt̄ to Z-

boson cross sections, i.e. the ratio of the ratio of the two processes at two energies, provide

sensitive tests of the Standard Model predictions which do not depend significantly on the

determination of the luminosity.

This paper reports an evaluation of single ratios and double ratios of the tt̄ and Z-

boson1 production cross sections at
√
s = 13, 8, 7 TeV. Previously published ATLAS results

for tt̄ and Z-boson production at
√
s = 7 and 8 TeV [1, 9, 10] as well as for tt̄ production

1Throughout this paper, Z/γ∗-boson production is denoted simply by Z-boson production.
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at
√
s = 13 TeV [2] are used in the evaluation. For the ratios involving 13 TeV data, a

new analysis of Z → `+`−, where ` = e, µ, is performed using the data collected in 2015

with an integrated luminosity of 3.2 fb−1. This measurement uses the same methodology

as a previous measurement performed at 13 TeV [11] but is specifically designed to be

fully synchronised with the corresponding tt̄ selection at the same energy. A detailed

evaluation of the correlations of the systematic uncertainties for the different ATLAS results

for the two processes and three centre-of-mass energies is performed, resulting in significant

cancellations of some of the uncertainties in the ratios. The correlation model is also

used to evaluate the combined cross section times branching ratios of the Z → e+e− and

the Z → µ+µ− channels for each
√
s value, and the resulting measurements are reported

together with the corresponding correlation matrix. The data are compared to the state-of-

the-art calculations performed at the highest-available order in perturbative theory, using

several of the modern PDF sets. A quantitative study of projected PDF uncertainties with

the inclusion of these results shows that the ATLAS measurements presented in this paper

can have a significant impact in constraining the gluon and light-quark sea distributions.

The paper is organised as follows. The ATLAS detector is described in section 2 and the

theoretical predictions for the cross sections and their ratios are summarised in section 3.

Section 4 describes the new measurement of the Z-boson production cross section times

the branching ratio for Z → `+`− at
√
s = 13 TeV. The cross-section single and double

ratios as well as the combined cross sections, including full correlation information, are

evaluated and compared to theoretical predictions in section 5, and the ability of these

data to further constrain the PDF distributions is discussed. Section 6 summarises the

results obtained in the paper. An appendix contains additional predictions that use the

total rather than fiducial Z-boson cross sections and also presents all experimental results

in tabular form.

2 ATLAS detector

The ATLAS detector [16] at the LHC is a multi-purpose particle detector with a forward-

backward symmetric cylindrical geometry and a near 4π coverage in solid angle.2 It consists

of an inner tracking detector, electromagnetic and hadronic calorimeters, and a muon

spectrometer.

The inner detector is surrounded by a thin superconducting solenoid magnet and

includes silicon detectors, which provide precision tracking in the pseudorapidity range

|η| < 2.5, and a transition-radiation tracker providing additional tracking and electron

identification information for |η| < 2.0. For the
√
s = 13 TeV data-taking period, the

inner detector also includes a silicon-pixel insertable B-layer [38], providing an additional

2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre

of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse

plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar

angle θ as η = − ln tan(θ/2) and the rapidity is given by y = 1
2

ln
(

E+pz
E−pz

)
, where E is the jet/particle

energy and pz is the z-component of the jet/particle momentum.
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layer of tracking information close to the interaction point. A lead/liquid-argon (LAr)

electromagnetic calorimeter covers the region |η| < 3.2. Hadronic calorimetry is provided

by a steel/scintillator-tile calorimeter for |η| < 1.7 and two copper/LAr hadronic endcap

calorimeters for 1.5 < |η| < 3.2. The forward region is covered by additional coarser-

granularity LAr calorimeters up to |η| = 4.9. The muon spectrometer consists of three

large superconducting toroids each containing eight coils, precision tracking chambers cov-

ering the region |η| < 2.7, and separate trigger chambers up to |η| = 2.4.

For the data taken at 7 and 8 TeV, a three-level trigger system was used. The first-level

trigger is implemented in hardware and uses a subset of the detector information. This is

followed by two software-based trigger levels that together reduce the accepted event rate

to approximately 400 Hz. For the data taken at 13 TeV, the trigger was changed [39] to

a two-level system, using custom hardware followed by a software-based level which runs

offline reconstruction software, reducing the event rate to approximately 1 kHz.

The data used in this paper were collected by the ATLAS detector in 2011, 2012, and

2015 and correspond to total integrated luminosities of 4.6, 20.2, and 3.2 fb−1 at
√
s = 7, 8,

and 13 TeV, respectively.

3 Theoretical predictions

In this section, predictions are presented at NNLO+NNLL accuracy for the production

cross section of a top-quark pair and at NNLO accuracy for the production cross section

of a Z boson times the branching ratio of the decay into a lepton pair of flavour `+`− =

e+e− or µ+µ− within the dilepton invariant mass range 66 < m`` < 116 GeV. The total

cross sections for these processes, denoted respectively by σtot
tt

and σtot
Z , are calculated for

the centre-of-mass energies
√
s = 13, 8, 7 TeV. Also presented are predictions at NNLO

accuracy for the Z-boson production cross section times the same branching ratio within

a fiducial region defined by the detector acceptance, σfid
Z = σtot

Z · A, where the acceptance

factor A is expressed as the fraction of decays satisfying the matching fiducial acceptance

(geometric and kinematic requirements) at the Monte Carlo generator level. The Z-boson

fiducial phase space is defined by the lepton transverse momentum p`T > 25 GeV, the lepton

pseudorapidity |η`| < 2.5, and 66 < m`` < 116 GeV. Predictions of top-quark-pair fiducial

cross sections are not yet available at NNLO accuracy.

3.1 Z-boson cross-section predictions

Theoretical predictions of the fiducial and total Z-boson production cross sections times

the branching ratio of the decay into a lepton pair Z → `+`− at
√
s = 13, 8, 7 TeV

are computed using a version of DYNNLO 1.5 [28, 29] optimised for speed of compu-

tation, for both the central values and all variations reflecting systematic uncertainties,

thereby providing NNLO QCD calculations. Electroweak corrections at NLO, calculated

with Fewz 3.1 [30–33], are calculated in the Gµ EW scheme [40]. The cross sections are

calculated for Z-boson decays into leptons at Born level, i.e. before the decay leptons emit

photons via final-state radiation, to match the definition of the cross sections measured in

data. Thus, the following components are included: virtual QED and weak corrections,
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initial-state radiation (ISR), and interference between ISR and FSR [41]. The NNLO

PDFs CT14 [42], NNPDF3.0 [43], MMHT14 [44], ABM12 [45], HERAPDF2.0 [46],

and ATLAS-epWZ12 [47] are used in the comparisons to data. The CT14 PDF set is used

as the baseline for the predictions.

The systematic uncertainties in the predictions are dominated by the knowledge of

proton PDFs. These uncertainties are obtained from the sum in quadrature of the differ-

ences between predictions obtained with the central PDF values and those obtained using

the variations (eigenvectors) of the respective PDF sets. Where appropriate, asymmetric

uncertainties are determined using separate sums of negative and positive variations. The

CT14 uncertainties are rescaled from 90% to 68% confidence level (CL). The uncertainties

due to the strong coupling constant are estimated following the prescription given with

the CT14 PDF, varying αS by ±0.001 to correspond to 68% CL. The QCD scale uncer-

tainties are defined by the envelope of variations in which the renormalisation (µR) and

factorisation (µF) scales are changed by factors of two with an additional constraint of

0.5 ≤ µR/µF ≤ 2. The dynamic scale m`` is used as the central value for the Z-boson

predictions. The limitations in the NNLO calculations, referred to as the “intrinsic” uncer-

tainties, are estimated by comparing the predictions calculated with the optimised version

of DYNNLO 1.5 to the ones obtained with Fewz 3.1. For the total cross-section predic-

tions, these differences are found to be < 0.2% and hence are negligible. For the fiducial

cross-section predictions, these differences are larger due to a feature of the calculations

involving leptons with symmetric pT requirements, resulting in consistently larger values

from Fewz. The differences are calculated using the CT14 PDF to obtain the central

value in both cases, and are approximately 0.7% at all three
√
s values.

The predictions of the fiducial cross sections, together with their uncertainties, are

given in table 1 while the predictions of the total cross sections are given in table 13 of

appendix A.

3.2 tt cross-section predictions

Theoretical predictions [21–26] of the total tt production cross sections at
√
s = 13, 8, 7 TeV

are computed using Top++v2.0 [27] for the central values and for all variations reflecting

systematic uncertainties, thereby providing NNLO+NNLL resummed QCD calculations.

The systematic uncertainties in the predictions are performed as for those of the Z boson,

with the following exceptions. Since there is no alternative calculation of the NNLO tt

cross section available, no intrinsic uncertainty is assigned to its cross-section prediction.

It was verified that the code Hathor v1.5 [48], which implements the exact NNLO tt cross

sections, matches the results obtained with Top++v2.0. The tt production cross section

also has a significant dependence on the value of the top-quark mass, mt. A systematic

uncertainty is assessed by varying the mass of the top quark by ±1 GeV from the baseline

value of 172.5 GeV used to obtain the central value of the predictions, resulting in an

uncertainty in the cross section of approximately 3%. The predictions of the total cross

sections, together with their uncertainties, are given in table 1.
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σfid
Z σtot

tt√
s [TeV] 13 8 7 13 8 7

Central value [pb] 744 486 432 842 259 182

Uncertainties [%]

PDF +2.7
−3.4

+2.5
−3.1

+2.5
−3.0

+2.6
−2.7

+3.9
−3.4

+4.4
−3.7

αS
+0.9
−1.1

+1.0
−0.8

+1.0
−0.7

+1.9
−1.8

+2.1
−2.1

+2.2
−2.1

Scale +0.5
−0.8

+0.5
−0.5

+0.7
−0.3

+2.4
−3.6

+2.6
−3.5

+2.6
−3.5

Intrinsic Z +0.7
−0.7

+0.7
−0.7

+0.7
−0.7 N/A N/A N/A

mt N/A N/A N/A +2.8
−2.7

+3.0
−2.9

+3.1
−3.0

Total +3.0
−3.7

+2.8
−3.3

+2.9
−3.2

+5
−6

+6
−6

+6
−6

Table 1. Predictions of the fiducial cross section, σfid
Z , and the total cross section, σtot

tt
, at
√
s =

13, 8, 7 TeV using the CT14 PDF. The uncertainties, given in %, correspond to variations of: CT14

eigenvector set at 68% CL, αS, QCD scale, intrinsic Z-boson prediction, and top-quark mass, as

described in the text. The statistical uncertainties in the predictions are ≤ 1 pb for the Z boson

and ≤ 0.1 pb for tt̄ and are not given in the table. The notation N/A means “not applicable”.

3.3 Predictions of ratios of cross sections

The Z-boson cross-section measurements made in a fiducial phase space require only a

small extrapolation from the experimental phase space and hence benefit from significantly

reduced theoretical uncertainties in comparison to the measurements extrapolated to the

total phase space. For this reason, the Z-boson fiducial cross sections are primarily used

in the measurements of the cross-section ratios. The predictions given in table 1 are used

to build cross-section ratios for

• a given process at the different
√
s:

Rfid
Zi/Zj

= σfid
Z(iTeV)/σ

fid
Z(jTeV) and Rtot

tt̄i/tt̄j
= σtot

tt(iTeV)
/σtot

tt(jTeV)
,

• different processes at the same
√
s:

R
tot/fid
tt̄/Z

(i TeV) = σtot
tt(iTeV)

/σfid
Z(iTeV),

• different processes at the different
√
s:

R
tot/fid
tt̄/Z

(i/j) =
[
σtot
tt(iTeV)

/σfid
Z(iTeV)

]
/
[
σtot
tt(jTeV)

/σfid
Z(jTeV)

]
denoted in this paper as

double ratios,

where i, j = 13, 8, 7. The first set of predictions is presented in table 2 while the latter

two are presented in table 3. The corresponding ratios using the total Z-boson production

cross sections rather than the fiducial ones are given in tables 13 and 14 of appendix A.

The choice of correlation model when combining the theoretical uncertainties in the

ratios is not unique. For this paper, the treatment of the systematic uncertainties is taken

as follows. The PDF uncertainties are considered as correlated, eigenvector by eigenvector,

between predictions. The QCD scale uncertainties are treated as uncorrelated between

processes but correlated, variation by variation, at the different
√
s values for a given

– 6 –
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Rfid
Zi/Zj

Rtot
tt̄i/tt̄j

i/j 13/7 13/8 8/7 13/7 13/8 8/7

Central value 1.722 1.531 1.125 4.634 3.251 1.425

Uncertainties [%]

PDF +1.0
−0.9

+0.8
−0.7

+0.22
−0.21

+1.9
−2.3

+1.4
−1.8

+0.5
−0.6

αS
−0.1
−0.4

−0.1
−0.3

−0.1
−0.1

−0.32
+0.29

−0.25
+0.22

−0.08
+0.07

Scale +0.03
−0.60

+0.02
−0.29

+0.02
−0.31

+0.19
−0.26

+0.13
−0.19

+0.05
−0.07

mt N/A N/A N/A +0.29
−0.29

+0.22
−0.22

+0.07
−0.07

Total +1.0
−1.2

+0.8
−0.8

+0.22
−0.40

+1.9
−2.4

+1.4
−1.8

+0.5
−0.6

Table 2. Predictions of the cross-section ratios Rfid
Zi/Zj

and Rtot
tt̄i/tt̄j

at the different
√
s values

where i/j = 13/7, 13/8, and 8/7 using the CT14 PDF. The uncertainties, given in %, correspond

to variations of: CT14 eigenvector set at 68% CL, αS, and QCD scale, as described in the text.

The statistical uncertainties in the predictions are ≤ 0.002 for the Z process and ≤ 0.001 for the tt̄

process and are not given in the table. The notation N/A means “not applicable”.

R
tot/fid
tt̄/Z

(i TeV) R
tot/fid
tt̄/Z

(i/j)

i or i/j 13 8 7 13/7 13/8 8/7

Central value 1.132 0.533 0.421 2.691 2.124 1.267

Uncertainties [%]

PDF +6
−5

+7
−5

+7
−5

+1.5
−2.0

+1.1
−1.6

+0.4
−0.5

αS
+0.9
−0.8

+1.1
−1.3

+1.1
−1.5

−0.22
+0.70

−0.22
+0.50

−0.00
+0.20

Scale +2.6
−3.6

+2.6
−3.5

+2.7
−3.6

+0.62
−0.27

+0.32
−0.20

+0.31
−0.07

Intrinsic Z +0.7
−0.7

+0.7
−0.7

+0.7
−0.7

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

mt
+2.8
−2.7

+3.0
−2.9

+3.1
−3.0

+0.29
−0.29

+0.22
−0.22

+0.07
−0.07

Total +7
−7

+8
−7

+8
−7

+1.8
−2.1

+1.3
−1.6

+0.5
−0.5

Table 3. Predictions of the cross-section ratios R
tot/fid
tt̄/Z (i TeV) and R

tot/fid
tt̄/Z (i/j) at the different

√
s values where i, j = 13, 8, 7 using the CT14 PDF. The uncertainties, given in %, correspond

to variations of: CT14 eigenvector set at 68% CL, αS, QCD scale, intrinsic Z-boson prediction,

and top-quark mass, as described in the text. The statistical uncertainties in the predictions are

≤ 0.001 for R
tot/fid
tt̄/Z (i TeV) and ≤ 0.003 for R

tot/fid
tt̄/Z (i/j) and are not given in the table.

process. The αS uncertainties are correlated between predictions. The Z-boson intrinsic

and mt uncertainties are both considered as correlated at the different
√
s values within

their respective processes. In the few cases where the coherent variation of a source of

systematic uncertainty in the numerator and in the denominator of a ratio results in vari-

ations of the same sign, only the largest variation is added in the total uncertainty of the

corresponding sign.
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4 Analysis of Z → `+`− at
√
s = 13 TeV

4.1 Data set and simulated event samples

The data sets used in this analysis of Z → `+`− at
√
s = 13 TeV were collected by the

ATLAS detector during the period of August to November 2015. During this period, the

LHC circulated 6.5 TeV proton beams with a 25 ns bunch spacing. The peak delivered

instantaneous luminosity was L = 5× 1033 cm−2 s−1 and the mean number of pp interac-

tions per bunch crossing (hard scattering and pile-up events) was 〈µ〉 = 13. The data set

corresponds to a total integrated luminosity of 3.2 fb−1.

Monte Carlo simulations are used to evaluate the selection efficiency for signal events

and the contribution of several background processes to the analysed data set. All of the

samples are processed with the Geant4-based simulation [49] of the ATLAS detector [50].

Events containing a Z boson decaying to a lepton pair, Z → `+`− where ` = e, µ, τ , and

events from the leptonic decay of W bosons are generated with the Powheg-Box v2 Monte

Carlo program [51–55] interfaced to the Pythia v.8.186 [56] parton shower model. The

CT10 PDF set [57] is used in the matrix element and the AZNLO [58] set of generator-

parameter values (tune) is used, with the CTEQ6L1 [59] PDF set, for the modelling of

non-perturbative effects. The EvtGen v.1.2.0 program [60] is used for properties of the

bottom and charm hadron decays, and Photos++ version 3.52 [61, 62] is used for QED

emissions from electroweak vertices and charged leptons. Samples of top-quark pairs are

generated with the Powheg-Box v2 generator, which uses the four-flavour scheme for the

NLO matrix element calculations together with the fixed four-flavour PDF set CT10f4. The

top-quark-spin correlations are preserved in these samples and the top-quark mass is set to

172.5 GeV. The parton shower, fragmentation, and underlying event are simulated using

Pythia v.6.428 [63] with the CTEQ6L1 PDF set and the corresponding Perugia 2012 tune

(P2012) [64]. The EvtGen v1.2.0 program is used for properties of the bottom and charm

hadron decays. Diboson processes are simulated using the Sherpa v2.1.1 generator [65].

Multiple overlaid pp collisions are simulated with the soft QCD processes of Pythia v.8.186

using the A2 tune [66] and the MSTW2008LO PDF [67].

The Monte Carlo events are reweighted so that the µ distribution matches the one

observed in the data. Correction factors are applied to the simulated events to account for

the differences observed between the data and MC simulation in the trigger, identification,

reconstruction, and isolation efficiencies for the selected electron and muon candidates.

Electron-energy- and muon-momentum-calibration corrections are applied as well.

For the comparison to the data distributions, the signal MC simulations are normalised

to the cross sections measured by this analysis. The remaining simulations are normalised

to the predictions of the highest-order available QCD calculations, with uncertainties of

5% for the single-boson processes and 6% for the diboson and top-quark processes.

4.2 Event selection

The selections of electron and muon candidates from the decay of the Z boson are designed

to be fully synchronised to the tt̄ selection at 13 TeV [2] e.g. using the same lepton trigger,

identification, and kinematical requirements on the same data set.
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Candidate events are selected using triggers which require at least one electron or muon

to exceed transverse momentum thresholds of pT = 24 GeV or 20 GeV, respectively, with

some isolation requirements for the muon trigger. To recover possible efficiency losses at

high momenta, additional electron triggers with thresholds of pT ≥ 60 GeV and a muon

trigger with a threshold of pT = 50 GeV are included. Candidate events are required to

have a primary vertex, defined as the vertex with the highest sum of track p2
T, with at least

two associated tracks with pT > 400 MeV.

Electron candidates are required to have pT > 25 GeV and to pass “medium”

likelihood-based identification requirements [68] optimised for the 2015 operating condi-

tions, within the fiducial region |η| < 2.47, excluding candidates in the transition region

between the barrel and endcap electromagnetic calorimeters, 1.37 < |η| < 1.52. Muon

candidates are considered for |η| < 2.4 with pT > 25 GeV and must pass “medium” identi-

fication requirements [69] also optimised for the 2015 operating conditions. At least one of

the lepton candidates is required to match the lepton that triggered the event. The electron

and muon candidates must also satisfy pT-dependent cone-based isolation requirements, us-

ing tracking detector and calorimeter information described in refs. [70, 71], respectively.

The isolation requirements are tuned so that the lepton-isolation efficiency is at least 90%

for pT > 25 GeV, increasing to 99% at 60 GeV. Both the electron and muon tracks are

required to be associated with the primary vertex, using constraints on the transverse

impact-parameter significance, |d0|/δd0, where d0 is the transverse impact parameter and

δd0 is its uncertainty, and on the longitudinal impact parameter, z0, corrected for the re-

constructed position of the primary vertex. The transverse impact-parameter significance

is required to be less than five for electrons and three for muons, while the absolute value

of the corrected z0 multiplied by the sine of the track polar angle is required to be less

than 0.5 mm.

Events containing a Z-boson candidate are chosen by requiring exactly two selected

leptons of the same flavour but of opposite charge with an invariant mass of 66 < m`` <

116 GeV. A total of 1,367,026 candidates and 1,735,197 candidates pass all requirements

in the electron and muon channels, respectively.

4.3 Background processes

Contributions from the single-boson (W → `ν and Z → τ+τ−), diboson, and top-quark-

pair components of the background are estimated from the Monte Carlo samples described

in section 4.1. The Z → τ+τ− process with the subsequent leptonic decay of the τ is

treated as a background.

Events involving semileptonic decays of heavy quarks, hadrons misidentified as leptons,

and, in the case of the electron channel, electrons from photon conversions (all referred to

collectively as “multijet” events) are a minor background in this analysis. The multijet

background is estimated in both channels using data-driven methods. The transverse

impact-parameter distribution d0 times the value of the charge of the lepton, to take into

account the direction of photon radiation, is used in a template fit in the region where the

transverse impact-parameter requirement is inverted. The contribution of multijet events

to the event selection in both channels is found to be < 0.1% and therefore is neglected
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in the calculation of the central value of the cross section but contributes 0.05% to the

cross-section uncertainty.

The total background event rate contributing to the Z → `+`− selection in both chan-

nels is approximately 0.5%, dominated by tt production while the sum of all electroweak

backgrounds is 0.2%.

4.4 Cross-section measurement and estimation of the systematic uncertainties

The methodology for the evaluation of the inclusive fiducial cross section is the same as

in previous ATLAS publications [10, 11]. The fiducial production cross section of a Z

boson times the branching ratio of the decay of the Z boson into a lepton pair of flavour

`+`− = e+e− or µ+µ− can be expressed as a ratio of the numbers of background-subtracted

data events N to the product of the integrated luminosity of the data L and a correction

factor C:

σfid
Z =

N

L · C
. (4.1)

The correction factor C is the ratio of the total number of simulated events which pass the

final Z-boson selection requirements after reconstruction to the total number of simulated

events within the fiducial acceptance defined in section 3. This factor, defined at Born

level, includes the efficiencies for triggering on, reconstructing, and identifying the Z-boson

decay products within the acceptance, and also accounts for the slight difference between

the fiducial and reconstructed phase spaces. The contribution from the Z → τ+τ− process

with the subsequent leptonic decay of the τ is considered as a background and is not part

of the fiducial definition. The total cross section, evaluated by extrapolating to the full

phase space by use of the acceptance factor A (σtot
Z = σfid

Z /A), is further elaborated in

appendix B.

The experimental systematic uncertainties in the measurements of the cross section

enter via the evaluation of the correction factor and the luminosity in the denominator of

eq. (4.1), as well as through the estimation of the background subtracted from the candidate

events in its numerator.

The sources of systematic uncertainties in the correction factors C, summarised in

table 4, are as follows.

• Trigger: the lepton trigger efficiency is estimated in simulation, with a dedicated

data-driven analysis performed to obtain the simulation-to-data trigger correction

factors and the corresponding uncertainties.

• Reconstruction, identification, and isolation: the lepton selection efficiencies as deter-

mined from simulation are corrected with simulation-to-data correction factors and

their associated uncertainties [68, 69].

• Energy, momentum scale/resolution: uncertainties in the lepton calibrations [69] are

assessed as they can cause a change of acceptance because of migration of events

across the pT threshold and m`` boundaries.
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• Charge identification: electron charge misidentification may occur when electrons

radiate in the inner regions in the detector and the resulting photons subsequently

convert and are reconstructed as high-pT tracks. A particle with reconstructed charge

opposite to the parent electron may then be accidentally associated with the energy

deposit in the calorimeter. The effect of electrons having their charge misidentified is

studied [11] using a control sample of Z → e+e− events in which both electrons are

reconstructed with the same charge and is found to be well described by the Monte

Carlo simulation, within the statistical uncertainty of the control sample. An uncer-

tainty is assessed to cover any small residual differences between data and simulation.

The probability of charge misidentification is negligible in the muon channel.

• Pile-up: incorrect modelling of pile-up effects can lead to acceptance changes and is

accounted for with dedicated studies.

• PDF: the impact of the PDF uncertainty is estimated by propagating NNPDF3.0

PDF variations to the correction factor.

• p``T mismodelling: mismodelling in the simulation at high dilepton transverse mo-

mentum, p``T , has been studied in detail in the context of a
√
s = 8 TeV Z-boson

analysis [10]. The effect is estimated here by reweighting the simulated p``T distri-

bution to a fourth-order polynomial derived from a fit to the corresponding data

distribution. It has a small impact on the measured fiducial cross section, as estab-

lished in a previous Z-boson cross-section analysis at 13 TeV [11] and confirmed for

this paper.

The systematic uncertainties from the background estimation contribute negligibly to

the experimental cross-section uncertainty. The cross sections have a 2.1% uncertainty in

the measurement of the integrated luminosity, which is derived, following a methodology

similar to that detailed in refs. [19, 20], from a preliminary calibration of the luminosity scale

using a pair of x–y beam separation scans performed in August 2015. Finally, there exists

an uncertainty related to knowledge of the beam energy, taken as 0.66% of the beam-energy

value [72], and propagated to the cross section with the VRAP 0.9 program [73]. Apart from

the determination of the luminosity, the dominant experimental systematic uncertainties

in the cross-section evaluations are the lepton reconstruction and identification efficiencies.

4.5 Cross-section results

Distributions of the lepton η and pT, and of the dilepton pT and invariant mass after

applying all selection criteria are shown in figures 1 and 2. Good agreement between data

and simulation is observed in the lepton η and in the dilepton invariant-mass distributions.

As can be seen from the figure, agreement is also achieved in the lepton pT distribution after

reweighting the simulated dilepton transverse momentum, p``T , to the data, as explained in

section 4.4.

All elements necessary to calculate the cross sections for Z-boson production and decay

in the electron and muon channels with 3.2 fb−1 of data are summarised in table 5. The
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δC/C [%] Z → e+e− Z → µ+µ−

Lepton trigger < 0.1 0.1

Lepton reconstruction, identification 0.4 0.7

Lepton isolation 0.1 0.4

Lepton scale and resolution 0.2 0.1

Charge identification 0.1 —

Pile-up modelling < 0.1 < 0.1

PDF 0.1 < 0.1

p``T mismodelling 0.1 < 0.1

Total 0.5 0.8

Table 4. Relative systematic uncertainties, in %, in the correction factors C in the electron and

muon channels.

Z → e+e− Z → µ+µ−

Events 1, 360, 680± 1170 (stat)± 760 (syst)± 130 (lumi) 1, 727, 700± 1320 (stat)± 950 (syst)± 160 (lumi)

C 0.554± 0.003 (tot) 0.706± 0.006 (tot)

σfid
Z [pb] 778± 1 (stat)± 4 (syst)± 5 (beam)± 16 (lumi) 774± 1 (stat)± 6 (syst)± 5 (beam)± 16 (lumi)

Table 5. The observed numbers of signal events after background subtraction are shown for the

electron and muon channels along with the correction factors C and the Z-boson fiducial cross

sections. The statistical, systematic, beam-energy, and luminosity uncertainties are quoted in that

order except for the C factor where the total uncertainty is quoted.

measured fiducial cross sections are also presented in this table, along with their statistical,

experimental systematic, luminosity, and beam-energy uncertainties, except for the C fac-

tor where the total uncertainty is quoted. The fiducial phase space for this measurement

is presented in section 3. These numbers are in agreement, within experimental systematic

uncertainties, with the previous ATLAS measurement [11] of Z-boson production in the

combined electron and muon channels in the same fiducial phase space and which uses an

independent data set at
√
s = 13 TeV: 779± 3 (stat)± 6 (syst)± 16 (lumi) pb. The results

are also compatible with the NNLO prediction shown in section 3.1 of 744+22
−28 (tot) pb.

5 Analysis of ratios

5.1 Methodology

The following ratios are considered in this section: Rfid
Zi/Zj

, Rtot
tt̄i/tt̄j

, R
tot/fid
tt̄/Z

(i TeV), and

R
tot/fid
tt̄/Z

(i/j) where i, j = 13, 8, 7 and i 6= j. The corresponding ratios using the Z-boson

total cross section are reported in appendix C. Ratios using fiducial tt̄ cross sections are

also reported in appendix C, although there are no NNLO calculations available yet for tt̄

production cross sections with requirements on the final-state leptons.

For the evaluation of the tt̄/Z ratios, Rtt̄/Z , the Z-boson cross sections from the electron

and muon channels are both employed and taken with the same weight in the ratio, i.e.

Rtt̄/Z =
σtt̄

0.5 (σZ→ee + σZ→µµ)
(5.1)
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Figure 1. Lepton pseudorapidity (top) and transverse momentum (bottom) distributions from the

Z → e+e− selection (left) and the Z → µ+µ− selection (right). Due to the unequal bin widths

used in the lepton pseudorapidity distributions, these distributions are plotted divided by the bin

width. The background processes are heavily suppressed and not visible on the linear scale. The

systematic uncertainties for the signal and background distributions are combined in the shaded

band, while the statistical uncertainty is shown on the data points. The luminosity uncertainties

are not included. There are two lepton entries in the histogram for each candidate event.

since the tt̄ production cross section is measured from the electron and muon pair final

state topology. This ensures the best cancellation of important systematic uncertainties

related to lepton reconstruction, identification, and trigger. For other ratios involving Z

bosons, the Z → e+e− and Z → µ+µ− results are combined (section 5.4.4 describes the

results of the combination) using the code described in refs. [74, 75], taking into account

correlations of systematic uncertainties across channels and
√
s.
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Figure 2. Dilepton transverse momentum (top) and invariant mass (bottom) distributions from

the Z → e+e− selection (left) and the Z → µ+µ− selection (right). The systematic uncertainties

for the signal and background distributions are combined in the shaded band, while the statistical

uncertainty is shown on the data points. The luminosity uncertainties are not included.

5.2 Inputs to the ratios

The primary inputs to the ratios are the Z-boson and tt̄ production cross sections at

13, 8, 7 TeV [1, 2, 8, 9], each obtained with its own experimental selection criteria, measured

within an experimental phase space, and reported in a corresponding fiducial phase space

or in the total phase space. The event topologies of the two processes are independent

of the centre-of-mass energy. The Z-boson selections target two isolated, same-flavour,

opposite-charge reconstructed leptons, identified as electrons or muons, whose dilepton

invariant mass is consistent with that of a Z boson. The tt̄ topology specific to this paper

is that of an opposite-charge, isolated electron and muon pair, and additional jets tagged

as containing b-hadrons. Although the tt̄ fiducial phase space has remained unchanged

at 13, 8, 7 TeV (lepton pT > 25 GeV and |η| < 2.5), this has not been the case for the
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√
s [TeV] 13 8 7

p`T > 25 GeV 20 GeV 20 GeV

|η`| < 2.5 2.4 2.5

|y``| < — 2.4 —

m`` 66–116 GeV 66–116 GeV 66–116 GeV

Extrapolation E — 0.941± 0.001 (PDF) 0.898± 0.001 (PDF)

Table 6. Z-boson fiducial definition at
√
s = 13, 8, 7 TeV. The ratios measured in this analysis

are calculated in the 13 TeV phase space for all
√
s. The factor E is used to extrapolate the 7 and

8 TeV results to the common phase space defined by the 13 TeV results. The PDF uncertainty is

obtained from the CT14 eigenvector set.

σ± stat ± syst [pb]√
s [TeV] 13 8 7

σfid
Z→ee 778.3± 0.7± 17.7 507.0± 0.2± 11.0 451.2± 0.5± 8.7

σfid
Z→µµ 774.4± 0.6± 18.2 504.7± 0.2± 10.8 450.0± 0.3± 8.8

σfid
tt̄→eµ+X 9.94± 0.09± 0.37 3.04± 0.02± 0.10 2.30± 0.04± 0.08

σtot
tt̄ 818± 8± 35 243± 2± 9 183± 3± 6

Table 7. Fiducial and total cross sections at
√
s = 13, 8, 7 TeV that form the primary input to the

cross-section ratios. The Z-boson cross sections are provided in the common 13 TeV phase space.

The systematic uncertainties include experimental, luminosity, beam-energy, and some theoretical

uncertainties (see text).

Z-boson measurements, in some part due to the evolution of the trigger requirements as

the peak luminosity and the degree of pile-up from the LHC have increased with time.

Table 6 reports the fiducial phase space used in the 13, 8, 7 TeV measurements of the Z-

boson fiducial cross sections. In this paper, all ratios involving Z bosons at 7 and 8 TeV

are extrapolated to the 13 TeV phase space using the same methodology as reported in

section 3.1, i.e. computed using an optimised version of DYNNLO 1.5 and the NNLO

parton distribution functions CT14. These 13-to-7 TeV and 13-to-8 TeV extrapolation

factors, E, are multiplicative factors to the cross sections, and are also reported in table 6.

Table 7 summarises the primary inputs, in the common 13 TeV phase space for the Z-

boson measurements, that enter the cross-section ratios, including the statistical and total

systematic uncertainties, the latter encompassing experimental, luminosity, beam-energy,

and some theoretical uncertainties (as explained in section 5.3). These results are taken

directly from the publications and from section 4, with one exception: since the publication

of the 8 TeV Z-boson fiducial cross section [10], the 8 TeV luminosity values have been

finalised [20], resulting in a slight shift of the integrated luminosity value from the published

20.3 fb−1 to 20.2 fb−1 and significantly reducing the uncertainty from 2.8% to 1.9%. The

8 TeV results presented here have been updated accordingly. The tt̄ fiducial cross-section

results in table 7 are reported in the phase space defined by lepton pT > 25 GeV and

|η| < 2.5 and for which the contribution from W → τ → ` decay has been subtracted.

The breakdown of the systematic uncertainties is presented in table 8 while the correlation

model for the uncertainties is elaborated in the next subsection.
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δ σfid
Z δ σtot

tt

Systematic [%] /
√
s [TeV] 13 8 7 13 8 7

Luminosity 2.1 1.9 1.8 2.3 2.1 2.0

Beam energy 0.7 0.6 0.6 1.5 1.7 1.8

Muon (lepton) trigger 0.1 0.6 0.1 0.1 0.2 0.2

Muon reconstruction/ID 0.7 0.5 0.3 0.4 0.4 0.3

Muon isolation 0.4 0.0 0.2 0.3 0.2 0.4

Muon momentum scale 0.1 0.0 0.0 0.0 0.0 0.1

Electron trigger 0.0 0.2 0.0 0.1 — —

Electron reconstruction/ID 0.4 0.8 0.3 0.3 0.4 0.1

Electron isolation 0.1 0.0 — 0.4 0.3 0.6

Electron energy scale 0.3 0.1 0.1 0.2 0.5 0.2

Jet energy scale — — — 0.4 0.7 0.4

b-tagging — — — 0.5 0.4 0.5

Background 0.1 0.2 0.1 1.1 1.0 1.0

Signal modelling (incl. PDF) 0.1 0.1 0.3 3.0 1.7 1.8

Table 8. Systematic uncertainties in %, δ, for the measurement of Z-boson and tt̄ production

at
√
s = 13, 8, 7 TeV. Values listed as 0.0 are < 0.05%. Values listed as “–” have no correspond-

ing uncertainty. The entry “(lepton)” in “Muon (lepton) trigger” refers to the tt̄ trigger for the

7 and 8 TeV data set which quotes a single uncertainty for the combined effects of the uncertainties

in the electron and muon triggers and so there is a corresponding entry “–” for the electron trigger

for the 7 and 8 TeV tt̄ data set.

5.3 Correlation model

The correlation model used in this analysis is summarised in table 9. The groups listed

in the table may be represented by a single source, or by several individual sources of

systematic uncertainties (nuisance parameters). The groups of sources are:

• Luminosity is considered to be correlated for the measurements performed at the

same
√
s but uncorrelated for data at different

√
s.

• Beam energy uncertainty is 0.66% of the beam-energy value [72] and is considered to

be fully correlated for all data sets.

• Muon trigger is a small source of uncertainty for most analyses. It is considered to

be correlated for all Z-boson measurements and for the tt̄ measurement at 13 TeV,

and separately between the two tt̄ analyses at 7 and 8 TeV, following the prescription

of ref. [1].

• Muon reconstruction/identification is described by several nuisance parameters. The

treatment is fully synchronised for the 13 TeV measurements. The Z-boson mea-

surements at 7 and 8 TeV are considered uncorrelated with each other and with the

tt̄ measurements since different muon reconstruction algorithms were employed for

these measurements. However, the measurements of tt̄ at 7 and 8 TeV are assumed

to be correlated since they use the same reconstruction algorithm.
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δ σfid
Z δ σtot

tt

Source /
√
s [TeV] 13 8 7 13 8 7

Luminosity A B C A B C

Beam energy A A A A A A

Muon (lepton) trigger A A∗ A A B B

Muon reconstruction/ID A B C A D D

Muon isolation A A A B C D

Muon momentum scale A A A A A A

Electron trigger A A A A — —

Electron reconstruction/ID A B C A D D

Electron isolation A A — B C D

Electron energy scale A A A A A A

Jet energy scale — — — A B B

b-tagging — — — A B B

Background A A A B B B

Signal modelling (incl. PDF) A A A B∗ B B

Table 9. Correlation model for the systematic uncertainties, δ, of the measurements of Z-boson

and tt̄ production at
√
s = 13, 8, 7 TeV. Entries in different rows are uncorrelated with each other.

Entries within a row with the same letter are fully correlated. Entries within a row with a starred

letter are mostly correlated with the entries with the same letter (most of the individual sources of

uncertainties within a group are taken as correlated). Entries with different letters within a row are

either fully or mostly uncorrelated with each other. This table uses the same categories as table 8.

• Muon isolation is a small and similar source of uncertainty for all Z-boson measure-

ments and thus it is considered to be correlated amongst the measurements. For tt̄

analyses, the muon isolation uncertainty is determined in situ, to account for dif-

ferent hadronic environments, and has significant statistical uncertainties. For these

reasons, these uncertainties are considered to be uncorrelated with each other and

with the Z-boson uncertainties.

• Muon momentum scale is a small source of uncertainty for all measurements. It is

validated in situ by comparing the invariant mass distributions of muon pairs in data

and simulation. Similar levels of agreement are observed for all data-taking periods,

and thus all measurements are considered to be correlated.

• Electron trigger is a small source of uncertainty for all measurements and is considered

to be fully correlated amongst all measurements.

• Electron reconstruction/identification is treated similarly to the muon reconstruc-

tion/identification.

• Electron isolation is treated similarly to the muon isolation.

• Electron energy scale is treated and validated similarly to the muon momentum scale.

• Jet energy scale only affects the tt̄ measurements and is described by several nui-

sance parameters. The uncertainty is correlated for 7 and 8 TeV data, following the
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prescription of ref. [1], and mostly uncorrelated with 13 TeV data, in part due to the

in-situ corrections. The impact of this source on the tt̄ measurements is small.

• b-tagging also only affects the tt̄ measurements. The source is considered to be corre-

lated for 7 and 8 TeV data but uncorrelated with 13 TeV data since the installation of

the new insertable B-layer in the inner detector and re-optimised b-tagging algorithms

used at 13 TeV resulted in significantly improved b-tagging performance.

• Background is treated as fully correlated for all
√
s within a given process. The

main uncertainty for this source is driven by the theoretical uncertainties in the cross

sections of the background processes, and the leading background sources are very

different for the Z-boson and tt̄ measurements.

• Signal modelling uncertainty is small for the fiducial Z-boson measurements. Signal

modelling is the leading source of uncertainty for the tt̄measurements. Several sources

of uncertainty, such as uncertainties related to signal and background MC generators

and to PDFs, are considered to be correlated across the different
√
s values. An

additional source of uncertainty is included only for the tt̄ measurement at 13 TeV,

due to the level of agreement observed in events with at least three b-tagged jets [2].

The correlation model described above corresponds to a fully synchronised analysis of

Z-boson and tt̄ data at 13 TeV. It also follows the prescription given in ref. [1] for the

tt̄ measurements at 7 and 8 TeV. The stability of the results relative to the correlation

assumptions was verified by altering the model for the sources of uncertainty where the

level of correlation is not precisely known, such as lepton reconstruction and identification

at 7 and 8 TeV, resulting in only small changes in the uncertainties.

5.4 Results

In this section, a representative set of total tt̄ and fiducial Z-boson cross sections and their

ratios are compared to the theory predictions. The full set of single-ratio and double-

ratio results for the various combinations of fiducial and total cross sections is given in

appendix C.

5.4.1 Single ratios at a given
√
s

The single ratios R
tot/fid
tt̄/Z

are compared in figure 3 to the theoretical predictions based on

different PDF sets. For all centre-of-mass energies, the predictions follow a similar pattern

for the following three groups of PDFs. The ABM12 set yields the lowest values. The three

PDF sets used in the PDF4LHC prescription [76], CT14, NNPDF3.0, and MMHT14,

predict the largest ratios. The HERA-based HERAPDF2.0 and ATLAS-epWZ12 sets

are in the middle. The spread of the predictions is beyond the PDF uncertainties for the

three groups of PDFs while the quoted PDF uncertainties are similar in size, with the

HERAPDF2.0 errors being the largest and ABM12 the smallest. This pattern could be

explained by the differences in the gluon density and the αS value used in the PDF sets.

The ABM12, HERAPDF2.0 and ATLAS-epWZ12 sets do not include collider jet data,
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Figure 3. The ratios R
tot/fid
tt̄/Z (i TeV), for i = 13, 8, 7 compared to predictions based on different

PDF sets. The inner shaded band corresponds to the statistical uncertainty, the middle band to

the statistical and experimental systematic uncertainties added in quadrature, while the outer band

shows the total uncertainty, including the luminosity uncertainty. The latter is not visible since

the luminosity uncertainties almost entirely cancel in these ratios. The theory predictions are given

with the corresponding PDF uncertainties shown as inner bars while the outer bars include all other

uncertainties added in quadrature.

which typically lead to a lower gluon density for the x values where the tt̄ data at the LHC

are sensitive. In addition, the ABM12 set uses a lower value of αS. The size of the error

bars depends on the data sets used in the PDF fits and also on the statistical model used

for the analysis.

The ATLAS data are more precise than most of the theory predictions, suggesting

the data have strong constraining power. The experimental uncertainties are the smallest

for the 8 TeV measurement. The 7 TeV result has a sizeable statistical uncertainty, while

the systematic uncertainty at 13 TeV is larger than at both 7 and 8 TeV, mostly due to

a larger tt̄ modelling uncertainty. For the most precise measurement, at 8 TeV, the data

agree best with the HERAPDF2.0 and ATLAS-epWZ12 PDF sets while they deviate

by 1.6–2.1σ from the PDF4LHC PDFs, where σ is the total experimental uncertainty

plus the luminosity uncertainty (but agree well when including the respective prediction

uncertainties), and by 2.6σ from the ABM12 PDF. A similar but less significant pattern is

observed for the 13 TeV data. The 7 TeV data are most consistent with the MMHT14 PDF

set. The data are between the predictions of the PDF4LHC PDFs and the HERA-based

PDFs HERAPDF2.0 and ATLAS-epWZ12, deviating most from the ABM12 prediction.
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Figure 4. The ratios Rfid
Zi/Zj

, for i, j = 13, 8, 7 compared to predictions based on different PDF sets.

The inner shaded band (barely visible since it is small) corresponds to the statistical uncertainty,

the middle band to the statistical and experimental systematic uncertainties added in quadrature,

while the outer band shows the total uncertainty, including the luminosity uncertainty. The theory

predictions are given with the corresponding PDF uncertainties shown as inner bars while the outer

bars include all other uncertainties added in quadrature.

The difference between data and predictions for the 7 and 8 TeV results is consistent with

the results published by ATLAS for the ratio of tt̄ cross sections at these two energies [1],

as is discussed in section 5.4.2.

5.4.2 Single ratios at different
√
s

The ratios of the fiducial Z-boson cross sections at various
√
s values are compared in

figure 4 to predictions employing different PDF sets. The uncertainty in these ratios is

dominated by the luminosity uncertainty. Even though the total luminosity uncertainties

are of comparable magnitude at 7, 8 and 13 TeV, they are mostly uncorrelated and therefore

do not cancel in the cross-section ratios.

The measurements are consistent with the predictions for all PDF sets. Most of these

predictions agree with the data within the experimental uncertainties, even omitting the

luminosity uncertainty. This observation may indicate that the luminosity-determination

uncertainty in the measured ratio is conservative. The smallness of the PDF uncertainties

for different predictions and the overall small spread among them suggest that the measured

Z-boson data could be used to cross-normalise the measurements at the different centre-of-

mass energies, thereby avoiding the penalty associated with the combination of uncorrelated

luminosity uncertainties. This aspect is explored in section 5.4.3 by taking double ratios

of tt̄ to Z-boson cross sections, but this approach can be used for other processes as well.
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The measured tt̄ ratios for different pairs of
√
s are compared to the predictions in

figure 5. These predictions follow a similar pattern for all ratios: the three predictions

from PDF4LHC PDFs are the smallest, closely followed by ATLAS-epWZ12 and HERA-

PDF2.0, and the ABM12 prediction is the largest. This pattern could be explained by the

PDFs having different gluon distributions as a function of x. At low x, all PDF sets have

similar gluon content since the gluon PDF is primarily determined from a common source:

scaling violations of the F2 structure function measured at HERA. At high x, the ABM12

and HERA-based sets have a lower gluon density than other PDF sets. Thus, as the
√
s

increases, resulting in a decrease of the average value of x, the ABM12 and HERA-based

sets exhibit a stronger
√
s dependence than the PDF4LHC PDFs. Given the relative size of

the experimental uncertainties and the spread of the theoretical predictions in these ratios,

these measurements do not test the consistency of the luminosity calibrations at different

centre-of-mass energies to the same precision as the Z-boson cross-section ratios.

The ratio of 13 TeV to 8 TeV cross sections agrees with all predictions within exper-

imental uncertainties. The central value is closest to the HERAPDF2.0 prediction. For

the ratios involving 7 TeV data, the measured ratios have central values lower than pre-

dicted by all the PDFs. This is especially so for the 8 TeV to 7 TeV ratio, which deviates

from all predictions by approximately two standard deviations. The deviation was ob-

served previously by ATLAS [1] and the results of this analysis are consistent with those

published values.

5.4.3 Double ratios

The double ratios of total tt̄ to fiducial Z-boson cross sections at different
√
s are compared

to predictions in figure 6. The total uncertainties are smaller than those in the tt̄ cross-

section ratios at different
√
s due to the almost complete cancellation of the luminosity

uncertainty, which more than compensates for the uncertainties that the Z-boson cross

sections bring to these double ratios.

For the double ratios, the trends seen in comparisons between the data and the predic-

tions are similar to those observed for the single ratios of the tt̄ cross sections at different√
s values. The double ratio of 13 TeV to 8 TeV results is consistent with all predictions at

the 1σ level. The tension between the measured 8 TeV to 7 TeV ratio and the predictions

is increased, due to the reduced uncertainty in the measurement that this double ratio

brings. This behaviour is difficult to ascribe to the x-dependence of the gluon distribution

since the change in the average x is much larger for 13 TeV to 8 TeV than for 8 TeV to

7 TeV measurements. The deviation from the ABM12 PDFs is at the 4σ level while for

all other PDFs they are at the 3σ level. The prediction closest to the observed ratio is

obtained from the ATLAS-epWZ12 PDF set, which predicts a stronger variation of the

fiducial Z-boson cross section as a function of
√
s.

5.4.4 Correlated cross-section measurements

As an alternative to taking ratios, the measured cross sections may be compared directly to

theory, provided that the full correlation information amongst the experimental results is

evaluated. The electron and muon channel σfid
Z are combined, accounting for the correlated
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Figure 5. The ratios Rtot
tt̄i/tt̄j

, for i, j = 13, 8, 7 compared to predictions based on different PDF

sets. The inner shaded band corresponds to the statistical uncertainty, the middle band to the

statistical and experimental systematic uncertainties added in quadrature, while the outer band

shows the total uncertainty, including the luminosity uncertainty. For the 8-to-7 TeV ratio, the

experimental systematic uncertainty band is too small to be clearly visible. The theory predictions

are given with the corresponding PDF uncertainties shown as inner bars while the outer bars include

all other uncertainties added in quadrature.

systematic uncertainties, which as a result cause small shifts in all of the combined cross-

sections values. The combination’s χ2 per degree of freedom is χ2/NDF = 0.6 for NDF = 3,

indicating excellent compatibility of the Z → e+e− and Z → µ+µ− measured cross sections.

The resulting Z-boson fiducial and tt̄ total cross sections after combination are given in

table 10 with the correlation coefficients presented in table 11. The correlations are large

for the measurements at a given
√
s, due to the common luminosity uncertainty. The

corresponding table omitting both the luminosity and beam-energy uncertainties is given

in appendix C. As expected from the ratio analysis, there is also a sizeable correlation

between the tt̄ results at 7 and 8 TeV. It is verified that the uncertainties in the ratios are

consistent with those of the direct evaluation of the combined cross section.

Figure 7 shows the results of this combination as two-dimensional 68% CL contours of

σfid
Z vs. σtot

tt̄ at the three
√
s values, overlayed with the theoretical cross-section predictions

calculated from the error sets associated with each specific PDF. The correlations of the

measured cross sections are opposite in sign to those of the predicted cross sections (with

exception of ABM12 set, which has a small positive correlation), providing discriminating

input to the determination of the PDFs.
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Figure 6. The ratios R
tot/fid
tt̄/Z (i/j) where i, j = 13, 8, 7 compared to predictions based on different

PDF sets. The inner shaded band corresponds to the statistical uncertainty, the middle band to

the statistical and experimental systematic uncertainties added in quadrature, while the outer band

shows the total uncertainty, including the luminosity uncertainty. The latter is not visible since

the luminosity uncertainties almost entirely cancel in these ratios. The theory predictions are given

with the corresponding PDF uncertainties shown as inner bars while the outer bars include all other

uncertainties added in quadrature.

√
s [TeV] Value ± stat ± syst ± beam ± lumi [pb]

σfid
Z

13 777± 1 (0.1%) ± 3 (0.4%) ± 5 (0.7%) ± 16 (2.1%)

8 506±< 1 (< 0.1%)± 3 (0.6%) ± 3 (0.6%) ± 10 (1.9%)

7 451± < 1 (0.1%) ± 1 (0.3%) ± 3 (0.6%) ± 8 (1.8%)

σtot
tt

13 818± 8 (0.9%) ± 27 (3.3%)± 12 (1.5%)± 19 (2.3%)

8 243± 2 (0.7%) ± 5 (2.3%) ± 4 (1.7%) ± 5 (2.1%)

7 183± 3 (1.7%) ± 4 (2.3%) ± 3 (1.8%) ± 4 (2.0%)

Table 10. Combined fiducial Z-boson and total tt̄ cross sections for
√
s = 13, 8, 7 TeV. The

uncertainties are listed as statistical, systematic, beam-energy, and luminosity.

5.5 Quantitative comparison with predictions

The measured cross sections along with the complete correlation information are compared

in a quantitative way to the predictions based on different PDF sets. The comparison is

performed using the xFitter package [77], which allows PDF and other theoretical uncer-
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Z 13 TeV tt̄ 13 TeV Z 8 TeV tt̄ 8 TeV Z 7 TeV tt̄ 7 TeV

Z 13 TeV 1.00 0.61 0.10 0.16 0.10 0.15

tt̄ 13 TeV — 1.00 0.11 0.32 0.11 0.31

Z 8 TeV — — 1.00 0.68 0.10 0.14

tt̄ 8 TeV — — — 1.00 0.15 0.54

Z 7 TeV — — — — 1.00 0.62

tt̄ 7 TeV — — — — — 1.00

Table 11. The correlation coefficients amongst the combined Z-boson fiducial and tt̄ total cross-

section measurements at
√
s = 13, 8, 7 TeV.

tainties to be included via asymmetric error propagation. The comparison is performed

for the total tt̄ and fiducial Z-boson cross sections, including their correlations, as reported

in section 5.4.4. The resulting χ2 values corresponding to the different PDFs are given in

table 12. All comparisons give an acceptable χ2 value except for the ABM12 PDF set,

which is disfavoured by the data. The covariance matrix is decomposed so as to extract

the uncorrelated component of the uncertainties. Figure 8 visually compares the mea-

surements, with both the total and the uncorrelated components of the uncertainties, to

the predictions. From figure 8 and table 12, it can be observed that the HERAPDF2.0

and ATLAS-epWZ12 sets have good compatibility with the ATLAS data and agreement

is improved when the measurement of the tt̄ cross section at 7 TeV is excluded.

The impact of the ATLAS data on the PDF uncertainties can be quantified by us-

ing the PDF profiling method [78, 79]. It is preferable to quantify the impact of the

ATLAS data by using PDFs that do not include the cross-section data used in this anal-

ysis. Both the HERAPDF2.0 and ATLAS-epWZ12 sets satisfy these conditions. Given

that the ATLAS-epWZ12 set provides smaller uncertainties for the predicted cross sections

compared to HERAPDF2.0, it is chosen for this purpose. The profiling of the ATLAS-

epWZ12 PDF set is performed only with the components related to the uncertainties of

the HERA [75] and 2010 ATLAS [8] W , Z-boson data, to mimic the inclusion of the new

ATLAS data in the PDF fit. The effect of additional uncertainties arising from model and

PDF-parameterisation variations estimated in the ATLAS-epWZ12 PDF fit are not further

investigated.

Figure 9 shows the light-quark sea Σ = ū + d̄ + s̄ and gluon g distributions before

and after the profiling, including their uncertainties, at the scales Q2 ≈ m2
Z and Q2 ≈

m2
t , respectively. The upper plots show the profiled distributions divided by the central

value of the ATLAS-epWZ12 PDF set and demonstrate that the central values of the

profiled distributions agree very well with the original set. The lower plots show that the

ATLAS tt̄ and Z-boson cross-section data impose visible constraints on the light-quark sea

distribution at x < 0.02 and on the gluon distribution at x ∼ 0.1. These data constrain the

least-well-understood component of the light-quark sea distribution, namely the strange-

quark distribution while the other quark PDFs are not significantly constrained [9]. The

lower plots also show the impact of the tt̄ data only, which contribute significantly to the
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Figure 7. Two-dimensional 68% CL contours of σfid
Z vs. σtot

tt̄ at 13 TeV (top, left), 8 TeV (top,

right), and 7 TeV (bottom). The solid red circle shows the result of the combination, the yellow

ellipse represents the statistical uncertainty, the blue ellipse adds the experimental uncertainty,

while the green ellipse is the total uncertainty. The results are overlayed with the theoretical cross-

section predictions calculated from the error sets associated with each specific PDF, also plotted

at 68% CL. The ellipses correspond to the PDF uncertainties, the asymmetric error bars inside the

ellipses represent the scale uncertainties, and the coloured markers are the central values.

constraint on the gluon distribution, while the Z-boson data help to constrain both the

light-quark-sea and gluon distributions.

6 Conclusion

This paper reports a new measurement by the ATLAS Collaboration of the Z-boson pro-

duction cross section at
√
s = 13 TeV using 3.2 fb−1 of pp collisions from the LHC, to-

gether with the evaluations of single and double ratios involving Z-boson and tt̄ produc-

tion cross sections, (Rfid
Zi/Zj

, Rtot
tt̄i/tt̄j

, R
tot/fid
tt̄/Z

(i TeV), and R
tot/fid
tt̄/Z

(i/j) where i, j = 13, 8, 7)
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ATLAS-epWZ12 CT14 MMHT14 NNPDF3.0 HERAPDF2.0 ABM12

χ2/NDF 8.3 / 6 15 / 6 13 / 6 17 / 6 10 / 6 25 / 6

p-value 0.22 0.02 0.05 0.01 0.11 < 0.001

Table 12. χ2 values for the comparisons of the ATLAS data to the predictions based on ATLAS-

epWZ12, CT14, MMHT14, NNPDF3.0, HERAPDF2.0 and ABM12 PDF sets along with the

probability of finding the observed value or larger.
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Figure 8. Comparison of the measured σfid
Z (left) and σtot

tt
(right) to predictions based on different

PDF sets. The lower panel shows the total and uncorrelated uncertainties, δ, associated with the

ratios of the predictions to the data. In the lower-right panel, the σtot
tt

ABM12 predictions are

outside of the plot, as indicated by the arrows. The uncertainties in the Z-boson (tt̄) predictions

are typically 3% (6%).

using this new measurement and previously published cross-section measurements at√
s = 13, 8, 7 TeV. The new measurement of Z-boson production at

√
s = 13 TeV is

fully synchronised to the corresponding tt̄ analysis, to improve the cancellation of the un-

certainties in the ratios, while all other measurements also benefit significantly from the

partial cancellation of uncertainties that evaluating ratios can bring.

The experimental results are compared to the state-of-the-art theoretical predictions,

which are computed at NNLO (with NLO EW corrections) and NNLO+NNLL accuracy for

Z-boson and tt̄ production, respectively. Excellent agreement between data and predictions

is observed in the Z-boson cross-section ratios at the various centre-of-mass energies, even

omitting the luminosity uncertainties. These results indicate that such measurements could
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Figure 9. Impact of the ATLAS Z-boson and tt̄ cross-section data on the determination of PDFs.

The bands represent the uncertainty for the ATLAS-epWZ12 PDF set and the uncertainty of the

profiled ATLAS-epWZ12 PDF set using tt+Z data as a function of x for the total light-quark-sea

distribution, xΣ, at Q2 ≈ m2
Z (left) and for the gluon density, xg, at Q2 ≈ m2

t (right). In the upper

plots, the profiled PDF set is divided by the central value of ATLAS-epWZ12 PDF set, “ref”, while

in the lower plots, the relative uncertainty, δ, is given. The lower plots also show the impact of only

including the ATLAS tt̄ data set. In the upper plots, the dashed blue curve represents the ratio of

the central value of the profiled result to ATLAS-epWZ12 PDF set.

be used to normalise cross-section measurements at different
√
s, as well as provide stringent

cross-checks on the corresponding ratios of absolute integrated luminosity values. The data

are found to be in best agreement with the ATLAS-epWZ12 PDF set, closely followed by

the HERAPDF2.0 set, while the CT14, NNPDF3.0, and MMHT14 PDF sets deviate

from some of the ratio measurements at the 1–2σ level. The ABM12 PDF set is disfavoured

by the data. A tension is observed between data and predictions of the double ratio between

8 TeV and 7 TeV, which is difficult to ascribe entirely to the
√
s dependence of the PDFs.
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The data presented here have significant power to constrain the gluon distribution

function at Bjorken-x ∼ 0.1 and the total light-quark sea at x < 0.02, as demonstrated

from a profiling analysis involving the ATLAS-epWZ12 PDF set.
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South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF

and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC,

United Kingdom; DOE and NSF, United States of America. In addition, individual groups

and members have received support from BCKDF, the Canada Council, CANARIE, CRC,

Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC,

FP7, Horizon 2020 and Marie Sk lodowska-Curie Actions, European Union; Investissements

d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France;

DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-

financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway;

Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Lever-

hulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully,

in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF

(Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF

(Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL

(U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Ma-

jor contributors of computing resources are listed in ref. [80].

– 28 –



J
H
E
P
0
2
(
2
0
1
7
)
1
1
7

A Predictions involving Z-boson total cross sections

Tables 13 and 14 mirror the Z-boson information in tables 1, 2 and 3, and use the same

methodology as described in section 3.1 except that the total Z-boson production cross

sections times the branching ratio into a lepton pair of flavour `+`− are given rather than

the fiducial cross sections.

σtot
Z (i TeV) Rtot

Zi/Zj

i or i/j 13 8 7 13/7 13/8 8/7

Central value [pb] 1886 1110 954 1.977 1.699 1.163

Uncertainties [%]

PDF +2.4
−2.7

+2.2
−2.5

+2.2
−2.5

+0.9
−0.8

+0.7
−0.6

+0.18
−0.17

αS
+1.0
−0.9

+0.8
−0.8

+0.8
−0.9

+0.2
−0.1

+0.2
−0.1

−0.1
+0.1

Scale +0.7
−1.1

+0.6
−0.9

+0.5
−0.9

+0.21
−0.30

+0.20
−0.25

+0.19
−0.05

Total +2.7
−3.0

+2.4
−2.8

+2.4
−2.8

+0.9
−0.9

+0.8
−0.7

+0.27
−0.20

Table 13. Predictions of the total cross section σtot
Z at

√
s = 13, 8, 7 TeV (left) and of the cross-

section ratio Rtot
Zi/Zj

where i/j = 13/7, 13/8, and 8/7 (right) using the CT14 PDF. The uncertain-

ties, given in %, correspond to variations of: CT14 eigenvector set at 68% CL, αS, and QCD scale,

as described in the text. The statistical uncertainties in the cross-section predictions are < 1 pb

and are ≤ 0.002 for the ratio predictions, and are not given in the table.

R
tot/tot
tt̄/Z

(i TeV) R
tot/tot
tt̄/Z

(i/j)

i or i/j 13 8 7 13/7 13/8 8/7

Central value 0.446 0.233 0.190 2.344 1.913 1.225

Uncertainties [%]

PDF +5
−5

+6
−5

+6
−5

+1.8
−2.2

+1.4
−1.7

+0.4
−0.6

αS
+0.9
−0.9

+1.4
−1.3

+1.4
−1.3

−0.49
+0.36

−0.49
+0.35

−0.00
+0.01

Scale +2.7
−3.7

+2.7
−3.6

+2.8
−3.5

+0.35
−0.34

+0.38
−0.28

+0.09
−0.21

mt
+2.8
−2.7

+3.0
−2.9

+3.1
−3.0

+0.29
−0.29

+0.22
−0.22

+0.07
−0.07

Total +7
−7

+7
−7

+8
−7

+1.9
−2.3

+1.5
−1.8

+0.4
−0.6

Table 14. Predictions of the cross-section ratios R
tot/tot
tt̄/Z (i TeV) and R

tot/tot
tt̄/Z (i/j) at the different

√
s values where i, j = 13, 8, 7 using the CT14 PDF. The uncertainties, given in %, correspond

to variations of: CT14 eigenvector set at 68% CL, αS, QCD scale, intrinsic Z-boson prediction,

and top-quark mass, as described in the text. The statistical uncertainties in the predictions are

< 0.001 for R
tot/tot
tt̄/Z (i TeV) and ≤ 0.002 for R

tot/tot
tt̄/Z (i/j) and are not given in the table.
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B Acceptance factors and results in the Z-boson total phase space

The combined Z-boson fiducial cross sections in section 5.4.4 are extrapolated to the full

phase space within the dilepton invariant mass range 66 < m`` < 116 GeV in table 15 by use

of acceptance factors A, as described in section 3. The acceptance factors A are expressed as

the fraction of decays satisfying the fiducial acceptance at Monte Carlo generator level and

are calculated using DYNNLO 1.5 with the CT14 PDF for the central value and for the

variations reflecting the PDF set’s systematic uncertainty. In addition, uncertainties due to

parton showers and the hadronisation description are taken from a previous publication [8],

after checking their validity for the 13 TeV result, and were derived as the differences

between the acceptances calculated with Powheg-Box v1 but using different models for

parton shower and hadronisation descriptions, namely the Herwig [81] or Pythia [63]

programs. The acceptance factor used to extrapolate from fiducial to total cross sections,

however, has a sizeable uncertainty which is treated as correlated in the ratio measurements

for data at different
√
s values.

√
s [TeV] A ± total uncertainty

13 0.395± 0.007

8 0.466± 0.008

7 0.505± 0.009
√
s [TeV] σtot

Z ± stat ± syst ± beam ± lumi [pb]

13 1969 ± 1 (0.1%) ± 36 (1.8%)± 14 (0.7%)± 41 (2.1%)

8 1154 ± < 1 (< 0.1%)± 21 (1.8%)± 7 (0.6%) ± 22 (1.9%)

7 995 ± 1 (0.1%) ± 18 (1.8%)± 6 (0.6%) ± 18 (1.8%)

Table 15. Acceptance factors A and combined total Z-boson cross sections times leptonic branch-

ing ratio within the invariant mass window 66 < m`` < 116 GeV for
√
s = 13, 8, 7 TeV. The

uncertainties in the cross sections are listed as statistical, systematic, beam-energy, and luminosity

while those for the A factor include the total uncertainty.

C Tables of results

Table 16 presents the correlation coefficients matrix as in table 11 but omitting both the

luminosity and beam-energy uncertainties. Tables 17 and 18 summarise all of the single and

double-ratio results for the tt̄ and Z-boson production cross sections at
√
s = 13, 8, 7 TeV.

Z 13 TeV tt̄ 13 TeV Z 8 TeV tt̄ 8 TeV Z 7 TeV tt̄ 7 TeV

Z 13 TeV 1. 0.13 0.09 0.08 0.12 0.03

tt̄ 13 TeV — 1. 0.01 0.32 0.00 0.27

Z 8 TeV — — 1. 0.01 0.09 0.00

tt̄ 8 TeV — — — 1. 0.00 0.67

Z 7 TeV — — — — 1. 0.00

tt̄ 7 TeV — — — — — 1.

Table 16. The correlation coefficients amongst the combined Z-boson fiducial and tt̄ total cross-

section measurements at
√
s = 13, 8, 7 TeV as in table 11 but omitting the luminosity and beam-

energy uncertainties.
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C. Jeske173, S. Jézéquel5, H. Ji176, J. Jia150, H. Jiang67, Y. Jiang36a, Z. Jiang145, S. Jiggins81,

J. Jimenez Pena170, S. Jin35a, A. Jinaru28b, O. Jinnouchi159, H. Jivan147c, P. Johansson141,

K.A. Johns7, C.A. Johnson64, W.J. Johnson140, K. Jon-And148a,148b, G. Jones173, R.W.L. Jones75,

S. Jones7, T.J. Jones77, J. Jongmanns60a, P.M. Jorge128a,128b, J. Jovicevic163a, X. Ju176,
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Bologna, Italy
23 Physikalisches Institut, University of Bonn, Bonn, Germany
24 Department of Physics, Boston University, Boston MA, U.S.A.
25 Department of Physics, Brandeis University, Waltham MA, U.S.A.

– 47 –



J
H
E
P
0
2
(
2
0
1
7
)
1
1
7

26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits

Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao

Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao

Paulo, Brazil
27 Physics Department, Brookhaven National Laboratory, Upton NY, U.S.A.
28 (a) Transilvania University of Brasov, Brasov, Romania; (b) Horia Hulubei National Institute of

Physics and Nuclear Engineering, Bucharest; (c) National Institute for Research and Development

of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (d) University

Politehnica Bucharest, Bucharest; (e) West University in Timisoara, Timisoara, Romania
29 Departamento de F́ısica, Universidad de Buenos Aires, Buenos Aires, Argentina
30 Cavendish Laboratory, University of Cambridge, Cambridge, U.K.
31 Department of Physics, Carleton University, Ottawa ON, Canada
32 CERN, Geneva, Switzerland
33 Enrico Fermi Institute, University of Chicago, Chicago IL, U.S.A.
34 (a) Departamento de F́ısica, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento
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Fisica, Università della Calabria, Rende, Italy
41 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science,

Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
43 Physics Department, Southern Methodist University, Dallas TX, U.S.A.
44 Physics Department, University of Texas at Dallas, Richardson TX, U.S.A.
45 DESY, Hamburg and Zeuthen, Germany
46 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
47 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
48 Department of Physics, Duke University, Durham NC, U.S.A.
49 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, U.K.
50 INFN Laboratori Nazionali di Frascati, Frascati, Italy
51 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
52 Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland
53 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
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