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ABSTRACT
We present the results of a study of different statistical methods currently used in the literature 
to analyse the (micro)variability of active galactic nuclei (AGNs) from ground-based optical 
observations. In particular, we focus on the comparison between the results obtained by ap­
plying the so-called C and F statistics, which are based on the ratio of standard deviations and 
variances, respectively. The motivation for this is that the implementation of these methods 
leads to different and contradictory results, making the variability classification of the light 
curves of a certain source dependent on the statistics implemented.

For this purpose, we re-analyse the results on an AGN sample observed along several 
sessions with the 2.15m ‘Jorge Sahade’ telescope (CASLEO), San Juan, Argentina. For each 
AGN we constructed the nightly differential light curves. We thus obtained a total of 78 light 
curves for 39 AGNs, and we then applied the statistical tests mentioned above, in order to 
re-classify the variability state of these light curves and in an attempt to find the suitable 
statistical methodology to study photometric (micro)variations. We conclude that, although 
the C criterion is not proper a statistical test, it could still be a suitable parameter to detect 
variability and that its application allows us to get more reliable variability results, in contrast 
with the F test.
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serving/photometric methodologies (Cellone. Romero & Araudo 
2007). and (iii) the inadequate use of statistical methods for the 
detection of variability (de Diego 2010; Joshi et al. 2011).

In the present work, we focus on the last item. In the litera­
ture. we may find a great diversity of statistical tests used to as­
sess the significance of variability results. The most commonly 
used are: the y1 2 test, which compares a sample variance of the 
possibly variable target with a theoretically calculated variance 
for a non-variable object, proposed by Kesteven. Bridle & Brandie 
(1976). and used both for photometric and polarimetric time series 
(Romero. Combi & Colomb 1994; Andruchow et al. 2003. 2005; 
de Diego 2010); the one way analysis of variance (ANOVA). which 
is a family of tests that compare the means of a number of sam­
ples (de Diego et al. 1998; Ramirez et al. 2004. 2009; de Diego 
2010); the C criterion, which involves the ratio of standard de­
viations of two distributions (Howell. Mitchell & Warnock 1988; 
Romero et al. 1999. 2002; Andruchow. Romero & Cellone 2005; 
de Diego 2010; Joshi et al. 2011; Zibecchi et al. 2011); and the F 
test, which takes into account the ratio between the variances of 
two distributions (de Diego 2010; Joshi et al. 2011).

1 INTRODUCTION

Active galactic nuclei (AGNs) are well known for their extreme 
electromagnetic emission (reaching values of radiating powers up 
to 1046 erg s 1). which is spread over the whole spectrum (from 
radio to X-rays bands). This emission presents, in some cases, a 
peak in the UV region and significant emission in the X-rays and 
infrared bands.

Most AGNs. and blazars in particular, are characterized by va­
riability in their optical flux. The time-scales of these changes span 
a range from days to years, but variations on time-scales of hours 
or minutes also take place. This latter phenomenon is known as 
microvariability, and it has been studied and reported by several 
authors in the last decades (e.g. Miller. Carini & Goodrich 1989; 
Carini. Miller & Goodrich 1990; Romero. Cellone & Combi 2000; 
Joshi et al. 2011). Microvariability studies provide important infor­
mation about size limits for the emitting regions and can provide 
constraints on different models of the electromagnetic emission. 
However, spurious variability results may be obtained due to: (i) 
systematic errors introduced by contamination from the host galaxy 
light (Cellone. Romero & Combi 2000); (ii) inappropriate ob- Contradictory and diverse results are usually obtained from 
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these statistics, and it is of course desirable that the classification 
of the state of variability of a certain source should be independent 
from the statistical method used. In order to find the most reliable 
test to study variability, we took advantage of a significantly large 
data set of AGN microvariability observations obtained with the 
same instrumental setup and reduced in a homogeneous way.

In Section 2. we present the sample of AGNs and the method 
to generate the differential light curves (DLCs). In Section 3. we 
describe the C and F statistics, respectively, and we present our 
results, making a comparison between tests. In Section 4. we make 
a deeper study on the C criterion. In Section 5. we present the re­
sults of the implementation of both statistics to the field stars, and 
finally, in Section 6 we discuss the results found and summarize our 
conclusions. Appendix A describes in detail the D test mentioned 
in Section 4.1.

2 OBSERVATIONS AND DATA REDUCTION

We worked with a sample of 23 southern AGNs reported 
in Romero et al. (1999). and 20 egret blazars, studied by 
Romero et al. (2002). The data in both papers were based on obser­
vations taken with the 2.15m Torge Sahade' telescope, casleo. 
Argentina, between 1997 April and 2001 luly. The telescope was 
equipped with a liquid-nitrogen-cooled CCD camera, using a Tek- 
1024 chip with a gain of 1.98 electrons/adu and a read-out noise 
of 9.6 electrons. A focal-reducer providing a scale of 0.813 arc­
sec pixel was also used. Since three sources are repeated in both 
samples, and the object PKS 1519—273 was excluded because the 
original data could not be recovered, we have studied a total sample 
of 39 AGN.

In the original publications, objects were classified as: quasars 
(QSO). within which there are the 'radioquiet' (RQQ) and 'radio- 
loud' (RLQ); and BLLac objects, which have been categorised 
in 'radio-selected' (RBL) and in 'X-rays-selected' (XBL). Af­
ter several revisions, and following the publication of the first ca­
talogue of the satellite instrument Fermi-LAI (Large Area Teles­
cope; Abdo et al. (2010)). the blazars are now broadly divided into 
BL Lacs and flat-spectrum radio quasars (FSRQ). and further sub­
classified based on the frequency at which the synchrotron peak 
of the spectral energy distribution falls, as: low synchrotron peak. 
LSP blazars, intermediate synchrotron peak. ISP blazars, and high 
synchrotron peak. HSP blazars (Abdo et al. 2010).

The sample of AGNs is presented in Table 1. where we give 
the name of the source, type of AGN. right ascension (a), decli­
nation (<5). redshift (z) and the visual magnitude (m). These val­
ues were taken from the NASA/IPAC Extragalactic Database1 and 
from the references cited in the table. Observations are charac­
terized by seeing values between 2.0 and > 4.0 arcsec, exposure 
times ranging between 2 and 15 min. and airmass values between 
1.00 and 2.40.

1 http://ned.ipac.caltech.edu/

2.1 Differential photometry

The statistical analysis is made on DLCs. These curves are ob­
tained by applying standard differential photometry techniques, as 
were developed by Howell & lacoby (1986). The observations in­
volve repeated short exposures of a certain held that contains the 
source of interest. Other stars in the frame are used for comparison 

and control in the reduction process, which results in instrumental 
magnitudes of all the objects. The principal advantage of differ­
ential photometry is that there is no need for perfect photometric 
nights. Following Howell & lacoby (1986). the source of interest 
is designed by V. and a comparison and a control stars by C and K. 
respectively. It is important to highlight that both stars should not 
be variable.

With the instrumental magnitudes, rnv — me and mu — me 
are calculated, being the last one important because (i) variability 
in the comparison and/or control star can be detected; (ii) intrinsic 
instrumental precision is measured, and (iii) it provides a compari­
son to determine whether the light curve of the source is variable 
or not.

Several objects of the sample have been observed along more 
than one night, making a total of 78 data sets (i.e. each data set cor­
responds to observations taken along one night for a given object). 
For each set. we generated a DLC. using the software iraf2 (Im­
age Reduction and Analysis Facility). For the photometry, we used 
an optimal aperture radius, which is determined taking into account 
the apparent size and the brightness of the host galaxy, when appro­
priate (Cellone et al. 2000). For almost all the AGNs in the sample, 
we took the same radius of 6.5 arcsec, except for PKS 1622—297 
for which we used a radius of 3.5 arcsec because the held of this 
object is particularly crowded.

In this work, unlike what was done by Romero etal. (1999). 
who constructed 'mean' comparison and control stars from three 
stars in each frame, we followed the recommendation given by 
Howell etal. (1988). who used one comparison and one control 
stars. The criterion proposed by these authors suggests that the 
magnitude of the control star must be as similar as possible to 
the magnitude of the object, meanwhile for the comparison star, 
the magnitude should be slightly brighter than the other two. 
Comparing both criteria, we found that the criterion established 
by Howelletal. (1988) is more conservative than the one pro­
posed by Romero etal. (1999) (see Zibecchi et al. 2011).The use 
of mean stars improves the signal-to-noise (S/N) relation of the 
'control—comparison' light curves and this may lead to an over- 
estimation of the AGN variability. Thus, choosing a pair of can­
didates to control and comparison stars, we generated the DLCs 
('object—comparison' and 'control—comparison' ) using a reduc­
tion package of iraf (apphot). and we analysed both curves, 
searching for a 'control—comparison' light curve with the min­
imum possible dispersion, while, at the same time, fulfilling the 
above-explained conditions. In Fig. 1. we show two extreme exam­
ples of the light curves obtained (the light curves are as fig. 1 in 
Romero et al. 2000 and fig. 4 in Romero et al. 1999. respectively).

3 STATISTICAL TESTS TO STUDY VARIABILITY

In this section, we will analyse two statistical methods most widely 
used to quantify variability in AGN light curves: the C and F statis­
tics.

2 iraf is distributed by the National Optical Astronomy Observatories, 
which are operated by the Association of Universities for Research in 
Astronomy, Inc., under cooperative agreement with the National Science 
Foundation.

http://ned.ipac.caltech.edu/
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Table 1. Data for the objects. • Ackermann et al. (2015); * Véron-Cetty & Véron (2010); 
* Carini et al. (2007); f Richards et al. (2011).

Object Type a (J2000.0) 
h m s

6 (J2000.0)
o / //

z m
Visual mag.

0208-512 BLL/LSP’ 02:10:46 -51:01:02 1.003 16.9
0235+164 BLL/LSP’ 02:38:39 + 16:36:59 0.904 18.0
0521-365 BLL/LSP’ 05:22:58 -36:27:31 0.55 14.5
0537-441 BLL/LSP’ 05:38:50 -44:05:09 0.894 15.5
0637-752 FSRQ/LSP’ 06:35:47 -75:16:17 0.651 15.75
1034-293 QSO* 10:37:16 -29:34:03 0.312 16.46
1101-232 BLL/HSP’ 11:03:38 -23:29:31 0.186 16.55
1120-272 QSO* 11:23:02 -27:30:04 0.389 16.8
1125-305 QSO* 11:27:32 -30:44:46 0.673 16.3
1127-145 FSRQ/LSP’ 11:30:07 -14:49:27 1.187 16.9
1144-379 FSRQ/LSP’ 11:47:01 -38:12:11 1.048 16.2
1157-299 QSO* 11:59:43 -30:11:53 0.207 16.4
1226+023 FSRQ/LSP’ 12:29:07 +02:03:08 0.158 12.86
1229-021 QSO* 12:32:00 -02:24:05 1.045 17.7
1243-072 QSO* 12:46:04 -07:30:47 1.286 19.0
1244-255 FSRQ/LSP’ 12:46:47 -25:47:49 0.638 17.41
1253-055 FSRQ/LSP’ 12:56:11 -05:47:22 0.536 17.75
1256-229 QSO* 12:59:08 -23:10:39 0.481 17.3
1331+170 FSRQt 13:33:36 + 16:49:04 2.084 16.71
1334-127 FSRQ/LSP’ 13:37:40 -12:57:25 0.539 17.2
1349-439 BLL/LSP’ 13:52:57 -44:12:40 0.05 16.37
1424- 418 FSRQ/LSP’ 14:27:56 -42:06:19 1.522 17.7
1510-089 FSRQ/LSP’ 15:12:50 -09:06:00 0.361 16.5
1606+106 FSRQ/LSP’ 16:08:46 + 10:29:08 1.226 18.5
1622-297 FSRQ/LSP ’ 16:26:06 -29:51:27 0.815 20.5
1741-038 QSO* 17:43:59 -03:50:05 1.054 18.6
1933-400 FSRQ/LSP’ 19:37:16 -39:58:02 0.965 18.0
2005-489 BLL/HSP’ 20:09:25 -48:49:54 0.071 13.4
2022-077 FSRQ/LSP’ 20:25:41 -07:35:53 1.388 18.5
2155-304 BLL/HSP’ 21:58:52 -30:13:32 0.116 13.1
2200-181 QSO* 22:03:12 -18:01:43 1.16 15.3
2230+114 FSRQ/LSP’ 22:32:36 + 11:43:51 1.037 17.33
2254-204 BLL/LSP’ 22:56:41 -20:11:41 16.6
2316-423 BLL/HSP’ 23:19:06 -42:06:49 0.054 16.0
2320-035 FSRQ/LSP’ 23:23:32 -03:17:05 1.41 18.6
2340-469 QSO* 23:43:14 -46:40:03 1.97 16.4
2341-444 QSO* 23:43:47 -44:07:19 1.9 16.5
2344-465 QSO* 23:46:41 -46:12:30 1.89 16.4
2347-437 QSO* 23:50:34 -43:26:00 2.885 16.3

3.1 C criterion

This is a criterion that contemplates the ratio of the standard devia­
tions of the 'object—comparison' and 'control—comparison' light 
curves, ai and 02 respectively; the C' parameter is defined as: 

control stars. This is so because the budget of photometric errors 
includes flux-dependent terms, as well as terms that are the same 
for all objects, irrespective of their magnitudes (sky and read-out 
noise).

This factor is given by Howell et al. (1988).

r1 2 ^l(INST)
(2)

<75

//a y f'èCfv + Pï + iïGc + P')
JkGc + P) + fëlfK + P)

(1)

If C is greater than a critical value (i.e. C > 2.576). the light 
curve of the source is said to be variable with a 99.5 per cent confi­
dence level (CL).

3.1.1 Scaled C criterion

Howell et al. (1988) define a scale factor. T. to be applied when no 
comparison and control stars, meeting the criterion mentioned in 
Section 2.1. are found in the field. It takes into account the diffe­
rent relative brightnesses between the AGN and the comparison and 

where fv,fK,fc are the fluxes in adu for the object, control 
and comparison stars, respectively; and P takes into account the 
sky photons and the read-out noise. The scale factor calculation is 
made by an estimation of the ratio between <r2, INST( (variance of 
the 'object—comparison' curve predicted by the CCD-based error 
equation and the median V and C measurements) and . through
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In this statistic, it is assumed that errors in the curves are distributed 
normally and their associated distributions need not have the same 
degrees of freedom. The parameter F is defined as:

(4)

where al is the variance of the 'object—comparison' light curve, 
and al that of the 'control—comparison' curve.

The calculated F values are compared with critical values 
FHvc „kc. which have an associated significance level, a. and 
degrees of freedom of the different distributions. The degrees of 
freedom can be described as the number of scores that are free to 
vary, while 1 — a is the cumulative probability of the distribution. 
In our case, the degrees of freedom are associated with the number 
of points in the 'object—comparison' light curve, nvc. and in the 
'control—comparison', nxc. where nyc = nxc = n. resulting 
in n — 1 degrees of freedom.

Then, if the parameter F > FHVC„ . the null hypothesis 
of the test (i.e. statistical equality between the variances when there 
is no significant difference between them) is rejected, meaning that 
the curve is classified as variable.

3.2.1 Scaled F-test statistic

As for the C—criterion, there is also a scaled version of the F—test; 
in fact, this was the expression originally proposed by Howell et al. 
(1988). Thus, the weighted parameter F is:

Joshi et al. (2011) propose an alternative to the T corrective 
factor: they scale the variance al by a factor k. which is defined 
as the ratio of the average square errors of the individual points in 
the DLCs. The main difference between T and k is that the first 
is obtained from mean values of object fluxes and sky counts for 
each light curve, while the second takes into account individual 
error bars for each data point. Since the relevant input parameters 
are basically the same in both cases, they should provide similar 
results.

3.3 Results and analysis

We present in Table 2 the results of applying the C criterion and 
the F test to the sample of AGN light curves. We show the object 
name. date, the number of points in the light curve (n). the values 
of C without/with weight (C and CT). the values of F without/with 
weight (F and F ). the dispersion of the 'control-comparison' light 
curve multiplied by T and the weight factor T. The last column 
gives the area to the left of the observed F below the F density 
distribution, for the adopted 99.5 per cent—CL. A value of area- 
Ft > 0.995 means that the null—hypothesis (non-variable) should 
be rejected.

To compare the results of both tests, we considered the C cri­
terion and F test both without the weight factor and with weighted 
statistics. We found that considering the non-weighted statistics, 
among the 25.64 per cent of the DLCs classified as variable apply­
ing the C parameter, all of them maintained the classification with 
the F test; while for the remaining 74.36 per cent of the DLCs clas­
sified as non-variable with C. 20.68 per cent of them changed its 
classification using the F test. Regarding the weighted statistics.

X _
T I I X I X X * I * * “* » I 1 < 1 I « 1

0.60

JD-2450804

Figure 1. Upper panel: DLCs for AO 0235+164, showing strong variability. 
Lower panel: light curves for PKS 0637—752, undetected variability. In 
both cases, we present V filter observations, for my —my (top) and rnk. — 
my (bottom).

the properties of the CCD used (i.e. gain and read-out noise), as 
well as a proper weighting of the counts for each object and for the 
sky (see Howell et al. 1988. for details). Then, the scaled C param­
eter results:

This weight factor is important since, in many cases, the fields 
are not very populated, limiting the choice of the comparison and 
control stars. In those cases, there is an error term that is an in­
creasing function of the difference between the magnitudes of the 
objects. The use of the T factor compensates for such differences.
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Table 2. Results of the C criterion and the F test. The columns are object; date; number of points, n; val­
ues of C without/with weight, C and Cp; values of F without/with weight, F and Fp; the dispersion of the 
'control—comparison' light curve multiplied by T, the weight factor, T and the area to the left of the observed 
F below the F density distribution, area-/j-. Numbers in boldface indicate variability.

Object Date n C C*r F Fr r<72 r Area-Fr

0208-512 11/03/99 40 9.34 9.61 87.32 92.34 0.005 0.973 1.0000
11 /04/99 39 2.00 2.15 4.02 4.60 0.003 0.934 1.0000

0235+164 11/03/99 23 10.10 11.47 102.00 131.60 0.013 0.880 1.0000
11/04/99 22 6.10 5.66 37.22 32.06 0.130 1.078 1.0000
11/05/99 27 12.32 12.66 151.65 160.3 0.007 0.973 1.0000
11/06/99 22 4.37 2.93 19.10 8.60 0.010 1.492 1.0000
11/07/99 30 14.34 17.74 205.60 314.62 0.007 0.808 1.0000
11/08/99 12 2.75 2.95 7.56 8.70 0.009 0.933 0.9988
12/22/00 10 3.30 3.44 10.90 11.83 0.007 0.959 0.9989
12/24/00 11 5.55 6.65 30.81 44.20 0.008 0.835 1.0000

0521-365 12/17/98 29 3.90 4.50 15.14 20.27 0.004 0.864 1.0000
0537-441 12/22/97 23 5.85 4.67 34.25 21.85 0.005 1.252 1.0000

12/23/97 23 4.30 3.67 18.46 13.47 0.005 1.171 1.0000
12/16/98 35 4.96 5.93 24.63 35.22 0.004 0.836 1.0000
12/17/98 33 6.28 6.98 39.46 48.82 0.005 0.899 1.0000
12/18/98 55 1.50 1.60 2.24 2.57 0.004 0.932 0.9993
12/19/98 14 1.77 1.98 3.12 3.93 0.011 0.891 0.9805
12/21/98 42 1.92 2.31 3.69 5.33 0.004 0.832 1.0000
12/20/00 11 1.01 1.61 1.01 2.61 0.006 0.624 0.8534
12/21/00 41 0.72 1.51 1.91 1.33 0.004 0.628 0.6245
12/22/00 46 0.47 0.75 4.54 1.80 0.006 0.630 0.9488
12/23/00 57 0.97 1.54 1.07 2.37 0.004 0.629 0.9984
12/24/00 50 1.12 1.79 1.26 3.21 0.004 0.627 0.9999

0637-752 12/21/97 22 0.95 0.93 1.10 1.15 0.004 1.021 0.2514
12/22/97 26 0.97 0.95 1.05 1.10 0.004 1.023 0.1890

1034-293 04/24/97 15 1.97 1.86 3.89 3.46 0.014 1.060 0.9731
1101-232 04/29/98 32 0.73 0.74 1.88 1.81 0.006 0.979 0.8962
1120-272 04/27/98 15 0.62 0.67 2.57 2.24 0.054 0.934 0.8558
1125-305 04/28/97 35 0.96 0.97 1.09 1.06 0.009 0.987 0.1286
1127-145 04/27/98 14 1.31 1.23 1.72 1.51 0.004 1.068 0.5300
1144-379 04/27/97 39 1.84 1.21 3.40 1.47 0.029 1.521 0.7573
1157-299 04/28/98 26 0.73 0.84 1.86 1.41 0.005 0.870 0.6006
1226+023 04/08/00 26 1.04 1.44 1.09 2.07 0.003 0.724 0.9266

04/09/00 22 1.02 1.41 1.04 2.00 0.004 0.720 0.8793
1229-021 04/11/00 24 1.27 1.32 1.62 1.74 0.007 0.965 0.8095

04/12/00 25 1.82 1.87 3.32 3.51 0.005 0.972 0.9969
1243-072 04/08/00 24 1.48 0.97 2.19 1.06 0.038 1.523 0.1098

04/09/00 24 2.24 1.45 5.03 2.11 0.032 1.542 0.9209
1244-255 04/29/98 26 4.40 4.53 19.30 20.51 0.005 0.970 1.0000
1253-055 06/08/99 22 1.16 1.57 1.35 2.45 0.011 0.743 0.9544
1256-229 04/24/98 20 1.49 1.74 2.21 3.05 0.005 0.852 0.9806
1331 + 170 04/10/00 30 1.17 1.17 1.40 1.36 0.007 1.003 0.5924
1334-127 04/11/00 30 2.87 3.72 8.23 13.87 0.005 0.770 1.0000

04/12/00 31 2.42 2.97 5.85 8.81 0.008 0.815 1.0000
1349-439 04/24/98 14 2.11 2.16 4.46 4.66 0.009 0.979 0.9908
1424- 418 06/04/99 15 1.56 1.78 2.42 3.17 0.021 0.874 0.9614

06/05/99 19 0.74 0.81 1.84 1.53 0.032 0.911 0.6224
1510-089 04/29/98 25 1.13 1.17 1.28 1.38 0.005 0.965 0.5596

04/30/98 21 1.03 1.08 1.06 1.16 0.009 0.956 0.2537
06/06/99 17 1.20 1.75 1.45 3.07 0.005 0.688 0.9687
06/07/99 27 0.94 1.40 1.14 1.93 0.007 0.674 0.9015

1606+106 07/23/01 10 1.19 1.00 1.42 1.01 0.010 1.950 0.0076
07/24/01 9 1.39 1.20 1.92 1.43 0.016 1.158 0.3783

1622-297 06/04/99 13 11.61 11.50 134.90 132.3 0.025 1.010 1.0000
06/05/99 22 2.25 2.24 5.07 5.01 0.015 1.006 0.9995

1741-038 06/06/99 20 1.57 1.31 2.52 1.73 0.024 1.206 0.7579
06/07/99 22 2.20 1.76 4.84 3.11 0.034 1.248 0.9877

1933-400 07/23/01 20 1.31 1.28 1.73 1.64 0.010 1.027 0.7098
07/24/01 20 1.01 0.99 1.03 1.01 0.016 1.019 0.0158
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Table 2. Results of the C criterion and the F test. (Cont.)

Object Date n C Ct F Fr r<72 r Area-/j-

2005-489 04/26/97 45 1.12 1.60 1.24 2.56 0.003 0.697 0.9977
2022-077 07/25/01 20 4.18 4.13 17.45 17.02 0.010 1.013 1.0000

07/26/01 19 2.27 2.78 5.15 7.71 0.010 0.817 0.9999
2155-304 07/27/97 74 0.95 1.82 1.11 3.31 0.007 0.521 1.0000
2200-181 07/26/97 33 1.17 1.54 1.37 2.37 0.003 0.761 0.9828

07/27/97 37 0.87 1.16 1.31 1.34 0.002 0.757 0.6110
2230+114 07/23/01 18 1.76 1.17 3.09 1.36 0.008 1.505 0.4691

07/24/01 18 11.06 8.04 122.30 64.63 0.006 1.376 1.0000
07/25/01 8 7.10 6.80 50.46 46.10 0.006 1.046 1.0000

2254-204 09/20/97 35 0.75 0.94 1.80 1.13 0.021 0.794 0.2850
2316-423 09/04/97 37 1.31 1.52 1.72 2.30 0.018 0.864 0.9653

09/05/97 36 1.32 1.50 1.75 2.25 0.015 0.883 0.9827
2320-035 07/25/01 17 1.55 1.50 2.41 2.24 0.005 1.038 0.8729

07/26/01 7 2.44 2.37 5.96 5.60 0.004 1.032 0.9452
2340-469 09/04/97 36 1.69 1.64 2.85 2.70 0.007 1.026 0.9958

09/05/97 38 0.94 0.92 1.13 1.19 0.008 1.027 0.3978
2341-444 09/17/97 48 0.92 0.92 1.17 1.18 0.023 1.003 0.4235
2344-465 09/19/97 53 0.99 0.95 LOO 1.01 0.010 1.044 0.2572
2347-437 09/18/97 56 1.05 0.99 1.11 1.02 0.009 1.068 0.0738

within the 28.21 per cent of the DLCs classified as variable with 
the C criterion, again all of them maintained the classification with 
the F test; meanwhile, within the 71.79 per cent of the DLCs clas­
sified as non-variable with the C criterion. 19.54 per cent of them 
have been classified in the same way using the F test. We want to 
note that the direction of change in the classification is in one way: 
from non-variable with the C criterion to variable with the F test. 
So. a significant fraction of the curves that are classified as non- 
variable applying the C criterion, are classified as variable with the 
F test, which could indicate a higher sensitivity of the F test (or. 
conversely, a more conservative behaviour of the C criterion).

Besides the adopted CL. we studied the behaviour of both 
statistics relaxing the CL: 99.0 per cent and 95.0 per cent (the mean­
ing of CL for the C criterion will be explained in Section 4). As an 
example, in Fig. 2 we present a comparison between the values ob­
tained for the weighted C and F parameters at 99.5 per cent of CL. 
These values were referred to the corresponding limiting values in 
each particular case in order to better compare each other. Solid 
lines indicate the threshold of the critical values for both statistics, 
marking the division for the four possible cases. It is possible to 
appreciate that the quarter, in which the C criterion would result 
variable and the F test would not. is empty, in contrast with the 
opposite quarter (non-variable with C. and variable with F).

3.4 Distributions

As we mentioned in Section 3.1.1. a scale factor was introduced 
in order to compensate the differences in magnitude due to the 
non—optimal choice of the comparison and control stars. In Fig. 3. 
we present the distribution of values of the weight factor. T. ob­
tained for each DLC. It shows that the peak in the distribution falls 
at T = 1 and. taking an interval of ±0.2. almost a 75 per cent of the 
DLCs are within this interval. Recalling its definition, values close 
to 1 indicate that both stars meet fairly well the criterion proposed 
by Howell et al. (1988). Thus, in our case, the selection of the pair 
of stars was almost optimal for the majority of the DLCs.

To understand the above—described behaviour and to deter-

C/2.576

Figure 2. Comparison between the C and F statistics (99.5 per cent signifi­
cance level). A zoom of the region close to (1,1) is shown as an inset. Solid 
lines indicate the threshold of the critical values for both statistics.

mine what parameters make a light curve more susceptible to 
changes in its variability classification, we analysed the distribu­
tions of the number of DLCs against their amplitudes. Am; the 
elapsed time corresponding to Am. Ai; the number of observations 
made during the night (i.e. number of points in the curve). re. and 
the dispersion in the 'control—comparison' light curve, ag- From 
here on. we define 'Var' for variable and 'NVar' for non-variable. 
We built the corresponding histograms for three groups of DLCs: 
those two that maintained their classifications using both tests (i.e. 
Var—> Var and NVar—>NVar). and the third one that changed its clas­
sification (i.e. NVar for the C criterion —> Var for the F test). We 
do not find any case corresponding to the change Var—>NVar. Also, 
we considered the same cases without/with the scale factor T.

There is no significant difference between the distributions 
without/with the factor T (this is consistent with the fact that (r) = 
1 with a small dispersion), so we present only results including
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Figure 3. Histogram of the values of T.

this factor. Note that this holds for our particular DLC sample, for 
which (r) 1. but it will not be the case if control—comparison
stars are not suitably selected (i.e. (r) 1). The histograms pre­
sented in Fig. 4 correspond to Am. to Ai in Fig. 5. to n in Fig. 6 
and to tTj in Fig. 7.

3.5 Details on the distributions

In order to statistically study the behaviour observed in the his­
tograms. we applied a goodness-of-fit Kolmogorov—Smirnov test 
(KS) to the data used to build the histograms. The results are pre­
sented in Table 3. The columns show the variable considered; the 
distributions compared; the KS statistical parameter Z; the maxi­
mum distance between distributions, d; and the area under the dis­
tribution of Z to the left. 1-prob.

In the following, we analyse the results shown in Figs. 4—7. 
and quantified in Table 3.
DLC amplitude: the DLCs classified as non-variable with both 
tests (NVar/NVar). as well as those that change status depending 
on the criterion used (NVar/Var). show distributions strongly con­
centrated to small Am values (Fig. 4). The KS test gives a level 
of significance l-prob= 0.282; thus, it cannot be said that both 
distributions are statistically different. Both have a high peak at 
Am « 0.03 mag. a value near the typical instrumental noise in 
light curves. Several of these light curves are identified as variable 
by the F test, while none of them passes the C criterion (see the 
Var/Var panel in Fig. 4).
DLCs with high Am values will thus tend to be classified as varia­
ble with both parameters, while the F test, in particular, seems 
prone to classify as variable some DLCs with amplitudes very near 
to the rms error.
Elapsed time: DLCs classified as non-variable with both parame­
ters have a broad distribution, with a peak around low values (Ai 

0.1 h; Fig. 5). This peak is consistent with variations due to rela­
tively rapid fluctuations of atmospheric conditions and photometric 
errors.
Regarding the distributions of DLCs classified as variable with 
the F test (NVar/Var and Var/Var). they are wider, differing sig­
nificantly from the NVar/NVar case. This agrees with the fact 
that a high value of Ai tends to be more characteristic of curves 
that present a systematic variability as opposed to fast instrumen- 
tal/atmospheric flickering. In those curves, where the instrumental 
noise is relatively low. this fact is more noticeable. While the F test

Am [mag]

Figure 4. Histograms of Am for the cases: Var/Var, NVar/Var and 
NVar/NVar.

seems to be more sensitive to classify as variable curves with these 
characteristics, the KS test gives l-prob= 0.211 for the Var/Var 
versus NVar/Var histograms (Figs 5a and b). meaning that we can­
not claim that the distributions are statistically different.
Number of observations: in the cases where the classification does 
not change (Var/Var and NVar/NVar. Figs 6a and c). the distribu­
tions are broad, peaking at n « 20. i.e. about the median num­
ber of data points in our DLCs. The KS test gives l-prob= 0.447 
for the Var/Var versus NVar/NVar histograms. The NVar/Var case, 
in turn, shows a much flatter distribution, indicating some prefer­
ence in favour of heavily sampled DLCs. This is usually the case of 
bright objects, for which exposure times are short (a few minutes), 
and photometric errors are usually smaller.
Dispersion of the control—comparison DLC: in those cases in 
which the state of variability is maintained (i.e.. Var/Var and 
NVar/NVar; Figs 7a and c). we observe that the distributions of 
I'm clump below ~ 0.012 mag. This implies DLCs with low in-
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Table 3. Results of the KS test. The columns show the variable considered; which dis­
tributions are compared; the KS statistical parameter Z; the maximum distance between 
distributions, d; and the area under the distribution of the statistical parameter Z to the 
left, 1-prob.

Variable Compared distributions Z d 1-prob

Am Var/Var versus NVar/Var 2.0409 0.727 0.999
Var/Var versus NVar/NVar 2.5058 0.644 0.999

NVar/Var versus NVar/NVar 0.6632 0.222 0.282

At Var/Var versus NVar/Var 0.6373 0.227 0.211
Var/Var versus NVar/NVar 1.6226 0.417 0.992

NVar/Var versus NVar/NVar 1.3084 0.438 0.954

n Var/Var versus NVar/Var 1.9146 0.682 0.999
Var/Var versus NVar/NVar 0.7704 0.198 0.447

NVar/Var versus NVar/NVar 1.5086 0.505 0.986

<72 Var/Var versus NVar/Var 1.2773 0.455 0.933
Var/Var versus NVar/NVar 1.0350 0.266 0.790

NVar/Var versus NVar/NVar 1.2367 0.414 0.931

strumental dispersion, i.e. with high S/N ratio. The variability de­
tection in these DLCs (non—detection in the case of NVar/NVar) 
is thus robust. However, for the NVar/NVar case, there is a tail of 
DLCs with I Zj > 0.02 mag. This means low S/N ratio; hence, 
any intrinsic AGN variability of low amplitude would be masked 
by the. relatively, high noise.
The distribution of NVar/NVar cases is broader than that for Var/Var 
(the KS test gives a value l-prob= 0.790. i.e. it cannot be said that 
the Var/Var and NVar/NVar histograms are statistically different). 
This would imply a slightly larger sensitivity of the F test to de­
tect variability in noisy DLCs (or. from a different point of view, 
a higher tendency to produce false positives under low S/N condi­
tions).

We also made an analysis of the light curves obtained after in­
terchanging the roles of the comparison and control stars, in order 
to study how the choice of these stars could influence the statisti­
cal results. We applied both parameters to the DLCs. finding out 
that close to the 95 per cent of the light curves maintained their 
classifications with the C criterion; meanwhile, for the F test that 
percentage dropped to 85 per cent. This is consistent with the fact 
that the mean value of T is close to 1. with a low dispersion. How­
ever. again. F seems more sensitive to systematics than C.

4 INQUIRING INTO THE C CRITERION

As defined in Section 3.1. the parameter C is the ratio between 
the standard deviations of two given distributions. The genesis 
of its use in AGN microvariability studies can be traced back to 
Carinietal. (1990) who proposed that the dispersion of the dif­
ferential magnitudes of the control light curve could provide an 
estimator for the stability of the standard stars used in the data 
analysis, being a more reliable measure of the observational un­
certainty than formal photometric errors. A further step was given 
by Jang & Miller (1995); they fitted both 'object—comparison' and 
'control—comparison' light curves with straight lines and com­
puted the standard deviations of the data points in each curve. The 

largest value, either from one or from the other light curve, was 
taken as a measure of the observational error. Note that this proce­
dure removes any long-term variation in the light curves, while, at 
the same time, is insensitive to any 'erratic, low—amplitude varia­
tion' of the AGN (Carinietal. 1991). Jang & Miller (1997) expli­
citly use the 99 per cent CL for magnitude variations with am­
plitudes exceeding 2.576 a.3 assuming a normal distribution. In 
Romero etal. (1999). an explicit definition for C is given (equa­
tion 1). where the amplitude of the target—comparison DLC has 
been changed by its dispersion, in an attempt to compensate for the 
extreme sensibility of the Jang & Miller (1997) criterion to system­
atic (mostly type-I) errors (the practical reason for this choice is il­
lustrated in Section 5). Thus, the parameter C is the result of trying 
to improve the estimation of the data errors, providing a variability 
criterion as strong as possible against false positives arising from 
systematic errors.

However, we saw above that the C criterion gives different re­
sults than the F test. Since the F test is firmly rooted in a statistical 
theoretical background, whereas the C is a rather loosely grounded 
criterion (that eventually got to be considered as an actual test), we 
decided to carefully analyse the latter.

Putting aside for the moment the particular case of comparing 
light curves, in a general setup the goal of both the C and the F 
statistics is to compare the dispersions (C criterion) or variances 
(F test) of two samples, taken from unknown populations. Both 
carry out the comparison by rejecting (or not) the null hypothesis 
that both dispersions and variances are statistically the same. Let 
C = /ctq . and F = tr3 /tr? • where ai and n1 are the dispersions 
being compared, with tri > n1 in the case of the F statistic. We 
discard here any explicit scaling factor, because we are not comput­
ing results of the tests but comparing them, so the numerical values 
of the dispersions are irrelevant here.

In order to make a theoretically based comparison between 
the methods, we recall here the procedure for the F test. First, we

3 Though we know that the value 2.576 <r corresponds to 99.5 per cent (see 
below).
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Figure 5. Histograms of At for the cases: Var/Var. War/Var and 
NVar/NVar.
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Figure 6. Histograms of n for the cases: Var/Var. NVar/Var and NVar/NVar.

have to choose a CL a. that is. the complement of the probability 
that two variances will give by chance an F value so large that the 
null hypothesis should be rejected. If. for example, one chooses 1 
per cent as the above-mentioned probability, then a = 0.99. Sec­
ondly. the 'degrees of freedom' = rn — 1, i = 1, 2 are computed, 
where rn, i = 1, 2 are the number of measurements of each sample. 
Thirdly, by using the probability density distribution of the statis­
tical variable F with i/± and j/g degrees of freedom, a value Fa is 
found, such that the area below the distribution mentioned before 
to the left of Fa be a (Fig. 8). Fourthly, a value
is computed from the measurements, by using for each sample the 
usual formula

n
°2 = (6) 

2=1

where n is the size of the sample. Xi are the measurements, and p, is
the mean of the sample, i.e.. the sum of the measurements divided 

by n. Finally. is compared against Fa. If /v.i,- > Fa. then 
the null hypothesis is rejected; otherwise, the null hypothesis is not 
rejected.

In turn, for the case of C we have: first, the value C'obs is com­
puted from the measurements, using the square root of equation (6) 
for each sample. Secondly, this value is (always) compared with 
the number 2.576. irrespective of the number of measurements. If 
C > 2.576. the null hypothesis is rejected at a fixed 99.5 per cent 
CL.

So. the C 'test' is not properly a statistical test. Tracing back 
the origin of the fixed numbers 2.576 and 99.5 per cent, it seems 
that they come from a standard rejection of a bad measurement pro­
cedure. According to this, given a set of measurements of a given 
quantity, we can always compute the variance of the sample by 
means of equation (6). Under the hypotheses that the measurements 
came with a Gaussian distribution of errors, and that the mean and 
the dispersion of the sample are good estimators of the true mean 
and dispersion of the population of measurements, one might dis-
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c2r
1 2 3

Figure 8. Example of a Fisher F density distribution, here with ic = 20, 
V2 = 15, i.e. the sample with the larger dispersion has 21 measurements, 
and the other one 16. The CL is chosen here as a = 0.938, which gives a 
value of Fa = 2.2. If it turns out that Fobs > Fa, the null hypothesis is 
rejected; otherwise, the null hypothesis is not rejected.

estimator 4. As we have seen, the rejection of a bad measurement 
works by comparing a given measurement with the mean of the dis­
tribution density of the measuremen ts, and measuring the distance 
to that mean in terms of the dispersion of the distribution density of 
the measurements. In the C criterion, however, a dispersion ai is 
compared with a reference dispersion ct2 . as if this last value were 
the mean of the distribution density of dispersions, and the ratio 
<71/02 becomes the distance, as if oy were also the dispersion of 
the distribution density of dispersions. That is. for the C criterion 
to work, a2 should be both the mean and the dispersion of the (un­
known) distribution of dispersions. And. it should be pointed out 
that, whereas C is strictly positive, and clearly the domain of a dis­
tribution density of dispersions is the set of positive reals plus zero, 
the C criterion assumes a Gaussian distribution of dispersions, i.e.. 
a domain equal to the set of all real numbers.

c2r 5 RESULTS FOR FIELD STARS

4

Figure 7. Histograms of weighted <72 (i.e. aoF) for the cases: Var/Var, 
N Var/Var and NVar/NVar.

card those measurements that fall far enough from the mean of the 
sample because those measurements can be regarded highly im­
probable (some instrumental or operational error rather than to an 
error by chance). How far they should be from the mean in order 
to be discarded depends on the experiment; usually, this distance is 
measured in units of the dispersion of the sample. If this distance is 
taken as la. for instance, it is said that the measurement is rejected 
at a 68 per cent CL. because the area below a Gaussian inside the 
abscissae x = ±a is approximately 0.68. But we may invert the 
argument and put forward a CL. finding what is the abscissa that 
gives that area. If one chooses, for example. 0.995 as the level, then 
one obtains x = ±2.576 a (C critical value).

In this way. C is not a strict, theoretically supported statistical 

To better understand the results presented in Section 3. we analysed 
the stability of the statistics using the field stars. To perform this, we 
considered all the selected stars in the frames, excluding the AGN, 
and we calculated the C and F parameters for all the DLCs using 
the same comparison and control stars as in the case of the corres­
ponding AGN. By selected stars, we mean those (between 6 and 
44 per field) making the set of candidates from which the compa­
rison and control stars were finally chosen. We removed from this 
sample DLCs that were affected by saturation, cosmic rays, stars 
that were too close to the edge of the frames and any other evident 
defect. DLCs with Am > 0.4 mag were also discarded; this should 
remove any remaining very ill-behaving DLC as well as known 
variables (e.g.. star S in the field of 3C 279, a known variable with 
amplitude > lmag; Raiterietal. 1998). The original number of 
DLCs was 1039, and after the cleaning process, we had 981 DLCs 
left for their study.

The first thing to note is that 16.9 per cent of the DLCs are 
found to be variable with the F test, while this percentage drops

4 Appendix A describes a possible implementation of a statistical test 
based on the ratio of dispersions of two distributions. 
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to 9.5 per cent using the C criterion (in both cases, the T correc­
tion was applied). It is known (e.g. Ciardietal. 2011. and refer­
ences therein) that the fraction of variable stars in a given survey 
is a function of the survey parameters —time span and sampling 
of the observational series, photometric precision—, as well as the 
magnitudes, spectral types and luminosity classes of the stars. As 
a general guide, from ground-based data. Howell (2008) says that 
only 7 per cent of the stars are expected to vary at a 0.01 mag preci­
sion level. Ciardi et al. (2011). in turn, present a detailed variability 
analysis based on Kepler data, with a time resolution ~ 30 min. 
From their results, it can be inferred that the fraction of stars in our 
AGN fields (mostly located at relatively high Galactic latitudes) 
that vary at a level > 0.01 mag within a few hours should be al­
most negligible —at most, well below 10 per cent.

It is clear that both criteria classify as 'variable' a 
larger—than—expected number of DLCs. However, this is partic­
ularly evident for the F test: 76 out of 981 DLCs (7.7 per cent) 
change form NVar with the C criterion to Var using the F test (the 
converse holds for a negligible 0.3 per cent. i.e.. just three DLCs. 
so we do not discuss this Var/NVar case). In order to further in­
quire into the reasons for this behaviour, we again analysed the 
distribution of the different parameters characterizing the DLCs. as 
was done for the AGN light curves. The general results are qual­
itatively similar to those presented in Sections 3.4 and 3.5. How­
ever. it is worth mentioning that the most significant differences 
between distributions (supported by the KS test) correspond to the 
ratio between the variability amplitude (Am) and the scaled rms of 
the control light curve (r<r2). While DLCs in the NVar/NVar case 
cluster at Am/(T<72) < 9. those in the Var/Var case have a broad 
distribution from Am/(T<72) > 9 upwards; the NVar/Var case, in 
turn, shows a narrow distribution centred at Am/(T<72) — 9. For 
the observed DLCs of the AGN sample, we obtained a similar result 
regarding the behaviour of the ratio Am/jrag) (also supported by 
the KS test).

This means that both parameters agree in their classifica­
tion for almost all DLCs displaying variations with amplitudes 
above ~ 9 Tct2 (Var/Var). and for most DLCs with Am < 9 Tct2 
(NVar/NVar). while a minor fraction of DLCs lying within a nar­
row range around the limiting value (Am ~ 9 I are classified 
as variable by the F test and non-variable by the C criterion. Thus, 
both parameters behave as sort of 'a-clipping' criteria, but with 
different clipping factors. In this regard, it must be noted that if we 
apply the original criterion proposed by lang & Miller (1997). i.e. 
Am > 2.576 I m more than half the field stars DLCs (52.4 per 
cent) are classified as variable. On the other hand, if no weighting 
(T factor) is applied. 20.7 per cent and 33.4 per cent of the stars are 
classified as variable with the C criterion and F test, respectively. 
Clearly, results from unweighted tests would be catastrophic, and 
we will no longer discuss them.

As a further comparison between different tests, we calculated 
the percentage of DLCs in each star field that resulted to be varia­
ble using the C criterion and F test, considering three different 
CLs: 95 per cent. 99 per cent, and 99.5 per cent. We found that 
the distributions (for both statistics and the three CLs) have a clear 
peak around 10 per cent, although, at the same CL. the histograms 
corresponding to the F test extend to larger variability percentages. 
It is interesting to note that the distributions of F99.5 and C'95. as 
shown in Fig. 9. are practically identical (a KS test gives a value of 
l-prob= 0.001). We interpret that, for our data, we have to relax 
the CL of the C criterion to 95 per cent in order to obtain similar 
results as with the F test at the 99.5 per cent CL.

It is now clear that the F test is not working as expected (and

Percentage of variability of the field stars

Figure 9. Distribution of percentages of stars per field that resulted variable 
using C at 95 per cent—CL and F at 99.5 per cent—CL.

neither does the —statistically ill founded— C criterion). However, 
this should not be surprising, since it is well-known that the F test 
is particularly sensible to non-Gaussian errors (e.g. Wall & lenkins 
2012). and photometric time series, unless taken by an absolutely 
perfect space telescope equipped with an absolutely perfect detec­
tor. will be affected by systematic error sources, adding a 'red- 
noise' (i.e. time—correlated at low frequencies) component. These 
sources of non-Gaussian distributed errors include flat-field imper­
fections. airmass variations, imperfect tracking, changing atmo­
spheric conditions (seeing, transparency, scintillation), changing 
moonlight and airglow illumination, unnoticed cosmic rays. etc. 
Moreover, photometric errors usually correlate with those system­
atic effects, as e.g. when the S/N ratio drops due to changes in see­
ing or atmospheric transparency.

Any statistical test used to detect microvariability in AGN 
DLCs obtained with ground-based telescopes should thus be 
founded on solid theoretical bases and. at the same time, be able 
to deal both with random (i.e.. photometric) and systematic (non- 
Gaussian) errors. In a forthcoming paper, we will further explore 
the performance of currently used tests by means of simulated ob­
servations. This will allow us to test variability tests under con­
trolled situations, aiming at the selection of a test that is appropriate 
to deal with real observational issues.

6 DISCUSSION

There are several works that have been dedicated to the study of 
statistical tools to detect microvariability in AGN. de Diego (2010) 
studied the x2 test, the F test for variances, the ANOVA test, 
and the C criterion for a set of simulated light curves, conclud­
ing that the most robust methodologies are the ANOVA and x2 
tests, while the F statistic is less powerful but still a reliable tool, 
and. finally, the C criterion should be avoided because it is not 
a proper statistical test. Further analysis about these tests is pre­
sented in de Diego (2014). where a study of the Bartels and Runs 
non-parametric test was added. In that work, the author proposed 
that the best choices to detect microvariability in AGN light curves 
are the use of an ANOVA or an enhanced— F test (in the latter, 
several comparison stars are used to define a combined variance, 
instead of using a single star). A continuation of this work was 
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published by de Diego et al. (2015). where the enhanced-/ ’ and the 
nested ANOVA tests were studied, concluding that these are the 
most powerful tests to detect photometric variations in DLCs. due 
to the increase in the power of the statistics, product of adding more 
comparison stars to the statistical analysis (the nested ANOVA test 
also requires some extra held stars, but fewer than in the enhanced- 
F test).

It should be noted that, in these papers, the authors explic­
itly state that only photon shot—noise was considered for the 
light—curve simulations, while any systematic effect was 'entirely 
disregarded'. So. despite their theoretical advantages, some of these 
tests may be impractical for dealing with real observations; more­
over. if error distributions do not fulfil the assumptions on which 
those tests are based, their use should be discouraged or. at the very 
least, be taken with extreme care. In our case, we are working with 
DLCs with a rather small number of observations; this is a common 
situation, since AGN microvariability light curves are mostly lim­
ited to under ~ 30—40 points (e.g. Kumar & Gopal-Krishna 2015). 
The need of a large number of points in light curves strongly limits 
the use of the x2 test. The same applies to the ANOVA test: de­
spite its claimed power to detect micro variability (de Diego 2010. 
2014). this test is seldom used, because it requires a large number of 
data points too (loshi et al. 2011); moreover, data grouping might 
be impractical for faint objects requiring relatively long integration 
times, and could lead to false results if data within a time span 
larger than the (unknown) variability time-scale are grouped. In 
fact, some doubtful results from the use of the ANOVA test in AGN 
microvariability studies (de Diego et al. 1998) have already been 
discussed in Romero etal. (1999). Regarding the nested ANOVA 
and the enhanced—F tests, both tools require several comparison 
stars to perform optimally (de Diego etal. 2015). while having ap­
propriately populated star fields around AGNs is more the excep­
tion than the rule. Villforth. Koekemoer & Grogin (2010). in turn, 
discuss the application of different tests to AGN light curves from 
space-based observations. They compare the C criterion and the 
X2 and F tests using a sample of randomly generated light curves, 
concluding that the three tools show equal powers. However, when 
error measurements are themselves erroneous, x2 has the highest 
power followed by C and then F.

On the other hand, the use of tests specifically devised to deal 
with Gaussian errors may not be optimal to work with ground- 
based light curves, where atmospheric and instrumental effects pro­
duce correlated errors, with non-Gaussian distributions. In fact, 
even under pure random noise, errors in magnitude space will have 
asymmetric non-Gaussian distributions (e.g. Villforth et al. 2010). 
This is particularly relevant for the x2 test, which requires that in­
dividual data points have accurately determined errors, with Gaus­
sian distributions (e.g. loshi et al. 2011); neither of these is always 
fulfilled by optical ground-based photometry. The F test, in turn, 
does not behave as expected if error distributions are non-Gaussian 
(e.g. Wall & lenkins 2012). It is thus important to emphasize that 
—besides limitations typical of ground-based observations— vari­
ability studies of AGNs usually have particular issues, like poorly 
sampled DLCs (due to low brightness of the source), and the avai­
lability of rather few field stars for differential photometry; these 
facts must be taken into account for the correct choice of the statis­
tical analysis of the DLCs.

7 SUMMARY AND CONCLUSIONS

In order to test the most widely used tests for AGN variability, 
we studied the C and F statistics with a large and homogeneous 
sample of real observational data. We worked with a sample of 39 
southern AGNs observed with the 2.15m 'forge Sahade' telescope 
(CASLEO). San Juan. Argentina, obtaining 78 nightly differential 
photometry light curves, to which we applied the C and F statis­
tics.

Besides which statistic is the better choice to analyse the be­
haviour of the DLCs. we want to point out that it is very impor­
tant to use the weighted tests for the case of AGN differential pho­
tometry. because of the particular issues mentioned in the previous 
paragraph (see also Cellone et al. 2007. for a full discussion on this 
issue). We used the T scale introduced by Howell & Jacoby (1986). 
There are cases in which the variability results change just because 
of not using this weight. Those cases are the ones in which T is far 
from 1 (i.e.. the magnitudes of the comparison and/or control stars 
are not similar to the target's magnitude).

From the results of applying the C criterion and F test to the 
sample, we found that, with respect to the DLC amplitude (Am). 
F results tend to classify as variable those DLCs with Am near 
the rms error, while for DLCs with high amplitude, both statistics 
tend to detect variability. For the elapsed time (Ai). DLCs with 
high values of Ai are classified as variable, in agreement to the 
fact that this high value usually appears in light curves where sys­
tematic variability is observed. Both statistics seem to be robust in 
the detection (or non-detection) of variability when DLCs present 
low instrumental dispersion (0.012mag), but if the dispersion of 
the 'control—comparison' light curve reaches values larger than 
0.02mag (some cases for the NVar/NVar histogram. Fig.7c). low- 
amplitude AGN variability could be masked due to the low S/N 
ratio in the DLC.

Taking a deeper look into the C criterion, and comparing it 
with the F test, we arrived at the conclusion that, even though the C 
criterion cannot be considered as an actual statistical test, it could 
still be a useful parameter to detect variability, provided that the 
correct significance factor is chosen. In this way. we found that 
applying C we may obtain rather more reliable variability results, 
especially for small amplitude and/or noisy DLCs.

Finally, a study of the behaviour of the held stars was made 
in order to analyse the stability of C and F. excluding the AGN. 
From these new set of DLCs. we calculated the parameters involved 
in the statistics and the percentage of held stars that result variable 
for both C and F. We found that, for the three CLs considered (95 
per cent. 99 per cent and 99.5 per cent), both statistics show a peak 
around 10 per cent in their distributions, and comparing within the 
same CL. the F test presents an extended distribution to larger va­
riability percentages. We thus notice that the F test tends to classify 
as variable a larger number of DLCs than the C parameter, well 
above the expected number of variable stars in our fields. These 
variability results are clearly false positive results, possibly due to 
the inability of the F test to deal with non-Gaussian distributed 
errors.

There has to be always a balance between the power of a 
given test (i.e. its ability to detect real variability) and its rate of 
false positives. Ultimately, the outcome of this balance should be 
dictated by astrophysical considerations, but this requires precise 
knowledge of each test's behaviour under particular observational 
conditions.

This study is being completed carrying out a series of simula­
ted observations, which involve differential photometry for several 
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AGNs and comparison stars, immersed in a variety of distinct at­
mospheric conditions and several different observational situations. 
Results will be presented in a forthcoming paper.
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APPENDIX A: THE DISTRIBUTION DENSITY 
FUNCTION OF THE D STATISTIC

In order to determine whether two dispersions or and oy are not 
statistically equivalent, a statistical test should be used. An equi­
valent test may be developed in which, instead of the ratio of the 
variances as in the F test, the ratio of the dispersions is used, as 
in the C parameter. In other words, we can convert the C statistic 
into a statistical test. This new test should give no different results 
than the F test. We will call it the D test. With this new statistic, one 
follows the same steps as in the F test: choosing a CL a. computing 
the value Da that leaves an area a to its left below the curve of the 
distribution density, finding the observed = ai/og with or >

. and rejecting the null hypothesis if it happens that /Z ,i,, > Da.
Suppose that, from a mother population with Gaussian pro­

bability density and (unknown) dispersion a. a series of samples of 
n members each are taken. For each sample, its sample variance s2 
can be computed as

n
s2 = ^i^xi~^2' (A1)

i= 1

where Xi is the i—th member of the sample, and
n

/z = —(A2) 

2=1

is the mean of the sample. Hereafter, as a matter of convenience, 
we will use the number of degrees of freedom v = n — 1 instead 
of the number of members n. The sample variances s2 of the diffe­
rent samples have their own probability density distribution /(s2). 
given by (Kendall & Stuart 1969 )B

5 In Kendall & Stuart (1969) the probability density distribution of f(s2)



14 L. Zibecchi et al.

(A3)

which depends on the parameters v and a. Taking into account that 
d(s2) = 2s ds. it is easy to And the probability density distribution 
</(s) of the sample dispersions s:

a-r(z//2) 6XP 2 a2 J ' (A4)

Now. given the distributions or) and (/(spl^.op) of
the dispersions of two set of samples, each with its own number 
of degrees of freedom i/± and 1/2. and maybe taken from different 
mother populations with true dispersions or and op. one can find 
the distribution of their quotient D = s-l/s? as (Kendall & Stuart 
1969. sect. 11.6) 

h(D | !/i, or,or) =
,oo

I g(Dx \ vi+ l,ai')g(x \ V2+ l,<T2')xdx
Jo

pp+m 1-1/2
_ p l 2 / ' ' 2 ° 1 ° 2

r(^)rp) Oaoi + D2i'1a2,y-i+-^/2-

However, this result is completely useless because we do not 
know the true dispersions op and op. But. if the mother population 
of both sets of samples is the same, or both sets come from popu­
lations with the same dispersion (i.e. op = op = c). then we have 
that the probability density distribution of the ratio D is

(A6)

which is independent of the true dispersion. This turns out to be 
the important point: this distribution is then ready to be used in a 
statistical test. In particular, since it is the result of assuming op = 
op. the D test null hypothesis is that both si and S2 are statistically 
equivalent.

If the distribution equation (A6) is compared with the 
well-known distribution for the F statistic.

JJF |
r(^)T(^) (z/2 +Fz/1)(-1+-2)/2’

(A7)

we see that they are the same distribution, only expressed with dif­
ferent variables, i.e. /?(P)dP = f (F)dF with F = D2. Thus, 
using the D test of dispersions gives exactly the same results as 
using the F test of variances.

with its normalizing constant appears only in the specialized case <7=1 
(their Eq.(l 1.41)).


