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ABSTRACT
We construct a set of binary evolutionary sequences for systems composed by a normal, 
solar composition, donor star together with a neutron star. We consider a variety of masses 
for each star as well as for the initial orbital period corresponding to systems that evolve to 
ultra-compact or millisecond pulsar-helium white dwarf pairs. Specifically, we select a set 
of donor star masses of 0.50, 0.65, 0.80, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 3.00 and 
3.50 Mq, whereas for the accreting neutron star we consider initial mass values of 0.8, 
1.0, 1.2 and 1.4 Mq . Because the minimum mass for a proto-neutron star is approximately 
0.9 Mq, the value of 0.8 Mq was selected in order to cover the whole range of possible initial 
neutron star masses. The considered initial orbital period interval ranges from 0.5 to 12 d.

It is found that the evolution of systems, with fixed initial values for the orbital period and 
the mass of the normal donor star, heavily depends upon the mass of the neutron star. In some 
cases, varying the initial value of the neutron star mass, we obtain evolved configurations 
ranging from ultra-compact to widely separated objects.

We also analyse the dependence of the final orbital period with the mass of the white dwarf. 
In agreement with previous expectations, our calculations show that the final orbital period­
white dwarf mass relation is fairly insensitive to the initial neutron star mass value. A new 
period-mass relation based on our own calculations is proposed, which is in good agreement 
with period-mass relations available in the literature.

As a consequence of considering a set of values for the initial neutron star mass, these 
models allow finding different plausible initial configurations (donor and neutron star masses 
and orbital period interval) for some of the best observed binary systems of the kind we are 
interested in here. We apply our calculations to analyse the case of PSR J0437-4715, showing 
that there is more than one possible set of initial parameters (masses, period and the fraction 
¡3 of matter accreted by the neutron star) for this particular system.
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1 INTRODUCTION

During past years, binary radio pulsars have been detected more 
and more often. Now. we are aware of the existence of 141 
pulsars belonging to binary systems (ATNF Pulsar Catalogue: 
www.atnf.csiro.au; Manchester et al. 2005). For these objects, both 

estimations of the median mass of the companion (assuming an or­
bital inclination of 60:) and orbital period of the binary system are 
available. If we restrict ourselves to low-mass companions (M < 
0.35 Mq). we find about 100 objects; approximately half of them 
located in globular clusters. Among this group of binary systems, 
we are interested in a subgroup composed by a neutron star (NS) 
and a low-mass white dwarf (WD). Presumably, these objects have 
a helium-rich interior and will be referred to as helium white dwarfs 
(HeWDs).

Remarkably, for some of the above-referred binary systems, it 
has been possible to make reliable determinations of the masses 
of both components. This has been possible taking advantage 
of the relativistic effect known as Shapiro delay (see Taylor & 
Weisberg 1989 and references therein). In Table 1. we list the main

© 2009 The Authors. Journal compilation © 2009 RAS

mailto:adevito@fcaglp.unlp.edu.ar
http://www.atnf.csiro.au


Evolution of low-mass CBSs 2553

Table 1. The CBSs composed by a millisecond pulsar and a low-mass WD for which it has been possible to 
detect the Shapiro delay effect and measure the masses of both components. All these systems belong to the 
Galactic plane population. From left to right, the table presents the name of the pulsar, its spin period, the WD 
and pulsar masses, the orbital period and the relevant reference.

Name Pp
(ms)

Mwd 
(Mq)

Mns 
(Mq)

P
(d)

Reference

PSRJ0437-4715 5.757 0.236 ± 0.017 1.58 ±0.18 5.741 van Straten et al. (2001)

PSR J17134-0747 4.57 0.28 ± 0.03 1.3 ±0.2 67.825 Splaver et al. (2005)

PSR B18554-09 5.362 H OCq+0.028U.Z36_o.oi6 1 5O+0’261-J -0.14 12.327 Kaspi, Taylor & Ryba (1994)

PSRJ1909-3744 2.947 0.2038 ± 0.0022 1.438 ±0.024 1.533 Jacoby et al. (2005)

parameters of these binary systems. Apart from the data included 
there, Nice, Stairs & Kasian (2008) have reported further observa­
tions of the binary system containing PSR J0751 + 1807. They im­
proved the values of the pulsar mass, finding it to be 1.26 ± 0.14 Mq 
(68 per cent confidence) or 1.26 ± 0.28 Mq (95 per cent con­
fidence). These values are much lower than their previous claim 
(Nice et al. 2005), especially in connection with the inferred mass 
of the NS. We do not include them in Table 1 because the value of 
the WD mass is not yet available.

The formation mechanism of such close binary systems (CBSs) 
is well established: a low-mass, normal star undergoes Roche lobe 
overflow (RLOF) and transfers mass to a NS companion. After a 
long, stable mass transfer episode the donor (normal) star has lost 
most of its mass. In the non-conservative case, only part of this mass 
is accreted by the NS which is spinned up, allowing it to be detected 
as a millisecond pulsar (MSP) while its companion (initially a main- 
sequence star) cools down becoming a WD (see e.g. Bhattacharya 
& van den Heuvel 1991).

Let us make a brief discussion of the binary evolution results 
available in the literature related to the objects we are interested 
in. Sarna, Antipova & Muslimov (1998) investigated the evolu­
tion of CBSs to account for the binary system containing the MSP 
PSR J1012+53 and its low-mass companion. For the initial NS 
mass [(MNS)i], they assumed the ‘canonical’ value of 1.4 Mq. 
Ergma, Sarna & Antipova (1998) made evolutionary calculations 
of low-mass CBSs in conservative and non-conservative cases, con­
sidering donor star masses in the range 1.0Mq < M < 1.5 Mq. 
Again, they set (MnsX = 1.4Mq. Tauris & Savonije (1999) com­
puted non-conservative evolution of CBSs with low-mass (1.0- 
2.0 Mq) donor stars and a (MNs)i = 1.3 Mq accreting NS. The 
initial orbital periods range was between 2 and 800 d. Besides, 
they revisited the orbital period-WD mass relation (P - MWD) in 
wide binary WD-radio pulsar systems. Podsiadlowski, Rappaport 
& Pfahl (2002) performed a systematic study of the evolution of 
low- and intermediate-mass binary systems. In their calculations, 
they assumed (MnsX = 1.4Mq for the NS, which accretes (at 
most) half of the transferred matter, while donor stars had initial 
masses between 0.6 and 7Mq. The initial orbital periods covered 
the interval from approximately 4 h to 100 d. Ergma & Sarna (2003) 
constructed binary evolution sequences to account for the observed 
binary parameters for PSR J1740—5340. Again, they considered 
(MnsX = 1.4Mq. Nelson & Rappaport (2003) investigated possi­
ble scenarios for accretion-powered MSPs in ultra-compact bina­
ries. They calculated a large set of evolutionary tracks corresponding 
to different donor masses and degrees of chemical evolution at the 
onset of mass transfer. The range of initial donor masses was be­
tween 1.0 and 2.5 Mq and (MNs)i = 1.4Mq. They assumed a fully 
non-conservative mass transfer case. Benvenuto & De Vito (2005) 
computed the evolution of a set of binary systems leading to the 

formation of HeWDs - MSP or ultra-compact systems considering 
diffusion. They also analysed possible progenitors for some of the 
best observed systems containing an MSP together with a low-mass 
WD. They set (MNs)i = 1.4 Mq and [} = 0.5 (/J is the fraction 
of transferred matter accreted by the NS), although in fitting the 
masses and orbital period of these systems, they allowed for lower 
values of ft. Benvenuto, Rohrmann & De Vito (2006) found a possi­
ble original configuration that accounts for the observed parameters 
of PSR J1713+0747 binary system. They computed a set of binary 
evolution calculations in order to simultaneously account for the 
masses of both stars and the orbital period, again setting (MNs)i = 
1.4Mq.

In spite of the fact that in most of theoretical studies aimed to 
explore the evolution of low-mass WD-NS binary systems the initial 
mass of the NS has been set to (MNs)i = 1.4Mq, observational 
evidence presented in Table 1 indicates that (A7ns)i may indeed 
be lower. At present, we do not know the value of the fraction ft. 
The only physical limitation is the Eddington critical accretion rate 
Mns < 4/Edd = 2 x 10s Mqvi' (where Mns is the accretion rate 
of the NS). Usually ft is considered as a free parameter. Certainly, 
we may account for NS masses greater than 1.4 Mq by setting 
an initial canonical value for (MnsX and adjusting ft. However, 
this is not possible if observed NS masses are lower than 1.4Mq 
(e.g. the case of PSR J1713+0747; see Table 1). This fact induced 
us to perform a systematic exploration of the evolution of these 
CBSs varying the initial donor (normal) and accretor (neutron) stars 
masses (and also the initial orbital period). This is one of the main 
purposes of this paper.

In our models, we consider masses for the donor stars in the 
range from 0.50 to 3.50 Mq and accreting NSs with initial masses 
[(MNS)i] of 0.8, 1.0, 1.2 and 1.4Mq. The range of (MnsX we 
propose for our calculations needs some justification. It is well 
known that most of the accurately measured NS masses are near 
1.4Mq. Also, it is well known (see e.g. Lattimer & Prakash 2004 
for a recent tabulation; Lattimer & Prakash 2007) that the masses 
of some NSs are well below that value. In particular, these are 
the cases of the NSs in the X-ray binaries SMC X-l, Cen X-3 and 
4U1538-52 that, following Lattimer & Prakash (2004), have masses 
of 1.17toj§, l.O9toj6 andO.ObjJ j Mq respectively. More recently, 
van der Meer et al. (2007) have presented more accurate determi­
nations for the masses of NSs in binary systems. Specifically, for 
the cases of SMC X-l and Cen X-3, the authors find values of 
1.06Mq and 1.341^4 Mq, respectively. Note that in the case 
of SMC X-l, the NS is somewhat less massive, but for Cen X-3, the 
NS is notably more massive than the previous determination.

NSs have both minimum and maximum mass limits. The maxi­
mum mass is unknown, but lies in the range of 1.44 to 3 Mq. The 
upper bound follows from causality arguments (Rhoades & Ruffini 
1974), imposing that the speed of sound in dense matter must be 
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less than the speed of light, whereas the lower bound is set by the 
largest accurately measured pulsar mass, 1.4408 ± 0.0003 Mq, in 
the binary pulsar PSR 1913+16 (Weisberg & Taylor 2003).

Regarding the minimum NS mass value Minin- it is important 
to remark that it is sensitive to the equation of state (EOS) of 
NS matter at sub-nuclear densities. Haensel, Zdunik & Douchin 
(2002) calculate kt,-.. for cold NSs using two different EOSs. 
For non-rotating configurations they find = 0.094 Mq for 
the SLy EOS (Chabanat et al. 1998) and = 0.088 Mq for the 
FPS EOS (Lorenz, Ravenhall & Pethick 1993). However, we are 
interested in rotating NSs, i.e. the accreting companion of a donor 
star in CBSs. Haensel et al. (2002) performed accurate calculations 
of stationary, cold NSs configurations, rotating uniformly at v = 
100 Hz and v = 641 Hz (which corresponds to the shortest ob­
served pulsar period). The authors find for SLy EOS that minimum 
mass at v = 641 is 0.61 Mq and for FSP EOS, at the same rotation 
frequency, 0.54Mq. For the case of v = 100 Hz and SLy EOS, the 
minimum mass finding is of 0.13 Mq, ~:40 per cent larger than that 
for static NSs.

If we consider newly born proto-NSs, both thermal (after core 
bounce the proto-NS has a temperature T 1010 K) and neutrino­
trapping effects are large, and are found to largely increase the 
value to 0.9-1.1 Mq (Goussard, Haensel & Zdunik 1998; Strobel, 
Schaab & Weigel 1999). Thus, if NSs’ formation corresponds to 
a gravitational collapse event, we should expect the existence of 
NSs with masses above the value corresponding to proto-NSs, 
0.9 Mq. Observational data support this lower mass limit.

There is a large gap between the values of Vtiiail for cold and proto- 
NS as estimated from the different models presented above. Still, 
an NS may reach mass values smaller than 0.9-1.1 Mq by mass 
loss after becoming a cold NS.1 This possibility has been studied 
by Blinnikov et al. (1984), Colpi, Shapiro & Teukolsky (1991) and 
Sumiyoshi et al. (1998). However, analysing such possibility and 
its consequences is beyond the scope of this paper.

1 Note that the NS spends only several seconds in releasing most of its lepton 
and thermal content to become a cold NS.

In view of the above discussion, the minimum NS mass value 
(0.8 Mq) considered in our calculations may seem somewhat low. 
However, in any case, in performing our theoretical experiment, we 
select the minimum value of the accreting NS of 0.8 Mq, somewhat 
less massive than that of the minimum, presented by the observa­
tions and for the theoretical calculations of proto-NS, simply to be 
sure we are exploring the whole meaningful NS mass interval.

It is well known that there exists a somewhat tight relation be­
tween the mass and the radius of the cores of low-mass giants (see 
e.g. Joss, Rappaport & Lewis 1987). Then, a P - MWd relation 
can be derived. This will be valid if the star belongs to a CBS and 
undergoes RLOF as a giant. In the calculations to be presented be­
low, some donor stars undergo RLOF as red giants; however, other 
experience RLOF when they are still much more compact. Thus, we 
explore the P - Mwd relation and test the claim (Rappaport et al. 
1995) that it is nearly independent of (MNS), quantitatively and in 
more general conditions than those previously considered.

The reminder of this paper is organized as follows: In Section 2, 
we briefly describe the employed code. In Section 3, we present 
our calculations studying the dependence of the evolution of binary 
systems with (Mus)i (Section 3.1) and discuss them in connection 
with the P - Mwd relation (Section 3.2). In Section 4, we discuss 
the possibility of finding different initial binary configurations to 
account for the observed characteristics of systems containing a 

recycled pulsar and a low-mass WD and, as an example, we study 
the case of PSR J0437—4715 in detail. Finally, in Section 5 we 
present the main conclusions of this work.

2 THE COMPUTER CODE

The code employed here has been described elsewhere (Benvenuto 
& De Vito 2003). Briefly, we use a generalized Henyey technique 
that allows for the computation of the stellar structure and mass 
transfer episodes in a fully implicit way. The code has an updated 
description of opacities, EOS, nuclear reactions and diffusion, while 
we simultaneously compute orbital evolution considering the main 
processes of angular momentum loss: angular momentum carried 
away by the matter lost from the system, gravitational radiation and 
magnetic braking.

Regarding the inclusion of element diffusion, it has several effects 
on the chemical profile of these stars, especially in the WD and pre- 
WD stages (see e.g. Iben & MacDonald 1985; Althaus, Serenelli 
& Benvenuto 2001). For example, diffusion is responsible for the 
occurrence of almost pure hydrogen atmospheres in the case of cool 
enough DA WDs. Moreover, diffusion leads to the sink of hydro­
gen to layers hot enough for triggering the occurrence of nuclear 
burning. While in calculations neglecting diffusion, stellar models 
in the here-considered mass range suffer from the occurrence of 
(envelope) hydrogen thermonuclear flashes, it has been shown that 
diffusion forces the star to undergo supplementary flashes (Althaus 
etal. 2001).

In our treatment of the orbital evolution of the system, we consider 
that the NS is able to retain a fraction of the material coming from 
the donor star: Mns = —(¡M (where M is the mass transfer rate 
from the donor star), as done in Benvenuto & De Vito (2005). We 
consider ft as constant throughout all RLOF episodes; in particular, 
if not stated otherwise, we set = 0.5, as done in Podsiadlowski 
et al. (2002). We assume that material lost from the binary system 
carries away the specific angular momentum of the compact object 
(a = 1; see e.g. Benvenuto & De Vito 2003).

In this work, we consider the Mixing Length Theory as described 
in Kippenhahn, Weigert & Hofmeister (1967), setting the Mixing 
Length parameter tol/Plp= 1.7432 and including convective over­
shoot as in Demarque et al. (2004). Furthermore, we consider grey 
atmospheres and neglect the effects of the irradiation of the donor 
star by the pulsar.

3 NUMERICAL RESULTS

We select initial values for the system parameters (initial masses 
and orbital period) in order to obtain systems with HeWD com­
panions, although some of them evolve to ultra-compact binaries 
avoiding the formation of WDs. The initial donor star masses are 
of 0.50, 0.65, 0.80, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 3.00 and 
3.50 Mq of solar composition. We combine these masses with 
accreting NSs with initial masses (MNS), of 0.8, 1.0, 1.2 and 
1.4Mq.

The initial orbital period for the three smaller donor stars are 
of2 0.175, 0.20 and 0.30 d. For the other donor star masses, initial 
periods are of 0.50, 0.75, 1.00, 1.50, 3.00, 6.00 and 12 d. In all

2 This choice is due to the fact that, if initial periods were shorter, the Roche 
lobe would be smaller than the star even for a Zero Age Main Sequence 
object; if they were longer, the star would not fill the Roche lobe on the 
Hubble time.
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Table 2. Main results of our binary evolution calculations. First and second columns list the initial mass of the donor star and the initial orbital period of 
the systems, respectively. For each donor star and orbital period we compute the evolution of binary systems for different values of the initial NS mass: 
(Mns)i = 0-8, 1-0, 1.2 and 1.4 Mq. For each system that evolves to ultra-compact or HeWD-MSP pair we list the final period, the donor remnant and NS 
masses. Numbers in italics denote systems that form a WD but we do not include in Fig. 5. For further details see the main text.

Mi 
(Mq)

Pi
(d)

(MNS)i =0.80M0 (MNS)i = 1.00 Mq

Mns 
(Mq)

(MNS)i = 1.20 Mq

Mns 
(Mq)

(MNS)i = 1.40 Mq

Mns 
(Mq)

Pi
(d)

MWd 
(Mq)

Mns 
(Mq)

Pi
(d)

MWd 
(Mq)

Pi
(d)

Mwd
(Mq)

Pi
(d)

MWd 
(Mq)

0.50 0.175 0.0585 0.0366 1.0317 0.0595 0.0362 1.231 0.0603 0.0355 1.4322 0.0611 0.0351 1.6325

0.65 0.20 0.0589 0.0368 1.1066 0.0602 0.0362 1.306 0.0609 0.0356 1.5072 0.0616 0.0351 1.7075

0.80 0.30 0.0537 0.0323 1.1839 0.0568 0.0325 1.383 0.0571 0.0315 1.5842 0.0485 0.0447 1.7777

0.50 0.0274 0.0305 1.2848 0.0361 0.0154 1.492 0.0384 0.0154 1.6923 0.0365 0.0148 1.8926
0.75 1.8603 0.1878 1.2053 2.2487 0.1918 1.403 2.5233 0.1966 1.6010 2.9950 0.2011 1.7983
1.00 4.7508 0.2180 1.1755 6.0133 0.2258 1.386 6.9490 0.2287 1.5829 8.1373 0.2317 1.7831

1.00 1.50 9.5741 0.2360 1.1251 12.6974 0.2420 1.371 15.5468 0.2471 1.5673 17.7987 0.2505 1.7706
3.00 21.6577 0.2593 1.0832 29.3771 0.2667 1.349 35.0054 0.2719 1.5630 39.8687 0.2759 1.7611
6.00 40.9639 0.2778 1.0471 55.4442 0.2871 1.323 66.4038 0.2929 1.5486 75.4193 0.2972 1.7506

12.00 73.3650 0.2971 1.0098 98.2015 0.3079 1.283 117.7680 0.3141 1.5229 133.8719 0.3187 1.7270

0.50 0.0445 0.0408 1.4046 0.0526 0.0286 1.610 0.0532 0.0277 1.8112 0.0546 0.0281 2.0109
0.75 0.0407 0.1414 1.3543 0.0516 0.1531 1.548 0.0336 0.1609 1.7445 0.4501 0.1672 1.9403
1.00 4.4800 0.2172 1.2943 5.4725 0.2229 1.512 6.0909 0.2253 1.7115 6.6807 0.2273 1.9106

1.25 1.50 M divergent 15.8528 0.2472 1.413 18.9614 0.2546 1.6786 22.2105 0.2587 1.8931
3.00 M divergent 44.2353 0.2789 1.6365 52.2558 0.2841 1.8746
6.00 81.7321 0.3003 1.5641 97.9597 0.3062 1.8424

12.00 144.7212 0.3223 1.5527 169.8661 0.3277 1.7152

0.50 0.0590 0.0335 1.5332 0.0475 0.0434 1.728 0.0465 0.0389 1.9305 0.0545 0.0278 2.1361
0.75 0.0483 0.0245 1.5377 0.0466 0.0220 1.739 0.0475 0.0199 1.9401 0.0496 0.0197 2.1401
1.00 0.0403 0.1601 1.4489 0.5110 0.1741 1.660 1.6702 0.1943 1.8521 4.0510 0.2047 2.0468

1.50 1.50 M divergent M divergent 28.9438 0.2693 1.7149 31.7147 0.2708 2.0139
3.00 52.5323 0.2884 1.5327 65.1049 0.2941 1.8746
6.00 M divergent 111.8036 0.3134 1.8673

12.00 198.2880 0.3367 1.7854

0.50 0.0588 0.0337 1.4818 0.0590 0.0321 1.782 0.0468 0.0389 2.0357 0.0530 0.0262 2.2619
0.75 0.0501 0.0269 1.4823 0.0494 0.0246 1.785 0.0473 0.0211 2.0426 0.0493 0.0197 2.2652
1.00 0.0460 0.0219 1.5051 0.0465 0.0205 1.820 0.0491 0.0186 2.0657 0.0490 0.1648 2.1913

1.75 1.50 10.5640 0.2459 1.1158 22.5014 0.2537 1.500 34.1985 0.2630 1.8120 40.5855 0.2814 2.0920
3.00 M divergent M divergent M divergent 68.7946 0.3104 1.6614
6.00 M divergent

0.50 0.0583 0.0345 1.2849 0.0603 0.0332 1.732 0.0564 0.0288 2.0303 0.0523 0.0258 2.3501
0.75 0.0504 0.0279 1.3204 0.0518 0.0273 1.714 0.0481 0.0228 2.0155 0.0487 0.0196 2.3257

2.00 1.00 0.0464 0.0233 1.3209 0.0472 0.0227 1.717 0.0482 0.0196 2.0160 0.0324 0.0268 2.2870
1.50 0.0301 0.0266 1.3108 1.1441 0.2047 1.670 3.6701 0.2317 1.9679 17.7005 0.2621 2.2028
3.00 M divergent M divergent M divergent M divergent

0.50 M divergent 0.0602 0.0343 1.644 0.0594 0.0315 1.9949 0.0535 0.0264 2.3217
0.75 0.0523 0.0282 1.637 0.0500 0.0248 1.9593 0.0472 0.0201 2.2686

2.25 1.00 in all 0.0476 0.0236 1.610 0.0477 0.0219 1.9453 0.0517 0.0196 2.2417
1.50 0.0265 0.0224 1.589 2.6496 0.2176 1.8582 6.6082 0.2427 2.1434
3.00 cases He burning He burning He burning

0.50 M divergent 0.0604 0.0348 1.488 0.0614 0.0338 1.9351 0.0468 0.0378 2.2212
0.75 0.0526 0.0289 1.524 0.0416 0.0412 1.8920 0.0479 0.0209 2.2090

2.50 1.00 in all 0.0477 0.0246 1.505 0.0486 0.0234 1.8692 0.0487 0.0196 2.1790
1.50 2.7871 0.2170 1.355 3.6504 0.2217 1.7351 6.1671 0.2367 2.0551
3.00 cases He burning He burning He burning

0.50 M divergent M divergent M divergent 0.0611 0.0327 2.1107
0.75 0.0491 0.0242 1.7349 0.0490 0.0229 2.1056

3.00 1.00 in all in all 0.0468 0.0184 1.7217 4.5711 0.2053 1.9641
1.50 12.6423 0.2572 1.5379 15.4657 0.2612 1.8645
3.00 cases cases He burning He burning

0.50 M divergent M divergent M divergent M divergent
0.75 0.0479 0.0197 1.9640

3.50 1.00 in all in all in all 15.9734 0.2378 1.8293
1.50 21.0553 0.2755 1.7556
3.00 cases cases cases He burning
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cases, the initial periods refer to its value at the onset of the first 
RLOF. Calculations start from the Zero Age Main Sequence (we set 
zero age there) and are followed up to the formation of a HeWD or 
an ultra-compact system. We computed the evolution of the donor 
star up to an age far in excess of Hubble time of 20 Gyr, or when 
the donor has a luminosity lower than 1 x IO 5 Lq. However, in 
some cases we stop the computations earlier. We do so if helium is 
ignited at the stellar core or if mass transfer becomes very intense 
(Af > 10 4 Mq yr 1). In Table 2, we present the main results of 
our calculations.

If a system suffers from a very large (Af > 10 4 Mq yr_1), 
and still growing, mass transfer rate, we indicate this in Table 2 
as ' M divergent.’ This behaviour can be explained in terms of the 
occurrence of a common envelope (CE) phase. A CE episode can 
be the consequence of a dynamical mass transfer event. Dynamical 
mass transfer is associated typically with mass being transferred 
from the more massive component, in a stage in which it possesses 
a deep convective envelope [e.g. if the onset of a RLOF occurs 
when the donor star is on the red giant branch (RGB) phase] or 
if the mass ratio of the system is large. In such conditions, the 
star is unable to contract as rapidly as its Roche lobe (in fact it 
expands), thus an unstable mass transfer process ensues (Paczynski 
& Sienkiewicz 1972). As a consequence of the high accretion rate, 
the accretor star, driven out thermal equilibrium, starts expanding 
(especially if the accretion rate exceeds the Eddington limit) and fills 
its own Roche lobe. The resulting mass flow leads to the formation 
of the CE configuration (see e.g. Yungelson 1973; Webbink 1977; 
Livio 1989; Han & Webbink 1999). This is the case we find in our 
calculations. The donor star fills its Roche lobe when it is in the 
RGB phase, with a deep convective envelope, being donor star the 
more massive component, and with super-Eddington values for M. 
Then, we consider that this leads to a CE situation. Also, divergent 
M episodes are found for the case of donor status with very short 
orbital periods and masses Mi > 3.0Mq. For these systems, the 
onset of the RLOF occurs during core hydrogen burning and should 
be associated with a ‘delayed dynamical’ unstable mass transfer 
as found by Podsiadlowski et al. (2002). Note that ' M divergent’ 
systems are found at shorter initial orbital periods the lighter is the 
NS. This again indicates that the evolution of the systems heavily 
depends on the initial mass of the NS.

3.1 The dependence of the evolution of close binary systems 
upon the initial mass of the neutron star

Among the results presented in Table 2, we may select a subset of 
evolutionary calculations, for a given initial donor star mass and 
orbital period to study the behaviour of CBSs when we change 
the initial NS mass. In Table 3, we present supplementary data 
for the case of a donor star of 1.5 Mq, initial period of 1 d and 
different values for the initial NS mass. In Fig. 1, we show the 
evolutionary tracks corresponding to the binary systems included in 
Table 3. In all of the selected cases, the donor star undergoes several 
thermonuclear hydrogen flashes. These flashes are responsible for 
the quasi-cyclic behaviour in the Hertzsprung-Russell diagram. Let 
us briefly quote that these events are due to the heating of the bottom 
of the hydrogen envelope of the (then) pre-WD object. At that place 
matter is degenerate, forcing the onset of unstable nuclear burning. 
For further details on the evolution of a pre-WD object undergoing 
thermonuclear flashes in presence of diffusion, see Althaus et al. 
(2001).

Table 3. Main characteristics of the evolution of systems 
that initially have a donor star mass of 1.5 Mq, an orbital 
period of 1 d and different values for the initial NS mass. 
From left to right we list the initial mass of the accreting 
NS, the time for the onset of the first RLOF, the time spent 
during this RLOF, the final values of the WD and the NS 
masses, and the final orbital period of the system.

(WNS)i h-M Atyf Mwd Mns P
(Mq) (Gyr) (Gyr) (Mq) (Mq) (d)

0.80 2.740 2.295 0.1601 1.4489 0.0403
1.00 2.624 1.886 0.1741 1.6608 0.5110
1.20 2.595 1.371 0.1943 1.8521 1.6702
1.40 2.529 1.055 0.2047 2.0468 4.0510

Log T,„ [K]
Figure 1. The evolutionary tracks for a normal donor star with initial mass 
of 1.5 Mq evolving in binary systems with different initial NS masses. The 
initial orbital period is of 1 d. The loops are due to hydrogen thermonuclear 
flashes (see the main text for further details).

In Fig. 2, we show the mass-loss rate for the same set of systems. 
The lower is the initial mass for the accreting NS, the longer is the 
time spent by the system in the RLOF episode. Note that the onset 
of the RLOF occurs later, the less massive is the NS, because the 
Roche lobe of the donor star is bigger (see e.g. Eggleton 1983). We 
find less massive WD remnants for less massive accreting NS, as 
we can see in Fig. 3. Fig. 4 shows the evolution of the orbital period
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t [Gyr]

Figure 2. The temporal evolution of the mass transfer rate for the systems 
considered in Fig. 1. Solid, dot, short-dash and dot-short-dash lines show 
the mass transfer rates of the objects corresponding to initial NS masses of 
0.8, 1.0, 1.2 and 1.4 Mq, respectively. Here, we show only the mass-loss 
episodes not induced by thermonuclear flashes in the envelope of the star.

t [Gyr]

Figure 3. Evolution of the mass of the donor star with time, for systems 
depicted in Fig. 1. The meaning of lines are the same as in Fig. 2.

as a function of time for the same subset of systems. We see that 
systems having less massive NSs evolve to tighter configurations.

From the results presented above, we find that the evolution of 
the donor star heavily depends on the value of the mass of the NS. 
This is one of the main findings of the present paper.

3.2 The orbital period-WD mass relation

As stated above, one of the aims of the present paper is to explore 
the dependence of the P - Mwd relation upon the initial NS mass. 
Rappaport et al. (1995) claim that this relation should be fairly 
insensitive to changes in the initial NS mass. Their argument is 
based on the well-known fact that there exist a somewhat tight 
relation between the mass and the radius of the cores of low-mass 
giants (see e.g. Joss et al. 1987). Clearly, this is applicable only 
for the case of donor stars that undergo the onset of the RLOF as 
giants. Consequently, our calculations provide the opportunity to

Figure 4. The evolution of the orbital period for the systems depicted in 
Fig. 1. The meaning of lines are the same as in Fig. 2.

test the validity of the conclusions of Rappaport et al. (1995) in a 
quantitative way, at least for the case of HeWDs.

Let us repeat, for the sake of completeness, the argument of 
Rappaport et al. (1995) in detail. For the kind of binary systems 
studied in this work, the orbit is considered circular because of tidal 
dissipation since the onset of the first RLOF and should remain 
nearly circular thereafter. During later phases of mass transfer (once 
the mass of the donor star has become smaller than that of the NS), 
an approximate expression for the radius of the Roche lobe, RL, in 
terms of the constituent masses is given by (Paczynski 1971)

(1)

where Mq is the mass of the giant and a is the orbital separation. If 
we combine equation (1) with Kepler’s third law and set Rc = RL 
(i.e. the giant fills its Roche lobe), we obtain an expression for the 
orbital period

P = 20G~l/2 R%2 Mo1'2. (2)

Note that P is independent of the mass of the NS. Near the end of 
the mass transfer phase, the envelope of the giant is very tenuous 
and embraces a mass substantially smaller than that of the core, Mc; 
then Mc — Mc. Therefore, since Rc is a nearly unique function of 
Mc, the final orbital period at the termination of the mass transfer 
can be written as

P ~ 20 G-1'2 R^lMe) Mf2. (3)

In order to test the relation given by equation (3) against the 
observed set of binary pulsars containing low-mass WDs, it is im­
portant to establish an accurate theoretical core mass-radius rela­
tion (Mc-Rg). Rappaport et al. (1995) have performed a systematic 
study of the core mass-radius relation from a series of single star 
evolutionary calculations. They covered a range of giant masses be­
tween 0.8 and 2.0 Mq and different chemical compositions. They 
fitted the relation Mc-Rc with the empirical formula 

(4)

where mc = Mc/Mq and Ro is an adjustable constant that for 
the case of Population I objects takes the value of to Ro = 5500. 
Now, by combining the core mass-radius relation (equation 4) and
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equation (3), and setting Mc = Mwd, Mwd being the mass of the 
WD that has been the core of the giant before envelope dissipation, 
we obtain

P ~ 0.374 Po
4 5

mWD

1 + raWD
(5)

where mwD = Afwo/Mg.
Since then, other relations have been presented. Tauris & Savonije 

(1999) give the relation

where, for the case of Population I, the authors find a = 4.50, b = 
1.2 x 105,c = 0.120, with P and b expressed in days. This fit is 
valid for 0.18 < mwD < 0.45. Also, Nelson, Dubeau & MacCannell 
(2004) stated the relation as

P = 0.1042 Z0'3 10(10'7"™)d, (7)

where Z is the metal content of the donor star. In this case, the fit is 
valid formWD > 0.25.

In Fig. 5, we plot the P — MWd relation for some of our mod­
els, where we also include the relations given in equation (5) for 
Population I with their error bars given by Rappaport et al. (1995) 
and also that of Tauris & Savonije (1999) (equation 6) and Nelson 
et al. (2004) (equation 7). As can be seen in Fig. 5, our evolution­
ary calculations agree with the prediction that in wide binaries the 
P — MWd relation is fairly independent of the value of the initial 
NS mass.

In Fig. 5, we have not included some of our models. The criterion 
to include a model was simply if the position in the P — MWd plane 
is fairly independent of time on a reasonably large time interval.

For example, as stated above, some of our models evolve to ultra­
compact systems with masses of only a few per cent of the solar 
mass. Even for the dimmest considered models, they are on a RLOF 
episode and thus move on the aforementioned plane. In any case, it is 
clear that these objects are quite different from those that represent 
our main interest. Notably, there are another kind of objects that 
do form a HeWD but on a very tight orbit. Data related to these 
objects are presented in Table 2 with numbers in italics. These 
systems are subject to strong orbital evolution due to gravitational 
wave radiation. As they are not on a RLOF episode, they evolve 
downwards vertically. Thus, in studying the P — MWd relation we 
shall consider systems with a period P > 0.25 d. For systems with 
P < 1 d we considered the value of P at 13 Gyr, while for others 
this is an irrelevant detail.

Now we shall present a fit of our results in the P — MWd plane. 
Notably, the values of log mwD have an approximate linear depen­
dence upon log P. Thus, we propose a linear fit by least squares. 
The fit we find is

P = B (mWD)A d, (8)

where A = 8.7078, B = 2.6303 x 106 (see Fig. 6). In this figure, we 
also included, with dotted lines, the uncertainty associated with this 
fit corresponding to lcr deviation for the coefficients A and log B for 
which (A, B) = (8.4948, 3.5372 x 106) (upper curve) and (8.9208, 
1.9559 x 106) (lower curve). This relation is very similar to that of 
Tauris & Savonije (1999) (equation 6), although it accommodates to 
periods slightly longer. In any case, the differences between their fit 
(equation 6) and ours (equation 8) are smaller than the uncertainty 
in our fit. Thus, we consider that the agreement is fairly good. 
On the contrary, our fit (equation 8) is notably different from the 
one presented by Rappaport et al. (1995). While for mwD 0.3 
our calculations are in good agreement with their fit, this is not 
the case for lower WD mass values. This result is not surprising, 
simply because the fit presented by Tauris & Savonije (1999) is 
based on full binary evolution calculations, while that of Rappaport 
et al. (1995) relies on single stellar evolution results. Finally, in the 
range of masses mwD > 0.25, the agreement between the relation 
of Nelson et al. (2004) (equation 7) and ours is also good although 
it is a bit poorer than for the case of the others analysed previously.

0.15 0.2 0.25 0.3 0.35
^WD [M©]

Figure 5. The P — Mwd relation for the binary systems presented in this 
work. Circles, crosses, triangles and squares depict systems with accreting 
NS of initial mass of 0.80, 1.00, 1.20 and 1.40 Mq respectively. In addition, 
we plot with solid line the relation given by Rappaport et al. (1995) for 
Population I, with their error bars (dot lines), the relation of Tauris & Savonije 
(1999) with long-dashed line and the relation of Nelson et al. (2004) with 
short-dashed line. Also we have included the WD masses and orbital periods 
cited in Table 1 with the corresponding error bars.

^wd [M©]

Figure 6. The fit of our results, performed with a linear function (equation 8) 
in the plane Log P — Log(MwD) denoted with a solid line. Upper and lower 
limits, showing the uncertainty inherent to our fit, are given with dotted 
lines. Short-dashed line represents the P — Mwd relation found by Tauris 
& Savonije (1999).
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4 APPLICATION TO MSP-WD SYSTEMS

In previous works (Benvenuto & De Vito 2005; Benvenuto et al. 
2006), we have tried to identify possible binary system progenitors 
for some of the best observed MSP-WD systems (PSR J0437—4715, 
PSR J1713-I-0747 and PSR B1855-I-09). In those papers, we as­
sumed a canonical value for the initial NS mass and varied the 
donor mass, orbital period and the value of ft in order to account 
for the main observed characteristics (masses of the components, 
orbital period and, if available, the evolutionary status of the WD) 
of each system.

Let us now revisit this problem employing the set of models we 
present in this paper. Here, for the cases of PSR J1713 4-0747, PSR 
B18554-09 and PSR JI 909—3744 we do not try to perform a detailed 
fit to the observed data as done in the aforementioned papers but 
only bracket plausible solutions. Some of them are possible because 
of the relaxation of the initial canonical NS mass value. In Table 4 
we list, for given initial donor and NS masses, the initial period 
interval for which we expect plausible solutions for the observed 
parameters of the quoted systems. We remind the reader that these 
results are restricted to the case of ft = 0.5 and a = 1.

For the case of PSR JI 7134-0747, here we do not find any solution 
corresponding to the case of (Mns )i = 1.4 Mq as in Benvenuto et al. 
(2006). In that case, we found adequate configurations for ft < 0.1 
but here, after RLOF episodes the NS becomes too massive. For the 
case of the best observed system, PSR J1909—3744, we also find 
plausible solutions but only for a (MNs \ value well below 1.4 Mq .

Let us perform a deeper analysis for the PSR J0437—4715 sys­
tem. For this case we compute further evolutionary sequences, not 
included in Table 2, for which we allow for different values of ft 
(although we still consider a = 1). We find two plausible solu­
tions (see Table 5) that account for the main observed characteristic

Table 4. Some tentative initial conditions for the sys­
tems presented in Table 1, deduced from the results 
given in Table 2. The correct solution for each sys­
tem should fall near the initial mass values and inside 
the period intervals listed below. Here, we considered 
donor stars with solar metallicity and for the orbital 
evolution we set f> = 0.5 and a = 1. From left to right 
we list the system (pulsar) name, the plausible interval 
of initial orbital periods and the initial masses for the 
normal donor and accreting NS.

Name Pi
(d)

Mi 
(Mq)

(MNS)i
(Mq)

PSR J17134-0747 6.00-12.00 1.00 1.00

PSR B18554-09 1.00-1.50 3.00 1.20

PSR J1909-3744 1.00-1.50 2.50 1.00

Table 5. Some possible initial conditions for the system containing PSR 
J0437—4715 and their main characteristics after evolution. Both systems 
correspond to an initial orbital period ol /’i = I cl and an initial donor mass 
of 1.25 Mq. From left to right we list the initial mass of the accreting NS, the 
value of f>, the age and luminosity of the WD when its effective temperature 
is Teff = 4000 K, the final donor and NS masses, and the final orbital period. 
For further discussion see the main text.

(MNS)i
(Mq)

P t
(Gyr)

Log(L/L©) MWd 
(Mq)

Mns 
(Mq)

P
(d)

1.20 0.25 12.081 -3.95 0.2235 1.4563 5.638

1.00 0.50 12.171 -3.93 0.2222 1.5131 5.059

t [Gyr]

Figure 7. The evolution of the effective temperature corresponding to the 
donor stars of the systems described in Table 5. Solid (dashed) line corre­
sponds to the case of (Mns )i = 1.2MQand/l = 0.25 [(MNs)i = 1.0 Mq and 
P = 0.50], Horizontal dotted lines indicate the uncertainty in the effective 
temperature of the WD remnant. Evidently, both objects have a very similar 
behaviour and have acceptable effective temperatures at an age interval of 
10-13 Gyr.

of the system. Both of them correspond to an initial donor mass 
of 1.25 Mq and an initial period of 1 d. Regarding (MNs)i and ft 
the values are 1.2 Mq and 0.25 or 1.0 Mq and 0.50, respectively. 
These binary systems provide correct masses (both values fall in­
side the corresponding error bars) and a very approximate orbital 
period.3 Let us compare the effective temperature of the computed 
WDs with the observed value of TeS = 4000 ± 350 K (Bell, Bailes 
& Bessell 1993). In Fig. 7, we show the evolution of the effective 
temperature of the donor star for both systems described in Table 5 
together with the observed values’ interval. We find it possible for 
the WD to evolve to observed conditions within a time interval of 
10-13 Gyr, shorter than (but of the order of) the age of the Universe. 
Remarkably, this corresponds to 4—7 Gyr after RLOF episodes, in 
nice agreement with the usual expectation that this should be com­
parable to the characteristic time-scale of pulsar rotation braking4 
r = 0.5P/P ~ 5 Gyr, observed for PSR J0437—4715. It is inter­
esting to note that the viable solutions presented in Table 5 corre­
spond to very different values of (MNs)i and ft. The main difference 
between these evolved systems is the final value of Mns but, unfor­
tunately, the large uncertainty in the determination of MNs inhibits 
us to restrict the space of parameters any further.

The situation is more promising for the case of PSR J1909—3744 
system, whose mass determinations are far more accurate (see 
Table 1). In principle, this system offers an excellent opportunity to 
determine the initial configuration more accurately and even to find 
mean values for the parameters a and ft.

In this section, we have described possible solutions for the pri­
mordial configuration of binary systems that evolved to account for 
the best observed MSP-WD pairs. Performing a deeper analysis, 
considering variation of all parameters of the calculations (masses of

3 Trying to fit the orbital period more accurately to the observed value does 
not change the presented values significantly. Thus, we do not perform a 
fine-tuning of the orbital period.
4 For the case of PSR J0437—4715, the period derivative is P = 5.72906 x 
IO 2'0' (see e.g. van Straten et al. 2001).
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the components, orbital period, and a) is a very time-consuming 
exercise. We shall defer such an analysis for a future publication. 
In any case, we consider that the results presented here justify an 
effort in such direction.

5 DISCUSSION AND CONCLUSIONS

In this paper, we perform a set of binary evolution calculations 
assuming an initial configuration of a normal, solar composition, 
donor star in orbit together with a NS. In doing so, we consider 
a variety of values for the masses of the donor and NS stars as 
well as for the initial orbital period. These values are selected in 
order to consider systems that evolve to ultra-compact systems or to 
MSP-HeWD pairs. In most of the calculations, we considered that 
the NS accretes, at most, half of the matter lost by the donor star 
and that the material ejected from the pair carries away the specific 
angular momentum of the NS. While one of the main reasons for 
constructing this set of calculation is to provide a reference frame 
to analyse the initial configurations of the best observed WD-MSP 
systems, in particular those for which it has been possible to detect 
the Shapiro delay, here we pay special attention on testing the 
dependence of the evolution of these binary systems with the initial 
NS mass value. Also, we study the relation between the final orbital 
period and the mass of the HeWD remnant.

We find that the evolution of systems with a given orbital period 
and initial mass of the normal donor star heavily depends on the 
value of the NS mass. For example, we find cases for which, while 
with an initially light NS the system evolves to an ultra-compact 
configuration, if the NS is more massive it gives rise to a well- 
detached HeWD-NS pair. Also, as expected, we find divergent 
mass transfer rates (a CE episode) especially for the case of initially 
light NSs.

Our calculations show that the final orbital period-HeWD mass 
relation is insensitive to the initial NS mass value, as already claimed 
by Rappaport et al. (1995). In any case, we find some systematic 
departure from the relation proposed by them, especially for the 
case of low-mass HeWDs (MWD < 0.25 Mq). This occurs because 
for the systems that give rise to such objects, the onset of the initial 
mass transfer episode occurs before the star becomes a red giant 
(as assumed in Rappaport et al. 1995). The best fit to our results 
corresponds to equation (8). Among the period-WD mass relations 
available in the literature, we find a much better agreement of our 
results with that presented by Tauris & Savonije (1999).

Employing the set of evolutionary sequences given in this paper, 
we also present preliminary indications of the interval of initial 
periods, for fixed donor and NS initial masses, inside which there 
are plausible initial configuration for the binary systems listed in 
Table 1. In particular, we explore the case of the PSR J0437—4715 
system, showing that there is more than one acceptable solution.
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