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An adverse endogenous environment during early life predisposes the organism to develop metabolic
disorders. We evaluated the impact of intake of an iso-caloric fructose rich diet (FRD) by lactating
mothers (LM) on several metabolic functions of their male offspring. On postnatal d 1, ad libitum
eating, lactating Sprague-Dawley rats received either 10% F (wt/vol; FRD-LM) or tap water (controls,
CTR-LM) to drink throughout lactation. Weaned male offspring were fed ad libitum a normal diet, and
body weight (BW) and food intake were registered until experimentation (60 d of age). Basal circu-
lating levels of metabolic markers were evaluated. Both iv glucose tolerance and hypothalamic leptin
sensitivity tests were performed. The hypothalamus was dissected for isolation of total RNA and West-
ern blot analysis. Retroperitoneal (RP) adipose tissue was dissected and either kept frozen for gene
analysis or digested to isolate adipocytes or for histological studies. FRD rats showed increased BW and
decreasedhypothalamicsensitivitytoexogenousleptin,enhancedfoodintake(between49–60d),and
decreased hypothalamic expression of several anorexigenic signals. FRD rats developed increased in-
sulin and leptin peripheral levels and decreased adiponectinemia; although FRD rats normally toler-
ated glucose excess, it was associated with enhanced insulin secretion. FRD RP adipocytes were en-
larged and spontaneously released high leptin, although they were less sensitive to insulin-induced
leptin release. Accordingly, RP fat leptin gene expression was high in FRD rats. Excessive fructose
consumption by lactating mothers resulted in deep neuroendocrine-metabolic disorders of their male
offspring, probably enhancing the susceptibility to develop overweight/obesity during adult life.
(Endocrinology 151: 4214–4223, 2010)

Obesity is a major problem for worldwide national
health systems, the epidemic level of which has been

clearly identified all over the world. Obesity increases the
risk of developing chronic disorders such as metabolic
syndrome, type 2 diabetes mellitus and cardiovascular dis-
ease (1–3), and obesity incidence has markedly increased
in childhood (4, 5). Both genes and environment play im-
portant roles for normal metabolic-endocrine functions
and neuronal development of the new offspring. How-

ever, weight, like height, is a highly inheritable trait (6).
Thus, we need to consider that environmentally driven
changes in body weight occur, even though genetic factors
could increase susceptibility to environment-facilitated
early weight gain (7). Maternal nutritional disturbances
during critical developmental periods such as gestation (8)
and/or the early postnatal (9) are known to raise off-
spring’s risk of developing obesity and metabolic disor-
ders in adult life (10, 11). Diet manipulation in mothers
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during these critical periods has been used to evaluate some
consequences in offspring; in fact, nutrient restriction, low
protein diet, and high-fat/-carbohydrate diet have been used
to identify their contribution on obesity and type 2 diabetes
mellitus development in offspring (10–12).

Food intake and body weight gain are processes regu-
lated by hypothalamic neurons that are still differentiating
during the rodent suckling period; thus altered nutritional
status during lactation severely impacts on normal neuron
development (13). Maternal diet manipulation (e.g. un-
der-/overnourished mothers) induces a distorted activity
of the hypothalamic circuitry controlling appetite in the
offspring (14–16). This circuit involves orexigenic [e.g.
neuroepetide Y (NPY), agouti-related protein (AgRP)]
and anorexigenic (e.g. CRH, TRH, cocaine- and amphet-
amine-regulated transcript (CART), proopiomelanocor-
tin (POMC)] pathways, contributing to maintain energy
homeostasis (17). One component that has currently been
modified in diets is carbohydrates, mainly sucrose and
fructose. Although fructose lacks of any short-term stim-
ulatory effect on insulin and leptin production (18), ex-
cessive fructose intake through the diet without appropri-
ate pancreatic and adipose tissue responses could lead to
long-term detrimental effects on the regulation of energy
intake and body adiposity. Although nowadays the indi-
vidual’s total daily caloric intake rose, the per capita fruc-
tose intake (sucrose- andhigh fructose corn syrup-derived)
increased (18) from 64 g/d (during the 1970s) to 81 g/d (in
the year 1997), with an additional augment in fructose
intake (2.5 g/d) resulted from increased fruit and vegetable
consumption. This change in eating behavior due to fruc-
tose overload enhanced the prevalence of several meta-
bolic disorders (19).

It was reported that offspring born to mothers consum-
ing fructose diet during pregnancy and lactation displayed
decreased body weight, hyperinsulinemia, and hypogly-
cemia at weaning (20). Moreover, rat pups consuming
high-carbohydrate milk during lactation did develop obe-
sity in adulthood (21). Also, rat offspring consuming fruc-
tose-rich milk during the suckling period are characterized
by increased body weight, enhanced insulinemia, and aug-
mented skeletal muscle fatty acid transport at adult life (22).
Excessive insulin secretion in turn promotes key features
such as enhanced lipogenesis (23) and adipogenesis (24), im-
paired hypothalamic leptin signaling (25), and, conse-
quently, reduced vagus tone inhibition (26), thus resulting in
additional vagus-stimulated insulin secretion (26). As a re-
sult, a vicious circle is installed assuring the persistence of
several physiopathological mechanisms leading to the devel-
opment of metabolic and cardiovascular disorders.

The aim of the present study was to evaluate hypotha-
lamic signals controlling appetite and metabolic-endo-

crine functions in adult male rats born to primipara moth-
ers consuming an iso-caloric fructose-rich diet (FRD)
while lactating.

Materials and Methods

Animals and experimental design
Sprague Dawley rats bred in our institution were maintained

under controlled conditions of temperature (21 6 2 C) and lights
(on between 0700 and 1900 h) with free access to standard com-
mercial rat chow (Ganave Lab., Argentina) and water.

Virgin females were mated with males in 10 3 20 inches
plastic cages (at a 3:1 relation) until positive detection of sperm
in their vaginal smears (examined every day at 0800 h). Pregnant
dams were then individually housed in plastic cages and provided
with standardchowandwaterad libitum throughoutpregnancy.
Immediately after delivery, litter size was adjusted to eight pups
per dam (average of male pups per litter ranged between 60–
65%, approximately). Lactating mothers (LM) with their off-
spring, fed with standard Purina chow ad libitum, were allocated
into two groups: while one drank tap water only (control, CTR-
LM; n 5 7), the other drank a FRD (fructose 10% wt/vol in tap
water, FRD-LM; n 5 8). Fresh fructose solution was provided
every 2 d. Mother body weight (BW) and food and fluid intakes
by mothers were recorded every 48 h during the lactation period.
Immediately after weaning, mothers were killed and plasma sam-
ples were stored (220 C) for measurement of different metab-
olites. Weaned (21 d of age) male pups (raised by CTR-LM and
FRD-LM: CTR and FRD, respectively) were individually
housed, and fed with standard Purina chow diet and water ad
libitum until experimentation (60 d of age). During this period,
individual BW and food intake were recorded every 48 h. Ani-
mal-group constitution was consisted in the allocation of one
male rat from each different litter (seven CTR and eight FRD
litters), which resulted (unless indicated) in final groups of seven
CTR and eight FRD male rats. Rats were killed by decapitation
following protocols for animal use from the National Institutes
of Health Guidelines for care and use of experimental animals.
Experiments received approval from our Institutional Commit-
tee on Animal Experimentation.

Studies performed in basal condition
After euthanization of CTR (n 5 7) and FRD (n 5 8) animals

in basal condition (between 0800 and 0900 h), trunk blood was
collected into EDTA coated tubes. Tubes were rapidly centri-
fuged (4 C; 3,000 rpm) and plasma samples were kept frozen
(220 C) until metabolites measurements. Immediately after eu-
thanization, the medial basal hypothalamus (MBH) was dis-
sected as previously reported (27) (limits: posterior border of the
optic chiasm, anterior border of the mamillary bodies, and lat-
eral hypothalamic borders, 3 mm deep, approximately); tissues
were then kept frozen (280 C) until total RNA isolation. Ret-
roperitoneal (RP) fat pads were aseptically dissected and placed
in (previously weighed) sterile Petri dishes containing 10 ml of
sterile Krebs-Ringer-3[N-morholino]propanesulfonic acid (MOPS;
Sigma Chemical Co., St. Louis, MO; 1 Krebs-Ringer:3 double
distillated H2O:1 MOPS, pH 7.4) medium. Dishes were weighed
and fat mass was calculated by the difference between the re-
corded weights. RP adipose tissue pads were either used for cell
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isolation/incubation, histological studies, or kept frozen (280 C)
until total RNA isolation.

Intravenous glucose tolerance test (iv-GTT)
Metabolic responses to high glucose load (2 g/kg BW; iv) were

evaluated in 60 d-old male rats (n 5 7 CTR and 8 FRD animals)
bearing an indwelling iv cannulae (implanted in the right jugular
vein 48 h before experimentation). On the morning of the ex-
perimental day, a small volume of blood was taken from non-
fasting rats before (time 0) and 5, 15, 30, 60, and 90 min after
glucose administration (28); a similar blood volume withdrawn
was immediately replaced by artificial plasma. Plasma samples
were kept frozen (220 C) until determination of glucose and
insulin concentrations.

Hypothalamic leptin sensitivity tests
These protocols are similar to those previously reported (29,

30), although with minor modifications. Briefly, CTR and FRD
male rats were individually caged, with standard rat chow and
water provided ad libitum. Rats were daily handled (10 min/d,
between 1600 and 1700 h) for 1 wk before the study. The first
test was set up on the experimental day (age 60 d). Food was
withdrawn between 1600 and 1700 h. Thereafter, each group of
CTR and FRD male rats received (n 5 5–6 rats per group-treat-
ment), at time 1700 h, a single ip injection of either recombinant
mouse leptin solution (1 mg/kg BW; dissolved in sterile normal
saline solution as vehicle) or vehicle alone (the volume of solution
injected was 0.4–0.6 ml per rat). Immediately after injection,
rats were back to their cages containing a known amount of rat
chow. Four hours after treatment (daytime 2100 h), the remain-
ing amount food in each cage was carefully removed and
weighed, and 4-h food intake was then calculated. The second
test was set up in overnight fasting rats. On the experimental day
(age 60 d), each group of CTR and FRD male rats (n 5 5–6 rats
per group-treatment) were ip treated, at time 0800–0900 h, with
a small volume of either leptin solution (1 mg/kg BW) or vehicle.
Animals were then killed 45 min after treatment and the MBHs
were rapidly dissected and kept frozen (280 C) until total
(STAT-3) and phosphorylated (p-STAT-3) signal transducer and
activator of transcription-3 were determined by Western Blot.

Retroperitoneal adipose tissue histology
For histological studies in adipocytes, freshly dissected RP fat

pads were fixed in 4% paraformaldehyde (in 0.2 M phosphate
buffer), at 4 C (maximum 3 d), then washed (0.01 M PBS), and
immersed in 70% ethanol (24 h) before being embedded in par-
affin. Four-micrometer sections were obtained at different levels
of the blocks and stained with hematoxylin-eosin then examined
with a Nikon light microscope. Quantitative morphometric
analysis was performed using a RGB CCD Sony camera together
with the Image Pro-Plus 4.0 software (magnification, 310). For
each fat sample, seven sections and three levels were selected (n 5
4 animals per group). Systematic random sampling was used to
select 15 fields for each section and 2,500 cells per group were
examined. Adipocyte diameter and area were measured (31); cell
volume was then calculated (4/3pr3).

Retroperitoneal adipocyte isolation and incubation
Isolated adipocytes from RP fat pads were obtained as pre-

viously and extensively described (32, 33). Isolated adipocytes
were diluted to approximately 200,000 cells per 900 ml of Krebs-

Ringer-MOPS medium and distributed into 15-ml plastic tubes.
Substances tested (diluted in 100 ml) were as follows: medium
either alone (concentration 0) or containing insulin (0.1–10 nM,
Novo Nordisk Pharma AG, Switzerland) (33). Adipocytes were
then incubated 45 min at 37 C, in 95% air-5% CO2 atmosphere.
At the end of incubation, media were carefully aspirated and kept
frozen (220 C) until measurement of leptin concentrations.

Peripheral metabolites measurements
Circulating glucose (Wiener Argentina Lab.), total proteins

(Wiener), total cholesterol (Wiener), triglyceride (Wiener), and
nonesterified fatty acid (Randox Laboratories Ltd., UK) levels
were measured using commercial kits. Plasma and medium leptin
(LEP) concentrations (32) and circulating levels of insulin (34)
and corticosterone (19) were determined by specific RIAs devel-
oped in our laboratories. Plasma levels of other adipokines were
measured (ELISA) as suggested by manufacturers (35) [Linco
Research, Cat. # EZRADP-62K for adiponectin (ADIPOQ);
American Diagnostica Inc., CT, IMUCLONE Cat. # 601 for
plasminogen activator inhibitor factor-1; Life Diagnostics, Inc.,
PA, Cat. # 2210-2 for C-reactive protein; and Amersham, GE
Healthcare, UK, cat. # RPN2744 for TNFa].

RNA isolation and real-time quantitative PCR
Total RNA was isolated from RP fat pads and MBH of dif-

ferent groups by the single-step acid guanidinium isothiocya-
nate-phenol-chloroform extraction method (Trizol; Invitrogen,
Life Tech.; Cat. # 15596-026). One microgram of total RNA was
reverse transcripted using random primers (250 ng) and Super-
script III Rnase H-Reverse Transcriptase (200 U/HL Invitrogen,
Life Tech; Cat. # 18989-093). Primers applied (shown, in alpha-
betical order, in Table 1) were b-actin, ADIPOQ, AgRP, CART,
CRH, LEP, NPY, ob-Rb, POMC, and TRH. Two microliters of
the RT mix were amplified with QuantiTect Syber Green PCR kit
(Qiagen, Cat. # 204143) containing 0.5 mM of each specific
primer, using LightCycler Detection System (MJ Mini Opticon,
Bio-Rad). PCR efficiency was near 1. The threshold cycles (Ct)
were measured in separate tubes by duplicate. The identity and
purity of the amplified product were checked by electrophoresis
on agarose mini-gels, and analysis of the melting curve was car-
ried out at the end of amplification. Values of the differences
between Ct were calculated in every sample for each gene of
interest as followed: Ct gene of interest-Ct reporter gene. b-actin,
for which mRNA levels did not differ between control and test
groups, was the reporter gene. Relative changes in the expression
level of one specific gene (DDCt) were calculated as DCt of the test
group minus DCt of the control group, and then presented as
2-DDCt.

Western blot analysis
Briefly, frozen hypothalami were homogenized in lysis buffer:

RIPA (Santa Cruz Biotechnology), protease inhibitor cocktail
(0.35 mg/ml PMSF, 2 mg/ml leupeptin, 2 mg/ml aprotinin), and
phosphatase inhibitor cocktail (10 mM sodium fluoride, 20 mM

sodium b-glycerophosphate, and 10 mM benzamidine). After ly-
sis (90 min in ice), samples were centrifuged (10,000 3 g at 4 C
for 10 min), and soluble protein concentrations of the resulting
lysates were determined by Lowry. Proteins (50 mg per lane) were
resolved by 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis. Proteins were then transferred onto polyvinyli-
dene fluoride membranes and incubated overnight at 4 C with
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specific primary antibodies directed toward the signal transducer
and activator of transcription-3 (anti-p-STAT-3 or antitotal
STAT-3, from Santa Cruz Biotechnology, Inc.) followed by a 1-h
incubation at room temperature with secondary antibody (goat
antirabbit IgG horseradish peroxidase conjugates; Upstate, Mil-
lipore). Following membrane washing, immune complexes were
revealed using enhanced chemiluminescence reagents (Amer-
sham Life Science). The intensity of bands was quantified (Sec-
tion Image Software), and the p-STAT-3/total-STAT-3 ratios
were calculated.

Statistical analysis
Data (expressed as mean 6 SEM) were analyzed by ANOVA,

followed by post hoc comparisons with Fisher’s test. The non-
parametric Mann-Whitney test was used to analyze data from
mRNA expression and Western blot analysis (36). P values
,0.05 were considered statistically significant.

Results

Body weight, energy intake, and peripheral
metabolites in lactating mothers

The mothers’ BW was similar in both groups at the
beginning and at the end of the lactation period (Table 2).
Moreover, no differences among groups were found in the
average of 48-h accumulated calorie intake throughout
(expressed as average) the lactation period (Table 2).
CTR-LM and FRD-LM, when evaluated at the end of the
lactation period, showed no significant difference in cir-
culating levels of several metabolites (Table 2).

Effects of FRD consumption by the lactating
mother on male rat body weight and food intake

When weaned, male FRD rats were heavier between
ages 21 and 60 d (Fig. 1, upper panel). No differences in

48-h accumulated food intake were observed in individual
male pups from both groups between d 21 and 48 of age.
Conversely, between d 49 and 60 of age, FRD male pups
ate a significantly (P , 0.05) higher amount of food than
age-matched CTR male rats (Fig. 1, lower panel; 27.45 6
1.11 and 31.49 6 1.33 g/rat in the last 24 h in CTR and
FRD groups, respectively; P , 0.05).

Impact of FRD intake by lactating mothers on
peripheral levels of several metabolites in male
offspring

Sixty-day-old male offspring of the two groups of
mothers displayed similar circulating levels of glucose,
triglycerides, total cholesterol, nonesterified fatty acids,
total proteins, and corticosterone (Table 3). Conversely,
FRD male rats had significantly (P , 0.05) higher plasma

TABLE 2. Anthropometric characteristics and
circulating levels of several metabolites in mothers from
both groups (CTR-LM and FRD-LM) evaluated on the
weaning day

CTR-LM FRD-LM

Initial body weight (g) 275.11 6 6.54 283.19 6 6.18
Final body weight (g) 313.58 6 13.21 317.72 6 9.29
Energy intake (Kj/d) 619.40 6 41.76 687.22 6 32.17
Glucose (mM) 5.69 6 0.26 5.47 6 0.35
Triglyceride (mM) 0.44 6 0.03 0.61 6 0.06
Total cholesterol (mM) 1.84 6 0.10 1.98 6 0.18
Total proteins (g/liter) 10.83 6 1.32 10.36 6 0.63
Leptin (ng/ml) 0.82 6 0.19 0.92 6 0.25
Corticosterone (nM) 205.79 6 29.44 170.58 6 32.89
Insulin (nM) 0.26 6 0.06 0.31 6 0.07

Values are means 6 SEM (n 5 7 and 8 rats, respectively).

TABLE 1. Primers used (designed for a high homology region of different genes) for real-time RT-PCR

Primers (5*–3*) GBAN bp

ACTB se, AGCCATGTACGTAGCCATCC NM_031144 115
as, ACCCTCATAGATGGGCACAG

ADIPOQ se, AATCCTGCCCAGTCATGAAG NM_144744 159
as, TCTCCAGGAGTGCCATCTCT

AgRP se, GGGCGTGGCACCACTGAAGG NM_033650 183
as, ACACAGCGACGCGGAGAACG

CART se, AAGGCGGCAACTTCGGGCTC NM_017110 167
as, CGATCCTGGCCCCTTTCCGC

CRH se, GCTAACTTTTTCCGCGTGTT NM_031019 175
as, GGTGGAAGGTGAGATCCAGA

LEP se, GAGACCTCCTCCATCTGCTG NM_013076 192
as, CTCAGCATTCAGGGCTAAGG

NPY se, TACTCCGCTCTGCGACACTA NM_012614 115
as, GGGCATTTTCTGTGCTTTCT

ob-Rb se, TGTGGAATCTGGAGTGGTCA AF287268 115
as, TCTGGAGCCTGAACCAGTTT

POMC se, CCTATCGGGTGGAGCACTT NM_139326 123
as, TCTTGATGATGGCGTTCTTG

TRH se, GGGACCTCCTCAGAAAGGAAGGGT NM_013046 165
as, CCCCCACCCCAAGGACATATCTAA

se, Sense; as, antisense; GBAN, GenBank Accession Number; amplicon length, in bp.
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concentrations of insulin than age-matched CTR rats (Ta-
ble 3). It is important to remark that in separate experi-
ments these high peripheral insulin levels were already
observed at age 30 d and that they were accompanied by
a significant decrease in glycemia and an increase in tri-
glyceridemia, although these alterations no longer per-
sisted at age 60 d (data not shown).

Peripheral levels of several adipokines in 60-d-old
male CTR and FRD rats

Maternal FRD intake throughout lactation signifi-
cantly (P , 0.05) enhanced and reduced peripheral con-
centrations of leptin and adiponectin, respectively (Table
3). This difference held when circulating leptin and adi-
ponectin concentrations were expressed in relation to in-
dividual BW (0.79 6 0.13 and 1.82 6 0.37 ng LEP/
ml z 100 g BW in CTR and FRD rats, respectively, P ,
0.05; and 1.61 6 0.16 and 1.09 6 0.07 mg ADIPOQ/
ml z 100 g BW in CTR and FRD rats, respectively, P ,

0.05). Conversely, the circulating levels of other adipo-
kines such as plasminogen activator inhibitor factor-1,
C-reactive protein, and TNFa were unmodified in FRD
rats (Table 3) regardless of their BWs.

iv-GTT in adult CTR and FRD male rats
The pattern of circulating glucose levels (Fig. 2A) and

the area under the curve (AUC) of peripheral glucose levels
(Fig. 2B) throughout the iv-GTT were similar in the two
groups of male rats. Basal (time zero) values had already
been recovered 60 min after glucose administration in all
groups examined.

Conversely, significantly (P , 0.05 vs. CTR values)
higher circulating insulin levels were found in FRD male
rats on several times throughout the iv-GTT (Fig. 2C).
Moreover, whereas CTR male rats restored basal (time
zero) circulating levels of insulin 30 min after high glucose
load, the recovery of basal insulinemia by FRD male rats
was delayed up to 60 min after glucose load (Fig. 2C).
Accordingly, the AUC of insulin values was significantly
(P , 0.05) higher in FRD than in CTR male rats (Fig. 2D).

RP adipose tissue characteristics and functionality
We found that RP fat mass was similar in both groups

of male rats (Table 4). However, RP adipocyte diameter,
area, and volume were significantly (P , 0.05) higher in
FRD than in CTR male rats (Table 4).

Enhanced peripheral levels of leptin found in FRD male
rats correlated with the expression of LEP mRNA in RP fat
pads: this parameter was approximately 3.7 times higher
(P , 0.05) in RP fat pads from FRD than from CTR male
rats (Table 4). Conversely, no group differences were
found in RP fat ADIPOQ mRNA expression (Table 4).

Figure 3 shows the results of in vitro leptin release by
isolated RP fat adipocytes incubated in absence (sponta-
neous: insulin concentration zero) or presence of insulin

TABLE 3. Basal circulating levels of several metabolites
in adult CTR (n 5 7) and FRD (n 5 8) male rats

CTR FRD

Glucose (mM) 6.60 6 0.16 6.55 6 0.22
Triglyceride (mM) 1.44 6 0.15 1.51 6 0.16
Total cholesterol (mM) 1.58 6 0.08 1.42 6 0.10
NEFA (mM) 1.05 6 0.13 1.03 6 0.12
Total proteins (g/liter) 7.58 6 0.53 7.29 6 0.59
Corticosterone (nM) 134.79 6 31.17 240.09 6 48.49
Insulin (nM) 0.31 6 0.02 0.45 6 0.03*
LEP (ng/ml) 2.41 6 0.35 6.26 6 1.56*
ADIPOQ (mg/ml) 5.87 6 0.66 3.59 6 0.27*
PAI-1 (ng/ml) 1.44 6 0.06 1.45 6 0.18
CRP (mg/ml) 0.36 6 0.07 0.26 6 0.22
TNFa (pg/ml) 84.11 6 0.73 88.93 6 1.99

Each rat assigned to a group derived from a different litter. Values are
means 6 SEM.
*, P , 0.05 vs. CTR values.

FIG. 1. Body weight (upper) and 48-h accumulated food intake
(lower) in CTR and FRD male rats after weaning. These parameters
were recorded on alternate days of age (between d 21–60 of age for
BW and between d 23–59 of age for food intake). Values are means 6
SEM (n 5 25–30 rats per group, randomly selected from different litter-
groups, respectively). *, P , 0.05 vs. CTR values on the same day.
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(0.1–10 nM). Spontaneous leptin output by isolated RP
adipocytes was significantly (P , 0.05) higher in the FRD
than in the CTR group. While 0.1 nM insulin did not en-
hance leptin secretion in either group, 1 and 10 nM insulin
significantly (P , 0.05) enhanced leptin release over the
baseline only in cells from CTR male rats. Conversely,
when testing adipocytes from FRD male rats, only the
highest insulin concentration (10 nM) was able to signifi-
cantly (P , 0.05) increase leptin secretion over the respec-
tive baseline.

Hypothalamic expression of genes modulating
food intake in adult male rats

In view of the increase in both BW (21–60 d of age) and
daily food intake (48–60 d of age) characterizing FRD
male rats, we decided to examine the hypothalamic profile
of different appetite-controlling signals. We found that the
hypothalamic expression of several genes was distorted in
the adult FRD male rats. Specifically, CRH, TRH, and
ob-Rb (Table 5) mRNA expression was significantly (P ,

0.05) lower in FRD than in CTR
male rats. Conversely, the hypotha-
lamic mRNA expression of other ap-
petite controlling factors, such as
AgRP, CART, NPY, and POMC re-
mained at the same level in both ex-
perimental groups (Table 5).

Effect of peripheral leptin
treatment on food intake and
hypothalamic p-STAT-3 in CTR
and FRD rats

Finally, and because we observed
enhanced leptinemia and decreased
hypothalamic expression of ob-Rb
mRNA in adult FRD male rats, two
different peripheral leptin test-stud-
ies in rats from both groups were
performed.

Our data indicate that ip injection
of leptin (1 mg/kg BW) in experimen-
tal rats induced a differential effect
on food intake: while leptin treat-
ment significantly (P , 0.05 vs. ve-
hicle-injected CTR rats) reduced 4-h
food intake in CTR male rats, it
failed to induce any significant hy-
pophagia in FRD rats (Fig. 4, upper
panel).

Data from leptin (1 mg/kg BW,
ip)-dependent STAT-3 phosphoryla-
tion in the hypothalamus of fasted
rats, from different experimental

groups, are depicted in Fig. 4 (lower panel). In each group,
STAT-3 phosphorylation levels were normalized to total-
STAT-3, and value 1 was attributed to the p-STAT-3/
total-STAT-3 ratio measured in vehicle-injected animals
of the same experimental group (CTR and FRD). A sig-
nificant increase of this ratio in leptin-treated rats was
taken as an index of the hypothalamic responsiveness to-
ward leptin. As depicted, while leptin treatment signifi-
cantly (P , 0.05) increased STAT-3 phosphorylation in
CTR rats, this effect was absent in FRD rats (Fig. 4, lower
panel).

Discussion

Our study shows for the first time deleterious effects of
the intake of an iso-caloric FRD by the lactating mother
rat on several functions in males from the first progeny
when they reached adulthood. Specifically, the adult
male offspring suckled by mothers consuming FRD dur-

FIG. 2. Plasma glucose (A) and insulin (C) concentrations before (time zero) and several times
after high glucose load in 60-d-old CTR (n 5 7) and FRD (n 5 8) male rats. Each rat assigned to a
group derived from a different litter. The area under the curves (AUC) of glucose and insulin
values throughout the iv-GTT in both groups is shown (B and D, respectively). Data are means 6
SEM. a, P , 0.05 vs. time 0 values in the same group; b, P , 0.05 vs. CTR values at same time;
*, P , 0.05 vs. CTR values.
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ing lactation displayed the following: 1) increased body
weight, food intake, and leptinemia, facts partially re-
lated to disrupted hypothalamic activity; 2) impaired
insulin sensitivity, and 3) distorted retroperitoneal ad-
ipose tissue function.

Several studies focused on effects of excessive carbo-
hydrate consumption throughout the lactation period on

the offspring’s metabolism, but changes in diet were ap-
plied directly to pups (22, 37). Other researchers used diet
manipulation on lactating mothers and, as in our design,
avoided changes in the diet provided to offspring. In those
studies 1) lighter male offspring was found when raised by
mothers fed a protein restricted diet (38), 2) accelerated
increase in offspring’s BW was induced by reducing litter
size (a pup-overfed model), although BW values normal-
ized after weaning (39), and 3) offspring’s BW was found
normal when suckled by mothers fed with a high-fat diet
(40). Now, we show that FRD-fed lactating mothers mod-
ified the offspring’s phenotype by significantly enhancing
male BW between ages 21 and 60 d. The early increase in
BW later correlated with enhanced food intake (49–60 d
of age). These data strongly support that FRD intake by
lactating dams induced overweight in their male offspring.

Moreover, we found that the adult male offspring suck-
led by FRD lactating dams displayed enhanced insuline-
mia, although without changes in peripheral glucose me-
tabolism or peripheral lipid profile. Mothers consuming
excess carbohydrates during gestation and lactation dis-
played no modifications in plasma levels of triglycerides,
free fatty acids, and cholesterol (20, 37). However, sucrose
consumption during gestation and lactation, although it
did not modify the lipid profile, did increase liver triglyc-
eride content (37). Conversely, offspring nursed with car-
bohydrate-rich artificial milk displayed no changes in cir-
culating levels of triglycerides (22, 41) or free fatty acids
(41), despite increased lipogenesis (42). Therefore, al-
though they were not examined in the present study,
changes in the lipogenic process [e.g. due to enhanced
FRD-induced oxidative stress (43)] cannot be ruled out in
our adult FRD male rats. While other studies also revealed
hyperinsulinemic offspring, this dysfunction was found
after direct nutritional intervention in the offspring by
either: nursing them with a high-carbohydrate milk for-
mula (44); pup overfeeding, due to drastic litter-size re-

FIG. 3. Spontaneous (insulin 0 nM) and insulin (0.1–10 nM)-induced
leptin release by isolated RP fat adipocytes obtained from 60-d-old CTR
and FRD male rats. Data are means 6 SEM (n 5 3 different experiments
using rats from different litters; 5 replicates per condition were run in
each experiment). a, P , 0.05 vs. insulin 0 nM values in the CTR group;
b, P , 0.05 vs. insulin 0 nM values in the in the FRD group; *, P , 0.05
vs. CTR values in similar condition.

TABLE 4. Retroperitoneal fat pad mass, adipocyte
characteristics, and leptin (LEP) and adiponectin
(ADIPOQ) mRNA expression (in arbitrary units, AU) of
adult CTR (n 5 4) and FRD (n 5 5) male rats

CTR FRD

Pad mass
(g/rat)

2.09 6 0.18 2.05 6 0.24

Adipocyte
diameter
(mm)

37.21 6 0.09 45.45 6 0.25*

Adipocyte area
(mm2)

1,182.34 6 10.64 1,807.18 6 20.29*

Adipocyte
volume
(mm3 3 103)

26.97 6 1.84 49.18 6 3.39*

LEP mRNA
(AU)

1.09 6 0.19 3.69 6 0.85*

ADIPOQ mRNA
(AU)

1.27 6 0.41 2.36 6 0.62

Each rat assigned to a group derived from a different litter. Values are
means 6 SEM.
*, P , 0.05 vs. CTR values.

TABLE 5. Hypothalamic mRNA expression (in arbitrary
units) of several genes involved in the local circuitry
controlling food intake in adult CTR (n 5 4) and FRD
(n 5 6) male rats

CTR FRD

CRH 1.02 6 0.12 0.41 6 0.16*
TRH 1.01 6 0.11 0.44 6 0.09*
ob-Rb 1.03 6 0.29 0.27 6 0.06*
AgRP 0.99 6 0.12 1.19 6 0.11
CART 1.00 6 0.21 0.62 6 0.28
NPY 1.01 6 0.51 0.87 6 0.23
POMC 1.02 6 0.33 1.35 6 0.41

Each rat assigned to a group derived from a different litter. Values are
means 6 SEM.
*, P , 0.05 vs. CTR values.
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duction (45); providing pups with a diet containing 62%
fructose for 2 wk (46); or moderate FRD (15% fructose)
intake by pups for several months (47). Another study (21)
did report a clear increment in the offspring’s peripheral
insulin levels when mothers were fed a carbohydrate rich
diet, although diet manipulation was applied during ges-
tation and lactation. The origin of the increment in pe-
ripheral insulin levels could be due to changes in either b

cell function or peripheral insulin sensitivity, or in both. In
this sense, some authors found a profound impact on the
offspring’s pancreatic function when pups consumed a
carbohydrate rich diet during the preweaning period (48,
49). Our data clearly indicate that the enhanced insuline-
mia developed by male offspring could serve as an adap-
tive role for normal management of peripheral carbohy-
drate metabolism, such as after the high glucose load test.
We also observed that decreased adiponectin and in-
creased leptin peripheral levels characterized our adult

FRD male rats, whereas other adipokines remained the
same. Although obesity has been considered a state of
chronic inflammation in which several peripheral adipo-
cytokines contribute to impair insulin sensitivity (50), it
could be speculated that in our model TNFa appears to
not be involved in the changes in peripheral insulin sen-
sitivity. It is accepted that adiponectin is a well-known
endogenous signal enhancing insulin sensitivity (51) and
leptin is able to affect the insulin signaling mechanism (52,
53). Thus the unbalanced adipokine status we found (en-
hanced leptin and decreased adiponectin plasma concen-
trations) could contribute to the impaired insulin sensi-
tivity characterizing our FRD male rats. As presently
demonstrated, retroperitoneal adipose tissue dysfunction
has occurred in animals bearing enlarged adipocytes with
enhanced LEP gene expression, both facts being clear in-
dicators of enhanced adipose tissue LEP production (54).
Moreover, these characteristics concord with our func-
tional in vitro observations. In fact, retroperitoneal adi-
pocytes from FRD rats spontaneously released more leptin
than CTR rat-derived adipocytes and also displayed im-
paired response to insulin stimulation. However, these
changes occurred without any modification in retroperi-
toneal fat mass, thus suggesting that a modified adipo-
genic process could take place in adult male offspring
nursed by FRD lactating dams, a point deserving further
research. It should be mentioned that FRD intake by lac-
tating mothers could possibly have an impact on the male
offspring by modifying the activity of other adipokines
able to modify adipocyte function (55). Recently, it was
found (56) that circulating levels of zinc-a2-glycoprotein,
derived from human adipocytes, directly correlate with
those of insulin, suggesting that it may be an important
marker of insulin resistance and obesity.

Maternal consumption of a FRD while lactating re-
sulted in increased food intake by male offspring, observed
at age 49 d and older. Recently, consumption of a carbo-
hydrate-rich diet by pups between postnatal d 4 and 24
was reported to increase orexigenic and decrease anorex-
igenic signals at the hypothalamic level, resulting in dis-
torted insulin sensitivity (44). In our experimental design,
we also found changes in hypothalamic gene expression of
several factors involved in control of food intake. Al-
though the male offspring nursed by FRD lactating moth-
ers developed a modest hyperphagia in adulthood, this
seems to occur depending on a weak satiety signaling.
Decreased hypothalamic ob-Rb gene expression and
STAT-3 phosphorylation in response to peripheral leptin
treatment are characteristics of our FRD hyperleptinemic
male rats. This impairment in the leptin signaling system
is a clear indicator of the development of hypothalamic
leptin-resistance (57) in these rats. Interestingly, we found

FIG. 4. Four-hour food intake by adult CTR and FRD male rats after
either leptin (ip 1 mg/kg BW injection; n 5 5 CTR and 6 FRD animals)
or vehicle (n 5 5 CTR and 6 FRD animals) treatment (upper). In
addition, Western blot analysis of phosphorylated and total STAT-3
(p- and t-STAT-3, respectively) in hypothalamic protein extracts from
fasted 60-d-old CTR and FRD male rats, 45 min after ip treatment with
either vehicle (n 5 5 CTR and 6 FRD animals) alone or containing leptin
(1 mg/kg BW; n 5 5 CTR and 6 FRD animals) is shown (lower). Each rat
assigned to a group treatment derived from a different litter. Values
are means 6 SEM. 1, P , 0.05 vs. vehicle values.
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that down-regulated hypothalamic ob-Rb gene expres-
sion coexists with impaired CRH- and TRH-ergic (mainly
paraventricular nucleus-derived anorexigenic signals)
(45) functions in our FRD male rats; however, disruption
of other signals of the same origin and with similar activity
in FRD male rats should not be discarded (58). Con-
versely, other hypothalamic factors controlling food in-
take (mainly from arcuate nucleus origin) such as AgRP,
CART, NPY, and POMC remained unchanged in our
FRD male rats. Only a few experimental models have been
developed to study the consequences of nutritional ma-
nipulation in mothers during lactation only. Earlier re-
ports indicate that as a result of drastic litter size reduction,
overfed pups developed hyperinsulinemia, hyperleptine-
mia, and obesity at adult age (54) without changes in hy-
pothalamic NPY (59). Others have shown, however, that
isolated hypothalamic neurons from overfed pups dis-
played abnormal responses to several stimuli, underlining
the relevance of the impact of overfeeding (60, 61) during
lactation and the quality of milk (62) on pups’ neuron
development.

Our study leads to alert the population on the delete-
rious effect of high-fructose diet intake by lactating moth-
ers on the offspring’s health. Adequately nourished moth-
ers during lactation could reduce the incidence of
overweight/obesity in their adult male progeny.

Acknowledgments

We thank Susan Hale Rogers for careful correction of the
manuscript.

Address all correspondence and requests for reprints to: Dr.
Eduardo Spinedi, Neuroendocrine Unit, Instituto Multidisci-
plinario de Biología Celular, PO Box 403, 1900 La Plata,
Argentina. E-mail: spinedi@imbice.org.ar.

This work was supported by Consejo Nacional de Investiga-
ciones Científicas y Técnicas (PIP 0704), Argentina and Fonda-
tion Pour la Recherche en Endocrinologie (07-09), Switzerland.

This work was presented in part at the 2009 American En-
docrine Society Meeting, Washington, DC, where the content
and the message of our work have been found as newsworthy by
the American Endocrine Society.

Disclosure Summary: The authors have nothing to declare.

References

1. Bray GA, Bellanger T 2006 Epidemiology, trends, and morbidities
of obesity and the metabolic syndrome. Endocrine 29:109–117

2. Reaven G, Abbasi F, McLaughlin T 2004 Obesity, insulin resistance,
and cardiovascular disease. Recent Prog Horm Res 59:207–223

3. Gluckman PD, Hanson MA, Cooper C, Thornburg KL 2008 Effect
of in utero and early-life conditions on adult health and disease.
N Engl J Med 359:61–73

4. Rocchini AP 2002 Childhood obesity and a diabetes epidemic.
N Engl J Med 346:854–855

5. Breier BH, Vickers MH, Ikenasio BA, Chan KY, Wong WP 2001
Fetal programming of appetite and obesity. Mol Cell Endocrinol
185:73–79

6. Barsh GS, Farooqi IS, O’Rahilly S 2000 Genetics of body-weight
regulation. Nature 404:644–651

7. Farooqi S, O’Rahilly S 2006 Genetics of obesity in humans. Endocr
Rev 27:710–718

8. Hamilton JK, Odrobina E, Yin J, Hanley AJ, Zinman B, Retnakaran
R 2010 Maternal insulin sensitivity during pregnancy predicts infant
weight gain and adiposity at 1 year of age. Obesity (Silver Spring)
18:340–346

9. Patel MS, Srinivasan M 2010 Metabolic programming due to alter-
ations in nutrition in the immediate postnatal period. J Nutr 140:
658–661

10. Taylor PD, Poston L 2007 Developmental programming of obesity
in mammals. Exp Physiol 92:287–298

11. McMillen IC, Robinson JS 2005 Developmental origins of the met-
abolic syndrome: prediction, plasticity, and programming. Physiol
Rev 85:571–633

12. Plagemann A 2006 Perinatal nutrition and hormone-dependent pro-
gramming of food intake. Horm Res 65(Suppl 3):83–89

13. Grove KL, Grayson BE, Glavas MM, Xiao XQ, Smith MS 2005
Development of metabolic systems. Physiol Behav 86:646–660

14. Plagemann A, Harder T, Melchior K, Rake A, Rohde W, Dörner G
1999 Elevation of hypothalamic neuropeptide Y-neurons in adult
offspring of diabetic mother rats. Neuroreport 10:3211–3216

15. Plagemann A, Harder T, Rake A, Melchior K, Rohde W, Dörner G
2000 Hypothalamic nuclei are malformed in weanling offspring of
low protein malnourished rat dams. J Nutr 130:2582–2589

16. Davidowa H, Plagemann A 2000 Decreased inhibition by leptin of
hypothalamic arcuate neurons in neonatally overfed young rats.
Neuroreport 11:2795–2798

17. Schwartz MW, Baskin DG, Kaiyala KJ, Woods SC 1999 Model for
the regulation of energy balance and adiposity by the central nervous
system. Am J Clin Nutr 69:584–596

18. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ 2002 Fructose, weight
gain, and the insulin resistance syndrome. Am J Clin Nutr 76:911–922

19. Bray GA, Nielsen SJ, Popkin BM 2004 Consumption of high-fruc-
tose corn syrup in beverages may play a role in the epidemic of
obesity. Am J Clin Nutr 79:537–543

20. Rawana S, Clark K, Zhong S, Buison A, Chackunkal S, Jen KL 1993
Low dose fructose ingestion during gestation and lactation affects
carbohydrate metabolism in rat dams and their offspring. J Nutr
123:2158–2165

21. Srinivasan M, Dodds C, Ghanim H, Gao T, Ross PJ, Browne RW,
Dandona P, Patel MS 2008 Maternal obesity and fetal program-
ming: effects of a high-carbohydrate nutritional modification in the
immediate postnatal life of female rats. Am J Physiol Endocrinol
Metab 295:E895–E903

22. Huynh M, Luiken JJ, Coumans W, Bell RC 2008 Dietary fructose
during the suckling period increases body weight and fatty acid
uptake into skeletal muscle in adult rats. Obesity 16:1755–1762

23. Kreier F, Fliers E, Voshol PJ, Van Eden CG, Havekes LM, Kalsbeek
A, Van Heijningen CL, Sluiter AA, Mettenleiter TC, Romijn JA,
Sauerwein HP, Buijs RM 2002 Selective parasympathetic innerva-
tion of subcutaneous and intra-abdominal fat–functional implica-
tions. J Clin Invest 110:1243–1250

24. Gregoire FM, Smas CM, Sul HS 1998 Understanding adipocyte
differentiation. Physiol Rev 78:783–809

25. Münzberg H, Myers Jr MG 2005 Molecular and anatomical deter-
minants of central leptin resistance. Nat Neurosci 8:566–570

26. Lustig RH 2003 Autonomic dysfunction of the b-cell and the patho-
genesis of obesity. Rev Endocr Metab Disord 4:23–32

27. Spinedi E, Giacomini M, Jacquier MC, Gaillard RC 1991 Changes
in the hypothalamo-corticotrope axis after bilateral adrenalectomy:

4222 Alzamendi et al. Unbalanced Diet in Lactating Mothers Endocrinology, September 2010, 151(9):4214–4223

D
ow

nloaded from
 https://academ

ic.oup.com
/endo/article-abstract/151/9/4214/2456870 by guest on 16 Septem

ber 2019



evidence for a median eminence site of glucocorticoid action. Neu-
roendocrinology 53:160–170
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