Systematics of *Podocoma* (Asteraceae: Astereae): a generic reassessment

GISELA SANCHO1*, D. J. NICHOLAS HIND2 and JOHN F. PRUSKI3

1División Plantas Vasculares, Museo de La Plata, Paseo del Bosque s.n., La Plata, 1900, Buenos Aires, Argentina
2The Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
3Missouri Botanical Garden, PO Box 299, Saint Louis, MI 63166-0299, USA

Received 18 January 2010; revised 4 May 2010; accepted for publication 24 June 2010

*Corresponding author. E-mail: sancho@fcnym.unlp.edu.ar

Podocoma is a southern South American genus of perennial herbs with short-radiate capitula with two- to four-seriate ray florets and a two- to three-seriate pappus of scabridulous setae. The ray florets have corollas with narrow limbs. The rostrate cypsela of *Podocoma* is one of the most distinct features of the genus. *Podocoma*, with many of the endemic southern South American genera of Astereae, is included in subtribe Podocominae. *Podocoma* traditionally contained seven mainly Brazilian species (*P. asperrima*, *P. bellidifolia*, *P. blanchetiana*, *P. hieracifolia*, *P. hirsuta*, *P. regnellii* and *P. spegazzinii*), and its expansion to include two species of *Conyza* (*C. notobellidiastrum* and *C. rivularis*) was, perhaps, the most significant recent change in the generic concept of *Podocoma*. However, recent molecular- and morphology-based phylogenetic analyses do not support the inclusion of these two species in *Podocoma*. Morphological and anatomical studies were carried out in order to clarify the taxonomy of *Podocoma* and to delimit the genus and its species. On the basis of the results of these morphological and anatomical studies, and those from molecular- and morphology-based phylogenetic analyses, *P. notobellidiastrum* and *P. rivularis* are excluded from *Podocoma* and transferred to a new genus that is currently under description. Moreover, *P. regnellii* and *P. asperrima* are placed in synonymy with *P. hirsuta* and *P. spegazzinii*, respectively. Three species, *P. bellidifolia*, *P. blanchetiana* and *P. hieracifolia*, are recognized here as a complex of closely related species from a morphological point of view; however, they are treated separately. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163, 486–513.

INTRODUCTION

Podocoma Cass. (Asteraceae) is a southern South American genus described by Cassini (1817). Cassini (1826: 60) indicated that the main characteristic of *Podocoma* is its rostrate cypsela, from which its name was derived. Species of *Podocoma* are perennial herbs with short-radiate capitula with two- to four-seriate ray florets and two- to three-seriate pappus of scabridulous setae. The ray florets have corollas with narrow limbs.

Bentham (1873) expanded the distributional range of *Podocoma*, resulting in the addition of two Australian species (Table 1). However, these are included today in the separate genus Ixyochlamys F.Muell. & Sond. Other species previously included in *Podocoma* are currently placed in other South American genera, such as Asteropsis Less., Blakiella Cuatrec. and Ste-nachaenium Benth. Following these exclusions, seven mainly Brazilian species remain in *Podocoma* (hereon called *Podocoma* s.s.: *P. asperrima* Dusén ex Malme, *P. bellidifolia* Baker, *P. blanchetiana* Baker, *P. hieracifolia* (Poir.) Cass., *P. hirsuta* Baker, *P. regnellii* Baker and *P. spegazzinii* Cabrera). The recent addition of two species of *Conyza* Less., *C. notobellidiastrum* Griseb. and *C. rivularis* Gardner, by Nesom & Zanow-ia (1994) was, perhaps, the most significant recent change in the generic concept of *Podocoma*. However, a phylogenetic study by Sancho and Karaman-Castro (2008), which used molecular and morphological data,
Table 1. Taxonomic history of *Podocoma*

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Taxonomic event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassini (1817)</td>
<td>Described Podocoma and placed it in tribe Astereae without indication of species</td>
</tr>
<tr>
<td>Cassini (1826)</td>
<td>Included Podocoma hieracifolia (Poir.) Cass. (= Erigeron hieracifolium Poir.) and P. primulifolia Cass. in Podocoma</td>
</tr>
<tr>
<td>de Candolle (1836)</td>
<td>Followed Cassini’s definition of Podocoma, including P. hieracifolia and P. primulifolia in the genus</td>
</tr>
<tr>
<td>Hooker & Arnott (1836)</td>
<td>Described Podopappus, pointing out its resemblance to Podocoma. They described Podopappus hirsutus, P. pubescens and P. tomentosus</td>
</tr>
<tr>
<td>Bentham (1873)</td>
<td>Included Podocoma in subtribe Heterochromaeae. As synonyms, he listed Asteropsis, Podopappus, Moritzia Sch. Bip. ex Benth. (nom. nud.) and Ixiochlamys (from Australia), expanding the distribution of Podocoma to the Australian continent</td>
</tr>
<tr>
<td>Baker (1882)</td>
<td>1. Included in Podocoma the species P. hieracifolia (with P. primulifolia as a synonym) and P. hirsuta (based on Podopappus hirsutus). 2. Described three new species: P. blanchetiana, P. bellidifolia and P. regnellii. 3. Regarded Asteropsis as separate genus. Podopappus tomentosus was included in Asteropsis. 4. Noted that two other species of Podocoma existed, one from Australia and one from Colombia based on the name Moritzia glandulosa of Schultz Bipontinus (albeit a nom. nud.)</td>
</tr>
<tr>
<td>Hochreutiner (1899)</td>
<td>Described Podocoma reineckii, later transferred to Stenachaenium</td>
</tr>
<tr>
<td>Ewart, White & Tovey (1908)</td>
<td>Described Podocoma nana from Australia, later transferred to Ixiochlamys</td>
</tr>
<tr>
<td>Blake (1917)</td>
<td>Described Podocoma bartsiifolia and indicated that the name Moritzia glandulosa was presumably referable to his new species. Podocoma bartsiifolia is basionym of the only species of Blakiella, a Colombian and Venezuelan genus of Astereae</td>
</tr>
<tr>
<td>Cabrera (1932)</td>
<td>Described Podocoma spegazzinii from northern Argentina</td>
</tr>
<tr>
<td>Malme (1933)</td>
<td>Described Podocoma asperrima and P. foliosa from Brazil</td>
</tr>
<tr>
<td>Grau (1977)</td>
<td>Redefined the concept of Podocoma by excluding Ixiochlamys and including Asteropsis and the Brazilian Inulopsis O.Hoffm. Podocoma was again restricted to South America</td>
</tr>
<tr>
<td>Nesom & Zanowiak (1994)</td>
<td>Published a taxonomic overview of Podocoma including P. asperrima, P. blanchetiana, P. hieracifolia, P. hirsuta, P. regnellii and two species transferred by them from Conyza (P. notobellidiastrum and P. rivularis)</td>
</tr>
<tr>
<td>Nesom & Robinson (2006 2007)</td>
<td>Excluded Blakiella from Podocominae</td>
</tr>
<tr>
<td>Sancho & Karaman-Castro (2008)</td>
<td>Carried out phylogenetic analyses on Podocominae based on morphological and molecular data. Those analyses did not support: (1) the inclusion of P. notobellidiastrum and P. rivularis in Podocoma; or (2) the circumscription of Podocominae as including Australasian and South American genera</td>
</tr>
<tr>
<td>Brouillet et al. (2009)</td>
<td>Carried out a phylogenetic analysis of tribe Astereae based on molecular data. The analysis showed: (1) Podocoma as defined with two independent lineages in the context of a large polytomy (including Australasian, North American and South American taxa of the whole tribe); (2) a paraphyletic Podocominae with the Australasian and South American taxa belonging to distantly related clades</td>
</tr>
</tbody>
</table>
did not support the inclusion of these two species in *Podocoma*.

Although the placement of *Podocoma* in tribe Astereae was never in doubt, its generic relationships were more debatable (Cassini, 1817; Bentham, 1873; Zhang & Bremer, 1993, Bremer, 1994; Nesom, 1994a, b; Nesom & Zanowiak, 1994). The creation of subtribe Podocominae (Nesom, 1994b, followed by Nesom & Robinson, [2006] 2007) seemed to define the generic relationships of *Podocoma*. However, molecular and morphological data do not support Nesom’s circumscription of Podocominae including Australasian and South American genera (Sancho & Karaman-Castro, 2008; Brouillet et al., 2009).

Furthermore, molecular and morphological phylogenetic analyses have provided new evidence that would modify the concept of *Podocoma* and its generic relationships (Sancho & Karaman-Castro, 2008; Brouillet et al., 2009). This has prompted a taxonomic reassessment to define a monophyletic genus.

The goals of this study were: (1) to characterize *Podocoma* morphologically and anatomically; (2) to clarify the taxonomy of *Podocoma*; (3) to establish the limits of the genus on the basis of the morphological and anatomical studies carried out here and previous phylogenetic analyses; and (4) to delimit the species.

GENERIC RELATIONSHIPS

Since Bentham (1873), *Podocoma* has been considered to be closely related to the South American *Asteropsis* and the Australian *Ixiochlamys*. *Asteropsis* is restricted to Brazil and Uruguay and has a single species. It was described by Lessing as having a short rostrate cypselal and that, probably, is the main character used by authors to link it to *Podocoma*. *Asteropsis* and *Podocoma* also share compressed and marginally ribbed cypselae, but no other particular characters. *Asteropsis* differs from *Podocoma* in its densely leafy stems, usually solitary, strongly radiate capitula, short scaly receptacle, usually functionally male disc florets, subcampanulate disc corollas, glandular cypselae and a pappus with a short outer series (Bonifacino, Sancho & Marchesi, 2009). However, cypselae of *Asteropsis*, although attenuate at the apex, are not truly rostrate as in *Podocoma*. This morphological evidence is supported by recent molecular and morphological phylogenetic analyses that failed to demonstrate close phylogenetic relationships between these genera (Sancho & Karaman-Castro, 2008, Fig. 1; Brouillet et al., 2009). In fact, *Podocoma* and other truly rostrate genera, for example *Blakiella* (once linked to *Podocoma*; Nesom, 1994b), are shown by these analyses to belong to distantly related clades. This would suggest that rostrate cypselae have evolved in parallel in different groups of Astereae (e.g. Sancho & Karaman-Castro, 2008).

Ixiochlamys shares with *Podocoma* capitula with two- to four-seriate ray florets (or even more seriate in *Ixiochlamys*), narrow ray corolla limbs that do not exceed the pappus and rostrate cypselae. However, *Ixiochlamys* differs from *Podocoma* in its basally branched habit, solitary capitula and uniseriate pappus or, if in three series, a short outermost series. Further, the rostrate cypselae of *Ixiochlamys* are different from those of *Podocoma* (Dunlop, 1980; G. Sancho, pers. observ.). The cypselal body of *Ixiochlamys* is neither conspicuously compressed nor marginally ribbed as in *Podocoma*, and, whereas the rostrum of *Podocoma* is scarcely delimitated from the cypselae body, the distinction between body and rostrum in *Ixiochlamys* is abrupt and the rostrum is narrow and almost filiform. Grau (1975) also found differences in cypselal wall anatomy between *Ixiochlamys* and *Podocoma*. Close phylogenetic relationships were not demonstrated between *Ixiochlamys* and *Podocoma* (Brouillet et al., 2009).

Two other genera with radiate capitula, *Inulopsis* O.Hoffm. and *Microgyne* Cass. (Grau, 1975; Bremer, 1994; Nesom, 1994a, b), have also been linked to *Podocoma*. However, the molecular analyses of Sancho & Karaman-Castro (2008) recovered a clade comprising *Asteropsis, Inulopsis, Microgyne* and *Sommerfeltia* Less. not closely related to *Podocoma* (Fig. 1). This suggests that, from the currently available data, the generic relationships of *Podocoma* remain unresolved.

PHYLOGENY

Phylogenetic analyses based on morphological and molecular data show an unresolved Podocominae. The Australasian taxa of Podocominae were analysed by Lowrey et al. (2001), who, however, did not include South American representatives of Podocominae in their analysis. According to molecular data obtained by Sancho & Karaman-Castro (2008) and Brouillet et al. (2009), close association between South American and Australasian genera of the Podocominae is not supported (Fig. 1). These latest molecular results also show that the morphological characters used to define Podocominae are homoplastic, probably as a result of convergence and parallelism. There are no morphological characters that support the delimitation of Podocominae as currently circumscribed, i.e. including American and Australasian genera. As noted by Sancho & Karaman-Castro (2008), a narrower concept of Podocominae, including Podocoma s.s., *Asteropsis, Inulopsis, Microgyne* and *Sommerfeltia*, and excluding the Australasian genera of...
Podocominae, could be supported and characterized morphologically by pappus setae in two or three series. However, the association of these genera was not strongly supported in the latest molecular analyses (Brouillet et al., 2009). The interpretation of molecular data suggests the exclusion from Podocominae of Asteropsis, Inulopsis, Microgyne and Sommerfeltia, which prompts a serious reassessment of the subtribe, as Podocoma would be its only remaining genus.

In the general context of Astereae, Podocoma (specifically P. notobellidiastrum) has been recovered as sister to the North American clade (Noyes & Rieseberg, 1999; Fiz et al., 2002). However, in a more recent analysis of the tribe (Brouillet et al., 2009) that included two species of Podocoma, the genus is defined with two independent lineages in the context of a large polytomy. This polytomy includes Australasian, North American and South American taxa of the whole tribe. Therefore, Podocoma would not be sister to the North American clade of Astereae as suggested in other studies.

Although homoplastic at the tribal level, some morphological characters (e.g. presence of rostrum in Podocoma) could be regarded as diagnostic at the generic level. The results of Sancho & Karaman-Castro (2008) suggest that rostrate cypselae as in, for example, Podocoma s.s., on the one hand, and erosstrate cypselae merely with attenuate apex as in, for example, P. notobellidiastrum and P. rivularis, on the
other, appear to have evolved independently, the last two species forming a clade distantly related to Podocoma s.s.

MATERIAL AND METHODS

All the species of Podocoma s.l. (P. asperrima, P. bellidifolia, P. blanchetiana, P. hieracifolia, P. hirsuta, P. notobellidiastrum, P. regnellii, P. rivularis and P. spegazzinii) were included in the morphological and anatomical analysis to confirm the results obtained in previous phylogenetic analyses with respect to the circumscription of Podocoma. Data were derived from the study of herbarium specimens from BM, CTES, GH, K, LP, MO, MVFA, NY, P, SI and US (Holmgren et al. http://sciweb.nybg.org/science2/IndexHerbariorum.asp), and from field observations. For light microscopy examination, floral and vegetative parts were rehydrated and stained in 2% safranin. For anatomical observations, transverse sections were cut by hand free. Whenever possible, data from live specimens were added (involute shape, corolla and pappus colour).

Drawings were made by the senior author (GS) using a Wild M3Z stereomicroscope and a Nikon Eclipse E200 light microscope with a camera lucida. The terminology follows Hickey (1974), Ramayya (1962), Stearn (1992), Harris & Harris (1994) and Freire et al. (2005).

RESULTS

MORPHOLOGY

Duration and habit

All species of Podocoma are perennial herbs. The species living in grasslands or rocky and open areas (P. asperrima, P. bellidifolia, P. blanchetiana, P. hirsuta, P. hieracifolia, P. regnellii and P. spegazzinii) have a thickened, horizontal, rhizomatous subterranean system from which the new shoots arise periodically throughout its life cycle. This rhizomatous subterranean system bears fascicled roots that are usually somewhat thickened. Podocoma notobellidiastrum and P. rivularis inhabit the forest understory and have a thinner, rhizomatous subterranean system.

Leaves

The leaves of Podocoma are alternate, sessile and simple. In some species, they are congested in the proximal third of the stem (P. blanchetiana and P. hieracifolia), whereas, in others (P. hirsuta and P. spegazzinii), they are more or less evenly arranged along the stem. When the leaves are congested at the base, proximal and distal leaves are distinct, in that the distal leaves differ in shape and are reduced in size towards the stem apex. Blades are oblancoellate, obovate or broadly obovate (P. bellidifolia, P. blanchetiana and P. hieracifolia), linear-elliptic (P. asperrima and P. spegazzinii) or elliptic (P. hirsuta and P. regnellii), bases are attenuate or long-attenuate, sometimes somewhat clasping, especially the distal leaves, and the apexes are usually subacute. The leaf texture is usually chartaceous, although in P. asperrima leaves are thicker. Blade margins are denticulate (e.g. P. blanchetiana) to deeply dentate (e.g. P. hirsuta). Stereomicroscope examination led us to identify: (1) blades with a single primary midvein and two lateral primaries, somewhat thinner, basal or suprabasal veins (P. bellidifolia, P. blanchetiana and P. hieracifolia; Fig. 2A); and (2) blades with a single, medial, primary vein (P. asperrima, P. hirsuta, P. notobellidiastrum, P. regnellii, P. rivularis and P. spegazzinii; Fig. 2B).

Leaf anatomy

Most species have amphistomatic blades. Only abaxial stomata are present in P. rivularis and P. notobellidiastrum. The stomata are anomocytic. The cuticle is relatively thick in, for example, P. blanchetiana or relatively thin in, for example, P. rivularis.
The capitula in *Podocoma* and cuticle and a glabrate indumentum in the leaf abaxial surface. Features such as a thin trichomes (e.g. *P. asperrima*; *Podocoma hirsuta*; Fig. 2E) and biseriate glandular late filiform trichomes with thin lateral walls (e.g. *Other less usual leaf trichomes are the small, flagellate trichomes with thin-walled cells (Fig. 2Q) and biseriate glandular (Fig. 2F), both found on the leaf abaxial surface. Features such as a thin cuticle and a glabrate indumentum in *P. notobellidiastrum* and *P. rivularis* might be associated with the forest understorey habitat in which they occur.

Leaf indumentum
The leaf indumentum is hirsute, pilose or pubescent. The pubescence ranges from dense in *P. blanchetiana* to glabrate in *P. rivularis* and *P. notobellidiastrum*. The leaf indumentum includes mostly simple conical hairs which may have a simple (Fig. 2C) or compound (Fig. 2D) foot. The compound feet of conical hairs in *P. asperrima* arise from the surface (Fig. 3A). The lateral walls of simple conical hairs are usually thick. Other less usual leaf trichomes are the small, flagellate trichomes with thin lateral walls (e.g. *Podocoma hirsuta*; Fig. 2E) and biseriate glandular trichomes (e.g. *P. asperrima*; Fig. 2F), both found on the leaf abaxial surface. Features such as a thin cuticle and a glabrate indumentum in *P. notobellidiastrum* and *P. rivularis* might be associated with the forest understorey habitat in which they occur.

Capitula
The capitula in *Podocoma* are arranged in corymbiform arrays of usually two to nine heads. However, some individuals of some species (e.g. *P. hirsuta* and *P. notobellidiastrum*) have corymbiform arrays with relatively numerous capitula (20–30). Capitula are long-pedunculate (e.g. Figs 5, 11), although, in *P. notobellidiastrum* and *P. rivularis*, corymbiform arrays are mostly congested. Capitula are heterogamous with female ray florets and hermaphrodite disc florets (unusually functionally male). They have two to four series of ray florets with shortly radiating corolla limbs in, for example, *P. asperrima* and *P. hieracifolia* (Figs 11 and 8, respectively), although the limbs are more erect in, for example, *P. hirsuta* (Fig. 10). The ray corollas are not radiating in *P. notobellidiastrum* and *P. rivularis*.

Involucres
The involucres in live material can be cylindrical (e.g. *P. notobellidiastrum* and *P. rivularis*) or campanulate to broadly campanulate (e.g. *P. hieracifolia* and *P. hirsuta*; Figs 8 and 13B, respectively). The phyllaries are arranged in three to five gradate series. They are linear-lanceolate and foliaceous. Usually, they are purplish at the apex, becoming completely purple in mature involucres (*P. asperrima*; Fig. 13D). Phyllary margins and apices are usually ciliate, laciniate or fimbriate. In some cases (*P. asperrima* and *P. spegazzinii*), the walls of the cilia are thick, noticeably different from the other marginal cells (Fig. 2G), and may be regarded as true trichomes. On the abaxial surfaces, three different types of trichomes may be found: simple conical (Fig. 2H), flagellate filiform with thin lateral walls (Fig. 2I) and biseriate glandular (Fig. 2J), all similar to those of the leaves. Other trichomes found on phyllaries, although less common, are whip trichomes (*P. rivularis*; Fig. 2K) and twin hairs (Fig. 2L, M) (*P. spegazzinii*).

Receptacles
The receptacle in all species is slightly convex, naked and deeply alveolate.

Corollas
Ray corollas are white. They have well-developed limbs (Fig. 2N), or the limbs are short and bifid at the apex (Fig. 2O). Species of *Podocoma s.s.* have a well-developed limb, which is relatively short and narrow and does not exceed the pappus length by much. In the species with developed limbs, the limb apex usually has two minute lobes or is entire. The limb margins are usually slightly involute. Ray corollas in *P. notobellidiastrum* and *P. rivularis* are filiform and subrayed to denticate distally, or exceptionally they have entire limbs. The trichomes are usually found on the tube of ray corollas and on the limb only in *P. notobellidiastrum* and *P. rivularis*. Most trichomes are simple biseriate glandular (Fig. 2P), although twin hairs (Figs 2R, 3D) were also found in *P. asperrima*. The corollas of disc florets are yellow, funnelform and shortly five-lobed. The tube is gradually ampliate apically. Corolla trichomes are found dorsally on lobes and in the tube and throat, depending on the species. As in ray corollas, most trichomes of disc corollas are simple biseriate glandular, although conical trichomes with thin-walled cells (Fig. 2Q) and twin hairs were also found in, for example, *P. blanchetiana*. Twin hairs are usually restricted to cypselae in Asteraceae (e.g. Hess, 1938; Freire & Katinas, 1995). However, their presence on other floral structures seems to be more common than expected, and has been documented previously (Sancho & Katinas, 2002). In *Podocoma*, twin hairs are found on the
Figure 3. A, Compound base of conical trichome (*Podocoma asperrima*). B, Leaf cross-section showing the main vascular bundle and a secretory cavity filled with secretion (SCV) (*P. blanchetiana*). C, Leaf cross-section showing the epithelial cells of the secretory cavity at the base of the vascular bundle (*P. bellidifolia*). D, Twin hair on ray corolla (*P. asperrima*). E, Twin hairs at the base of the style branches (*P. bellidifolia*). F, Cypsela cross-section (*P. asperrima*) showing epicarp (EP), lateral parenchyma (PA), sclerenchyma (SC) and testa (TE). Scale bars: A, 213 μm; B, 186 μm; C, 58.2 μm; D, 127.4 μm; E, 105.35 μm; F, 100 μm. (*P. asperrima*, D from Dusén 17815, S and F from Sancho & Bonifacino 93, LP; *P. bellidifolia* from Dusén s.n., S; P. blanchetiana from Montes 3481, SI.)
phyllaries, corollas, cypsela and, rarely, on the styles (Fig. 3E); often, the apical cells of these twin hairs are transversely septate.

White ray corollas and lobes of the disc yellow corollas in Podocoma can turn purplish when the capitula are mature (e.g. P. asperrima; Fig. 13C, D). This phenomenon occurs in other Astereae (e.g. Aster L., Niesenbaum, Patselas & Weiner 1999; Erigeron L and Myriactis Less., Sancho & Pruski pers. observ.) and has been explained either as a pollination-induced or age-dependent pattern (Niesenbaum et al., 1999).

Androecium
Anthers in Podocoma are those usually described for the tribe (Nesom & Robinson, 2006 2007). The bases of the thecae are rounded (Fig. 2S) (e.g. P. asperrima, P. notobellidiastrum and P. specazzinnii) or slightly auriculate (Fig. 2T) (e.g. P. blanchetiana, P. hirsuta and P. rivularis). Apical appendages are ovato-subobtuse (e.g. P. asperrima, P. hirsuta and P. notobellidiastrum) or narrow-oblong (i.e. P. blanchetiana and P. hieraciifolia). The distal part of the filaments has cells with thick walls that define the anther collar, which is nearly the same width as the rest of the filament. The anther collar is relatively short (i.e. equal to or shorter in length than, for instance, the apical appendage) in some species (e.g. P. asperrima and P. hirsuta) or relatively long (i.e. longer than, for instance, the apical appendage) in others (e.g. P. bellidifolia, P. notobellidiastrum and P. rivularis). Stamens are absent in the ray florets.

Gynoecium
Styles of Podocoma are subtended by nectary with stomata. The presence of stomata on the nectary confirms the secretory function (Gopinathan & Varatharajan, 1982, Sancho & Otegui, 2000). The style bases are slightly swollen. The cells at the base of the style stain strongly and have thicker walls than the rest of the style. In ray florets, style branches are linear, subobtuse at the apex and slightly papillose dorsally (P. asperrima) or glabrous (P. blanchetiana). In disc florets, the style branches are linear-oblong and subobtuse at the apex. Dorsally, they are covered by relatively long papillae (collecting hairs) that are rounded at the apex. The collecting hairs cover the distal one-half to three-quarters of the style branches (Fig. 2U). The stigmatic surface is as described for the tribe, i.e. in two separate lines. In Podocoma, these two lines extend along approximately three-quarters of the style branches; the distal one-third of the style branches is sterile.

Cypsela
The cypsela are elliptic in shape and compressed in transverse section, the margins are thick ribbed. One of the most distinct features of Podocoma is its rostrate cypselae, which are present in most species. The cypsela body is prolonged into a sterile neck (rostrum) of variable length. In P. bellidifolia, the rostrum is relatively short (1.0–1.2 mm long) and, in P. hieraciifolia, it is relatively long (2.0–3.2 mm long) (Fig. 2V, W), with intermediates in, for example, P. blanchetiana. The marginal ribs of cypsela extend into the rostrum. Podocoma notobellidiastrum and P. rivularis are erostrate, albeit attenuate apically. The marginal ribs are thin (Fig. 2X). Cypsela in Podocoma are sericeous with short twin hairs. Glandular trichomes were not found on the fruits of Podocoma.

Cypsela anatomy: Cypsela transections are narrow-elliptic in outline with two prominent lateral lobes that correspond to the ribs. The pericarp consists of a single-layered epicarp. The epicarp cells are thinned, relatively large and covered by a distinguishable cuticle. The mesocarp is absent in the anteroposterior side of the cypsela. In the lateral lobes, the mesocarp is of sclerenchymatous bundles with a few parenchyma cells (Fig. 3F). Wide intercellular spaces are found on both sides of the parenchyma. Centrally, a vascular trace is observed. In, for example, P. bellidifolia, irregular spaces among the sclerenchymatous cells are distinguishable, which could represent secretory cavities. Secretory cavities in cypsela have been described in Astereae (Mukherjee & Sarkar, 2001), and they are also found in leaves of Podocoma. The epidermal cells of the testa are sclerenchymatous and inverted U-shaped, with outer tangential and radial walls thicker than the inner tangential walls. In some cases, a single layer of endosperm persists, although its structure is not well organized. Grau (1975) and Velez (1981) analysed the cypsela anatomy of some members of Podocominaceae sensu Nesom (1994b). The general anatomical structure of cypsela observed here for Podocoma is in agreement with that of Microgyne trifurcata Less. described by Grau (1975) and Sancho, Bonifacio & Pruski (2006), and that of Podocoma described by Velez (1981). Our study confirms the mesocarp structure of Podocoma reported by Mukherjee & Sarkar (2001).

Pappus
The pappus of Podocoma is white, turning brownish when dry, except in P. notobellidiastrum and P. rivularis, in which it remains whitish. The series are subequal or unequal in length, but there are no substantial differences between the shortest and the longest series. The setae are slightly wider at the base and narrower at the tapered apex. Setae are scabridulous along their whole length (Fig. 2Y, Z). In some cases, the setae are almost smooth.
DISCUSSION
TAXONOMIC IMPLICATIONS
The morphological and anatomical study of all species of Podocoma (sensu Nesom & Zanowiak, 1994), together with previous molecular and morphological phylogenetic analyses, led us to two main conclusions.

First, morphological discontinuities between the traditional species of Podocoma (Podocoma s.s.) and the two species recently included in Podocoma (P. notobellidiastrum and P. rivularis, from Conyza) are evident. Some of the characters that show these discontinuities are indicated in Table 2. Nesom & Zanowiak (1994) mainly supported the inclusion of these two species within Podocoma on the basis of the attenuate cypsela apex (‘incipiently formed neck’) that would be close to the rostrate cypsela of Podocoma s.s. From that point of view, other genera of Podocoma (sensu Nesom & Robinson, 2006) that have attenuate cypsela apices (i.e. Asteropsis and Inulopsis) should be included in Podocoma without taking into consideration their diagnostic characters different from those of Podocoma. This fact, added to other morphological characters that differentiate P. notobellidiastrum and P. rivularis from Podocoma s.s. (e.g. pappus and corollas), shows weak justification for maintaining these two species within Podocoma. Moreover, in agreement with morphology, the monophyly of Podocoma (including P. notobellidiastrum and P. rivularis) was not supported by molecular data (Sancho & Karaman-Castro, 2008), and the results suggest the segregation of these two species within a taxon distinct to Podocoma (G. Sancho, unpubl. data).

Second, within Podocoma s.s., three groups can be distinguished, each including species that are morphologically closely related. These groups agree with those obtained, although with low support, in the recent morphological phylogenetic analysis of Sancho & Karaman-Castro (2008). The first group contains P. asperrima and P. spegazzinii with caudine linear-elliptic and denticulate leaves. The second group includes P. hirsuta and P. regnellii, characterized by their caudine, elliptic and conspicuously denticate leaves. The third group comprises a complex of three species, P. bellidifolia, P. blanchetiana and P. hieracifolia, mainly recognized by their oblanceolate, obovate or broadly obovate, and denticate leaves, usually restricted to the proximal one-third (or sometimes one-half) of the stems. Each of the three species seems to be distinct when analysing the type specimens. However, the additional specimens examined show overlap in some of the diagnostic features. The main characters used to separate the three species are leaf pubescence and cypsela neck length. The leaf pubescence is usually influenced by environmental factors, and it is problematic to define species solely on the basis of this character. With respect to cypsela neck length, P. bellidifolia has the shortest neck (especially in the type specimens), and P. blanchetiana and P. hieracifolia have the longest. However, some specimens with intermediate cypsela neck lengths add confusion to the identification of the three species. It seems that two equally valid answers to this problem can be considered: first, to treat the three species as synonyms, in which case the name P. hieracifolia would have priority; or, second, to treat the three species within a complex, but keeping them independent. In this treatment, we followed the second option.

On the basis of these two main conclusions, we propose the following taxonomy for Podocoma.

TAXONOMY
Podocoma Cass

(Greek ‘podos’ (ποδος) = foot, ‘come’ (χομη) = hair; probably refers to the pappus supported by the cypsela ‘foot’ or rostrum.)

Description: Perennial herbs, with rhizomatous subterranean system bearing usually thick fibrous roots, stems single, erect, striate. Leaves alternate, simple, sessile, subrosulate or caudine; blades broadly elliptic, oblanceolate, obovate, broadly obovate, exceptionally linear-elliptic, primary vein medial, single or with two

lateral basal or suprabasal veins, margins denticulate or dentate; intermediate leaves, when present, slightly clasping, distal leaves reduced, clasping. Capitula solitary or more commonly in corymbose arrays, terminal, heterogamous, short-radiate, long-pedunculate; involucre campanulate to broadly campanulate, multi-seriate, gradate, outer phyllaries ovate, acute, central and inner phyllaries linear-elliptic, acute; receptacle subconvex, epaleate. Ray florets pistillate, two- to four-seriate; corolla white often turning purplish when mature, limb short, narrow, oblong; style branches linear, glabrous or dorsally weakly papillose at apex. Disc florets hermaphrodite, corolla yellow often dis-tally turning purplish when mature, limb five-lobed; anther thecae rounded or subconvex, epaleate. Ray florets pistillate, two- to four-seriate; corolla white often turning purplish when mature, limb short, narrow, oblong; style branches linear, glabrous or dorsally weakly papillose at apex. Disc florets hermaphrodite, corolla yellow often dis-tally turning purplish when mature, limb five-lobed; anther thecae rounded or subconvex, epaleate.

Distribution and habitat: Podocoma is endemic to southern South America and occurs in Argentina, Brazil, Bolivia, Paraguay and Uruguay up to c. 1300 m (Fig. 4). Its species inhabit open and sunny areas, and prefer high, fertile and clayish soils. For instance, in Argentina, Podocoma has been collected in dry grasslands (e.g. Corrientes, Chaco and Salta provinces), in Elyonorus Bartl. prairies (Poaceae; Chaco province), in pristine savannas with palms (Butia yatay Becc.; Misiones province) or on rocky slopes of relatively low mountain ranges (Buenos Aires province). Podocoma occurs in Brazil and Uruguay in similar habitats to those found in the Buenos Aires mountain ranges (Tandilia and Ventania). Close floristic relationships have been demonstrated among the biota of the moun-
tain ranges of these three countries (e.g. Crisci et al., 2001). In Brazil and Paraguay, Podocoma has been found in the ‘cerrado’ biogeographical province, in grasslands (‘campo limpio’), on rocky slopes of moun-tain ranges and, occasionally, in scrub with sandy soil. Some species seem to adapt more readily to variable habitats. This is the case for P. hirsuta, which has been found in clearings of semi-humid forest and disturbed areas, such as those close to railway tracks. Popula-
tions of Podocoma are not abundant and most collect-
ors have indicated the species as locally rare or scarce. This, and the fact that many of the original habitats of Podocoma have been disturbed (e.g. many pristine areas of Misiones province in Argentina have been replaced by cultivation or pine forests), place some species of this genus in a vulnerable conservation status.

1. Podocoma bellidifolia Baker in Martius, Fl. Bras. 6 (3): 16. 1882

Type: ‘Lagoa Santa, Brazil’, Warming s.n. (lectotype K designated here, photo LP; probable isoleitotypes C photo MO, NY, S); Brazil, ‘Prov. Minas Geraes Caldas’, Regnell III 730 (isotype US photo LP).

Notes: 1. The specimen ‘Warming s.n.’ at Copenhagen indicates: ‘29-II-1864’; that at S indicates ‘2-X-1864’, and that in NY indicates ‘9-X-1893’, with a note by J. Pruski pointing out that as a probably wrong date. 2. The protologue indicates ‘Habitat in prov. Minas Geraes collibus editis petrosis ad Caldas’.

= Leucopsis podocomoides Baker in Martius, Fl. Bras. 6 (3): 6. 1882. ‘Prov. Minas Geraes: Caldas, 1845, Widgren 219’ (lectotype K designated here; isoleitotypes S X 2); ‘in Brazilia australi sine loci des-
ignatione’, Sello 912 (syntype not seen).

Description: Herbs 30 to c. 50 cm tall, basal 1.0–2.5 cm of stem leafless, rest of stem leafy up to middle of plant, laxly pilose, trichomes long. Proximal leaves with blades oblanceolate, 8.0–9.5 × 1.5–2.7 cm, base attenuate, slightly auriculate and clasping, apex sub-acute, primary veins three, one medial and two
lateral basal or suprabasal, margins shortly denticulate, loosely hirsute or pilose on both surfaces, especially on main veins and margins (long conical trichomes); distal leaves reduced, 5.0–6.5 × 0.5–1.0 cm, narrowly linear or elliptic, clasping. Capitula solitary to three, peduncles 12–14 cm long, hirsute; involucre 10–12 mm high, campanulate; phyllaries three- to four-seriate, gradate, margins pale, dorsally greenish when dry, outer phyllaries 3.5 × 0.5–0.8 mm, narrow-ovate, acute, slightly pubescent (short, flagellate, filiform trichomes, twin hairs and a few conical trichomes with thin-walled cells), central and inner phyllaries 8–9 × 1.0–1.1 mm, linear-elliptic, acute, dorsally slightly pubescent at apex, trichomes short, margins deeply fimbriate; receptacle subconvex, deeply alveolate. Ray florets, three-seriate; corolla 12 mm long, limb narrow, short, c. 4 mm, oblong, glabrous, tube narrow, densely hairy (simple, biseriate glandular trichomes); style branches dorsally glabrous. Corollas of disc florets 10.0–10.5 mm long, densely hairy (simple, biseriate glandular trichomes on tube and lobes), lobes 0.8–1.0 mm long; anthers 1.7–2.0 mm long, thecae auriculate at base, apical appendage oblong, obtuse; style branches 1.6–1.8 mm

Figure 4. Distribution of Podocoma.
long, distal three-quarters dorsally pilose. Cypselae 5–7 mm long, margins strongly ribbed, narrowed at apex into a short but conspicuous rostrum, rostrum 1.0–1.2 mm long, cypselae of disc florets sometimes sterile; pappus c. 12 mm long, setae two-seriate, unequal (Fig. 5).

Phenology: Flowering from October to February.

Distribution and habitat: Brazil (states of Goiás, Minas Geraes, Paraná and São Paulo) (Fig. 7) at 720 m. In ‘campos’, sandy peats of ‘campo-cerrado’ transition, steep rocky slopes, scrubby areas and base of ‘chapada’ escarpments, in sunny places or semi-shade. It has been indicated as locally scarce.

Notes: This species is similar to P. blanchetiana and P. hieracifolia in vegetative characters, but is recognized by its strongly ribbed cypselae with a short rostrum. Its oblong obovate leaves, often cauleine with three primary veins, help to identify this species. The Brazilian specimens (including the types) have pilose leaves with long and curved trichomes. However, the Argentine and Paraguayan specimens studied here and previously determined as P. bellidifolia, although similar in general aspect and leaves, have shorter and denser trichomes. The rostra of cypselae in these specimens are indeed longer than those of the type specimens. This raises difficulties with respect to defining the limits of the species when other than the type specimens are analysed. A possible explanation for this situation could be hybridization, probably between P. bellidifolia and P. hieracifolia, but this could be tested only with more specific studies. In this treatment, we prefer to treat P. bellidifolia as dibuted only in Brazil. The species is regarded here as doubtful for Argentina and Paraguay, and the Argentine and Paraguayan specimens are cited as P. aff. bellidifolia.

PARAGUAY. Caaguazú: Estancia Primera, x.1927, Rojas 5124 (LP).

2. PODOCOMA BLANCHETIANA Baker in Martius, Fl. Bras. 6 (3): 15. 1882

Description: Herbs 25–35 cm tall, stems leafy at base, laxly pilose, trichomes long. Leaves congested at the base; proximal leaves with blades obloneolate, obovate or broadly obovate, 8.0–9.5 × 3.0–3.5 cm, base attenuate, slightly clasping, apex subacute, primary veins three, one medial and two lateral basal or suprabasal, margins shortly denticate, sparse pilose on both surfaces (long conical trichomes); distal leaves reduced, 3.5–4.0 × 1.0–1.5 cm, narrowly elliptic, clasping. Capitula two or three, peduncles 2–8 cm long, pilose, trichomes long; involucre 9–11 mm high, campanulate; phyllaries three to four-seriate, gradate, margins pale, dorsally greenish and tips purplish when dry, outer phyllaries 4–5 × 0.6–0.7 mm, narrow ovate, acute, slightly pilose to subglabrous (short conical trichomes with thin-walled cells, and a few flagellate, filiform trichomes and simple, biseriate glandular trichomes), central and inner phyllaries 8.0–12 × 0.8–0.9 mm, linear-elliptic, acute, dorsally subglabrous, margins finely fimbriate at apex; receptacle subconvex, deeply alveolate. Ray florets three-seriate; corolla purplish in mature florets, 7.0–7.5 mm long, limb narrow, short, 2.2–2.8 mm, oblong, glabrous, tube narrow, densely hairy (simple, biseriate glandular trichomes and a few conical with thin-walled cells); style branches dorsally glabrous. Corolla of disc florets 8.0–8.5 mm long, hairy (simple biseriate glandular trichomes on tube and lobes), lobes 0.5–0.8 mm long; anthers c. 2 mm long, thecae auriculate at base, apical appendage oblong, subobtuse; style branches 1.8–2.0 mm long, distal three-quarters dorsally pilose. Cypselae 5.5–7.5 mm long, margins ribbed, narrowed at apex into a conspicuous rostrum, rostrum 2–3 mm long; pappus c. 7–9 mm long, setae three-seriate, unequal (Fig. 6).

Figure 5. *Podocoma bellidifolia*: A, plant; B, capitulum; C, outer phyllary; D, inner phyllary; E, ray corolla; F, style of ray floret; G, disc corolla; H, stamen of disc floret; I, style of disc floret; J, cypsela with pappus. (A, B from Widgren 219, S; C–J from Dusén s.n., S.)

Figure 6. *Podocoma blanchetiana*: A, plant; B, capitulum; C, outer phyllary; D, inner phyllary; E, ray corolla; F, style of ray floret; G, disc corolla; H, stamen of disc floret; I, style of disc floret; J, cypsela with pappus. (From Krapovickas et al. 26381, CTES.)
Phenology: Flowering from September to April.

Distribution and habitat: Argentina (Corrientes and Misiones provinces), Bolivia (Santa Cruz), Brazil (Santa Catarina, Bahia) and Paraguay (Alto Paraná) (Fig. 7). In grasslands and savannas with Butia yatay (Argentina). The specimen from Bolivia was collected in semi-deciduous and subhumid forest, but in rocky areas dominated by grass at 1000 m above sea level. It is indicated as locally scarce.

Notes: 1. The isolectotype in NY has pubescent phyllaries, the inner at least pubescent at the apex. However, the additional specimens examined show variation; indeed, some have glabrate phyllaries. Baker (1882: 15) described the phyllaries as ‘exterioribus dorso pubescentibus’. It could be the case that variation in morphological characters, e.g. phyllary pubescence, was not included in the description as Baker examined only one collection.

2. Some of the specimens from Argentina (Corrientes) have broad leaves and pubescence of long trichomes. There is a gradation in leaf trichome length throughout the specimens studied. The extreme of that gradation, specimens with leaves with long trichomes, could be treated as a variety within P.
blanchetiana. However, because variation is continuous, we would rather avoid the recognition of new entities.

Specimens examined: ARGENTINA. Corrientes: Santo Tomé, Garruchos, 22.xii.1954, Burkart 19696 (SI); Ituzaingó, road to Playadito, 24.ix.1974, Krapovickas et al. 26315 (CTES); Playadito, 24.ix.1974, Krapovickas et al. 26381 (CTES); Santo Tomé, 5.i.1972, Krapovickas et al. 21001 (CTES). Misiones: San Javier, 13.iii.1969, Krapovickas et al. 15191 (CTES, LP); Campo Grande, 1.v.1957, Smith & Klein 10020 (US).

Description: Herbs 20–50 cm tall, stems usually only leafy at base, exceptionally with leaves in proximal half, laxly pubescent, trichomes short. Leaves usually restricted to proximal third of stem, most distal ones reduced; proximal leaves with blades ob lanceolate, or less commonly broadly oboval and suprabasal, margins shortly denticulate, usually dense-pubescent on both surfaces (short conical and a few small flagellate filiform trichomes); distal leaves reduced, 3.5–4.0 x 1.0–1.5 cm, narrowly elliptic, clasp ing and with auriculate base. Capitula two to eight, peduncle 2–8 cm long, arachnoid and pubescent, trichomes short; involucres 9–12 mm high, campanulate to broadly campanulate; phyllaries four- to five-seriate, gradate, margins pale when dry, dorsally green with purple tips when live, outer phyllaries 4–5 x 0.7–1.0 mm, narrow ovate, acute, pubescent (short conical, flagellate filiform and simple biseriate glandular trichomes), central and inner phyllaries 7.5–12.0 x 0.7–0.9 mm, linear-elliptic, acute, dorsally pubescent, trichomes short, margins fimbriate to lac erate at apex; receptacle flat, deeply alveolate. Ray florets four-seriate; corolla c. 8 mm long, limb narrow, short, 2.5–2.8 mm, oblong, glabrous, tube narrow, densely hairy (simple biseriate glandular trichomes and a few conical trichomes with thin-walled cells); style branches dorsally glabrous. Corollas of disc florets 6.0–6.5 mm long, hairy (simple, biseriate glandular trichomes and a few conical trichomes with thin-walled cells on tube and lobes), lobes 0.3–0.5 mm long; anthers c. 1.5 mm long, thecae subacute at base, apical appendage oblong, obtuse; style branches 1.8 mm long, distal three-quarters dorsally pilose. Cypselae 6–7 mm long, margins strongly ribbed, narrowed at the apex into a conspicuous rostrum, rostrum 2–3 mm long; pappus c. 7–8 mm long, setae three-seriate, unequal (Figs 8, 13A).

Phenology: Flowering from October to July.

Distribution and habitat: This species has been collected in Argentina (Buenos Aires, Catamarca, Chaco, Corrientes, Entre Ríos, Jujuy, La Pampa (Troiani & Steibel, 1999), Misiones), Brazil (‘Brasilia australis’), Baker, 1882; ‘Parana’, Malme, 1933), Paraguay and Uruguay (Florida, Montevideo) (Fig. 9). In grasslands (e.g. with *Elyonurus* sp., Chaco, Argentina) or rocky slopes of low ranges (e.g. Buenos Aires mountain ranges, Argentina, and Montevideo mountain ranges, Uruguay). In Argentina, it was also found in fertile and clay soils, in grasslands surrounded by *Podocarpus parlatorei* Pilg. forest at 1600–1750 m (Catamarca). It has been indicated as locally scarce. We were unable to see Brazilian material.
Figure 8. Podocoma hieracifolia: A, plant; B, capitulum; C, outer phyllary; D, inner phyllary; E, ray corolla; F, style of ray floret; G, disc corolla; H, stamen of disc floret; I, style of disc floret; J, cypsela with pappus. (A, B from Cabrera 8119, LP; C–E, G, J from Schulz 256, LP; F, H, I from Cabrera 10275, L P .)
Notes: 1. This is a polymorphic species that usually has subrosulate and oblanceolate leaves with denticulate margins, but, in some cases, it has leaves in the proximal third of the plant with dentate margins.

2. This species, together with *P. bellidifolia* and *P. blanchetiana*, constitutes a complex of species that are difficult to separate consistently. It seems that the differentiation of the three species, especially *P. hieracifolia* and *P. blanchetiana*, relies mostly on pubescence length, which may be subject to environmental variation. As pointed out by Hassler (1919: 27), the specimens of *P. blanchetiana var. intermedia* have features of both *P. blanchetiana* and *P. hieracifolia*. The specimens of *P. blanchetiana var. intermedia* have more leafy stems and are more robust plants than those of *P. hieracifolia*, although the relatively dense pubescence with short trichomes is similar. We prefer to treat this variety under the synonymy of *P. hieracifolia*, although the limits of this species are not always clear.

3. It is apparent that *P. foliosa* is not a distinct species. Indeed, it has been regarded as a synonym of...
P. bellidifolia (Nesom & Zanowiak, 1994). We agree with the differences pointed out by Malme (1933: 64), when comparing it with P. hieracifolia and P. bellidifolia. Although P. foliosa has characters in common with both species, we prefer to consider it as a synonym of P. hieracifolia because of its identical pubescence (short and dense). The fact that P. foliosa has cauline leaves and a shorter cypselal rostrum than typical P. hieracifolia is not enough to separate the species. Many specimens of P. hieracifolia do not have strictly rosulate leaves, but some of them on the proximal third of the stem.

4. The specimen in US, cited by Nesom & Zanowiak (1994) as probably a new species, is, from our point of view, only a specimen of P. hieracifolia with broader leaves.

5. Podocoma blanchetiana var. intermedia and P. foliosa show the complexity of this group of three species (P. bellidifolia, P. blanchetiana and P. hieracifolia), which could, indeed, have been the subject of hybridization processes.

Specimens examined: ARGENTINA. Buenos Aires: Sierra de la Ventana, 24.v.1938, Cabrera 4493 (LP); ib., 14.xi.1943, Cabrera 8119 (LP); ib., 30.iii.1978, Proyecto Ventania 87 (LP); ib., 30.iii.1978, Proyecto Ventania 112 (LP); Pehuajó, 3.iii.1946, Cabrera 10275 (LP); ib., 17.iv.1988, Delhey 6885 (LP); Sierra de Tandil, 5.iv.1972, Frangi 440 (LP); Sierra La China, 28.v.1932, Millán 2168 (LP); Trenquelauquen, 19.iv.1901, Spegazzini s.n. (LPS 11428 in LP). Catamarca: Ambato, 4.iv.1995, Saravia et al. 13445 (CTES). Chaco: Fontana, vi.1937, Meyer 2307 (LP); Colonia Benítez, 1.iii.1932, Schulz 207 p.p. (LP) [mounted on the same sheet with a specimen of P. spegazzinii]; ib., vi.1933, Schulz 256 (CTES, LP); ib., s.n., Schulz 4277 (CTES, LP); San Fernando, v.1937, Schulz 2678 (CTES). Córdoba: Carlos Paz, 11.iii.1939, Bridarolli 605 (LP); Colón, Salsipuedes, 16.iv.1935, Dawson 16 (LP); Calamuchita, 14.xii.1946, Hunziker 7180 (LP). Corrientes: Mburucuyá, 14.x.1954, Cabrera 11776 (LP); ib., 4.vii.1952, Pedersen 1765 (US) [This specimen was cited by Nesom & Zanowiak (1994) as probably belonging to a new species. From the authors point of view, it belongs to P. hieracifolia as part of the variability of this species, e.g. broadly obovate leaves]; Santo Tomé, 5.xi.1970, Krapovickas et al. 17206 (CTES); Ituzaingó, 2.iii.1987, Krapovickas et al. 41032 (CTES); ib., 5.iii.1987, Krapovickas et al. 41197 (CTES); ib., 20.x.1970, Krapovickas & Cristobal 16074 (CTES); Empedrado, 3.iv.1962, Pedersen 6487 (LP); Curuzú Cuatiá, 3.v.1986, Pedersen 14554 (CTES); Barón de Astrada, 16.i.1977, Schinini 14087 (CTES). Entre Ríos: Pedernal, iii.1934, s.leg. 361 (LP). Jujuy: El Carmen, 23.ii.1970, Cabrera & Frangi 20729 (LP). Misiones: Candelaria, iii.1961, Martinez Crotetto 9491 (CTES).

URUGUAY. Florida: Rio Ti y Arroyo Mausairlagra, 26.xii.1936, Rosengurt B. 762 (LP). Montevideo: v.1874, Gibert 1309 (K); ib., i.1876 [ii/77], Arechavaleta 4065 (K); ib., v.1877, Frechard s.n. (LP). Rivera: Arroyo Lunarejo, 19.ii.2004, Sancho & Bonifacio 98 (LP) [this specimen, cited by Sancho & Karaman-Castro (2008), has features of habit and pubescence that depart from those typical of P. hieracifolia. It was found in forest storey, in shade, and it may be that or potential hybridization which could have influenced these features]. Without precise locality: Campos Uruguayos, i.1897, Arechavaleta 31 (K) [the collection number does not appear to be correlated with the collection date].

4. Podocoma hirsuta (Hook. & Arn.) Baker in Martius Fl. Bras. 6 (3): 15. 1882

Type: Brazil, 'moist ground, Rio Grande, Tweedie s.n.' (lectotype K designated here); Argentina, Guardia Argentino in North Patagonia, Tweedie s.n. (syntype not seen).

Note: The protologue indicates ‘Rio Grande, and Guardia Argentino in North Patagonia’.

Description: Herbs 50 to c. 100 cm tall, stems leafy, hirsute. Leaves cauline, progressively reduced towards stem apex; blades elliptic, 6–15 × 3.5–6.0 cm, base subauriculate, slightly clasping, apex subacute to acute, primary vein single, medial, margins dentate to deeply dentate, hirsute on both faces (long conical trichomes, a few short conical trichomes with thin-walled cells and flagellate filiform trichomes), intermediate leaves similar to most proximal ones,
distal leaves reduced, 3–4 × 0.5–1.0 cm, lanceolate, deeply dentate at apex. Capitula 3–30, peduncle 1.5–3.0 cm long, hirsute; involucre 7–9 mm high, broadly campanulate when live, campanulate when dry; phyllaries four- to five-seriate, gradate, green when live, margins pale, dorsally greenish when dry, outer phyllaries 3.0–3.5 × 0.5 mm, narrow-ovate, acute, subglabrous (simple, biseriate glandular trichomes, flagellate, filiform trichomes and a few twin hairs); style branches 0.9–1.1 mm long, style branches dorsally glabrous (simple, biseriate glandular trichomes, style branches flagellate, filiform trichomes), margins fimbriate at apex; receptacle subconvex, deeply alveolate. Ray florets three- to four-seriate; corolla 5–8 mm long, limb narrow, relatively short, 1.5–2.5 mm, oblong, glabrous, tube narrow, hairy (simple, biseriate glandular trichomes); style branches dorsally glabrous. Corollas of disc florets 6.0–6.5 mm long, hairy (simple biseriate glandular trichomes and a few conical trichomes with thin-walled cells on tube and lobes), lobes c. 0.5 mm long; anthers 1.3 mm long, thecae auriculate at base; apical appendage narrowly ovate, subobtuse; style branches 0.9–1.1 mm long, distal three-quarters dorsally pilose. Cypselae 6–7 mm long, margins ribbed, densely villous, narrow at apex into a conspicuous rostrum, rostrum 2.5–2.8 mm long; pappus c. 9 mm long, setae two- or three-seriate, subequal (Figs 10, 13B).

Phenology: Flowering throughout the year, especially in Brazil.

Distribution and habitat: Argentina (Buenos Aires, Chaco, Córdoba, Corrientes, Entre Ríos, Formosa, Misiones, Santa Fé and Tucumán), Bolivia, Brazil (Paraná, Rio Grande do Sul, Santa Catarina and São Paulo), Paraguay (Alto Paraná) and Uruguay (Canelones, Florida and Soriano) (Fig. 12). Collected in a wide diversity of habitats, including disturbed areas such as railway tracks. Podocoma hirsuta lives in grasslands, margins of forest and xerophytic forest, in sandy, high and fertile soils. In some locations it has been indicated as scarce and, in others, as frequent.

Note: The differences between P. hirsuta and P. regnellii rely only on the depth of the marginal teeth of the leaf blades, which is variable. Here, we regard P. regnellii as a synonym of P. hirsuta.

Additional specimens examined: ARGENTINA. Buenos Aires: Las Palmas, 23.i.1952, Boelcke 6612 (SI); ib., 23.iv.1952, Boelcke 6626 (SI); Delta del Paraná, Carabelas, 12.ii.1932, Burkart 4431 (SI); ib., 28.xii.1952, Burkart 19028 (SI); ib., Canal Arana, 21.i.1931, Cabrera 1630 (LP); ib., Paraná de las Palmas, xii.1938, Cabrera 4892 (LP); Punta Lara, 14.i.1932, Cabrera 2020 (LP); ib., 10.ii.1929, Cabrera 743 (GH, LP); ib., 3.iii.1930, Cabrera 1370 (LP); ib., 4.ii.1940, Dawson 944 (LP, NY); Cerro La Peregina, 11.xii.1938, Eyerdam et al. 23685 (K, SI); Los Angeles, 20.iv.1899, Gibson 13 (BM); Mar del Plata, 7.i.1933, Hicken s.n. (SI); Balcarce, 3–5.i.1943, Hunziker 2171 (LP); Tornquist, 28.iii.2004, Long 2224 (LP); Isla Martín García, v.1935, Pastore 305 (LP); Pergamino, 8.v.1965, Schulz 9382 (CTES); Tornquist, 1.x.1985, Spagazzini s.n. (LPS 11429 in LP); La Plata, Spagazzini s.n. (LPS 11430 in LP); Ramallo, 22.ii.2002, Torres R. & Trevisán 804 (LP). Chaco: s.n. loc., x.1917, Jörgensen 2043 (GH, SI, US); Fontana, xii.1937, Meyer 2518 (LP); 1° de Mayo, vi.1930, Schulz 76 (CTES, LP); ib., v.1943, Schulz 3920 (CTES). Córdoba: San Javier, 13.ii.1940, Bridaroli 1602 (LP); Ascochinga, 18.iii.1937, Giardelli 884 (LP, SI); ib., 12.ii.1938, Giardelli 1210 (SI); San Justo, 3.iii.1957, Hunziker 13401 (LP, NY); Ascochinga, 12.ii.1938, Nicora 1847 (LP). Corrientes: Esquina, 2.iii.1980, Ahumada et al. 3483 (CTES); Santo Tomé, 21.x.1954, Cabrera 11955 (LP); Ituzaingó, 20.ix.1970, Kropovichkas 16074 (LP); Esquina, 14.iii.1975, Kropovichkas et al. 27724 (CTES, SI); Río Miriñay, 20.ii.1972, Kropovichkas & Cristóbal 21762 (CTES, LP); Lavalle, 25.xi.1979, Schinini et al. 19109 (CTES). Entre Ríos: Diamante, 15.xii.1960, Burkart 22351 (CTES, SI); Concordia, 4.ii.1927, Burkart 1166 (SI); ib., 21.xii.1962, Burkart 24039 (SI); Delta del Paraná, 25.xi.1932, Burkart 5106 (SI); Federación, 14.iv.1960, Burkart & Gammero 21595 (SI); Parque San Martín, 22.xii.1957, Cabrera 12408 (LP); Río Ceibo, 23.xi.1931, Cabrera 1936 (LP); Pedermar, iv.1934, Friedman 388 (LP); Parana, ii.1948, Martinez Crovetto 4773 (SI). Formosa: sine loc., iii.1895, Jörgensen 2903 (GH, SI, US). Misiones. Loreto, 1.ii.1933, Grünner 1285 (LP); Canigüas, 6.vi.1949, Giardelli 1210 (CTES); Santo Tomé, 21.x.1954, Cabrera 2020 (LP); Cerro La Peregina, 11.xii.1957, Hunziker 13401 (LP, NY); Ascochinga, 12.ii.1938, Nicora 1847 (LP). Tucumán: Capital, xii.1923, Schinini et al. 19109 (CTES).
Figure 10. *Podocoma hirsuta*: A, proximal part of plant; A₁, distal part of plant; B, capitulum; C, outer phyllary; D, inner phyllary; E, ray corolla; F, style of ray floret; G, disc corolla; H, stamen of disc floret; I, style of disc floret; J, cypsela with pappus. (From Sancho & Bonifacino 73, LP.)
Description: Herbs 30 to c. 90 cm tall, stems leafy, glabrous to laxly pilose. Leaves cauline, progressively reduced towards stem apex; blades linear-elliptic, 5.5–9.0 × 0.4–1.0 cm, base subauriculate, slightly clasping, apex subacute to acute, primary vein single, medial, margins short-denticulate, strigose to subglabrous on both surfaces (conical, flagellate filiform medially, margins short-denticulate, strigose to subglabrous). The linear-elliptic leaves, unusual in Podocoma, are marked on the type sheet with a '?'. This plant is the one on the type of *Podocoma asperrima* which has relatively soft leaves.

Notes: 1. Nesom & Zanowiak (1994) suggested that *P. asperrima* and *P. spegazzinii* should be treated as a single species and we agree with that concept. Cabrera's name, *P. spegazzinii*, has priority over Malme's.

Distribution and habitat: This species has been collected rarely. The type collection was found in northwestern Argentina in Pampa Grande and La Viña (Salta province), presumably in grasslands, although no specifics about the habitat were given. It has also been collected in eastern Argentina (humid eastern side of Chaco province), Uruguay (Rivera) and southern Brazil (Santa Catarina) (Fig. 12). It inhabits high river sides or occurs close to streams, on fertile, sandstone soils, in sunny places, mixed with other low herbaceous vegetation composed of grass and other dicotyledonous herbs, alternating with scrubby areas. It is locally rare.

Notes: 1. There is a specimen at MO labelled as *P. asperrima* at S has three other specimens of *P. asperrima* and one of *P. spegazzinii* at S has three other specimens of *P. spegazzinii*. Despite some differences between the type specimens of *P. asperrima* and *P. spegazzinii* other two and is marked on the sheet with a '?'. This plant is the one on the type sheet with leaves more similar to those of the holotype of *P. spegazzinii* which has relatively soft leaves. The paratype of *P. spegazzinii* (from Salta, La Viña), however, has coarser leaves, similar to those of the other two specimens of *P. asperrima* on the type sheet. Despite some differences between the type specimens of *P. asperrima* and *P. spegazzinii* (peduncles lanuginose-araneose immediately below the capitula, few soft trichomes on phyllaries, anthers with relatively short filament collar vs. peduncles pilose nonlanuginose-araneose immediately below the capitula, presence of conical trichomes on phyllaries, and anthers with relatively long filament collar, respectively), they were not substantial enough to justify recognition of these species as separate entities. The linear-elliptic leaves, unusual in *Podocoma*, the twin hairs on the phyllaries and the other remaining vegetative and reproductive characters justify the merging of these taxa.
Figure 11. *Podocoma spegazzinii*: A, proximal part of plant; A₁, distal part of plant; B, capitulum; C, outer phyllary; D, inner phyllary; E, ray corolla; F, style of ray floret; G, disc corolla; H, stamen of disc floret; I, style of disc floret; J, cypsela with pappus. (From Sancho & Bonifacino 93, LP.)

ACKNOWLEDGEMENTS

We would like to thank J. M. Bonifacino for his valuable help whilst undertaking field trips in Uruguay and for allowing us to use his photographs. We acknowledge L. Brouillet and the reviewers for useful comments on the manuscript. We are also grateful to the curators of BM, BR, CTES, GH, FI, K, LP, MO, MVFA, NY, P, SI and US who provided material and photographs for examination. Research for this article was supported by Agencia Nacional de Promoción Científica y Tecnológica, SECYT, Argentina, Comisión Nacional de de Investigaciones Científicas y Tecnológicas, CONICET, and the Myndel Foundation (GS).
Figure 13. A, Capitulum of *Podocoma hieracifolia*. B, Capitulum of *P. hirsuta*. C, Plant apex, *P. spegazzinii*, showing one capitulum with white corollas and other with purplish corollas. D, Mature capitulum of *P. spegazzinii*.
REFERENCES

LIST OF EXCLUDED NAMES

Podocoma bartsiifolia S.F.Blake, Contributions from the United States National Herbarium. Smithsonian Institution 20: 534, pl. 45. 1924 = Blakiella bartsiifolia (S.F.Blake) Cuatrec.

Podocoma notobellidiastrum (Griseb.) G.L.Nesom, Phytologia 76: 112. 1994. (in nov. gen.?).

Podocoma rivularis (Gardner) G.L.Nesom, Phytologia 76: 112. 1994. (in nov. gen.?).
