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Quantum entanglement in a many-body system exhibiting multiple quantum phase transitions
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We investigate the quantum entanglement-related features of the many-body model of Plastino and 
Moszkowski [N. Cimento 47 (1978) 470], This is an exactly solvable N-body, SU2 two-level model exhibiting 
several quantum phase transitions. We show that these transitions happen to be also entanglement-transitions 
associated with different many-body Dicke states. The main properties of the model considered here make 
it particularly well suited to study, by recourse to exact analytical computations, some connections between 
quantum phase transitions and quantum entanglement-theory.
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1. INTRODUCTION

A quantum phase transition (QPT) is a phase transition be­
tween different quantum phases (phases of matter at zero tem­
perature). Contrary to classical phase transitions, quantum 
phase transitions can only be accessed by varying a physical 
parameter - such as magnetic field or pressure - at absolute 
zero temperature. The transition describes a structural change 
in the ground state of a many-body system. Such quantum 
phase transitions can be first-order phase transition or contin­
uous. To understand quantum phase transitions, it is useful to 
contrast them to classical phase transitions (CPT) (also called 
thermal phase transitions). A CPT describes a cusp in the 
thermodynamic properties of a system. It signals a reorga­
nization of the particles. A typical example is the freezing 
transition of water describing the transition between liquid 
and ice. The classical phase transitions are driven by a com­
petition between the energy of a system and the entropy of 
its thermal fluctuations. A classical system does not have en­
tropy at zero temperature and therefore no phase transition 
can occur.
In contrast, even at zero temperature, a quantum-mechanical 
system can still support phase transitions. As a relevant phys­
ical quantity is varied (represented by a parameter in the sys­
tem’s Hamiltonian) it is possible to induce a phase transi­
tion into a different phase of matter. A paradigmatic exam­
ple of a quantum phase transition is the well-studied super- 
conductor/insulator transition in disordered thin films which 
separates two quantum phases having different symmetries. 
Quantum magnets provide another example of QPT. Thus, 
in infinite as well as in finite systems a type of phase tran­
sition, often referred to as a quantum phase transition, may 
occur at T=0. Such quantum phase transitions generally sig­
nal a change in the correlations present in the ground state 
of the system. For a system described by a Hamiltonian, 
H(^) = Hq + , which varies as a function of the coupling 

constant the presence of a QPT can easily be understood in 
the following manner: level crossing may come about and the 
ground state energy is no longer analytic nor monotonic. Al­
though there are other valid mathematical reasons that lead to 
the loss of analyticity, the above simple explanation will suf­
fice for our purposes and provides a simple means for defining 
a QPT.

2. FORMALISM TO BE EMPLOYED

We briefly describe below the formalism that we are going 
to use in order to detect the quantum phase transitions exhib­
ited by the /V-body models studied here. For more details see 
[1]. It is clear that the quantum entanglement properties as­
sociated with these quantum transitions (which constitute the 
main focus of the present study) do not depend on the par­
ticular method employed to detect them. However, we think 
that the method explored in [1] is particularly appropriate for 
our present goals, because it may stimulate new lines of en­
quiry related to the temperature dependence of the entangle­
ment features exhibited by the Plastino-Moszkowski and re­
lated models. Consider a system whose dynamics is described 
(at T = 0) by the following Hamiltonian operator

H = Ho + Zfiv (1)

At finite temperatures, the Maximum Entropy Principle of 
Jaynes [2] can be used to determine the appropriate statistical 
operator, p in the following manner. Maximizing the entropy, 
S(p) = Tr[plogp],

5pS(p)=0, (2)

subject to the constraints

< H >= Tr[pH] = E, (3)
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and

7r[p] = 1, (4)

yields

exp(-pH)
P Z ’ (5)

where

Z = Tr[e-W]. (6)

Generally, in statistical mechanics the coupling constant is 
taken to be a constant and equation (2) is used to determine 
the Lagrange multiplier p. Our basic idea to approach QPTs 
is to allow for to vary. Thus, no longer being a constant, 
one becomes entitled to look for a functional relation between 
P and using equation (3) and common thermo-statistical 
ideas.
For instance, the specific heat is given by an H—fluctuation, 
namely,

Cp = -p2[(Â2)-(Â)2]

= -p2
p<H>\ 
k 33 A (7)

The guiding idea now is to make an analogy with (Nerst’s) 
thermodynamics’ third-law in order to establish a criterion for 
detecting the critical values qc of the coupling constant lead­
ing to a structural change in the system’s ground state. As dis­
cussed in detail in reference [1], in the Plastino-Moszkowski 
model these critical values can be determined by considering 
the limit T 0 (or, equivalently p —> oo ) in the relations

GAMr0, (S)
or

(9)

When applying equation (9) one has to note that

/ 3 < H > \ dEgs
\—dT~ A o (10)

since only the ground state is populated at that temperature. 
If, indeed, as has already been pointed out, a QPT occurs at a 
level crossing then two possibilities exist:

1. A discontinuous derivative

For finite systems at finite temperatures (T f 0), Cp is analytic 
and structures in should be indicative of the remnant of 
a phase transition. The relation < H >)^ = 0 allows one 
to correctly determine the position of the QPT. Alternatively 
Ay can be used in the manner outlined above to determine 
the position of a QPT. These two procedures are equivalent, 
as demonstrated in [1], In the next section we are going to 
analyze the quantum entanglement changes associated with 
the quantum phase transitions exhibited by a genuine nuclear 
physics’ many-body model.

3. THE PLASTINO-MOSZKOWSKI MODEL

This is an exactly solvable N-body, SU2 two-level model 
[3]. Each level can accommodate an even number N of par­
ticles, i.e., is N-fold degenerate. There are two levels sepa­
rated by an energy gap, say £ = 1, and occupied by N par­
ticles. In the model the angular momentum-like operators 
J2,Jx,Jy,Jz, withJ(J+l) MA | 2 j/4 are used (see details 
below). The Hamiltonian is given by [3]

H = Jz—ifJ2 — J2—N/2], (12)

States belonging to the lowest lying multiplet, i.e., that with 
J = N/2, are usually referred to as Dicke-states |/,M) (M 
standing for the Jz-eigenvalues) [4], We use, in building up 
our many-body Hamiltonian, the second quantization form

| v 2

= (13)
Z i=l G I

with corresponding expressions for Jx, Jy. This is a simple 
yet nontrivial case of the Lipkin model [5]. Note that we deal 
here with a bonafide many-body system, since the number of 
states grows with N as 2N. At the beginning we will discuss 
only the model in the zero-temperature regime. The operators 
appearing in the model Hamiltonian form a commuting set of 
observables and are thus simultaneously diagonalizable.

3.1. QPTs in the PM-model

The ground state of the unperturbed system (£ = 0 and at 
T = 0) is \J, M) = | y, - y ) with the eigen-energy Eq = - \N. 
When the interaction is turned on (£ f 0) and gradually be­
comes stronger, the ground state energy will in general be 
different from the unperturbed system for some critical value 
of that we will call ^c. This sudden change of the ground 
state energy signifies a quantum phase transition. It should be 
noted that for a given value of N, there could be more than 
one critical point, since there are 2./ I I possible values for 
M. If we denote by n the number of “holes” in the lowest of 
the two A-degenerate levels, then the critical value of the 
nth transition point can be found from equation (14) below, 
provided that q, > 0 and [3]

if -jjF does not change sign when passing through ^c.

2. A null derivative at ^c. A—(2n—1)' (14)
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4. DICKE-STATES’ 2-QUBITS ENTANGLEMENT

Remember that for these states J = N/2 and M = — J, ...,J 
[6]. In the computational basis

c
0.20

0.15

|00>, |01), |10), 111),

one has a reduced two-body matrix [6]

P12

/v+ 0 0 0 \
0 y y 0
0 y y 0 ’

\ 0 0 0 v /

(15)

0.10

FIG. 1: Concurrence of the ground states of the Plastino- 
Moszkowski model with /V 10 particles as a function of the quan­
tum number M. All depicted quantities are dimensionless.

5

with [6]

(A±2M)(A-2±2M) 
4A(A-1)

A2-4M2
4N(N-1)

(16)

and concurrence,
C|P12] -

C[pi2] = 2Mar(0,y- v'(v_v+)), (17)

A2 - 4M2 - V'(A2 - 4M2) [(A - 2)2 - 4M2]
2A(A—1) ’

(21)
leading to the limit value

where, as stated, C[pi2] stands for the all-important quantity 
that measures the entanglement-degree, namely, the concur­
rence. We immediately realize that at the extremal multiplet 
values M = ±7 one has y = 0, C[pi2] = 0, so that these are 
two separable states, and, further,

lim C[pi2] = 0.
N—

(22)

v+ = l;v_=0 M = N/2
v+ = 0; v_ = 1 M=—N/2. (18)

Instead, for M = 0 we get a “minimal-finite” entangle­
ment amount, i.e., that particular many-body state with this 
M—value is the least entangled non-separable Dicke state, for
which

y -

V±

A
4(A—1)

A -2
(19)

4(A—1)’

leading to

C[P12 

lim C[pi2 
/V—*oo

] = 1
J A—1
] = o. (20)

Notice that C[pi2] < 1 for N > 2. For given N, the concur­
rence is always maximal for M = ±y T1, which is a so-called 
W-state [7, 8]. In terms of the number of holes n in the low­
est lying of our two levels, the W-states are those with (n = 1 
or n = ( - 1. The pertinent concurrence becomes Cw = 
These are known to be maximally entangled states in general. 
For an arbitrary Dicke-state the concurrence reads

4.1. QPT and entanglement

The ground state of the unperturbed system (^ = 0 and at 
T = 0), i.e., |7,M) = y-—y) is a separable state. When 
the interaction is turned on (^ 0) and gradually becomes
stronger, the ground state energy will in general be different 
from the unperturbed system for critical values ^c. Such sud­
den change of the ground state energy signifies both a quan­
tum phase transition and an entanglement transition. As, for 
a given value of A, there exists more than one critical point 
(indeed A - 1 ones) we have a matching set of sudden en­
tanglement changes. The first and the last of such transitions 
are, respectively, from a separable to a maximally entangled 
state and vice versa. Thus, at the nth transition ^c, where the 
number of holes n grows by one, and the
ground state of the many-body system becomes a new kind 
of entangled state.

4.2. Thermodynamic limit

Notice that the very presence of other particles, even with­
out interaction, diminishes the concurrence of pn. What hap­
pens in the thermodynamic limit A —> oo?

In answering, we can, without loss of generality, limit our 
considerations to the W-states, whose concurrence steadily 
diminishes with A. Obviously, C[pi2] vanishes then in the 
thermodynamic limit, which is, in a way, a classical one. This 
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is consistent with other instances of quantum systems adopt­
ing classical-like properties in the limit cases corresponding 
to a large number of particles or a large number of degrees of 
freedom [8, 9]. An interesting example of this kind of behav­
ior concerns a typical feature of the dynamics of multipartite 
quantum systems: for some quantum states entanglement en­
hances the “speed” of quantum evolution, as measured by the 
time t required to reach a state orthogonal to the initial one 
[8]. This evolution time T has a lower bound Tmjn determined 
by the energy resources of the quantum state under consid­
eration. When one has a system of N independent qubits 
a certain amount of entanglement is always needed in order 
to saturate the aforementioned bound on the evolution time. 
However, when the number of qubits goes to infinity the en­
tanglement required to reach this “quantum speed limit” goes 
to zero [8], which may be interpreted as a classical-like fea­
ture exhibited by the N —> oo limit.

5. CONCLUSION

We have in this note obtained some significant new results:
1) The Plastino-Moszkowski model [3] exhibits a rich variety 
of entangled states. The transition between them takes place 
precisely at those critical values of the coupling constant for 
which a quantum phase transition occurs.
2) The above makes the Plastino-Moskowski system a useful 

solvable model to study the link between entanglement and 
QPTs in many-body systems.
3) In the thermodynamic limit, which in a sense may be re­
garded as the classical limit, one analytically ascertains that 
the entanglement of the many-body system vanishes, as it 
should.
4) The PM model was advanced to exhibit inadequacies of 
the Hartree-Fock approach [3], which is unable to detect the 
QPT’s. This fact is illuminated here on the basis of the QPT- 
entanglement link that we have investigated in the present 
contribution. The Hartree-Fock state is represented by one 
single Slater determinant and is, consequently, always a sepa­
rable state. In fact, in modem quantum mechanical terminol­
ogy, the Hartree-Fock approach can be described as a “zero 
entanglement” approximation.
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