First report of powdery mildew of Madagascar periwinkle caused by Erysiphe sp. in Japan

K. Watanabe* and Y. Sato
*Faculty of Agriculture, Tamagawa University, Machida, Tokyo 194-8610; and Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0388, Japan

In May 2007, powdery mildew of Madagascar periwinkle (Cal中原a/tus rosea) was observed on commercially grown plants (cv. Yellow Mago) at Kanagawa prefecture. Usually, the white powdery dusting of the fungus developed on the upper leaf surfaces, but it was also seen on the lower leaf surfaces. Symptoms sometimes included yellow and brown lesions (approximately 3-10 mm in diameter) in association with whitish masses of conidiophores and conidia. For pathogenicity testing, conidia on the leaf surface of diseased plants were collected with a dry brush and transferred to each of five healthy leaves of C. rosea. These plants were kept at approximately 23°C and symptoms developed on one of the five leaves after 10 days.

Fungal morphology on the leaves was as follows: hyphae were branched and hyaline, lacking fibrin bodies; conidiophores arose from the internal hyphae, and were septate, hyaline and cylindrical, 32-77 x 16-18 μm in diameter; conidia were also hyaline and cylindrical, 35-45 x 13-20 μm in diameter, produced singly; and appressoria were of a simple lobed type. These morphological characteristics corresponded to an anamorphic stage of the genus Oidium, subgenus Pseudoidium, which belong to the genus Erysiphe.

For more specific identification by DNA analysis, the ITS 1-5.8S rDNA-ITS 2 region was amplified. The sequence (GenBank Accession No. AB355647) was most similar to that of Erysiphe elevata (AY870114: 99%). However, E. elevata is reported to be a pathogen of Bignoniacae (Cook et al., 2006). Furthermore, chasmothecia were not observed on leaves of Madagascar periwinkle, and until a chasmothecium is found, this pathogen will be referred to as Erysiphe sp.

Powdery mildew on C. rosea has been recorded as Leveillula taurica in India and Korea (Amano, 1986; Shin, 2000), and Oidium sp. in Tanzania and Venezuela (Amano, 1986). The reported powdery mildew of C. rosea is not endophytic, and the conidiophore does not emerge through the stomata of the host. This feature is obviously different from that of L. taurica. This is the first record of powdery mildew caused by the genus Erysiphe of Madagascar periwinkle in Japan.

Acknowledgements

The authors would like to thank Prof. Dr. T. Hisang, University of Guelph, for help in revising the manuscript.

References


*E-mail: wywok08@ag.tamagawa.ac.jp. Accepted 18 August 2008 at www.bppp.org.uk/hdr where figures relating to this paper can be viewed.

Plant Pathology (2009) 58, 395

Do Downy mildew of sweet basil (Ocimum basilicum) caused by Peronospora sp. in Argentina

L. Ronco*, C. Rollán*, Y. J. Choi* and H. D. Shin*
*Centro de Investigaciones de Fitopatología (CIDEFI), Facultad de Ciencias Agrarias y Forestales, UNLP, 1900 La Plata, Buenos Aires, Argentina; and Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea

In the green belt surrounding Buenos Aires and La Plata cities, Argentina, sweet basil (Ocimum basilicum) is grown commercially under greenhouse mainly for fresh consumption. In February 2008, plants showing typical symptoms of downy mildew were found in greenhouses in La Plata. The disease was widespread in the cropped area with 100% prevalence. Infection resulted in chlorotic leaves with a greyish to dark brown fungal-like growth on the lower surfaces. A sample was deposited in the local herbarium (KUS-F23241). Conidiophores were subhyaline, 230-460 x 7-11 μm, straight, monopodially branching, in 4-6 orders, and emergent from stomata. Ultimate branches were mostly in pairs, slightly curved, 10-25 (~30) μm long and had subtruncate tips. Conidia were broadly ellipsoid to subglobose, greyish brown, and measured 24-32.5-5.25-6 μm (length/width ratio = 1.06-1.23). This pathogen is univoltine in the genus Peronospora, and well concordant with characters of the unnamed Peronospora species reported in basil (Belbahri et al., 2005).

The amplification and sequencing of the ITS rDNA were performed with procedures outlined by Cooke et al. (2000), and the sequence of the region was deposited in GenBank (Accession No. EF153668). Comparison of the sequences available in the GenBank database revealed that the ITS sequence is identical to those of Peronospora sp. found on Ocimum basilicum (AY817179 ex. Switzerland; AY919391 ex. Italy; and DQ479408 ex. South Africa), but shares three base substitutions with the sequences (EF153666-EF153670) from Iran.

Based on morphological and molecular approaches, the assumed pathogen was identical to the unnamed Peronospora species, reported on basil in Italy and Switzerland (Belbahri et al., 2005). Downy mildew of sweet basil has been previously recorded only from Asia (Iran) (Khateri et al., 2007), Africa (South Africa, Tanzania, Uganda) and Europe (France, Italy, Switzerland) (Farr et al., 2008). This is the first record of a downy mildew epidemic on sweet basil in the Americas and suggests that the pathogen is capable of rapid spread into countries outside of Africa, Asia and Europe. Since sweet basil is cultivated on a commercial scale in Argentina, the downy mildew poses a serious threat to production of the herb.

References


*E-mail: hdshin@korea.ac.kr. Accepted 19 September 2008 at www.bppp.org.uk/hdr where figures relating to this paper can be viewed.

© 2009 The Authors
Journal compilation © 2009 BSPB

395