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Note on semiclassical uncertainty relations
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An important manifestation of the Uncertainty Principle, one of the cornerstones of our present understanding of 
Nature, is that related to semiclassical localization in phase-space. We wish here to add some notes on the subject 
with reference to the canonical harmonic oscillator problem, with emphasis in the concepts of semiclassical 
Husimi distributions, the associated Wehrl entropy, escort distributions, and Fisher’s information measure.
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1. INTRODUCTION

It is well known that the uncertainty principle poses a strict 
bound to semiclassical localizability in phase-space, namely, 
h, instead of the purely quantal h/2 [ 1-3]. We will here revisit 
the subject by recourse to concepts like escort distributions of 
a given order [4] and Fisher’s information [5]. To such an end 
we will utilize the semi-classical methodology detailed, for 
instance, in Ref. [6], for applying/relating the “escort distri­
bution” concept, joining it with that of information measures 
expressed in phase-space vocabulary.

Now, the oldest and most elaborate phase-space (PS) formu­
lation of quantum mechanics is that of Wigner [7-9]: to ev­
ery quantum state a PS function (the Wigner one) can be 
assigned. This phase-space function can assume negative 
values so that it is considered a quasi-probability density. 
This “negative-values’ aspect” was circumvented by Husimi 
[10] (among others), in terms of the so-called Husimi prob­
ability distributions p(x,p) [11]. (Note that whole of quan­
tum mechanics can be completely reformulated in Husimi- 
terms [12, 13].) The distribution p(x,p~) can be regarded 
as a “smoothed Wigner distribution” [8]. Indeed, uix.pj is 
a Wigner-distribution Dw, smeared over an h sized region 
(cell) of phase-space [2], The smearing renders p(x,p) a pos­
itive function, even if Dw does not have such a character. The 
semi-classical Husimi probability distribution refers to a spe­
cial type of probability: that for simultaneous but approxi­
mate location of position and momentum in phase-space [2], 
We will in this communication highlight special aspects of 
¿/-escort-generalizing Husimi functions so as to show how to 
improve on this smearing-degree by diminishing the above re­
ferred to cell-size h. We are particularly motivated by the fact 
that gaining insight into the emergence of classical behavior 
(here by recourse to semiclassical ideas) is one of the most 
attended to present physics’ problems [14], Note also that 
the subject of phase-space localization is of great relevance 
in the field of Quantum Chaos (see, for example, [15-18] and 
references therein).

2. THE CONCEPT OF ESCORT DISTRIBUTION

Consider two (normalized) probability distributions /(x), 
/9(x), and an “operator” Oq linking them in the fashion

AM = 64/W = 7^ <■>

We say that /9(x) is the order ¿/-associated escort distribu­
tion of /, with q e 91. Often, fq is often able to discern in 
better fashion than f important details of the phenomenon at 
hand [4, 6].
The expectation value of a quantity FL evaluated with a 
¿/-escort distribution will be denoted by For some
physical applications of the concept in statistical mechanics 
see, for instance (not an exhaustive list), [6, 19-21], and ref­
erences therein. For physicists, the fundamental reference on 
escort distributions is [4],

3. HUSIMI DISTRIBUTIONS AND THEIR WEHRL 
ENTROPIES

We review now some material described in detail in Ref. [21], 
in particular with reference to information instruments ex­
pressed in phase-space parlance. A main tool is that called 
the semi-classical Wehrl entropy W, a measure of phase­
space localization [1, 22] expressed via coherent states |z) 
[2, 23]. Coherent states are eigenstates of a general annihila­
tion operator a, appropriate for the problem at hand [23-25], 
i.e.,

a|z)=z|z), (2)

where z is a complex combination of the phase-space coordi­
nates x, p (a is not Hermitian),

z = z(x,p)=Ax+iBp, (3)

with A, B being a-depending constants. The Wehrl entropy 
definition reads

W = —y dQp(x,p) lnp(x,p), dQ = dxdp/2nh (4)

clearly a Shannon-like measure [26] to which MaxEnt con­
siderations apply. W is cast in terms of distribution functions 
p(x,p) commonly referred to as Husimi distributions [10]. As
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a measure of localization in phase-space, W exhibits a lower 
bound demonstrated by Lieb with reference to the harmonic 
oscillator coherent states [27]

W > 1, (5)

on which we will elaborate below.
In turn, Husimi’s ju’s are the diagonal elements of the density 
operator p, that yields all the available physical information 
concerning the system at hand [28], in the coherent state basis 
<|z)} [23], i.e.,

= = <z|p|z>- (6)

These are “semi-classical” phase-space distribution functions 
associated to the system’s p [23-25]. The distribution p(x,p) 
is normalized in the fashion

J' dQ.^x,p) = l. (7)

It is shown in Ref. [29] that in the harmonic oscillator case 
the associated Husimi distribution is

/¿(x,p)=//(z) = (l-WpRffl)W(1^ pR<B)M2, (8)

with p = 1/ksT, T the temperature, which leads to a pure 
Gaussian form in the T = 0-limit. It is also obvious that the 
¿/-escort Husimi distribution y9(x,p) will be

7,(.VP) = aMvp) = <9)

which for the HO reduces to

y9(x,p) = ?(l-e-PRffl)exp(-?(l-e-PRffl)|z|2). (10)

Its associated Wehrl’s measure becomes

=-ydQY9(x,p)lny9(x,p). (11)

i.e.,

ir9 = iy-in?, (12)

as it was shown in Ref. [3], and the analytic expression for IT 
is [2]

IT I-Infl-c p/“y (13)

By requiring Wq to range between 0 and 1 we easily ascertain 
that, at T = 0,

1 < q < e. (14)

The Wq-requirement arises from wanting it to have a lower 
upper bound than Liebs’s.

4. PARTICIPATION RATIO

We start here presenting our results. The question of interest 
now is to further refine the range of possible values that q may 
adopt. We introduce to this effect the “semi-classical” version

(15)

(16)

of a well-known quantum concept, that of participation ratio 
[30], here associated to the ¿/-escort Husimi distribution yq

^=f^7q(zf

which, if we explicitly compute , reads

¿/(l-e~PR®)'

We can note that d2z/7t = dxdp/27t/i. When the temperature 
T = 0 we have ‘J\q 2/q and, when T goes to infinity, obvi­
ously goes to infinity too. Since it is well-known that [30] 

> 1, this immediately entails

¿/< 2. (17)

In view of (14) we have now a better-defined range of values 
for ¿/, namely, the new range

l<d<2. (18)

5. SEMICLASSICAL FISHER INFORMATION IN 
PHASE-SPACE

The last years have witnessed a great deal of activity revolv­
ing around physical applications of Fisher’s information mea­
sure (FIM) [5]. FIM provides one with a powerful variational 
principle, the extreme physical information one, that yields 
most of the canonical Lagrangians of theoretical physics [5], 
characterizing also in quite a proper fashion an “arrow of 
time”, alternative to the one associated with Boltzmann’s en­
tropy [31, 32], The classical Fisher information associated 
with translations of a one-dimensional observable x with cor­
responding probability density p(x) is [33]

dlnp(x)"|2 
dx (19)•)

and the Cramer-Rao inequality is given by [33]

Ax > /, ' (20)

where Ax is the variance for the stochastic variable x which is 
of the form [33]

= = ■ (21>

An original, compact expression is here advanced for the 
“semiclassical” Fisher information measure, which can be 
easily derived from the Wehrl-methodology described in [29]. 
The new result reads

(22)
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so that inserting the //-expression into (22) we find the ana­
lytic form

(23)

leading to the following limits:

For T —> 0 one has Ip = 1 
For T -x o° one has Ip = 0, (24)

as it should be expected. As for the associated escort-Fisher 
measure Iq one easily gets

and

(¿h = = 0, (32)
with <3X = (/t/2mm)1/2 and <3P = (/tmœ/2)1/2. T-dependent 
uncertainty relations for the harmonic oscillator straightfor­
wardly follow now in the fashion

h
A,xA,p= (33)

that, at zero-temperature, lead to the well-known result re­
ferred to in the Introduction (and that we wish to improve 
upon), i.e.,

which using (10) leads to
(AjUxAjUp)7’=0 = h. (34)

Iq = q(f-e^) = qlfc, (26) We can evaluate these variances again using the yq-escort 
distribution, being easily led to

entailing that 0 < Iq < q.

5.1. Fisher uncertainties

It was shown in Ref. [34] that variances for x and p evaluated 
with de Husimi distribution yield a Fisher-weighted uncer­
tainty relation

ISFC AuxAup b. (27)

We wish here to show that this relations is invariant under the 
escort transformation. In other words, this is tantamount to 
replacing a for yq in the evaluation of the variances and also 
Isc for Iq. Now, from Ref. [3] we know that

<28> 

so that, using also Eq. (25) we easily obtain the (original in 
this context) relation

IqAyqxAyqp = h, (29)

which is the promised invariance. Contrariwise, removing the 
Fisher measure from the above relations it destroys this in­
variance and yields interesting results that we discuss below.

<x\
(x2) 2o2

(35)
q ¿/(l — eßRffl) ’

2o2
(36)

q q(l —eßRffl)’

(ph = 0, (37)

which finally yield the new uncertainty relationship

h
q(l —eßRffl)

(38)^.p=^

When the temperature goes to zero we find that 

(AyqXAyqP')T=0 =
q

(39)

which sensibly improves the typical, cell of size h- 
semiclassical power, and is also better than the h/y/q result 
of [3]. Indeed, we recover the pure quantum result for the 
maximum permissible ¿/-value of 2.

6. CONCLUSIONS

5.2. Husimi uncertainties

Husimi-mean values (x2), (p2), (x), and (p) have been com­
puted in [3], reading

=
2o2

(30)X _ g-ßRco ’

=

2o2
(31)l-e~ßRffl,

We summarize now our main results. We have advanced three 
original expressions, i.e., Eqs. (14), (22), (25) and (29). We 
have observed the invariance of the Fisher uncertainties un­
der the escort transformation and, finally, we have shown that 
with the help of the escort distributions one is able to reobtain 
the canonical Heisenberg’s uncertainties at the semiclassical 
level, thus clearly exhibiting the power of the escort-concept.
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